1
|
Lin Q, Ge X, Li X, Gu F, Gao L, Su T, Chen Y, Yang L, Liu D, Han B, Chen C. Wuzi Yanzong Decoction Ameliorates Oligoasthenozoospermia by Up-Regulating Methyltransferase and Increasing Spata, Bcl, and Pik3 Series Genes Methylation Level. Chem Biodivers 2025; 22:e202401984. [PMID: 39441614 DOI: 10.1002/cbdv.202401984] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 10/18/2024] [Accepted: 10/23/2024] [Indexed: 10/25/2024]
Abstract
Wuzi Yanzong decoction (WZYZD) belongs to the traditional formula for treating male infertility caused by oligoasthenozoospermia (OLI). This research aims to elucidate the therapeutic substance basis and potential pharmacological mechanisms of WZYZD in treating OLI. A total of 52 chemical ingredients were identified from WZYZD. HE and TUNEL staining demonstrated that WZYZD can markedly alleviate OLI. Immunofluorescence analysis showed that WZYZD can significantly increase the expression levels of DNMT3 A, PIWIL1, SETDB1, and PRMT5. Methyl capture sequencing proved that WZYZD can markedly upregulate the methylated level of Spata, Bcl, and Pik3 series genes. Network pharmacology analysis proved that WZYZD can ameliorate OLI through BCL-2 and PI3 K-AKT signaling pathways. The immunofluorescence assay of BCL-2 and SPATA18 proved the aforementioned results. The potential mechanism of WZYZD in treating OLI mainly involved recruiting methyltransferase DNMT3 A, PIWIL1, PRMT5, and SETDB1 and increasing the methylation degree of Spata, Bcl, and Pik3 series genes.
Collapse
Affiliation(s)
- Qiyan Lin
- College of Biological and Pharmaceutical Engineering, West Anhui University, Traditional Chinese Medicine Institute of Anhui Dabie Mountain, Anhui Engineering Research Center for Eco-agriculture of Traditional Chinese Medicine, Generic Technology Research Center for Anhui Traditional Chinese Medicine Industry, Lu'an, 237012, Anhui, P. R. China
| | - Xiyu Ge
- College of Biological and Pharmaceutical Engineering, West Anhui University, Traditional Chinese Medicine Institute of Anhui Dabie Mountain, Anhui Engineering Research Center for Eco-agriculture of Traditional Chinese Medicine, Generic Technology Research Center for Anhui Traditional Chinese Medicine Industry, Lu'an, 237012, Anhui, P. R. China
| | - Xia Li
- College of Biological and Pharmaceutical Engineering, West Anhui University, Traditional Chinese Medicine Institute of Anhui Dabie Mountain, Anhui Engineering Research Center for Eco-agriculture of Traditional Chinese Medicine, Generic Technology Research Center for Anhui Traditional Chinese Medicine Industry, Lu'an, 237012, Anhui, P. R. China
| | - Fangli Gu
- College of Biological and Pharmaceutical Engineering, West Anhui University, Traditional Chinese Medicine Institute of Anhui Dabie Mountain, Anhui Engineering Research Center for Eco-agriculture of Traditional Chinese Medicine, Generic Technology Research Center for Anhui Traditional Chinese Medicine Industry, Lu'an, 237012, Anhui, P. R. China
| | - Leilei Gao
- College of Biological and Pharmaceutical Engineering, West Anhui University, Traditional Chinese Medicine Institute of Anhui Dabie Mountain, Anhui Engineering Research Center for Eco-agriculture of Traditional Chinese Medicine, Generic Technology Research Center for Anhui Traditional Chinese Medicine Industry, Lu'an, 237012, Anhui, P. R. China
| | - Ting Su
- College of Biological and Pharmaceutical Engineering, West Anhui University, Traditional Chinese Medicine Institute of Anhui Dabie Mountain, Anhui Engineering Research Center for Eco-agriculture of Traditional Chinese Medicine, Generic Technology Research Center for Anhui Traditional Chinese Medicine Industry, Lu'an, 237012, Anhui, P. R. China
| | - Yanjun Chen
- College of Biological and Pharmaceutical Engineering, West Anhui University, Traditional Chinese Medicine Institute of Anhui Dabie Mountain, Anhui Engineering Research Center for Eco-agriculture of Traditional Chinese Medicine, Generic Technology Research Center for Anhui Traditional Chinese Medicine Industry, Lu'an, 237012, Anhui, P. R. China
| | - Li Yang
- Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Shanghai, 201203, China
| | - Dong Liu
- College of Biological and Pharmaceutical Engineering, West Anhui University, Traditional Chinese Medicine Institute of Anhui Dabie Mountain, Anhui Engineering Research Center for Eco-agriculture of Traditional Chinese Medicine, Generic Technology Research Center for Anhui Traditional Chinese Medicine Industry, Lu'an, 237012, Anhui, P. R. China
| | - Bangxing Han
- College of Biological and Pharmaceutical Engineering, West Anhui University, Traditional Chinese Medicine Institute of Anhui Dabie Mountain, Anhui Engineering Research Center for Eco-agriculture of Traditional Chinese Medicine, Generic Technology Research Center for Anhui Traditional Chinese Medicine Industry, Lu'an, 237012, Anhui, P. R. China
| | - Cunwu Chen
- College of Biological and Pharmaceutical Engineering, West Anhui University, Traditional Chinese Medicine Institute of Anhui Dabie Mountain, Anhui Engineering Research Center for Eco-agriculture of Traditional Chinese Medicine, Generic Technology Research Center for Anhui Traditional Chinese Medicine Industry, Lu'an, 237012, Anhui, P. R. China
| |
Collapse
|
2
|
Xi B, Lu Z, Zhang R, Zhao S, Li J, An X, Yue Y. Comprehensive analysis of the transcriptome-wide m6A Methylome in sheep testicular development. Genomics 2025; 117:111005. [PMID: 39855482 DOI: 10.1016/j.ygeno.2025.111005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2024] [Revised: 12/24/2024] [Accepted: 01/20/2025] [Indexed: 01/27/2025]
Abstract
N6-methyladenosine (m6A) modification of RNA is a critical post-transcriptional modification, that dynamically contributes to testicular development and spermatogenesis. Nevertheless, the investigation into the role of m6A in testicular development of sheep remains insufficient. Herein, we conducted a comprehensive analysis of the m6A transcriptome landscape in the testes of F1 hybrid Southdown × Hu sheep across M0 (0 months old, newborn), M3 (3 months old, sexually immature), M6 (6 months old, sexually mature), and Y1 (1 years old, adult). By profiling the m6A signatures across the transcriptome, we observed distinct differences in m6A modification patterns during sheep testicular development. Our cross-analysis of m6A and mRNA expression revealed that the expression of 743 genes and their m6A modification were concurrent. Notably, the combined analysis of the two comparative groups, M0 vs. M6 and M0 vs. Y1, exhibited a positive correlation, with 30 candidate genes each located within the largest protein-protein interaction network. Intriguingly, eight key hub genes (VEGFA, HDAC9, ZBTB40, KDM5B, MTRR, EAPS1, TSSK3, and BMP4) were identified to be associated with the regulation of sheep testicular development and spermatogenesis. These findings contribute to a deeper understanding of the dynamic role of m6A modification in sheep testicular biology. This study to map RNA m6A modification in sheep testes at different ages, providing novel insights into m6A topology and the molecular mechanisms associated with spermatogenesis in Southdown × Hu sheep F1 hybrids and laying the foundation for further investigations of mammalian spermatogenesis.
Collapse
Affiliation(s)
- Binpeng Xi
- Key Laboratory of Animal Genetics and Breeding on the Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China; Sheep Breeding Engineering Technology Research Center of Chinese Academy of Agricultural Sciences, Lanzhou 730050, China; College of Animal Science and Technology, Gansu Agricultural University, Lanzhou 730070, China
| | - Zengkui Lu
- Key Laboratory of Animal Genetics and Breeding on the Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China; Sheep Breeding Engineering Technology Research Center of Chinese Academy of Agricultural Sciences, Lanzhou 730050, China
| | - Rui Zhang
- Key Laboratory of Animal Genetics and Breeding on the Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China; Sheep Breeding Engineering Technology Research Center of Chinese Academy of Agricultural Sciences, Lanzhou 730050, China
| | - Shengguo Zhao
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou 730070, China
| | - Jianye Li
- Key Laboratory of Animal Genetics and Breeding on the Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China; Sheep Breeding Engineering Technology Research Center of Chinese Academy of Agricultural Sciences, Lanzhou 730050, China
| | - Xuejiao An
- Key Laboratory of Animal Genetics and Breeding on the Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China; Sheep Breeding Engineering Technology Research Center of Chinese Academy of Agricultural Sciences, Lanzhou 730050, China.
| | - Yaojing Yue
- Key Laboratory of Animal Genetics and Breeding on the Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China; Sheep Breeding Engineering Technology Research Center of Chinese Academy of Agricultural Sciences, Lanzhou 730050, China.
| |
Collapse
|
3
|
Wu Z, Li L, Chen S, Gong Y, Liu Y, Jin T, Wang Y, Tang J, Dong Q, Yang B, Yang F, Dong W. Microbiota contribute to regulation of the gut-testis axis in seasonal spermatogenesis. THE ISME JOURNAL 2025; 19:wraf036. [PMID: 39999373 PMCID: PMC11964897 DOI: 10.1093/ismejo/wraf036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/18/2024] [Revised: 01/07/2025] [Accepted: 02/21/2025] [Indexed: 02/27/2025]
Abstract
Seasonal breeding is an important adaptive strategy for animals. Recent studies have highlighted the potential role of the gut microbiota in reproductive health. However, the relationship between the gut microbiota and reproduction in seasonal breeders remains unclear. In this study, we selected a unique single food source animal, the flying squirrel (Trogopterus xanthipes), as a model organism for studying seasonal breeding. By integrating transcriptomic, metabolomic, and microbiome data, we comprehensively investigated the regulation of the gut-metabolism-testis axis in seasonal breeding. Here, we demonstrated a significant spermatogenic phenotype and highly active spermatogenic transcriptional characteristics in the testes of flying squirrels during the breeding season, which were associated with increased polyamine metabolism, primarily involving spermine and γ-amino butyric acid. Moreover, an enrichment of Ruminococcus was observed in the large intestine during the breeding season and may contribute to enhanced methionine biosynthesis in the gut. Similar changes in Ruminococcus abundance were also observed in several other seasonal breeders. These findings innovatively revealed that reshaping the gut microbiota regulates spermatogenesis in seasonal breeders through polyamine metabolism, highlighting the great potential of the gut-testis axis in livestock animal breeding and human health management.
Collapse
Affiliation(s)
- Zifang Wu
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Long Li
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Shaoxian Chen
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Ye Gong
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Yuyan Liu
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Tianqi Jin
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Yang Wang
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Jie Tang
- Shaanxi Institute of Zoology, Xi'an, Shaanxi 710032, China
| | - Qian Dong
- Department of Thyroid and Breast Surgery, Shenzhen Luohu Hospital Group Luohu People’s Hospital (Third Affiliated Hospital of Shenzhen University), Shenzhen, Guangdong 518000, China
| | - Bangzhu Yang
- Luonan Science and Technology Bureau, Shangluo, Shaanxi 726000, China
| | - Fangxia Yang
- College of Forestry, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Wuzi Dong
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China
| |
Collapse
|
4
|
Zhao J, Xu Y, Yu H, Li X, Wang W, Mao D. Effects of PPARG on the proliferation, apoptosis, and estrogen secretion in goat granulosa cells. Theriogenology 2025; 231:62-72. [PMID: 39413539 DOI: 10.1016/j.theriogenology.2024.10.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2024] [Revised: 10/04/2024] [Accepted: 10/12/2024] [Indexed: 10/18/2024]
Abstract
As a member of peroxisome proliferator-activated receptor (PPAR) family, PPARG has been reported to be involved in glucolipid metabolism in various species. However, the function of PPARG in estradiol (E2) synthesis, apoptosis, and proliferation in goat ovarian granulosa cells (GCs) is unclear. In this study, we found that goat PPARG was expressed in GCs of all grades of follicles, and localized in the cytoplasm and nucleus of GCs. Transfection of small interfering RNA-PPARG2 (si-PPARG2) decreased E2 synthesis and the abundances of HSD3B and CYP19A1 mRNA and protein. It also promoted cell apoptosis with significant increases in the ratio of BAX/BCL-2 and Caspase3 mRNA and protein. Meanwhile, cell cycle was inhibited by si-PPARG2 transfection, accompanied by decreased mRNA levels of CDK4, CKD6, MYC, CCND1, CCND2, PCNA, and CCNB, increased mRNA level of P53, and decreased protein levels of CDK4, MYC, and CCND1. Furthermore, PPARG interference affected the mRNA and protein abundances of CREB as well as the phosphorylation of CREB but not PKA. In conclusion, our data suggest that PPARG plays an important role in regulating E2 synthesis, cell apoptosis, and proliferation of goat GCs, including the CREB expression and phosphorylation. These results provide evidences for the in-depth study of PPARG in the regulation of goat GCs function.
Collapse
Affiliation(s)
- Jie Zhao
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China
| | - Yinying Xu
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China
| | - Hao Yu
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China
| | - Xiaotong Li
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China
| | - Wei Wang
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China
| | - Dagan Mao
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China.
| |
Collapse
|
5
|
Huang X, Bao Y, Yang F, Li X, Wang F, Zhang C. miR-134-3p Regulates Cell Proliferation and Apoptosis by Targeting INHBA via Inhibiting the TGF-β/PI3K/AKT Pathway in Sheep Granulosa Cells. BIOLOGY 2024; 14:24. [PMID: 39857255 PMCID: PMC11759767 DOI: 10.3390/biology14010024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2024] [Revised: 12/11/2024] [Accepted: 12/17/2024] [Indexed: 01/27/2025]
Abstract
Inhibin β-A (INHBA), a TGF-β superfamily member, is crucial for developing follicles. Although miRNAs are essential for post-transcriptional gene regulation, it is not yet known how they affect the expression of INHBA during follicle development. Using bioinformatics analyses, miR-134-3p was found, in this investigation, to be a crucial microRNA that targets INHBA in sheep GCs. Furthermore, when the follicular diameter expanded, there was a discernible decline in miR-134-3p expression. The miR-134-3p overexpression markedly reduced the proliferation of GCs, whereas its knockdown augmented it. Moreover, cell cycle progression was enhanced by miR-134-3p overexpression. Furthermore, miR-134-3p overexpression heightened GC apoptosis, while its knockdown reduced it. Importantly, miR-134-3p overexpression blocked the PI3K/AKT/mTOR axis, whereas its knockdown stimulated it. Overall, the outcomes of transfections with INHBA and miR-134-3p showed that, in sheep GCs, miR-134-3p targets INHBA to control cell proliferation and apoptosis. In summary, these results add to our understanding of the molecular mechanisms involving important miRNAs in ewe fecundity by indicating that miR-134-3p influences cell proliferation, cell apoptosis, and the TGF-β/PI3K/AKT/mTOR axis, which, in turn, influences the follicular development of sheep GCs.
Collapse
Affiliation(s)
- Xinai Huang
- College of Animal Science, Shanxi Agricultural University, Taigu 030801, China
- Jiangsu Livestock Embryo Engineering Laboratory, Nanjing Agricultural University, Nanjing 210095, China; (Y.B.); (F.Y.); (X.L.); (F.W.)
| | - Yongjin Bao
- Jiangsu Livestock Embryo Engineering Laboratory, Nanjing Agricultural University, Nanjing 210095, China; (Y.B.); (F.Y.); (X.L.); (F.W.)
| | - Fan Yang
- Jiangsu Livestock Embryo Engineering Laboratory, Nanjing Agricultural University, Nanjing 210095, China; (Y.B.); (F.Y.); (X.L.); (F.W.)
| | - Xiaodan Li
- Jiangsu Livestock Embryo Engineering Laboratory, Nanjing Agricultural University, Nanjing 210095, China; (Y.B.); (F.Y.); (X.L.); (F.W.)
| | - Feng Wang
- Jiangsu Livestock Embryo Engineering Laboratory, Nanjing Agricultural University, Nanjing 210095, China; (Y.B.); (F.Y.); (X.L.); (F.W.)
| | - Chunxiang Zhang
- College of Animal Science, Shanxi Agricultural University, Taigu 030801, China
| |
Collapse
|
6
|
Shi L, Zhang P, Liu Q, Liu C, Cheng L, Yu B, Chen H. Genome-Wide Analysis of Genetic Diversity and Selection Signatures in Zaobei Beef Cattle. Animals (Basel) 2024; 14:2447. [PMID: 39199980 PMCID: PMC11350888 DOI: 10.3390/ani14162447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2024] [Revised: 08/17/2024] [Accepted: 08/21/2024] [Indexed: 09/01/2024] Open
Abstract
This investigation provides a comprehensive analysis of genomic diversity and selection signatures in Zaobei beef cattle, an indigenous breed known for its adaptation to hot and humid climates and superior meat quality. Whole-genome resequencing was conducted on 23 Zaobei cattle, compared with 46 Simmental cattle to highlight genetic distinctions. Population structure analysis confirmed the genetic uniqueness of Zaobei cattle. Using methods such as DASDC v1.01, XPEHH, and θπ ratio, we identified 230, 232, and 221 genes through DASDC, including hard sweeps, soft sweeps, and linkage sweeps, respectively. Coincidentally, 109 genes were identified when using XPEHH and θπ ratio methods. Together, these analyses revealed eight positive selection genes (ARHGAP15, ZNF618, USH2A, PDZRN4, SPATA6, ROR2, KCNIP3, and VWA3B), which are linked to critical traits such as heat stress adaptation, fertility, and meat quality. Moreover, functional enrichment analyses showed pathways related to autophagy, immune response, energy metabolism, and muscle development. The comprehensive genomic insights gained from this study provide valuable knowledge for breeding programs aimed at enhancing the beneficial traits in Zaobei cattle.
Collapse
Affiliation(s)
- Liangyu Shi
- Laboratory of Genetic Breeding, Reproduction and Precision Livestock Farming & Hubei Provincial Center of Technology Innovation for Domestic Animal Breeding, School of Animal Science and Nutritional Engineering, Wuhan Polytechnic University, Wuhan 430023, China; (L.S.); (P.Z.); (Q.L.)
| | - Pu Zhang
- Laboratory of Genetic Breeding, Reproduction and Precision Livestock Farming & Hubei Provincial Center of Technology Innovation for Domestic Animal Breeding, School of Animal Science and Nutritional Engineering, Wuhan Polytechnic University, Wuhan 430023, China; (L.S.); (P.Z.); (Q.L.)
| | - Qing Liu
- Laboratory of Genetic Breeding, Reproduction and Precision Livestock Farming & Hubei Provincial Center of Technology Innovation for Domestic Animal Breeding, School of Animal Science and Nutritional Engineering, Wuhan Polytechnic University, Wuhan 430023, China; (L.S.); (P.Z.); (Q.L.)
| | - Chenhui Liu
- Institute of Animal Science and Veterinary Medicine, Wuhan Academy of Agricultural Sciences, Wuhan 430208, China; (C.L.); (L.C.)
| | - Lei Cheng
- Institute of Animal Science and Veterinary Medicine, Wuhan Academy of Agricultural Sciences, Wuhan 430208, China; (C.L.); (L.C.)
| | - Bo Yu
- Laboratory of Genetic Breeding, Reproduction and Precision Livestock Farming & Hubei Provincial Center of Technology Innovation for Domestic Animal Breeding, School of Animal Science and Nutritional Engineering, Wuhan Polytechnic University, Wuhan 430023, China; (L.S.); (P.Z.); (Q.L.)
| | - Hongbo Chen
- Laboratory of Genetic Breeding, Reproduction and Precision Livestock Farming & Hubei Provincial Center of Technology Innovation for Domestic Animal Breeding, School of Animal Science and Nutritional Engineering, Wuhan Polytechnic University, Wuhan 430023, China; (L.S.); (P.Z.); (Q.L.)
| |
Collapse
|
7
|
Lin Q, Ge X, Gao L, Chen Y, Su T, Ma M, Wang H, Chen C, Han B, Liu D. Betaine alleviates spermatogenic cells apoptosis of oligoasthenozoospermia rat model by up-regulating methyltransferases and affecting DNA methylation. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 129:155713. [PMID: 38735196 DOI: 10.1016/j.phymed.2024.155713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 03/27/2024] [Accepted: 05/03/2024] [Indexed: 05/14/2024]
Abstract
BACKGROUND Oligoasthenozoospermia is the most common type of semen abnormality in male infertile patients. Betaine (BET) has been proved to have pharmacological effects on improving semen quality. BET also belongs to endogenous physiological active substances in the testis. However, the physiological function of BET in rat testis and its pharmacological mechanism against oligoasthenozoospermia remain unclear. PURPOSE This research aims to prove the therapeutic effect and potential mechanism of BET on oligoasthenozoospermia rat model induced by Tripterygium wilfordii glycosides (TWGs). METHODS The oligoasthenozoospermia rat model was established by a continuous gavage of TWGs (60 mg/kg) for 28 days. Negative control group, oligoasthenozoospermia group, positive drug group (levocarnitine, 300 mg/kg), and 200 mg/kg, 400 mg/kg, and 800 mg/kg BET groups were created for exploring the therapeutic effect of BET on the oligoasthenozoospermia rat model. The therapeutic effect was evaluated by HE and TUNEL staining. Immunofluorescence assay of DNMT3A, PIWIL1, PRMT5, SETDB1, BHMT2, and METTL3, methylation capture sequencing, Pi-RNA sequencing, and molecular docking were used to elucidate potential pharmacological mechanisms. RESULTS It is proved that BET can significantly restore testicular pathological damage induced by TWGs, which also can significantly reverse the apoptosis of spermatogenic cells. The spermatogenic cell protein expression levels of DNMT3A, PIWIL1, PRMT5, SETDB1, BHMT2, and METTL3 significantly decreased in oligoasthenozoospermia group. 400 mg/kg and 800 mg/kg BET groups can significantly increase expression level of the above-mentioned proteins. Methylation capture sequencing showed that BET can significantly increase the 5mC methylation level of Spata, Spag, and Specc spermatogenesis-related genes. Pi-RNA sequencing proved that the above-mentioned genes produce a large number of Pi-RNA under BET intervention. Pi-RNA can form complexes with PIWI proteins to participate in DNA methylation of target genes. Molecular docking indicated that BET may not directly act as substrate for methyltransferase and instead participates in DNA methylation by promoting the methionine cycle and increasing S-adenosylmethionine synthesis. CONCLUSION BET has a significant therapeutic effect on oligoasthenozoospermia rat model induced by TWPs. The mechanism mainly involves that BET can increase the methylation level of Spata, Specc, and Spag target genes through the PIWI/Pi-RNA pathway and up-regulation of methyltransferases (including DNA methyltransferases and histone methyltransferases).
Collapse
Affiliation(s)
- Qiyan Lin
- College of Biological and Pharmaceutical Engineering, West Anhui University, Generic Technology Research Center for Anhui Traditional Chinese Medicine Industry, Anhui Engineering Research Center for Eco-agriculture of Traditional Chinese Medicine, Lu'an, 237012, Anhui, China
| | - Xiyu Ge
- College of Biological and Pharmaceutical Engineering, West Anhui University, Generic Technology Research Center for Anhui Traditional Chinese Medicine Industry, Anhui Engineering Research Center for Eco-agriculture of Traditional Chinese Medicine, Lu'an, 237012, Anhui, China
| | - Leilei Gao
- College of Biological and Pharmaceutical Engineering, West Anhui University, Generic Technology Research Center for Anhui Traditional Chinese Medicine Industry, Anhui Engineering Research Center for Eco-agriculture of Traditional Chinese Medicine, Lu'an, 237012, Anhui, China
| | - Yanjun Chen
- College of Biological and Pharmaceutical Engineering, West Anhui University, Generic Technology Research Center for Anhui Traditional Chinese Medicine Industry, Anhui Engineering Research Center for Eco-agriculture of Traditional Chinese Medicine, Lu'an, 237012, Anhui, China
| | - Ting Su
- College of Biological and Pharmaceutical Engineering, West Anhui University, Generic Technology Research Center for Anhui Traditional Chinese Medicine Industry, Anhui Engineering Research Center for Eco-agriculture of Traditional Chinese Medicine, Lu'an, 237012, Anhui, China
| | - Menghua Ma
- College of Biological and Pharmaceutical Engineering, West Anhui University, Generic Technology Research Center for Anhui Traditional Chinese Medicine Industry, Anhui Engineering Research Center for Eco-agriculture of Traditional Chinese Medicine, Lu'an, 237012, Anhui, China
| | - Huijun Wang
- Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Shanghai, 201203, China
| | - Cunwu Chen
- College of Biological and Pharmaceutical Engineering, West Anhui University, Generic Technology Research Center for Anhui Traditional Chinese Medicine Industry, Anhui Engineering Research Center for Eco-agriculture of Traditional Chinese Medicine, Lu'an, 237012, Anhui, China
| | - Bangxing Han
- College of Biological and Pharmaceutical Engineering, West Anhui University, Generic Technology Research Center for Anhui Traditional Chinese Medicine Industry, Anhui Engineering Research Center for Eco-agriculture of Traditional Chinese Medicine, Lu'an, 237012, Anhui, China.
| | - Dong Liu
- College of Biological and Pharmaceutical Engineering, West Anhui University, Generic Technology Research Center for Anhui Traditional Chinese Medicine Industry, Anhui Engineering Research Center for Eco-agriculture of Traditional Chinese Medicine, Lu'an, 237012, Anhui, China.
| |
Collapse
|
8
|
Zhang W, Xu C, Zhou M, Liu L, Ni Z, Su S, Wang C. Copy number variants selected during pig domestication inferred from whole genome resequencing. Front Vet Sci 2024; 11:1364267. [PMID: 38505001 PMCID: PMC10950068 DOI: 10.3389/fvets.2024.1364267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Accepted: 02/19/2024] [Indexed: 03/21/2024] Open
Abstract
Over extended periods of natural and artificial selection, China has developed numerous exceptional pig breeds. Deciphering the germplasm characteristics of these breeds is crucial for their preservation and utilization. While many studies have employed single nucleotide polymorphism (SNP) analysis to investigate the local pig germplasm characteristics, copy number variation (CNV), another significant type of genetic variation, has been less explored in understanding pig resources. In this study, we examined the CNVs of 18 Wanbei pigs (WBP) using whole genome resequencing data with an average depth of 12.61. We identified a total of 8,783 CNVs (~30.07 Mb, 1.20% of the pig genome) in WBP, including 8,427 deletions and 356 duplications. Utilizing fixation index (Fst), we determined that 164 CNVs were within the top 1% of the Fst value and defined as under selection. Functional enrichment analyses of the genes associated with these selected CNVs revealed genes linked to reproduction (SPATA6, CFAP43, CFTR, BPTF), growth and development (NR6A1, SMYD3, VIPR2), and immunity (PARD3, FYB2). This study enhances our understanding of the genomic characteristics of the Wanbei pig and offers a theoretical foundation for the future breeding of this breed.
Collapse
Affiliation(s)
- Wei Zhang
- Institute of Animal Husbandry and Veterinary Medicine, Anhui Academy of Agricultural Sciences, Anhui Provincial Breeding Pig Genetic Evaluation Center, Key Laboratory of Pig Molecular Quantitative Genetics of Anhui Academy of Agricultural Sciences, Anhui Provincial Key Laboratory of Livestock and Poultry Product Safety Engineering, Hefei, China
| | - Chengliang Xu
- Institute of Animal Husbandry and Veterinary Medicine, Anhui Academy of Agricultural Sciences, Anhui Provincial Breeding Pig Genetic Evaluation Center, Key Laboratory of Pig Molecular Quantitative Genetics of Anhui Academy of Agricultural Sciences, Anhui Provincial Key Laboratory of Livestock and Poultry Product Safety Engineering, Hefei, China
| | - Mei Zhou
- Institute of Animal Husbandry and Veterinary Medicine, Anhui Academy of Agricultural Sciences, Anhui Provincial Breeding Pig Genetic Evaluation Center, Key Laboratory of Pig Molecular Quantitative Genetics of Anhui Academy of Agricultural Sciences, Anhui Provincial Key Laboratory of Livestock and Poultry Product Safety Engineering, Hefei, China
| | - Linqing Liu
- Institute of Animal Husbandry and Veterinary Medicine, Anhui Academy of Agricultural Sciences, Anhui Provincial Breeding Pig Genetic Evaluation Center, Key Laboratory of Pig Molecular Quantitative Genetics of Anhui Academy of Agricultural Sciences, Anhui Provincial Key Laboratory of Livestock and Poultry Product Safety Engineering, Hefei, China
| | - Zelan Ni
- Anhui Provincial Livestock and Poultry Genetic Resources Conservation Center, Hefei, China
| | - Shiguang Su
- Institute of Animal Husbandry and Veterinary Medicine, Anhui Academy of Agricultural Sciences, Anhui Provincial Breeding Pig Genetic Evaluation Center, Key Laboratory of Pig Molecular Quantitative Genetics of Anhui Academy of Agricultural Sciences, Anhui Provincial Key Laboratory of Livestock and Poultry Product Safety Engineering, Hefei, China
| | - Chonglong Wang
- Institute of Animal Husbandry and Veterinary Medicine, Anhui Academy of Agricultural Sciences, Anhui Provincial Breeding Pig Genetic Evaluation Center, Key Laboratory of Pig Molecular Quantitative Genetics of Anhui Academy of Agricultural Sciences, Anhui Provincial Key Laboratory of Livestock and Poultry Product Safety Engineering, Hefei, China
| |
Collapse
|
9
|
Kong Y, Fu W, Wang L, Li F, Li W, Yue X. Molecular characterization of SPATA6 and association of its SNPs with testicular size in sheep. Theriogenology 2024; 215:205-213. [PMID: 38096624 DOI: 10.1016/j.theriogenology.2023.12.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 12/05/2023] [Accepted: 12/05/2023] [Indexed: 01/06/2024]
Abstract
The testis is an important organ for maintaining fertility in males, and testis size is positively correlated with ejaculate volume, sperm motility, thus fertility. Spermatogenesis-associated 6 (SPATA6) is an evolutionarily conserved testis-specific gene reported in many species. However, the effect of SPATA6 expression levels on testicular development and the effect of single nucleotide polymorphisms (SNPs) on testis and epididymis phenotype in sheep have not been studied. The purpose of the research was to investigate the expression profile of SPATA6 and its effect on testicular development and to confirm the effect of SNPs on the testis and epididymis phenotype. In this study, we detected a 1245bp coding sequence (CDS) of SPATA6 and encoded 414 amino acids. The expression levels of SPATA6 were significantly higher in the testis than in other tissues and gradually increased with testis development. Moreover, the expression level in the large testis was significantly higher than that in the small testis at six months. A total of 11 SNPs were detected in the coding region of SPATA6 by cDNA-pooling sequencing and improved multiplex ligation detection reaction (iMLDR) methods. Correlation analysis showed that SNP2 (c. 3631C > G) significantly affected left epididymis weight (LEW) and right epididymis weight (REW), and SNP10 (c. 937 A > G) significantly affected REW. And the combined genotype of SNP1 (c. 4245 G > A) and SNP2 significantly affected REW. The current study concluded that SPATA6 plays an important role in testicular development and the SNPs significantly associated with the epididymis phenotype can provide molecular markers for the early selection of high-fertility Hu sheep.
Collapse
Affiliation(s)
- Yuanyuan Kong
- State Key Laboratory of Herbage Improvement and Grassland Agro-Ecosystems, China; Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs, China; Engineering Research Center of Grassland Industry, Ministry of Education, China; College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou 730020, China
| | - Weiwei Fu
- State Key Laboratory of Herbage Improvement and Grassland Agro-Ecosystems, China; Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs, China; Engineering Research Center of Grassland Industry, Ministry of Education, China; College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou 730020, China
| | - Li Wang
- State Key Laboratory of Herbage Improvement and Grassland Agro-Ecosystems, China; Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs, China; Engineering Research Center of Grassland Industry, Ministry of Education, China; College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou 730020, China
| | - Fadi Li
- State Key Laboratory of Herbage Improvement and Grassland Agro-Ecosystems, China; Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs, China; Engineering Research Center of Grassland Industry, Ministry of Education, China; College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou 730020, China
| | - Wanhong Li
- State Key Laboratory of Herbage Improvement and Grassland Agro-Ecosystems, China; Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs, China; Engineering Research Center of Grassland Industry, Ministry of Education, China; College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou 730020, China
| | - Xiangpeng Yue
- State Key Laboratory of Herbage Improvement and Grassland Agro-Ecosystems, China; Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs, China; Engineering Research Center of Grassland Industry, Ministry of Education, China; College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou 730020, China.
| |
Collapse
|
10
|
Xu H, Zhang S, Duan Q, Lou M, Ling Y. Comprehensive analyses of 435 goat transcriptomes provides insight into male reproduction. Int J Biol Macromol 2024; 255:127942. [PMID: 37979751 DOI: 10.1016/j.ijbiomac.2023.127942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 09/25/2023] [Accepted: 11/01/2023] [Indexed: 11/20/2023]
Abstract
A systematic analysis of genes related to reproduction is crucial for obtaining a comprehensive understanding of the molecular mechanisms that underlie male reproductive traits in mammals. Here, we utilized 435 goat transcriptome datasets to unveil the testicular tissue-specific genes (TSGs), allele-specific expression (ASE) genes and their uncharacterized transcriptional features related to male goat reproduction. Results showed a total of 1790 TSGs were identified in goat testis, which was the most among all tissues. GO enrichment analyses suggested that testicular TSGs were mainly involved in spermatogenesis, multicellular organism development, spermatid development, and flagellated sperm motility. Subsequently, a total of 95 highly conserved TSGs (HCTSGs), 508 middle conserved TSGs (MCTSGs) and 42 no conserved TSGs (NCTSGs) were identified in goat testis. GO enrichment analyses suggested that the HCTSGs and MCTSGs has a more important association with male reproduction than NCTSGs. Additionally, we identified 644 ASE genes, including 88 tissue-specific ASE (TS-ASE) genes (e.g., FSIP2, TDRD9). GO enrichment analyses indicated that both ASE genes and TS-ASE genes were associated with goat male reproduction. Overall, this study revealed an extensive gene set involved in the regulation of male goat reproduction and their dynamic transcription patterns. Data reported here provide valuable insights for a further improvement of the economic benefits of goats as well as future treatments for male infertility.
Collapse
Affiliation(s)
- Han Xu
- College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, Anhui, China
| | - Sihuan Zhang
- College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, Anhui, China
| | - Qin Duan
- College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, Anhui, China
| | - Mengyu Lou
- College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, Anhui, China
| | - Yinghui Ling
- College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, Anhui, China; Anhui Province Key Laboratory of Local Livestock and Poultry Genetic Resource Conservation and Bio-Breeding, Anhui Agricultural University, Hefei 230036, Anhui, China.
| |
Collapse
|
11
|
Li X, Li K, Deng K, Liu Z, Huang X, Guo J, Yang F, Wang F. LncRNA12097.1 contributes to endometrial cell growth by enhancing YES1 activating β-catenin via sponging miR-145-5p. Int J Biol Macromol 2024; 256:128477. [PMID: 38035963 DOI: 10.1016/j.ijbiomac.2023.128477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 11/18/2023] [Accepted: 11/26/2023] [Indexed: 12/02/2023]
Abstract
Despite previous investigations elucidating the regulatory mechanisms of long non-coding RNAs (lncRNAs) in endometrial function and reproductive disorders, the precise pathways through which lncRNAs impact endometrial functions and fertility remain unclear. In this study, we performed an expression profile analysis of lncRNAs in the endometrial tissue of Hu sheep with different prolificacy, identifying 13,707 lncRNAs. We discovered a bidirectional lncRNA, designated lncRNA12097.1, exhibiting significant up-regulation exclusively in the endometrium of Hu sheep with high fecundity. Functional analyses revealed lncRNA12097.1 significantly enhanced proliferation and cell cycle progression in both endometrial epithelial cell (EEC) and stromal cells (ESC), while inhibiting apoptosis in these cell types. Mechanistically, we demonstrated a directly interaction between lncRNA12097.1 and miR-145-5p, with YES proto-oncogene 1 (YES1) being identified as a validated target of miR-145-5p. Interference with lncRNA12097.1 resulted in suppressed cell growth through down-regulation of YES1 expression, which could be rescued by miR-145-5p. Furthermore, lncRNA12097.1 functions as a competitive endogenous RNA (ceRNA) for miR-145-5p in ESCs, sequestering miR-145-5p and preventing its binding to the 3'UTR of YES1 mRNA. This interaction led to increased expression of YES1 and subsequent activation of downstream β-catenin signaling, thereby promoting ESC growth in Hu sheep. These findings provide novel molecular insights into the mechanisms underlying prolificacy in sheep.
Collapse
Affiliation(s)
- Xiaodan Li
- Hu Sheep Academy, Nanjing Agricultural University, Nanjing 210095, China; Jiangsu Livestock Embryo Engineering Laboratory, Nanjing Agricultural University, Nanjing 210095, China; College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Kang Li
- Hu Sheep Academy, Nanjing Agricultural University, Nanjing 210095, China; Jiangsu Livestock Embryo Engineering Laboratory, Nanjing Agricultural University, Nanjing 210095, China; College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Kaiping Deng
- Jiangsu Livestock Embryo Engineering Laboratory, Nanjing Agricultural University, Nanjing 210095, China; College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Zhipeng Liu
- Jiangsu Livestock Embryo Engineering Laboratory, Nanjing Agricultural University, Nanjing 210095, China; College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Xinai Huang
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China; College of Animal Science and Technology, Shanxi Agricultural University, Taigu 030801, China
| | - Jiahe Guo
- Hu Sheep Academy, Nanjing Agricultural University, Nanjing 210095, China; Jiangsu Livestock Embryo Engineering Laboratory, Nanjing Agricultural University, Nanjing 210095, China; College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Fan Yang
- Hu Sheep Academy, Nanjing Agricultural University, Nanjing 210095, China; Jiangsu Livestock Embryo Engineering Laboratory, Nanjing Agricultural University, Nanjing 210095, China; College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Feng Wang
- Hu Sheep Academy, Nanjing Agricultural University, Nanjing 210095, China; Jiangsu Livestock Embryo Engineering Laboratory, Nanjing Agricultural University, Nanjing 210095, China; College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China.
| |
Collapse
|
12
|
He M, Zhou H, Hu T, Lv X, Wang S, Cao X, Yuan Z, Quan K, Getachew T, Mwacharo JM, Haile A, Sun W. Preliminary study of melatonin in the proliferation and apoptosis of Hu sheep dermal papilla cells in vitro. Anim Biotechnol 2023; 34:4262-4270. [PMID: 36384387 DOI: 10.1080/10495398.2022.2144341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Previous studies have shown that melatonin has a certain regulatory effect on the growth of sheep wool. However, the mechanism of melatonin action remains unknown. In the present study, we aimed to understand the role of exogenous melatonin in the dermal papilla cells of Hu sheep. To confirm the optimal melatonin treatment regimen for Hu sheep dermal papilla cells, we detected the cell viability by exposing them to different concentrations of melatonin and different treatment times. The results showed that cell viability was best when dermal papilla cells were treated with 1000 pg/ml of melatonin for 48 h. According to the results of qPCR, CCK-8, EDU, Western blot, and Flow cytometry analysis, we found that 1000 pg/ml melatonin promoted the proliferation and inhibited the apoptosis of dermal papilla cells compared with the exogenous melatonin blank group (control group). Furthermore, we also found that 1000 pg/ml of melatonin promoted the cell cycle progress of dermal papilla cells according to the results of qPCR and Flow cytometry analysis. Overall, our findings showed that melatonin plays an important role in the dermal papilla cells of Hu sheep.
Collapse
Affiliation(s)
- Mingliang He
- College of Animal Science and Technology, Yangzhou University, Yangzhou, China
- International Joint Research Laboratory in Universities of Jiangsu Province of China for Domestic Animal Germplasm Resources and Genetic Improvement, Nanjing, China
| | - Hui Zhou
- College of Animal Science and Technology, Yangzhou University, Yangzhou, China
- International Joint Research Laboratory in Universities of Jiangsu Province of China for Domestic Animal Germplasm Resources and Genetic Improvement, Nanjing, China
| | - Tingyan Hu
- College of Animal Science and Technology, Yangzhou University, Yangzhou, China
- International Joint Research Laboratory in Universities of Jiangsu Province of China for Domestic Animal Germplasm Resources and Genetic Improvement, Nanjing, China
| | - Xiaoyang Lv
- International Joint Research Laboratory in Universities of Jiangsu Province of China for Domestic Animal Germplasm Resources and Genetic Improvement, Nanjing, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Yangzhou University, Yangzhou, China
| | - Shanhe Wang
- College of Animal Science and Technology, Yangzhou University, Yangzhou, China
- International Joint Research Laboratory in Universities of Jiangsu Province of China for Domestic Animal Germplasm Resources and Genetic Improvement, Nanjing, China
| | - Xiukai Cao
- International Joint Research Laboratory in Universities of Jiangsu Province of China for Domestic Animal Germplasm Resources and Genetic Improvement, Nanjing, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Yangzhou University, Yangzhou, China
| | - Zehu Yuan
- International Joint Research Laboratory in Universities of Jiangsu Province of China for Domestic Animal Germplasm Resources and Genetic Improvement, Nanjing, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Yangzhou University, Yangzhou, China
| | - Kai Quan
- College of Animal Science and Technology, Henan University of Animal Husbandry and Economy, Zhengzhou, China
| | - Tesfaye Getachew
- International Joint Research Laboratory in Universities of Jiangsu Province of China for Domestic Animal Germplasm Resources and Genetic Improvement, Nanjing, China
- International Centre for Agricultural Research in the Dry Areas, Addis Ababa, Ethiopia
| | - Joram M Mwacharo
- International Joint Research Laboratory in Universities of Jiangsu Province of China for Domestic Animal Germplasm Resources and Genetic Improvement, Nanjing, China
- International Centre for Agricultural Research in the Dry Areas, Addis Ababa, Ethiopia
| | - Aynalem Haile
- International Joint Research Laboratory in Universities of Jiangsu Province of China for Domestic Animal Germplasm Resources and Genetic Improvement, Nanjing, China
- International Centre for Agricultural Research in the Dry Areas, Addis Ababa, Ethiopia
| | - Wei Sun
- College of Animal Science and Technology, Yangzhou University, Yangzhou, China
- International Joint Research Laboratory in Universities of Jiangsu Province of China for Domestic Animal Germplasm Resources and Genetic Improvement, Nanjing, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Yangzhou University, Yangzhou, China
- International Agricultural Technology Innovation Institute for Evaluation, Protection, and Improvement on Sheep Genetic Resource, Ministry of Agriculture and Rural Affairs of China, Yangzhou University, Yangzhou, China
| |
Collapse
|
13
|
Li X, Yao X, Li K, Guo J, Deng K, Liu Z, Yang F, Fan Y, Yang Y, Zhu H, Wang F. CREB1 Is Involved in miR-134-5p-Mediated Endometrial Stromal Cell Proliferation, Apoptosis, and Autophagy. Cells 2023; 12:2554. [PMID: 37947633 PMCID: PMC10649013 DOI: 10.3390/cells12212554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 09/17/2023] [Accepted: 10/13/2023] [Indexed: 11/12/2023] Open
Abstract
The successful establishment of endometrial receptivity is a key factor in ensuring the fertility of ewes and their economic benefits. Hu sheep have attracted attention due to their high fecundity and year-round estrus. In this study, we found that in the luteal phase, the uterine gland density, uterine coefficient, and number of uterine caruncles of high-fertility Hu sheep were higher than those of low-fertility Hu sheep. Thousands of differentially expressed genes were identified in the endometrium of Hu sheep with different fertility potential using RNA sequencing (RNA-Seq). Several genes involved in endometrial receptivity were screened using bioinformatics analysis. The qRT-PCR analysis further revealed the differential expression of cAMP reactive element binding protein-1 (CREB1) in the Hu sheep endometrium during the estrous cycle. Functionally, our results suggested that CREB1 significantly affected the expression level of endometrial receptivity marker genes, promoted cell proliferation by facilitating the transition from the G1 phase to the S phase, and inhibited cell apoptosis and autophagy. Moreover, we observed a negative linear correlation between miR-134-5p and CREB1 in the endometrium. In addition, CREB1 overexpression prevented the negative effect of miR-134-5p on endometrial stromal cell (ESC) growth. Taken together, these data indicated that CREB1 was regulated by miR-134-5p and may promote the establishment of uterine receptivity by regulating the function of ESCs. Moreover, this study provides new theoretical references for identifying candidate genes associated with fertility.
Collapse
Affiliation(s)
- Xiaodan Li
- Hu Sheep Academy, Nanjing Agricultural University, Nanjing 210095, China; (X.L.)
- Jiangsu Livestock Embryo Engineering Laboratory, Nanjing Agricultural University, Nanjing 210095, China
| | - Xiaolei Yao
- Hu Sheep Academy, Nanjing Agricultural University, Nanjing 210095, China; (X.L.)
- Jiangsu Livestock Embryo Engineering Laboratory, Nanjing Agricultural University, Nanjing 210095, China
| | - Kang Li
- Hu Sheep Academy, Nanjing Agricultural University, Nanjing 210095, China; (X.L.)
- Jiangsu Livestock Embryo Engineering Laboratory, Nanjing Agricultural University, Nanjing 210095, China
| | - Jiahe Guo
- Hu Sheep Academy, Nanjing Agricultural University, Nanjing 210095, China; (X.L.)
- Jiangsu Livestock Embryo Engineering Laboratory, Nanjing Agricultural University, Nanjing 210095, China
| | - Kaiping Deng
- Jiangsu Livestock Embryo Engineering Laboratory, Nanjing Agricultural University, Nanjing 210095, China
| | - Zhipeng Liu
- Jiangsu Livestock Embryo Engineering Laboratory, Nanjing Agricultural University, Nanjing 210095, China
| | - Fan Yang
- Hu Sheep Academy, Nanjing Agricultural University, Nanjing 210095, China; (X.L.)
- Jiangsu Livestock Embryo Engineering Laboratory, Nanjing Agricultural University, Nanjing 210095, China
| | - Yixuan Fan
- Jiangsu Livestock Embryo Engineering Laboratory, Nanjing Agricultural University, Nanjing 210095, China
| | - Yingnan Yang
- Jiangsu Livestock Embryo Engineering Laboratory, Nanjing Agricultural University, Nanjing 210095, China
| | - Huabin Zhu
- Embryo Biotechnology and Reproduction Laboratory, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Feng Wang
- Jiangsu Livestock Embryo Engineering Laboratory, Nanjing Agricultural University, Nanjing 210095, China
| |
Collapse
|
14
|
Chen M, Duan C, Yin X, Li X, Liu X, Zhang L, Yue S, Zhang Y, Liu Y. Prolactin inhibitor changes testosterone production, testicular morphology, and related genes expression in cashmere goats. Front Vet Sci 2023; 10:1249189. [PMID: 37954671 PMCID: PMC10637432 DOI: 10.3389/fvets.2023.1249189] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Accepted: 10/10/2023] [Indexed: 11/14/2023] Open
Abstract
Prolactin has multifaceted roles in lactation, growth, metabolism, osmoregulation, behavior, and the reproduction of animals. This study aimed to investigate the involvement of prolactin in testicular function in cashmere goats. Twenty cashmere goats were randomly assigned to either the control group (CON) or the bromocriptine treatment group (BCR, bromocriptine, prolactin inhibitor). Blood and testis samples collected for analysis after 30 days of treatment. The results indicated that, compared with the CON group, BCR significantly decreased (p < 0.05) the serum concentrations of prolactin, and significantly increased (p < 0.05) the levels of testosterone and luteinizing hormone (LH) on day 30. The serum level of the follicle-stimulating hormone (FSH) was not affected (p > 0.05) by the treatment. The mean seminiferous tubule diameter and spermatogenic epithelium thickness were increased (p < 0.05) in the BCR group. Subsequently, we performed RNA sequencing and bioinformatics analysis to identify the key genes and pathways associated with the regulation of spermatogenesis or testosterone secretion function. A total of 142 differentially expressed genes (DEGs) were identified (91 were upregulated, 51 were downregulated). Gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) revealed that the DEGs were mainly involved in the extracellular matrix (ECM), hippo, and steroid hormone biosynthesis, which are related to testicular function. The expression of the genes SULT2B1, CYP3A24, and CYP3A74 in the steroid hormone biosynthesis pathway significantly increased (p < 0.05) in the BCR group, which was validated by qRT-PCR. These results provide a basis for understanding the mechanisms underlying the regulation of testicular function by prolactin in cashmere goats.
Collapse
Affiliation(s)
- Meijing Chen
- College of Animal Science and Technology, Hebei Agricultural University, Baoding, China
| | - Chunhui Duan
- College of Animal Science and Technology, Hebei Agricultural University, Baoding, China
| | - Xuejiao Yin
- College of Animal Science and Technology, Hebei Agricultural University, Baoding, China
| | - Xianglong Li
- College of Animal Science and Technology, Hebei Normal University of Science and Technology, Qinhuangdao, China
| | - Xiaona Liu
- College of Animal Science and Technology, Hebei Agricultural University, Baoding, China
| | - Lechao Zhang
- College of Animal Science and Technology, Hebei Agricultural University, Baoding, China
| | - Sicong Yue
- College of Animal Science and Technology, Hebei Agricultural University, Baoding, China
| | - Yingjie Zhang
- College of Animal Science and Technology, Hebei Agricultural University, Baoding, China
| | - Yueqin Liu
- College of Animal Science and Technology, Hebei Agricultural University, Baoding, China
| |
Collapse
|
15
|
Chen Z, Teng J, Diao S, Xu Z, Ye S, Qiu D, Zhang Z, Pan Y, Li J, Zhang Q, Zhang Z. Insights into the architecture of human-induced polygenic selection in Duroc pigs. J Anim Sci Biotechnol 2022; 13:99. [PMID: 36127741 PMCID: PMC9490910 DOI: 10.1186/s40104-022-00751-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Accepted: 07/03/2022] [Indexed: 11/10/2022] Open
Abstract
Background As one of the most utilized commercial composite boar lines, Duroc pigs have been introduced to China and undergone strongly human-induced selection over the past decades. However, the efficiencies and limitations of previous breeding of Chinese Duroc pigs are largely understudied. The objective of this study was to uncover directional polygenic selection in the Duroc pig genome, and investigate points overlooked in the past breeding process. Results Here, we utilized the Generation Proxy Selection Mapping (GPSM) on a dataset of 1067 Duroc pigs with 8,766,074 imputed SNPs. GPSM detected a total of 5649 putative SNPs actively under selection in the Chinese Duroc pig population, and the potential functions of the selection regions were mainly related to production, meat and carcass traits. Meanwhile, we observed that the allele frequency of variants related to teat number (NT) relevant traits was also changed, which might be influenced by genes that had pleiotropic effects. First, we identified the direction of selection on NT traits by \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\hat{G}$$\end{document}G^, and further pinpointed large-effect genomic regions associated with NT relevant traits by selection signature and GWAS. Combining results of NT relevant traits-specific selection signatures and GWAS, we found three common genome regions, which were overlapped with QTLs related to production, meat and carcass traits besides “teat number” QTLs. This implied that there were some pleiotropic variants underlying NT and economic traits. We further found that rs346331089 has pleiotropic effects on NT and economic traits, e.g., litter size at weaning (LSW), litter weight at weaning (LWW), days to 100 kg (D100), backfat thickness at 100 kg (B100), and loin muscle area at 100 kg (L100) traits. Conclusions The selected loci that we identified across methods displayed the past breeding process of Chinese Duroc pigs, and our findings could be used to inform future breeding decision. Supplementary Information The online version contains supplementary material available at 10.1186/s40104-022-00751-x.
Collapse
Affiliation(s)
- Zitao Chen
- National Engineering Research Center for Breeding Swine Industry, Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, 510642, P.R. China.,Department of Animal Science, College of Animal Science, Zhejiang University, 866# Yuhangtang Road, Hangzhou, 310058, P.R. China
| | - Jinyan Teng
- National Engineering Research Center for Breeding Swine Industry, Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, 510642, P.R. China
| | - Shuqi Diao
- National Engineering Research Center for Breeding Swine Industry, Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, 510642, P.R. China
| | - Zhiting Xu
- National Engineering Research Center for Breeding Swine Industry, Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, 510642, P.R. China
| | - Shaopan Ye
- National Engineering Research Center for Breeding Swine Industry, Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, 510642, P.R. China.,Guangdong Provincial Key Laboratory of Marine Biotechnology, Shantou University, 243 Daxue Road, Shantou, 515063, P.R. China
| | - Dingjie Qiu
- Fujian Yongcheng Agricultural & Animal Husbandry Sci-Tech Group Co., Ltd., Fuqing, 350399, P.R. China
| | - Zhe Zhang
- Department of Animal Science, College of Animal Science, Zhejiang University, 866# Yuhangtang Road, Hangzhou, 310058, P.R. China
| | - Yuchun Pan
- Department of Animal Science, College of Animal Science, Zhejiang University, 866# Yuhangtang Road, Hangzhou, 310058, P.R. China
| | - Jiaqi Li
- National Engineering Research Center for Breeding Swine Industry, Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, 510642, P.R. China
| | - Qin Zhang
- Department of Animal Genetics and Breeding, College of Animal Science and Technology, Shandong Agricultural University, Tai'an, 271018, P.R. China
| | - Zhe Zhang
- National Engineering Research Center for Breeding Swine Industry, Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, 510642, P.R. China.
| |
Collapse
|
16
|
PPP2R2A affects embryonic implantation by regulating the proliferation and apoptosis of Hu sheep endometrial stromal cells. Theriogenology 2021; 176:149-162. [PMID: 34619436 DOI: 10.1016/j.theriogenology.2021.09.026] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2021] [Revised: 09/24/2021] [Accepted: 09/24/2021] [Indexed: 12/13/2022]
Abstract
Embryonic implantation is a complex reproductive physiological process in mammals. Although several endometrial proteins affecting embryonic implantation have been reported in the past, there are still potential endometrial proteins that have been neglected, and their specific regulatory mechanisms are unclear. This study demonstrated that protein phosphatase 2A regulatory subunit B55α (PPP2R2A) served as a novel regulator in medication of sheep embryonic implantation in vitro. Our results showed that sheep PPP2R2A encoded 447 amino acids and shared 91.74%-92.36% amino acid sequences with its orthologs compared with other species. Meanwhile, PPP2R2A was widely expressed in sheep uterine tissues, and it could regulate the expression levels of key regulators of embryonic implantation in endometrial stromal cells (ESCs). Knockdown of PPP2R2A significantly inhibited cell proliferation by blocking cell cycle transfer G0/G1 into S phase accompanied by downregulation of CDK2, CDK4, CCND1, CCNE1 and upregulation of P21. In contrast to PPP2R2A overexpression, PPP2R2A interference greatly promoted cell apoptosis and the expression of BAX, CASP3, CASP9 and BAX/BCL-2. Taken together, these results suggest that PPP2R2A, as a novel regulatory factor, affects embryonic implantation via regulating the proliferation and apoptosis of Hu sheep ESCs in vitro.
Collapse
|
17
|
Bao Y, Yao X, Li X, Ei-Samahy MA, Yang H, Liang Y, Liu Z, Wang F. INHBA transfection regulates proliferation, apoptosis and hormone synthesis in sheep granulosa cells. Theriogenology 2021; 175:111-122. [PMID: 34537472 DOI: 10.1016/j.theriogenology.2021.09.004] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2021] [Revised: 09/07/2021] [Accepted: 09/09/2021] [Indexed: 12/14/2022]
Abstract
Inhibin subunit beta A (INHBA) participates in the synthesis of inhibin A, activin A and activin AB. Here we investigated the effect and molecular mechanism of INHBA on proliferation, apoptosis and hormone synthesis in sheep granulosa cells (GCs) using in vitro transfection. We first noticed that INHBA expression increased with follicle diameter and was widely distributed in ovarian tissue. The proliferation rate of GCs was significantly increased and decreased with overexpression and silence of INHBA, respectively, compared with the negative controls. INHBA transfection affected GC proliferation and apoptosis, regulating the expression of many cell cycle-related and apoptosis-related genes. INHBA overexpression significantly decreased activin and estradiol secretion while increasing inhibin and progesterone secretion. The expression of follicle-stimulating hormone beta subunit was significantly decreased and increased with INHBA overexpression and knockdown, respectively. Notably, silence of INHBA inhibited the expression of many transforming growth factor beta-related genes. Overall, the functional molecule of INHBA gene may be associated with follicular development via regulating proliferation, apoptosis and folliculogenesis-related hormone secretion of sheep GCs. In addition, our findings may contribute to a better understanding of the law of follicular development and thus improve the reproductive performance of female animals.
Collapse
Affiliation(s)
- Yongjin Bao
- Hu Sheep Academy, Nanjing Agricultural University, Nanjing, 210095, China; Jiangsu Livestock Embryo Engineering Laboratory, Nanjing Agricultural University, Nanjing, 210095, China
| | - Xiaolei Yao
- Hu Sheep Academy, Nanjing Agricultural University, Nanjing, 210095, China; Jiangsu Livestock Embryo Engineering Laboratory, Nanjing Agricultural University, Nanjing, 210095, China
| | - Xiaodan Li
- Hu Sheep Academy, Nanjing Agricultural University, Nanjing, 210095, China; Jiangsu Livestock Embryo Engineering Laboratory, Nanjing Agricultural University, Nanjing, 210095, China
| | - M A Ei-Samahy
- Hu Sheep Academy, Nanjing Agricultural University, Nanjing, 210095, China; Jiangsu Livestock Embryo Engineering Laboratory, Nanjing Agricultural University, Nanjing, 210095, China
| | - Hua Yang
- Hu Sheep Academy, Nanjing Agricultural University, Nanjing, 210095, China; Jiangsu Livestock Embryo Engineering Laboratory, Nanjing Agricultural University, Nanjing, 210095, China
| | - Yaxu Liang
- Hu Sheep Academy, Nanjing Agricultural University, Nanjing, 210095, China; Jiangsu Livestock Embryo Engineering Laboratory, Nanjing Agricultural University, Nanjing, 210095, China
| | - Zifei Liu
- Hu Sheep Academy, Nanjing Agricultural University, Nanjing, 210095, China; Jiangsu Livestock Embryo Engineering Laboratory, Nanjing Agricultural University, Nanjing, 210095, China
| | - Feng Wang
- Hu Sheep Academy, Nanjing Agricultural University, Nanjing, 210095, China; Jiangsu Livestock Embryo Engineering Laboratory, Nanjing Agricultural University, Nanjing, 210095, China.
| |
Collapse
|