1
|
Zhang Y, Chen X, Cao L, Zhang J, Wang J, Yao Z, Zhao K, Jin Y. SUMO1 modification reduces oxidative stress and SUMO1ylated AKAP4 degradation affects frozen-thawed boar sperm quality. Anim Reprod Sci 2025; 273:107759. [PMID: 39765132 DOI: 10.1016/j.anireprosci.2024.107759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2024] [Revised: 12/16/2024] [Accepted: 12/24/2024] [Indexed: 01/19/2025]
Abstract
Low-temperature injury affects normal physiological function and viability of boar sperm during cryopreservation. Small ubiquitin-like modifier (SUMO) modification of proteins after translation is related to the cell stress response but the relationship between SUMO modification and oxidative stress in freeze-thawed sperm remains unclear. A-kinase ankyrin 4 (AKAP4) and its precursor proAKAP4 are two main proteins in mammalian sperm. Although AKAP4 expression has been studied in many species, its expression in porcine sperm has not been described in detail. In this study, liquid chromatography-mass spectrometry was used to determine the differentially expressed SUMO-modified proteins in porcine sperm after freezen and thawed. The results identified 26 down-regulated SUMO-modified proteins, with AKAP4 identified as one of the target proteins of SUMO1 under sperm stress. In addition, the level of SUMO1 protein increased significantly (P < 0.001) and the level of AKAP4 protein decreased (P < 0.05) after freezing and oxidative stress treatment. Inhibition of SUMO1 modification of AKAP4 protein did not affect its degradation (P > 0.05), indicating that SUMO1 is not involved in the degradation of AKAP4. The inhibition of SUMO1 modification by sperm protein decreased sperm motility (P < 0.05), ATP content, and DNA integrity (P < 0.05). In summary, cryopreservation and oxidative stress can induce SUMO modification of porcine sperm proteins and the modification of sperm protein SUMO1 can help sperm resist oxidative stress; and its role in protecting sperm quality is not via regulating the degradation of AKAP4. These findings provide new insights into the mechanisms underlying SUMO1 modifications during sperm cryopreservation and oxidative stress.
Collapse
Affiliation(s)
- Yuyang Zhang
- Department of Animal Science, College of Agriculture, Yanbian University, Yanji, Jilin Province, China
| | - Xuan Chen
- Department of Animal Science, College of Agriculture, Yanbian University, Yanji, Jilin Province, China
| | - Lipeng Cao
- Department of Animal Science, College of Agriculture, Yanbian University, Yanji, Jilin Province, China
| | - Junzheng Zhang
- Department of Animal Science, College of Agriculture, Yanbian University, Yanji, Jilin Province, China
| | - Jie Wang
- Department of Animal Science, College of Agriculture, Yanbian University, Yanji, Jilin Province, China
| | - Zhiwei Yao
- Department of Animal Science, College of Agriculture, Yanbian University, Yanji, Jilin Province, China
| | - Kun Zhao
- Department of Animal Science, College of Agriculture, Yanbian University, Yanji, Jilin Province, China
| | - Yi Jin
- Department of Animal Science, College of Agriculture, Yanbian University, Yanji, Jilin Province, China.
| |
Collapse
|
2
|
Fan S, Xie F, Wang Q, Ye H, Tian Y, Liu Y, Zhang H, Zheng X, Yin Z, Zhang X. Proteomic analysis reveals the difference between the spermatozoa of young and old Sus scrofa. Sci Rep 2025; 15:1433. [PMID: 39789055 PMCID: PMC11718062 DOI: 10.1038/s41598-025-85515-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Accepted: 01/03/2025] [Indexed: 01/12/2025] Open
Abstract
The Wannan black pig is a superior local breed in Anhui province, renowned for its exceptional meat quality and remarkable adaptability to various environmental conditions. Semen, being a crucial indicator of male sexual maturity and fertility, significantly influences the performance of breeding boars. The molecular basis for comprehending the fecundity of boars in practical production lies in understanding the disparities in sperm proteins among boars of varying ages. In this investigation, spermatozoa from three one-year-old and three seven-year-old Wannan black pigs were individually chosen. Employing a tandem mass tag (TMT)-based quantitative proteomics approach, a total of 4050 proteins were identified, out of which 130 proteins exhibited significant differences between the two groups. GO enrichment analysis revealed that these proteins primarily participated in energy metabolism, spermatogenesis, fertilization, and reproduction. KEGG enrichment analysis demonstrated that the differential proteins predominantly resided within the ribosome pathway. A protein-protein interaction (PPI) network was constructed to identify core proteins such as Small ribosomal subunit protein uS7 (RPS5). Ultimately, parallel reaction monitoring (PRM) was conducted on the selected differential proteins to validate result accuracy. The findings of this study establish a foundation for elucidating the molecular mechanism underlying variations in spermatozoa protein levels among Wannan Black Pig with different age.
Collapse
Affiliation(s)
- Shuhao Fan
- College of Animal Science and Technology, Anhui Agricultural University, Hefei, 230036, China
| | - Fan Xie
- College of Animal Science and Technology, Anhui Agricultural University, Hefei, 230036, China
| | - Qianqian Wang
- College of Animal Science and Technology, Anhui Agricultural University, Hefei, 230036, China
| | - Haibo Ye
- College of Animal Science and Technology, Anhui Agricultural University, Hefei, 230036, China
| | - Yali Tian
- College of Animal Science and Technology, Anhui Agricultural University, Hefei, 230036, China
| | - Yangguang Liu
- College of Animal Science and Technology, Anhui Agricultural University, Hefei, 230036, China
| | - Huibin Zhang
- College of Animal Science and Technology, Anhui Agricultural University, Hefei, 230036, China
| | - Xianrui Zheng
- College of Animal Science and Technology, Anhui Agricultural University, Hefei, 230036, China
| | - Zongjun Yin
- College of Animal Science and Technology, Anhui Agricultural University, Hefei, 230036, China
| | - Xiaodong Zhang
- College of Animal Science and Technology, Anhui Agricultural University, Hefei, 230036, China.
| |
Collapse
|
3
|
Yang YT, Yan B, Guo LN, Liu M, Li YH, Shao ZY, Diao H, Liu SY, Yu HG. Scriptaid is a prospective agent for improving human asthenozoospermic sample quality and fertilization rate in vitro. Asian J Androl 2024; 26:490-499. [PMID: 38856299 PMCID: PMC11449406 DOI: 10.4103/aja202416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Accepted: 03/04/2024] [Indexed: 06/11/2024] Open
Abstract
ABSTRACT Male infertility is a global issue caused by poor sperm quality, particularly motility. Enhancement of the sperm quality may improve the fertilization rate in assisted reproductive technology (ART) treatment. Scriptaid, with a novel human sperm motility-stimulating activity, has been investigated as a prospective agent for improving sperm quality and fertilization rate in ART. We evaluated the effects of Scriptaid on asthenozoospermic (AZS) semen, including its impact on motility stimulation and protective effects on cryopreservation and duration of motility, by computer-aided sperm analysis (CASA). Sperm quality improvement by Scriptaid was characterized by increased hyaluronan-binding activity, tyrosine phosphorylation, adenosine triphosphate (ATP) concentration, mitochondrial membrane potential, and an ameliorated AZS fertilization rate in clinical intracytoplasmic sperm injection (ICSI) experiments. Furthermore, our identification of active Scriptaid analogs and different metabolites induced by Scriptaid in spermatozoa lays a solid foundation for the future biomechanical exploration of sperm function. In summary, Scriptaid is a potential candidate for the treatment of male infertility in vitro as it improves sperm quality, prolongs sperm viability, and increases the fertilization rate.
Collapse
Affiliation(s)
- Yi-Ting Yang
- NHC Key Lab of Reproduction Regulation, Shanghai Engineering Research Center of Reproductive Health Drug and Devices, Shanghai-MOST Key Laboratory of Health and Disease Genomics, Shanghai Institute for Biomedical and Pharmaceutical Technologies, Shanghai 200237, China
- School of Life Sciences and Technology, Tongji University, Shanghai 200092, China
| | - Bin Yan
- Reproductive Medicine Center, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Li-Na Guo
- NHC Key Lab of Reproduction Regulation, Shanghai Engineering Research Center of Reproductive Health Drug and Devices, Shanghai-MOST Key Laboratory of Health and Disease Genomics, Shanghai Institute for Biomedical and Pharmaceutical Technologies, Shanghai 200237, China
| | - Miao Liu
- Reproductive Medicine Center, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Yu-Hua Li
- NHC Key Lab of Reproduction Regulation, Shanghai Engineering Research Center of Reproductive Health Drug and Devices, Shanghai-MOST Key Laboratory of Health and Disease Genomics, Shanghai Institute for Biomedical and Pharmaceutical Technologies, Shanghai 200237, China
| | - Zhi-Yu Shao
- College of Chemistry and Chemical Engineering, Donghua University, Shanghai 201620, China
| | - Hua Diao
- NHC Key Lab of Reproduction Regulation, Shanghai Engineering Research Center of Reproductive Health Drug and Devices, Shanghai-MOST Key Laboratory of Health and Disease Genomics, Shanghai Institute for Biomedical and Pharmaceutical Technologies, Shanghai 200237, China
| | - Su-Ying Liu
- Reproductive Medicine Center, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - He-Guo Yu
- NHC Key Lab of Reproduction Regulation, Shanghai Engineering Research Center of Reproductive Health Drug and Devices, Shanghai-MOST Key Laboratory of Health and Disease Genomics, Shanghai Institute for Biomedical and Pharmaceutical Technologies, Shanghai 200237, China
| |
Collapse
|
4
|
Zhu Z, Zhao H, Yang Q, Li Y, Wang R, Adetunji AO, Min L. β-Nicotinamide mononucleotide improves chilled ram sperm quality in vitro by reducing oxidative stress damage. Anim Biosci 2024; 37:852-861. [PMID: 38575134 PMCID: PMC11065721 DOI: 10.5713/ab.23.0379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Revised: 12/07/2023] [Accepted: 01/13/2024] [Indexed: 04/06/2024] Open
Abstract
OBJECTIVE The present study aimed to investigate the effect of β-nicotinamide mononucleotide (NMN) supplementation on ram sperm quality during storage at 4°C in vitro. METHODS Tris-citric acid-glucose solution containing different doses of NMN (0, 30, 60, 90, and 120 μM) was used to dilute semen collected from rams and it was stored at 4°C. Sperm motility, plasma membrane integrity as well as acrosome integrity were evaluated at 0, 24, and 48 h time points after storage at 4°C. In addition, sperm mitochondrial activity, lipid peroxidation (LPO), malondialdehyde (MDA) content, reactive oxygen species (ROS) content, glutathione (GSH) content, superoxide dismutase (SOD) activity, and apoptosis were measured at 48 h time point after storage at 4°C. RESULTS Results demonstrate that the values obtained for sperm motility, acrosome integrity, and plasma membrane integrity in the NMN treatments were significantly higher than control (p<0.05). The addition of 60 μM NMN significantly improved ram sperm mitochondrial activity and reduced LPO, MDA content, and ROS content compared to control (p<0.05). Interestingly, sperm GSH content and SOD activity for the 60 μM NMN treatment were much higher than those observed for control. NMN treatment also decreased the level of Cleaved-Caspase 3, Cleaved-Caspase 9, and Bax while increasing Bcl-2 level in sperm at 48 h time point after storage at 4°C. CONCLUSION Ram sperm quality can be maintained during storage at 4°C with the addition of NMN at 60 μM to the semen extender. NMN also reduces oxidative stress and apoptosis. Overall, these findings suggest that NMN is efficient in improving the viability of ram sperm during storage at 4°C in vitro.
Collapse
Affiliation(s)
- Zhendong Zhu
- College of Animal Science and Technology, Qingdao Agricultural University, Qingdao 266109,
China
| | - Haolong Zhao
- College of Animal Science and Technology, Qingdao Agricultural University, Qingdao 266109,
China
| | - Qitai Yang
- College of Animal Science and Technology, Qingdao Agricultural University, Qingdao 266109,
China
| | - Yajing Li
- College of Animal Science and Technology, Qingdao Agricultural University, Qingdao 266109,
China
| | - Ruyuan Wang
- College of Animal Science and Technology, Qingdao Agricultural University, Qingdao 266109,
China
| | | | - Lingjiang Min
- College of Animal Science and Technology, Qingdao Agricultural University, Qingdao 266109,
China
| |
Collapse
|
5
|
Martín-Hidalgo D, Solar-Málaga S, González-Fernández L, Zamorano J, García-Marín LJ, Bragado MJ. The compound YK 3-237 promotes pig sperm capacitation-related events. Vet Res Commun 2024; 48:773-786. [PMID: 37906355 PMCID: PMC10998788 DOI: 10.1007/s11259-023-10243-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Accepted: 10/14/2023] [Indexed: 11/02/2023]
Abstract
Before fertilization of the oocyte, the spermatozoa must undergo through a series of biochemical changes in the female reproductive tract named sperm capacitation. Spermatozoa regulates its functions by post-translational modifications, being historically the most studied protein phosphorylation. In addition to phosphorylation, recently, protein acetylation has been described as an important molecular mechanism with regulatory roles in several reproductive processes. However, its role on the mammal's sperm capacitation process remains unraveled. Sirtuins are a deacetylase protein family with 7 members that regulate protein acetylation. Here, we investigated the possible role of SIRT1 on pig sperm capacitation-related events by using YK 3-237, a commercial SIRT1 activator drug. SIRT1 is localized in the midpiece of pig spermatozoa. Protein tyrosine phosphorylation (focused at p32) is an event associated to pig sperm capacitation that increases when spermatozoa are in vitro capacitated in presence of YK 3-237. Eventually, YK 3-237 induces acrosome reaction in capacitated spermatozoa: YK 3-237 treatment tripled (3.40 ± 0.40 fold increase) the percentage of acrosome-reacted spermatozoa compared to the control. In addition, YK 3-237 induces sperm intracellular pH alkalinization and raises the intracellular calcium levels through a CatSper independent mechanism. YK 3-237 was not able to bypass sAC inhibition by LRE1. In summary, YK 3-237 promotes pig sperm capacitation by a mechanism upstream of sAC activation and independent of CatSper calcium channel.
Collapse
Affiliation(s)
- David Martín-Hidalgo
- Departamento de Fisiología, Facultad de Medicina y Ciencias de la Salud, Universidad de Extremadura, Avenida de Elvas s/n, Badajoz, 06006, España.
- Grupo de Investigación Señalización Intracelular y Tecnología de la Reproducción (SINTREP), Instituto de Investigación INBIO G+C. Universidad de Extremadura, Cáceres, España.
- Unidad de Investigación, Complejo Hospitalario Universitario de Cáceres, Avenida Pablo Naranjo s/n, Cáceres, 10003, Spain.
| | - Soraya Solar-Málaga
- Departamento de Fisiología, Facultad de Medicina y Ciencias de la Salud, Universidad de Extremadura, Avenida de Elvas s/n, Badajoz, 06006, España
- Grupo de Investigación Señalización Intracelular y Tecnología de la Reproducción (SINTREP), Instituto de Investigación INBIO G+C. Universidad de Extremadura, Cáceres, España
| | - Lauro González-Fernández
- Departamento de Fisiología, Facultad de Medicina y Ciencias de la Salud, Universidad de Extremadura, Avenida de Elvas s/n, Badajoz, 06006, España
- Grupo de Investigación Señalización Intracelular y Tecnología de la Reproducción (SINTREP), Instituto de Investigación INBIO G+C. Universidad de Extremadura, Cáceres, España
| | - José Zamorano
- Unidad de Investigación, Complejo Hospitalario Universitario de Cáceres, Avenida Pablo Naranjo s/n, Cáceres, 10003, Spain
| | - Luis Jesús García-Marín
- Departamento de Fisiología, Facultad de Medicina y Ciencias de la Salud, Universidad de Extremadura, Avenida de Elvas s/n, Badajoz, 06006, España
- Grupo de Investigación Señalización Intracelular y Tecnología de la Reproducción (SINTREP), Instituto de Investigación INBIO G+C. Universidad de Extremadura, Cáceres, España
| | - María Julia Bragado
- Departamento de Fisiología, Facultad de Medicina y Ciencias de la Salud, Universidad de Extremadura, Avenida de Elvas s/n, Badajoz, 06006, España
- Grupo de Investigación Señalización Intracelular y Tecnología de la Reproducción (SINTREP), Instituto de Investigación INBIO G+C. Universidad de Extremadura, Cáceres, España
| |
Collapse
|
6
|
Breitbart H, Grinshtein E. Mechanisms That Protect Mammalian Sperm from the Spontaneous Acrosome Reaction. Int J Mol Sci 2023; 24:17005. [PMID: 38069328 PMCID: PMC10707520 DOI: 10.3390/ijms242317005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 11/28/2023] [Accepted: 11/29/2023] [Indexed: 12/18/2023] Open
Abstract
To acquire the capacity to fertilize the oocyte, mammalian spermatozoa must undergo a series of biochemical reactions in the female reproductive tract, which are collectively called capacitation. The capacitated spermatozoa subsequently interact with the oocyte zona-pellucida and undergo the acrosome reaction, which enables the penetration of the oocyte and subsequent fertilization. However, the spontaneous acrosome reaction (sAR) can occur prematurely in the sperm before reaching the oocyte cumulus oophorus, thereby jeopardizing fertilization. One of the main processes in capacitation involves actin polymerization, and the resulting F-actin is subsequently dispersed prior to the acrosome reaction. Several biochemical reactions that occur during sperm capacitation, including actin polymerization, protect sperm from sAR. In the present review, we describe the protective mechanisms that regulate sperm capacitation and prevent sAR.
Collapse
Affiliation(s)
- Haim Breitbart
- The Faculty of Life Sciences, Bar-Ilan University, Ramat Gan 5290002, Israel
| | | |
Collapse
|
7
|
Turner KA, Achinger L, Kong D, Kluczynski DF, Fishman EL, Phillips A, Saltzman B, Loncarek J, Harstine BR, Avidor-Reiss T. Abnormal centriolar biomarker ratios correlate with unexplained bull artificial insemination subfertility: a pilot study. Sci Rep 2023; 13:18338. [PMID: 37884598 PMCID: PMC10603076 DOI: 10.1038/s41598-023-45162-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Accepted: 10/17/2023] [Indexed: 10/28/2023] Open
Abstract
The mechanisms underlying male infertility are poorly understood. Most mammalian spermatozoa have two centrioles: the typical barrel-shaped proximal centriole (PC) and the atypical fan-like distal centriole (DC) connected to the axoneme (Ax). These structures are essential for fertility. However, the relationship between centriole quality and subfertility (reduced fertility) is not well established. Here, we tested the hypothesis that assessing sperm centriole quality can identify cattle subfertility. By comparing sperm from 25 fertile and 6 subfertile bulls, all with normal semen analyses, we found that unexplained subfertility and lower sire conception rates (pregnancy rate from artificial insemination in cattle) correlate with abnormal centriolar biomarker distribution. Fluorescence-based Ratiometric Analysis of Sperm Centrioles (FRAC) found only four fertile bulls (4/25, 16%) had positive FRAC tests (having one or more mean FRAC ratios outside of the distribution range in a group's high-quality sperm population), whereas all of the subfertile bulls (6/6, 100%) had positive FRAC tests (P = 0.00008). The most sensitive biomarker was acetylated tubulin, which had a novel labeling pattern between the DC and Ax. These data suggest that FRAC and acetylated tubulin labeling can identify bull subfertility that remains undetected by current methods and may provide insight into a novel mechanism of subfertility.
Collapse
Affiliation(s)
- Katerina A Turner
- Department of Biological Sciences, College of Natural Sciences and Mathematics, University of Toledo, 3050 W. Towerview Blvd, Toledo, OH, 43606, USA
| | - Luke Achinger
- Department of Biological Sciences, College of Natural Sciences and Mathematics, University of Toledo, 3050 W. Towerview Blvd, Toledo, OH, 43606, USA
| | - Dong Kong
- Laboratory of Protein Dynamics and Signaling, Center for Cancer Research, National Institutes of Health, National Cancer Institute, Frederick, MD, USA
| | - Derek F Kluczynski
- Department of Biological Sciences, College of Natural Sciences and Mathematics, University of Toledo, 3050 W. Towerview Blvd, Toledo, OH, 43606, USA
| | - Emily Lillian Fishman
- Department of Biological Sciences, College of Natural Sciences and Mathematics, University of Toledo, 3050 W. Towerview Blvd, Toledo, OH, 43606, USA
| | - Audrey Phillips
- Department of Biological Sciences, College of Natural Sciences and Mathematics, University of Toledo, 3050 W. Towerview Blvd, Toledo, OH, 43606, USA
| | - Barbara Saltzman
- Department of Population Health, College of Health and Human Services, University of Toledo, Toledo, OH, USA
| | - Jadranka Loncarek
- Laboratory of Protein Dynamics and Signaling, Center for Cancer Research, National Institutes of Health, National Cancer Institute, Frederick, MD, USA
| | | | - Tomer Avidor-Reiss
- Department of Biological Sciences, College of Natural Sciences and Mathematics, University of Toledo, 3050 W. Towerview Blvd, Toledo, OH, 43606, USA.
- Department of Urology, College of Medicine and Life Sciences, University of Toledo, Toledo, OH, USA.
| |
Collapse
|
8
|
Ali MA, Qin Z, Dou S, Huang A, Wang Y, Yuan X, Zhang Y, Ni Q, Azmat R, Zeng C. Cryopreservation Induces Acetylation of Metabolism-Related Proteins in Boar Sperm. Int J Mol Sci 2023; 24:10983. [PMID: 37446160 DOI: 10.3390/ijms241310983] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 06/25/2023] [Accepted: 06/26/2023] [Indexed: 07/15/2023] Open
Abstract
Cryodamage affects the normal physiological functions and survivability of boar sperm during cryopreservation. Lysine acetylation is thought to be an important regulatory mechanism in sperm functions. However, little is known about protein acetylation and its effects on cryotolerance or cryodamage in boar sperm. In this study, the characterization and protein acetylation dynamics of boar sperm during cryopreservation were determined using liquid chromatography-mass spectrometry (LC-MS). A total of 1440 proteins were identified out of 4705 modified proteins, and 2764 quantifiable sites were elucidated. Among the differentially modified sites, 1252 were found to be upregulated compared to 172 downregulated sites in fresh and frozen sperms. Gene ontology indicated that these differentially modified proteins are involved in metabolic processes and catalytic and antioxidant activities, which are involved in pyruvate metabolism, phosphorylation and lysine degradation. In addition, the present study demonstrated that the mRNA and protein expressions of SIRT5, IDH2, MDH2 and LDHC, associated with sperm quality parameters, are downregulated after cryopreservation. In conclusion, cryopreservation induces the acetylation and deacetylation of energy metabolism-related proteins, which may contribute to the post-thawed boar sperm quality parameters.
Collapse
Affiliation(s)
- Malik Ahsan Ali
- Key Laboratory of Livestock and Poultry Multi-Omics, Ministry of Agriculture and Rural Affairs, Sichuan Agricultural University, Chengdu 611130, China
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China
- Department of Theriogenology, Faculty of Veterinary Science, University of Agriculture, Faisalabad 38000, Pakistan
| | - Ziyue Qin
- Key Laboratory of Livestock and Poultry Multi-Omics, Ministry of Agriculture and Rural Affairs, Sichuan Agricultural University, Chengdu 611130, China
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China
| | - Shan Dou
- College of Life Science, Sichuan Agricultural University, Ya'an 625014, China
| | - Anqi Huang
- College of Life Science, Sichuan Agricultural University, Ya'an 625014, China
| | - Yihan Wang
- Key Laboratory of Livestock and Poultry Multi-Omics, Ministry of Agriculture and Rural Affairs, Sichuan Agricultural University, Chengdu 611130, China
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China
| | - Xiang Yuan
- Key Laboratory of Livestock and Poultry Multi-Omics, Ministry of Agriculture and Rural Affairs, Sichuan Agricultural University, Chengdu 611130, China
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China
| | - Yan Zhang
- Key Laboratory of Livestock and Poultry Multi-Omics, Ministry of Agriculture and Rural Affairs, Sichuan Agricultural University, Chengdu 611130, China
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China
| | - Qingyong Ni
- Key Laboratory of Livestock and Poultry Multi-Omics, Ministry of Agriculture and Rural Affairs, Sichuan Agricultural University, Chengdu 611130, China
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China
| | - Rameesha Azmat
- Department of Biochemistry, Faculty of Science and Technology, Government College Women University, Faisalabad 38000, Pakistan
| | - Changjun Zeng
- Key Laboratory of Livestock and Poultry Multi-Omics, Ministry of Agriculture and Rural Affairs, Sichuan Agricultural University, Chengdu 611130, China
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China
| |
Collapse
|
9
|
Azoulay Y, Malik Z, Breitbart H. Sperm interaction with bacteria induces the spontaneous acrosome reaction. Theriogenology 2023; 203:82-88. [PMID: 36989544 DOI: 10.1016/j.theriogenology.2023.02.029] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2022] [Revised: 01/16/2023] [Accepted: 02/04/2023] [Indexed: 03/30/2023]
Abstract
Bacterial contamination in the semen deteriorates spermatozoa function. One mechanism through which this may occur is by inducing a premature form of the acrosome reaction (spontaneous acrosome reaction (sAR)) which has been shown to abrogate fertilization. To understand the mechanism by which bacteria affect sperm functions, we determined the effects of bacteria on sperm sAR and on other parameters involved in sperm capacitation. Sperm cells undergo biochemical changes in the female reproductive tract collectively called capacitation. Only capacitated sperm can undergo the physiological acrosomal exocytosis process near or on the oocyte, which allows the spermatozoon to penetrate and fertilize the egg. Bovine sperm incubated with the bacteria Escherichia coli (E. coli), Staphylococcus aureus (S. aureus) or Pseudomonas aeruginosa (P. aeruginosa), revealed a sperm-bacteria interaction, however only E. coli and P. aeruginosa caused an increase in sperm sAR. This effect was seen only when the bacteria were present with the sperm during the full incubation under capacitation conditions but not when the bacteria were added to capacitated sperm. These results indicate that bacteria affect sperm during capacitation and not at the AR step. In addition, Ca2+ influx, protein kinase A, and protein tyrosine phosphorylation activities, three essential processes that promote capacitation, were inhibited by the bacteria. Moreover, increasing intracellular cAMP, which also occur during sperm capacitation, caused significant reverse of sAR induced by the bacteria.
Collapse
|
10
|
Moretti E, Signorini C, Corsaro R, Giamalidi M, Collodel G. Human Sperm as an In Vitro Model to Assess the Efficacy of Antioxidant Supplements during Sperm Handling: A Narrative Review. Antioxidants (Basel) 2023; 12:antiox12051098. [PMID: 37237965 DOI: 10.3390/antiox12051098] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 04/27/2023] [Accepted: 05/11/2023] [Indexed: 05/28/2023] Open
Abstract
Spermatozoa are highly differentiated cells that produce reactive oxygen species (ROS) due to aerobic metabolism. Below a certain threshold, ROS are important in signal transduction pathways and cellular physiological processes, whereas ROS overproduction damages spermatozoa. Sperm manipulation and preparation protocols during assisted reproductive procedures-for example, cryopreservation-can result in excessive ROS production, exposing these cells to oxidative damage. Thus, antioxidants are a relevant topic in sperm quality. This narrative review focuses on human spermatozoa as an in vitro model to study which antioxidants can be used to supplement media. The review comprises a brief presentation of the human sperm structure, a general overview of the main items of reduction-oxidation homeostasis and the ambivalent relationship between spermatozoa and ROS. The main body of the paper deals with studies in which human sperm have been used as an in vitro model to test antioxidant compounds, including natural extracts. The presence and the synergic effects of different antioxidant molecules could potentially lead to more effective products in vitro and, in the future, in vivo.
Collapse
Affiliation(s)
- Elena Moretti
- Department of Molecular and Developmental Medicine, University of Siena, 53100 Siena, Italy
| | - Cinzia Signorini
- Department of Molecular and Developmental Medicine, University of Siena, 53100 Siena, Italy
| | - Roberta Corsaro
- Department of Molecular and Developmental Medicine, University of Siena, 53100 Siena, Italy
| | - Maria Giamalidi
- Department of Genetics and Biotechnology, Faculty of Biology, University of Athens, 15701 Athens, Greece
| | - Giulia Collodel
- Department of Molecular and Developmental Medicine, University of Siena, 53100 Siena, Italy
| |
Collapse
|
11
|
Turner KA, Kluczynski DF, Hefner RJ, Moussa RB, Slogar JN, Thekkethottiyil JB, Prine HD, Crossley ER, Flanagan LJ, LaBoy MM, Moran MB, Boyd TG, Kujawski BA, Ruble K, Pap JM, Jaiswal A, Shah TA, Sindhwani P, Avidor-Reiss T. Tubulin posttranslational modifications modify the atypical spermatozoon centriole. MICROPUBLICATION BIOLOGY 2022; 2022:10.17912/micropub.biology.000678. [PMID: 36444375 PMCID: PMC9700210 DOI: 10.17912/micropub.biology.000678] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 11/09/2022] [Accepted: 11/10/2022] [Indexed: 01/25/2023]
Abstract
Sperm cells are transcriptionally and translationally silent. Therefore, they may use one of the remaining mechanisms to respond to stimuli in their environment, the post-translational modification of their proteins. Here we examined three post-translational modifications, acetylation, glutamylation, and glycylation of the protein tubulin in human and cattle sperm. Tubulin is the monomer that makes up microtubules, and microtubules constitute the core component of both the sperm centrioles and the axoneme. We found that the sperm of both species were labeled by antibodies against acetylated tubulin and glutamylated tubulin.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | - Tomer Avidor-Reiss
- The University of Toledo, Toledo, Ohio, USA.
,
Correspondence to: Tomer Avidor-Reiss (
)
| |
Collapse
|