1
|
Wirtz MK, Sykes R, Samples J, Edmunds B, Choi D, Keene DR, Tufa SF, Sun YY, Keller KE. Identification of Missense Extracellular Matrix Gene Variants in a Large Glaucoma Pedigree and Investigation of the N700S Thrombospondin-1 Variant in Normal and Glaucomatous Trabecular Meshwork Cells. Curr Eye Res 2022; 47:79-90. [PMID: 34143713 PMCID: PMC8733052 DOI: 10.1080/02713683.2021.1945109] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
PURPOSE Primary open-angle glaucoma (POAG) is a complex heterogeneous disease. While several POAG genes have been identified, a high proportion of estimated heritability remains unexplained. Elevated intraocular pressure (IOP) is a leading POAG risk factor and dysfunctional extracellular matrix (ECM) in the trabecular meshwork (TM) contributes to elevated IOP. In this study, we sought to identify missense variants in ECM genes that correlate with ocular hypertensive POAG. METHODS Whole-genome sequencing was used to identify genetic variants in five members of a large POAG family (n = 68) with elevated IOP. The remaining family members were screened by Sanger sequencing. Unrelated normal (NTM) and glaucomatous (GTM) cells were sequenced for the identified variants. The ECM protein levels were determined by Western immunoblotting and confocal and electron microscopy investigated ECM ultrastructural organization. RESULTS Three ECM gene variants were significantly associated with POAG or elevated IOP in a large POAG pedigree. These included rs2228262 (N700S; thrombospondin-1 (THBS1, TSP1)), rs112913396 (D563 G; collagen type VI, alpha 3 (COL6A3)) and rs34759087 (E987K; laminin subunit beta 2 (LAMB2)). Screening of unrelated TM cells (n = 27) showed higher prevalence of the THBS1 variant but not the LAMB2 variant, in GTM cells (39%) than NTM cells (11%). The rare COL6A3 variant was not detected. TSP1 protein was upregulated and COL6A3 was down-regulated in TM cells with N700S subject to mechanical stretch, an in vitro method that mimics elevated IOP. Immunofluorescence showed increased TSP1 immunostaining in cell strains with N700S compared to wild-type TM cells. Ultrastructural studies showed ECM disorganization and altered collagen type VI distribution in GTM versus NTM cells. CONCLUSIONS Our results suggest that missense variants in ECM genes may not cause catastrophic changes to the TM, but over many years, subtle changes in ECM may accumulate and cause structural disorganization of the outflow resistance leading to elevated IOP in POAG patients.
Collapse
Affiliation(s)
- Mary K. Wirtz
- Casey Eye Institute, Oregon Health & Science University, Portland, OR 97239
| | - Renee Sykes
- Casey Eye Institute, Oregon Health & Science University, Portland, OR 97239
| | | | - Beth Edmunds
- Casey Eye Institute, Oregon Health & Science University, Portland, OR 97239
| | - Dongseok Choi
- Casey Eye Institute, Oregon Health & Science University, Portland, OR 97239.,OHSU-PSU School of Public Health Oregon Health & Science University, Portland, OR 97239.,Graduate School of Dentistry, Kyung Hee University, Seoul, Korea
| | | | - Sara F. Tufa
- Shriners Hospitals for Children, Portland, OR 97239
| | - Ying Ying Sun
- Casey Eye Institute, Oregon Health & Science University, Portland, OR 97239
| | - Kate E. Keller
- Casey Eye Institute, Oregon Health & Science University, Portland, OR 97239.,Department of Chemical Physiology and Biochemistry, Oregon Health & Science University, Portland, OR 97239.,To whom correspondence should be addressed: 503 494 2366,
| |
Collapse
|
2
|
Forbes T, Pauza AG, Adams JC. In the balance: how do thrombospondins contribute to the cellular pathophysiology of cardiovascular disease? Am J Physiol Cell Physiol 2021; 321:C826-C845. [PMID: 34495764 DOI: 10.1152/ajpcell.00251.2021] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Thrombospondins (TSPs) are multidomain, secreted proteins that associate with cell surfaces and extracellular matrix. In mammals, there is a large body of data on functional roles of various TSP family members in cardiovascular disease (CVD), including stroke, cardiac remodeling and fibrosis, atherosclerosis, and aortic aneurysms. Coding single nucleotide polymorphisms (SNPs) of TSP1 or TSP4 are also associated with increased risk of several forms of CVD. Whereas interactions and functional effects of TSPs on a variety of cell types have been studied extensively, the molecular and cellular basis for the differential effects of the SNPs remains under investigation. Here, we provide an integrative review on TSPs, their roles in CVD and cardiovascular cell physiology, and known properties and mechanisms of TSP SNPs relevant to CVD. In considering recent expansions to knowledge of the fundamental cellular roles and mechanisms of TSPs, as well as the effects of wild-type and variant TSPs on cells of the cardiovascular system, we aim to highlight knowledge gaps and areas for future research or of translational potential.
Collapse
Affiliation(s)
- Tessa Forbes
- Translational Health Sciences, Bristol Medical School, University of Bristol, Bristol, United Kingdom
| | - Audrys G Pauza
- Translational Health Sciences, Bristol Medical School, University of Bristol, Bristol, United Kingdom
| | - Josephine C Adams
- School of Biochemistry, University of Bristol, Bristol, United Kingdom
| |
Collapse
|
3
|
Zhang K, Li M, Yin L, Fu G, Liu Z. Role of thrombospondin‑1 and thrombospondin‑2 in cardiovascular diseases (Review). Int J Mol Med 2020; 45:1275-1293. [PMID: 32323748 PMCID: PMC7138268 DOI: 10.3892/ijmm.2020.4507] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2019] [Accepted: 01/22/2020] [Indexed: 12/13/2022] Open
Abstract
Thrombospondin (TSP)-1 and TSP-2 are matricellular proteins in the extracellular matrix (ECM), which serve a significant role in the pathological processes of various cardiovascular diseases (CVDs). The multiple effects of TSP-1 and TSP-2 are due to their ability to interact with various ligands, such as structural components of the ECM, cytokines, cellular receptors, growth factors, proteases and other stromal cell proteins. TSP-1 and TSP-2 regulate the structure and activity of the aforementioned ligands by interacting directly or indirectly with them, thereby regulating the activity of different types of cells in response to environmental stimuli. The pathological processes of numerous CVDs are associated with the degradation and remodeling of ECM components, and with cell migration, dysfunction and apoptosis, which may be regulated by TSP-1 and TSP-2 through different mechanisms. Therefore, investigating the role of TSP-1 and TSP-2 in different CVDs and the potential signaling pathways they are associated with may provide a new perspective on potential therapies for the treatment of CVDs. In the present review, the current understanding of the roles TSP-1 and TSP-2 serve in various CVDs were summarized. In addition, the interacting ligands and the potential pathways associated with these thrombospondins in CVDs are also discussed.
Collapse
Affiliation(s)
- Kaijie Zhang
- Department of Vascular Surgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310009, P.R. China
| | - Miaomiao Li
- Department of Vascular Surgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310009, P.R. China
| | - Li Yin
- Department of Vascular Surgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310009, P.R. China
| | - Guosheng Fu
- Department of Cardiology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310016, P.R. China
| | - Zhenjie Liu
- Department of Vascular Surgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310009, P.R. China
| |
Collapse
|
4
|
Thrombospondins: A Role in Cardiovascular Disease. Int J Mol Sci 2017; 18:ijms18071540. [PMID: 28714932 PMCID: PMC5536028 DOI: 10.3390/ijms18071540] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2017] [Revised: 07/05/2017] [Accepted: 07/13/2017] [Indexed: 12/16/2022] Open
Abstract
Thrombospondins (TSPs) represent extracellular matrix (ECM) proteins belonging to the TSP family that comprises five members. All TSPs have a complex multidomain structure that permits the interaction with various partners including other ECM proteins, cytokines, receptors, growth factors, etc. Among TSPs, TSP1, TSP2, and TSP4 are the most studied and functionally tested. TSP1 possesses anti-angiogenic activity and is able to activate transforming growth factor (TGF)-β, a potent profibrotic and anti-inflammatory factor. Both TSP2 and TSP4 are implicated in the control of ECM composition in hypertrophic hearts. TSP1, TSP2, and TSP4 also influence cardiac remodeling by affecting collagen production, activity of matrix metalloproteinases and TGF-β signaling, myofibroblast differentiation, cardiomyocyte apoptosis, and stretch-mediated enhancement of myocardial contraction. The development and evaluation of TSP-deficient animal models provided an option to assess the contribution of TSPs to cardiovascular pathology such as (myocardial infarction) MI, cardiac hypertrophy, heart failure, atherosclerosis, and aortic valve stenosis. Targeting of TSPs has a significant therapeutic value for treatment of cardiovascular disease. The activation of cardiac TSP signaling in stress and pressure overload may be therefore beneficial.
Collapse
|
5
|
Kirk JA, Cingolani OH. Thrombospondins in the transition from myocardial infarction to heart failure. J Mol Cell Cardiol 2015; 90:102-10. [PMID: 26686988 DOI: 10.1016/j.yjmcc.2015.12.009] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/30/2015] [Revised: 12/02/2015] [Accepted: 12/09/2015] [Indexed: 11/27/2022]
Abstract
The heart's reaction to ischemic injury from a myocardial infarction involves complex cross-talk between the extra-cellular matrix (ECM) and different cell types within the myocardium. The ECM functions not only as a scaffold where myocytes beat synchronously, but an active signaling environment that regulates the important post-MI responses. The thrombospondins are matricellular proteins that modulate cell--ECM interactions, functioning as "sensors" that mediate outside-in and inside-out signaling. Thrombospondins are highly expressed during embryonic stages, and although their levels decrease during adult life, can be re-expressed in high quantities in response to cardiac stress including myocardial infarction and heart failure. Like a Swiss-army knife, the thrombospondins possess many tools: numerous binding domains that allow them to interact with other elements of the ECM, cell surface receptors, and signaling molecules. It is through these that the thrombospondins function. In the present review, we provide basic as well as clinical evidence linking the thrombospondin proteins with the post myocardial infarction response, including inflammation, fibrotic matrix remodeling, angiogenesis, as well as myocyte hypertrophy, apoptosis, and contractile dysfunction in heart failure. We will describe what is known regarding the intracellular signaling pathways that are involved with these responses, paving the road for future studies identifying these proteins as therapeutic targets for cardiac disease.
Collapse
Affiliation(s)
- Jonathan A Kirk
- Department of Cell and Molecular Physiology, Health Sciences Division, Loyola University Chicago, Maywood, IL 60153, United States.
| | - Oscar H Cingolani
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, United States
| |
Collapse
|
6
|
Zhang XJ, Wei CY, Li WB, Zhang LL, Zhou Y, Wang ZH, Tang MX, Zhang W, Zhang Y, Zhong M. Association between single nucleotide polymorphisms in thrombospondins genes and coronary artery disease: A meta-analysis. Thromb Res 2015; 136:45-51. [PMID: 25976449 DOI: 10.1016/j.thromres.2015.04.019] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2014] [Revised: 03/10/2015] [Accepted: 04/16/2015] [Indexed: 01/19/2023]
Abstract
OBJECTIVE This study aimed to assess the association between single nucleotide polymorphisms in thrombospondin-1 (THBS1), thrombospondin-2 (THBS2), thrombospondin-4 (THBS4) and coronary artery disease (CAD) risk. METHODS Electronic databases were searched before June, 2014 to obtain articles associated with thrombospondin polymorphisms and CAD risk. After identifying case-control studies, odds ratios (ORs) and 95% confidence intervals (95% CIs) were used to pool effect sizes. Different effect models were used according to heterogeneity. Meta-regression and sensitivity analyses were performed to examine the heterogeneity source. Begg's funnel plot and Egger's test were conducted for publication bias. RESULTS 13 studies involving 10,801 cases and 9,381 controls were included. Associations were observed between the THBS1 N700S polymorphism and CAD risk in general population(heterozygote model: OR=1.14, 95% CI: 1.03-1.26; dominant model: OR=1.13, 95% CI: 1.00-1.29), European population (heterozygote model: OR=1.13, 95% CI: 1.00-1.27) and Asian population (heterozygote model: OR=1.57, 95% CI: 1.01-2.44; dominant model: OR=1.56, 95% CI: 1.00-2.43). The THBS2 3' untranslated region (UTR) polymorphism and THBS4 A387P polymorphism were not associated with overall CAD risk. However, an association was observed between the THBS4 A387P polymorphism and CAD risk in the American population (allele model: OR=1.09, 95% CI: 1.00-1.18; homozygote model: OR=1.29, 95% CI: 1.04-1.61; recessive model: OR=1.27, 95% CI: 1.02-1.58). CONCLUSIONS The THBS1 N700S polymorphism was associated with increased CAD risk, especially in Asian and European populations. No association was observed between the THBS2 3' UTR polymorphism and CAD risk. The THBS4 A387P polymorphism was associated with increased CAD risk in the American population.
Collapse
Affiliation(s)
- Xiao-Jie Zhang
- Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education and Chinese Ministry of Public Health, Department of Cardiology Qilu Hospital of Shandong University, Ji'nan 250012, P.R. China
| | - Chun-Yan Wei
- Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education and Chinese Ministry of Public Health, Department of Cardiology Qilu Hospital of Shandong University, Ji'nan 250012, P.R. China; Department of Cardiology, Laiwu People's Hospital, Laiwu 271100,P.R. China
| | - Wen-Bo Li
- Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education and Chinese Ministry of Public Health, Department of Cardiology Qilu Hospital of Shandong University, Ji'nan 250012, P.R. China
| | - Ling-Li Zhang
- Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education and Chinese Ministry of Public Health, Department of Cardiology Qilu Hospital of Shandong University, Ji'nan 250012, P.R. China
| | - Ying Zhou
- Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education and Chinese Ministry of Public Health, Department of Cardiology Qilu Hospital of Shandong University, Ji'nan 250012, P.R. China
| | - Zhi-Hao Wang
- Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education and Chinese Ministry of Public Health, Department of Cardiology Qilu Hospital of Shandong University, Ji'nan 250012, P.R. China; Department of Geriatrics, Qilu Hospital of Shandong University; Key Laboratory of Cardiovascular Proteomics of Shandong Province, Ji'nan 250012, P.R. China
| | - Meng-Xiong Tang
- Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education and Chinese Ministry of Public Health, Department of Cardiology Qilu Hospital of Shandong University, Ji'nan 250012, P.R. China; Department of Emergency, Qilu Hospital of Shandong University, Ji'nan 250012, P.R. China
| | - Wei Zhang
- Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education and Chinese Ministry of Public Health, Department of Cardiology Qilu Hospital of Shandong University, Ji'nan 250012, P.R. China
| | - Yun Zhang
- Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education and Chinese Ministry of Public Health, Department of Cardiology Qilu Hospital of Shandong University, Ji'nan 250012, P.R. China
| | - Ming Zhong
- Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education and Chinese Ministry of Public Health, Department of Cardiology Qilu Hospital of Shandong University, Ji'nan 250012, P.R. China.
| |
Collapse
|
7
|
ADAMTS-7 Inhibits Re-endothelialization of Injured Arteries and Promotes Vascular Remodeling Through Cleavage of Thrombospondin-1. Circulation 2015; 131:1191-201. [DOI: 10.1161/circulationaha.114.014072] [Citation(s) in RCA: 113] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Background—
ADAMTS-7, a member of the disintegrin and metalloproteinase with thrombospondin motifs (ADAMTS) family, was recently identified to be significantly associated genomewide with coronary artery disease. However, the mechanisms that link ADAMTS-7 and coronary artery disease risk remain elusive. We have previously demonstrated that ADAMTS-7 promotes vascular smooth muscle cell migration and postinjury neointima formation via degradation of a matrix protein cartilage oligomeric matrix protein. Because delayed endothelium repair renders neointima and atherosclerosis plaque formation after vessel injury, we examined whether ADAMTS-7 also inhibits re-endothelialization.
Methods and Results—
Wire injury of the carotid artery and Evans blue staining were performed in
Adamts7
–/–
and wild-type mice. Adamts-7 deficiency greatly promoted re-endothelialization at 3, 5, and 7 days after injury. Consequently, Adamts-7 deficiency substantially ameliorated neointima formation in mice at days 14 and 28 after injury in comparison with the wild type. In vitro studies further indicated that ADAMTS-7 inhibited both endothelial cell proliferation and migration. Surprisingly, cartilage oligomeric matrix protein deficiency did not affect endothelial cell proliferation/migration and re-endothelialization in mice. In a further examination of other potential vascular substrates of ADAMTS-7, a label-free liquid chromatography-tandem mass spectrometry secretome analysis revealed thrombospondin-1 as a potential ADAMTS-7 target. The subsequent studies showed that ADAMTS-7 was directly associated with thrombospondin-1 by its C terminus and degraded thrombospondin-1 in vivo and in vitro. The inhibitory effect of ADAMTS-7 on postinjury endothelium recovery was circumvented in
Tsp1
–/–
mice.
Conclusions—
Our study revealed a novel mechanism by which ADAMTS-7 affects neointima formation. Thus, ADAMTS-7 is a promising treatment target for postinjury vascular intima hyperplasia.
Collapse
|
8
|
Hong BB, Chen SQ, Qi YL, Zhu JW, Lin JY. Association of THBS1 rs1478605 T>C in 5'-untranslated regions with the development and progression of gastric cancer. Biomed Rep 2015; 3:207-214. [PMID: 26075074 DOI: 10.3892/br.2015.414] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2014] [Accepted: 12/29/2014] [Indexed: 12/12/2022] Open
Abstract
Thrombospondin 1 (THBS1) plays an important role in angiogenesis and tumor progression. The aim of the present study was to investigate the effects of single-nucleotide polymorphisms (rs1478605 and rs3743125) in the untranslated regions of the THBS1 gene on the development and progression of gastric cancer. In the case-control study, 275 gastric cancer patients and 275 cancer-free controls were successfully genotyped using polymerase chain reaction-restriction fragment length polymorphism. The data demonstrated that THBS1 rs1478605 genotypic distributions significantly differed between the patient and control groups (P=0.005). Carriers of the CC genotype exhibited a decreased risk of developing gastric cancer compared to the carriers of the CT and TT genotypes [adjusted odd ratio (OR), 0.56; 95% confidence interval (CI), 0.39-0.79; P=0.001]. The CC genotype of rs1478605 was negatively associated with gastric cancer lymph node metastasis (OR, 0.41; 95% CI, 0.23-0.71; P=0.001) and was associated with a reduced risk of lymph node metastasis in male patients (OR, 0.27; 95% CI, 0.14-0.52; P<0.001). The THBS1 CT haplotype was associated with a reduced risk of developing gastric cancer (OR, 0.56; 95% CI, 0.33-0.93; P=0.02). By contrast, no association was observed between THBS1 rs3743125 and the development and progression of gastric cancer. These results suggest that THBS1 rs1478605 represents a potential molecular marker for gastric cancer.
Collapse
Affiliation(s)
- Bin-Bin Hong
- Central Laboratory of The Second Affiliated Hospital of Fujian Medical University, Quanzhou, Fujian 362000, P.R. China
| | - Shu-Qin Chen
- Key Laboratory of Ministry of Education for Gastrointestinal Cancer, Research Center of Molecular Medicine, Fuzhou, Fujian 350004, P.R. China ; Department of Pathology, Pre-Clinical College, Fujian Medical University, Fuzhou, Fujian 350004, P.R. China
| | - Yuan-Lin Qi
- Key Laboratory of Ministry of Education for Gastrointestinal Cancer, Research Center of Molecular Medicine, Fuzhou, Fujian 350004, P.R. China
| | - Jin-Wei Zhu
- Key Laboratory of Ministry of Education for Gastrointestinal Cancer, Research Center of Molecular Medicine, Fuzhou, Fujian 350004, P.R. China
| | - Jian-Yin Lin
- Key Laboratory of Ministry of Education for Gastrointestinal Cancer, Research Center of Molecular Medicine, Fuzhou, Fujian 350004, P.R. China
| |
Collapse
|
9
|
Abstract
PURPOSE OF REVIEW Thrombospondins (TSPs) are secreted extracellular matrix (ECM) proteins from TSP family, which consists of five homologous members. They share a complex domain structure and have numerous binding partners in ECM and multiple cell surface receptors. Information that has emerged over the past decade identifies TSPs as important mediators of cellular homeostasis, assigning new important roles in cardiovascular pathology to these proteins. RECENT FINDINGS Recent studies of the functions of TSP in the cardiovascular system, diabetes and aging, which placed several TSPs in a position of critical regulators, demonstrated the involvement of these proteins in practically every aspect of cardiovascular pathophysiology related to atherosclerosis: inflammation, immunity, leukocyte recruitment and function, function of vascular cells, angiogenesis, and responses to hypoxia, ischemia and hyperglycemia. TSPs are also critically important in the development and ultimate outcome of the complications associated with atherosclerosis--myocardial infarction, and heart hypertrophy and failure. Their expression and significance increase with age and with the progression of diabetes, two major contributors to the development of atherosclerosis and its complications. SUMMARY This overview of recent literature examines the latest information on the newfound functions of TSPs that emphasize the importance of ECM in cardiovascular homeostasis and pathology. The functions of TSPs in myocardium, vasculature, vascular complications of diabetes, aging and immunity are discussed.
Collapse
|
10
|
Krishna SM, Golledge J. The role of thrombospondin-1 in cardiovascular health and pathology. Int J Cardiol 2013; 168:692-706. [DOI: 10.1016/j.ijcard.2013.04.139] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/06/2012] [Revised: 03/09/2013] [Accepted: 04/06/2013] [Indexed: 10/26/2022]
|
11
|
Progression of lumbar spinal stenosis is influenced by polymorphism of thrombospondin 2 gene in the Korean population. EUROPEAN SPINE JOURNAL : OFFICIAL PUBLICATION OF THE EUROPEAN SPINE SOCIETY, THE EUROPEAN SPINAL DEFORMITY SOCIETY, AND THE EUROPEAN SECTION OF THE CERVICAL SPINE RESEARCH SOCIETY 2013; 23:57-63. [PMID: 23807322 DOI: 10.1007/s00586-013-2866-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2013] [Revised: 04/29/2013] [Accepted: 06/07/2013] [Indexed: 01/01/2023]
Abstract
PURPOSE The aim of this study is to determine the contribution of thrombospondin 2 (THBS2) polymorphisms to the development and progression of lumbar spinal stenosis (LSS) in the Korean population. METHODS We studied 148 symptomatic patients with radiographically proven LSS and 157 volunteers with no history of back problems from our institution. Magnetic resonance images were obtained for all the patients and controls. Quantitative image evaluation for LSS was performed to evaluate the severity of LSS. All patients and controls were genotyped for THBS2 allele variations using a polymerase chain reaction-based technique. RESULTS We found no causal single nucleotide polymorphism (SNPs) in THBS2 that were significantly associated with LSS. Two SNPs (rs6422747, rs6422748) were over-represented in controls [P = 0.042, odds ratio [OR] = 0.55 and P = 0.042, OR = 0.55, respectively]. Haplotype analysis showed that the ''AGAGACG'' haplotype (HAP4) and ''AAGGACG'' haplotype (HAP5) were over-represented in severe LSS patients (P = 0.0147, OR = 2.02 and P = 0.0137, OR = 2.48, respectively). In addition, the ''AAAGGGG'' haplotype (HAP1) was over-represented in controls (P = 0.0068, OR = 0.30). CONCLUSIONS Although no SNPs in THBS2 were associated with LSS, haplotypes (HAP4 and HAP5) were significantly associated with progression of LSS in the Korean population, whereas another haplotype (HAP1) may play a protective role against LSS development.
Collapse
|
12
|
Mosher DF, Adams JC. Adhesion-modulating/matricellular ECM protein families: a structural, functional and evolutionary appraisal. Matrix Biol 2012; 31:155-61. [PMID: 22265890 DOI: 10.1016/j.matbio.2012.01.003] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2011] [Revised: 12/26/2011] [Accepted: 12/28/2011] [Indexed: 11/15/2022]
Abstract
The thrombospondins are a family of secreted, oligomeric glycoproteins that interact with cell surfaces, multiple components of the extracellular matrix, growth factors and proteases. These interactions underlie complex roles in cell interactions and tissue homeostasis in animals. Thrombospondins have been grouped functionally with SPARCs, tenascins and CCN proteins as adhesion-modulating or matricellular components of the extracellular milieu. Although all these multi-domain proteins share various commonalities of domains, the grouping is not based on structural homologies. Instead, the terms emphasise the general observations that these proteins do not form large-scale ECM structures, yet act at cell surfaces and function in coordination with the structural ECM and associated extracellular proteins. The designation of adhesion-modulation thus depends on observed tissue and cell culture ECM distributions and on experimentally identified functional properties. To date, the evolutionary relationships of these proteins have not been critically compared: yet, knowledge of their evolutionary histories is clearly relevant to any consideration of functional similarities. In this article, we survey briefly the structural and functional knowledge of these protein families, consider the evolution of each family, and outline a perspective on their functional roles.
Collapse
Affiliation(s)
- Deane F Mosher
- Department of Biomolecular Chemistry and Medicine, University of Wisconsin, Madison, WI 57706, USA
| | | |
Collapse
|