1
|
Rosero J, Monzani PS, Pessoa GP, Coelho GCZ, Carvalho GB, López LS, Senhorini JA, Dos Santos SCA, Yasui GS. Traceability of primordial germ cells in three neotropical fish species aiming genetic conservation actions. FISH PHYSIOLOGY AND BIOCHEMISTRY 2024; 50:2025-2042. [PMID: 38060079 DOI: 10.1007/s10695-023-01279-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Accepted: 11/24/2023] [Indexed: 12/08/2023]
Abstract
Primordial germ cells (PGCs) are embryonic pluripotent cells that can differentiate into spermatogonia and oogonia, and therefore, PGCs are a genetic source for germplasm conservation through cryobanking and the generation of germline chimeras. The knowledge of PGC migration routes is essential for transplantation studies. In this work, the mRNA synthesized from the ddx4 3'UTR sequence of Pseudopimelodus mangurus, in fusion with gfp or dsred, was microinjected into zygotes of three neotropical species (P. mangurus, Astyanax altiparanae, and Prochilodus lineatus) for PGC labeling. Visualization of labeled PGCs was achieved by fluorescence microscopy during embryonic development. In addition, ddx4 and dnd1 expressions were evaluated during embryonic development, larvae, and adult tissues of P. mangurus, to validate their use as a PGC marker. As a result, the effective identification of presumptive PGCs was obtained. DsRed-positive PGC of P. mangurus was observed in the hatching stage, GFP-positive PGC of A. altiparanae in the gastrula stage, and GFP-positive PGCs from P. lineatus were identified at the segmentation stage, with representative labeling percentages of 29% and 16% in A. altiparanae and P. lineatus, respectively. The expression of ddx4 and dnd1 of P. mangurus confirmed the specificity of these genes in germ cells. These results point to the functionality of the P. mangurus ddx4 3'UTR sequence as a PGC marker, demonstrating that PGC labeling was more efficient in A. altiparanae and P. lineatus. The procedures used to identify PGCs in P. mangurus consolidate the first step for generating germinal chimeras as a conservation action of P. mangurus.
Collapse
Affiliation(s)
- Jenyffer Rosero
- Department of Animal Reproduction, School of Veterinary Medicine and Animal Science, University of São Paulo, Pirassununga, São Paulo, Brazil.
- Laboratory of Fish Biotechnology, National Center for Research and Conservation of Continental Aquatic Biodiversity, Chico Mendes Institute of Biodiversity Conservation, Pirassununga, São Paulo, Brazil.
| | - Paulo Sérgio Monzani
- Laboratory of Fish Biotechnology, National Center for Research and Conservation of Continental Aquatic Biodiversity, Chico Mendes Institute of Biodiversity Conservation, Pirassununga, São Paulo, Brazil
- Institute of Bioscience, São Paulo State University, Botucatu, São Paulo, Brazil
| | - Giselle Pessanha Pessoa
- Laboratory of Fish Biotechnology, National Center for Research and Conservation of Continental Aquatic Biodiversity, Chico Mendes Institute of Biodiversity Conservation, Pirassununga, São Paulo, Brazil
- Institute of Bioscience, São Paulo State University, Botucatu, São Paulo, Brazil
| | - Geovanna Carla Zacheo Coelho
- Laboratory of Fish Biotechnology, National Center for Research and Conservation of Continental Aquatic Biodiversity, Chico Mendes Institute of Biodiversity Conservation, Pirassununga, São Paulo, Brazil
- Institute of Bioscience, São Paulo State University, Botucatu, São Paulo, Brazil
| | - Gabriella Braga Carvalho
- Department of Animal Reproduction, School of Veterinary Medicine and Animal Science, University of São Paulo, Pirassununga, São Paulo, Brazil
- Laboratory of Fish Biotechnology, National Center for Research and Conservation of Continental Aquatic Biodiversity, Chico Mendes Institute of Biodiversity Conservation, Pirassununga, São Paulo, Brazil
| | - Lucia Suárez López
- Laboratory of Fish Biotechnology, National Center for Research and Conservation of Continental Aquatic Biodiversity, Chico Mendes Institute of Biodiversity Conservation, Pirassununga, São Paulo, Brazil
- Institute of Bioscience, São Paulo State University, Botucatu, São Paulo, Brazil
| | - José Augusto Senhorini
- Laboratory of Fish Biotechnology, National Center for Research and Conservation of Continental Aquatic Biodiversity, Chico Mendes Institute of Biodiversity Conservation, Pirassununga, São Paulo, Brazil
- Institute of Bioscience, São Paulo State University, Botucatu, São Paulo, Brazil
| | | | - George Shigueki Yasui
- Department of Animal Reproduction, School of Veterinary Medicine and Animal Science, University of São Paulo, Pirassununga, São Paulo, Brazil
- Laboratory of Fish Biotechnology, National Center for Research and Conservation of Continental Aquatic Biodiversity, Chico Mendes Institute of Biodiversity Conservation, Pirassununga, São Paulo, Brazil
| |
Collapse
|
2
|
Yahiro I, Sato O, Mohapatra S, Mukai K, Toyoda A, Itoh T, Matsuyama M, Chakraborty T, Ohta K. SDF-1/CXCR4 signal is involved in the induction of Primordial Germ Cell migration in a model marine fish, Japanese anchovy (Engraulis japonicus). Gen Comp Endocrinol 2024; 351:114476. [PMID: 38408712 DOI: 10.1016/j.ygcen.2024.114476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 02/16/2024] [Accepted: 02/19/2024] [Indexed: 02/28/2024]
Abstract
Primordial germ cells (PGCs) are pivotal for gonadal development and reproductive success. Though artificial induction of sterility by targeting PGCs are gaining popularity due to its advantages in fish surrogacy and biodiversity management, it is often skill and time intensive. In this study, we have focused on understanding the role of PGCs and the chemotactic SDF-1/CXCR4 signaling on gonad development of Japanese anchovy (JA, Engraulis japonicus), an upcoming marine model organism with eco-commercial values, with an aim to develop a novel, easy, and versatile gonad sterilization method. Our data showed that PGC migration related genes, i.e., sdf-1a, sdf-1b, cxcr4a, cxcr4b and vasa, are phylogenetically closer relatives of respective herring (Clupea harengus) and zebrafish (Danio rerio) homolog. Subsequently, PGC marking and live tracing experiments confirmed that PGC migration in JA initiates from 16 hours post fertilization (hpf) followed by PGC settlement in the gonadal ridge at 44 hpf. We found that overexpression of zebrafish sdf-1a mRNA in the germ cell suppresses cxcr4a and increases cxcr4b transcription at 8 hpf, dose dependently disrupts PGC migration at 24-48 hpf, induces PGC death and upregulates sdf-1b at 5 days post hatching. 48 h of immersion treatment with CXCR4 antagonist (AMD3100, Abcam) also accelerated PGC mismigration and pushed the PGC away from gonadal ridge in a dose responsive manner, and further when grown to adulthood caused germ cell less gonad formation in some individuals. Cumulatively, our data, for the first time, suggests that JA PGC migration is largely regulated by SDF1/CXCR4 signaling, and modulation of this signaling has strong potential for sterile, germ cell less gonad preparation at a mass scale. However, further in-depth analysis is pertinent to apply this methodology in marine fish species to successfully catapult Japanese anchovy into a true marine fish model.
Collapse
Affiliation(s)
- Issei Yahiro
- Laboratory of Marine Biology, Faculty of Agriculture, Kyushu University, Fukuoka 819-0395, Japan
| | - Oga Sato
- Laboratory of Marine Biology, Faculty of Agriculture, Kyushu University, Fukuoka 819-0395, Japan
| | - Sipra Mohapatra
- Laboratory of Marine Biology, Faculty of Agriculture, Kyushu University, Fukuoka 819-0395, Japan; Aqua-Bioresource Innovation Center, Kyushu University, Saga 847-8511, Japan
| | - Koki Mukai
- Laboratory of Marine Biology, Faculty of Agriculture, Kyushu University, Fukuoka 819-0395, Japan; Fisheries Technology Institute, Japan Fisheries Research and Education Agency, Nagasaki 853-0508, Japan
| | - Atsushi Toyoda
- Advanced Genomics Center, National Institute of Genetics, Shizuoka 411-8540, Japan
| | - Takehiko Itoh
- School of Life Science and Technology, Tokyo Institute of Technology, Tokyo 152-8550, Japan
| | - Michiya Matsuyama
- Aqua-Bioresource Innovation Center, Kyushu University, Saga 847-8511, Japan
| | - Tapas Chakraborty
- Laboratory of Marine Biology, Faculty of Agriculture, Kyushu University, Fukuoka 819-0395, Japan; Aqua-Bioresource Innovation Center, Kyushu University, Saga 847-8511, Japan.
| | - Kohei Ohta
- Laboratory of Marine Biology, Faculty of Agriculture, Kyushu University, Fukuoka 819-0395, Japan; Aqua-Bioresource Innovation Center, Kyushu University, Saga 847-8511, Japan.
| |
Collapse
|
3
|
Bhat IA, Dubiel MM, Rodriguez E, Jónsson ZO. Insights into Early Ontogenesis of Salmo salar: RNA Extraction, Housekeeping Gene Validation and Transcriptional Expression of Important Primordial Germ Cell and Sex-Determination Genes. Animals (Basel) 2023; 13:ani13061094. [PMID: 36978635 PMCID: PMC10044239 DOI: 10.3390/ani13061094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 03/10/2023] [Accepted: 03/17/2023] [Indexed: 03/30/2023] Open
Abstract
The challenge in extracting high-quality RNA impedes the investigation of the transcriptome of developing salmonid embryos. Furthermore, the mRNA expression pattern of important PGC and SD genes during the initial embryonic development of Salmo salar is yet to be studied. So, in the present study, we aimed to isolate high-quality RNA from eggs and developing embryos to check vasa, dnd1, nanos3a, sdf1, gsdf, amh, cyp19a, dmrt1 and foxl2 expression by qPCR. Additionally, four HKGs (GAPDH, UB2L3, eEf1a and β-actin) were validated to select the best internal control for qPCR. High-quality RNA was extracted, which was confirmed by spectrophotometer, agarose gel electrophoresis and Agilent TapeStation analysis. UB2L3 was chosen as a reference gene because it exhibited lower intra- and inter-sample variation. vasa transcripts were expressed in all the developmental stages, while dnd1 was expressed only up to 40 d°C. Nanos3a was expressed in later stages and remained at its peak for a shorter period, while sdf1 showed an irregular pattern of mRNA expression. The mRNA expression levels of SD genes were observed to be upregulated during the later stages of development, prior to hatching. This study presents a straightforward methodology for isolating high-quality RNA from salmon eggs, and the resulting transcript profiles of significant PGC and SD genes in S. salar could aid in improving our comprehension of reproductive development in this commercially important species.
Collapse
Affiliation(s)
- Irfan Ahmad Bhat
- Institute of Life and Environmental Sciences, School of Engineering and Natural Sciences, University of Iceland, 101 Reykjavik, Iceland
| | - Milena Malgorzata Dubiel
- Institute of Life and Environmental Sciences, School of Engineering and Natural Sciences, University of Iceland, 101 Reykjavik, Iceland
| | | | - Zophonías Oddur Jónsson
- Institute of Life and Environmental Sciences, School of Engineering and Natural Sciences, University of Iceland, 101 Reykjavik, Iceland
| |
Collapse
|
4
|
Xu C, Li Y, Wen Z, Jawad M, Gui L, Li M. Spinyhead Croaker Germ Cells Gene dnd Visualizes Primordial Germ Cells in Medaka. LIFE (BASEL, SWITZERLAND) 2022; 12:life12081226. [PMID: 36013405 PMCID: PMC9409898 DOI: 10.3390/life12081226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 08/05/2022] [Accepted: 08/08/2022] [Indexed: 11/16/2022]
Abstract
Spinyhead croaker (Collichthys lucidus) is an economically important fish suffering from population decline caused by overfishing and habitat destruction. Researches on the development of primordial germ cell (PGC) and reproduction biology were an emergency for the long-term conservation of the involved species. Dead end (dnd) gene plays an indispensable role in PGC specification, maintenance, and development. In the current study, we report the cloning and expression patterns of dnd in C. lucidus (Cldnd). RT-PCR analysis revealed that Cldnd was specifically expressed in both sexual gonads. In the ovary, Cldnd RNA was uniformly distributed in the oocytes and abundant in oogonia, and gradually decreased with oogenesis. A similar expression pattern was also detected in testis. Dual fluorescent in situ hybridization of Cldnd and Clvasa demonstrated that they almost had the same distribution except in oocytes at stage I, in which the vasa RNA aggregated into some particles. Furthermore, Cldnd 3' UTR was sufficient to guide the Green Fluorescent Protein (GFP) specifically and stably expressed in the PGCs of medaka. These findings offer insight into that Cldnd is an evolutionarily conserved germline-specific gene and even a potential candidate for PGC manipulation in C. lucidus.
Collapse
Affiliation(s)
- Cong Xu
- Key Laboratory of Integrated Rice-Fish Farming, Ministry of Agriculture and Rural Affairs, Shanghai Ocean University, Shanghai 201306, China
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai 201306, China
| | - Yu Li
- Key Laboratory of Integrated Rice-Fish Farming, Ministry of Agriculture and Rural Affairs, Shanghai Ocean University, Shanghai 201306, China
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai 201306, China
- Main Building, QiLu Innovalley Incubator, High-Tech Industry Development Zone, Jinan 250101, China
| | - Zhengshun Wen
- Zhejiang Provincial Engineering Technology Research Center of Marine Biomedical Products, School of Food Science and Pharmaceutics, Zhejiang Ocean University, Zhoushan 316022, China
| | - Muhammad Jawad
- Key Laboratory of Integrated Rice-Fish Farming, Ministry of Agriculture and Rural Affairs, Shanghai Ocean University, Shanghai 201306, China
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai 201306, China
| | - Lang Gui
- Key Laboratory of Integrated Rice-Fish Farming, Ministry of Agriculture and Rural Affairs, Shanghai Ocean University, Shanghai 201306, China
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai 201306, China
- Correspondence: (L.G.); (M.L.)
| | - Mingyou Li
- Key Laboratory of Integrated Rice-Fish Farming, Ministry of Agriculture and Rural Affairs, Shanghai Ocean University, Shanghai 201306, China
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai 201306, China
- Correspondence: (L.G.); (M.L.)
| |
Collapse
|
5
|
Vasa Is a Potential Germ Cell Marker in Leopard Coral Grouper ( Plectropomus leopardus). Genes (Basel) 2022; 13:genes13061077. [PMID: 35741839 PMCID: PMC9222667 DOI: 10.3390/genes13061077] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2022] [Revised: 05/23/2022] [Accepted: 06/13/2022] [Indexed: 11/16/2022] Open
Abstract
Vasa (Ddx4, DEAD box polypeptide 4), an extremely specific marker of germ cells in vivo, is an ATP-dependent RNA helicase that plays an essential role in germ cell development and gametogenesis. However, the expression and function information about this gene in groupers remains lacking. Here, vasa homolog termed Plvasa was isolated and identified Plvasa as a putative germ cell marker in the leopard coral grouper, (Plectropomus leopardus). Results indicated that Plvasa contained 17 exons in the genomic sequence and 9 conserved motifs of the DEAD-box protein by sequence analysis. The sequence comparison, phylogenetic analyses and synteny analyses showed that Plvasa was homologous with other teleosts. Additionally, the expression of Plvasa was significantly higher in gonads than in other tissues in adult individuals (p < 0.05). Further, the distribution of Plvasa revealed that it was only expressed in the germ cells, such as spermatids, germline stem cells and oocytes at different stages, and could not be detected in the somatic cells of gonads. The current study verified that the Plvasa gene is a valuable molecular marker of germ cells in leopard coral grouper, which potentially plays an important role in investigating the genesis and development of teleost germ cells.
Collapse
|
6
|
Begum S, Gnanasree SM, Anusha N, Senthilkumaran B. Germ cell markers in fishes - A review. AQUACULTURE AND FISHERIES 2022. [DOI: 10.1016/j.aaf.2022.03.015] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|