1
|
Potempa M, Hart PC, Rajab IM, Potempa LA. Redefining CRP in tissue injury and repair: more than an acute pro-inflammatory mediator. Front Immunol 2025; 16:1564607. [PMID: 40093010 PMCID: PMC11906453 DOI: 10.3389/fimmu.2025.1564607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2025] [Accepted: 02/13/2025] [Indexed: 03/19/2025] Open
Abstract
Most early studies investigating the role of C-reactive protein (CRP) in tissue damage determined it supported pro-hemostatic and pro-inflammatory activities. However, these findings were not universal, as other data suggested CRP inhibited these same processes. A potential explanation for these disparate observations finally emerged with the recognition that CRP undergoes context-dependent conformational changes in vivo, and each of its three isoforms - pentameric CRP (pCRP), modified pentameric CRP (pCRP*), and monomeric CRP (mCRP) - have different effects. In this review, we consider this new paradigm and re-evaluate the role of CRP and its isoforms in the tissue repair process. Indeed, a growing body of evidence points toward the involvement of CRP not just in hemostasis and inflammation, but also in the resolution of inflammation and in tissue regeneration. Additionally, we briefly discuss the shortcomings of the currently available diagnostic tests for CRP and highlight the need for change in how CRP is currently utilized in clinical practice.
Collapse
Affiliation(s)
| | - Peter C. Hart
- College of Science, Health, and Pharmacy, Roosevelt University, Schaumburg, IL, United States
| | - Ibraheem M. Rajab
- College of Science, Health, and Pharmacy, Roosevelt University, Schaumburg, IL, United States
| | - Lawrence A. Potempa
- Acphazin Inc., Deerfield, IL, United States
- College of Science, Health, and Pharmacy, Roosevelt University, Schaumburg, IL, United States
| |
Collapse
|
2
|
Mouliou DS. C-Reactive Protein: Pathophysiology, Diagnosis, False Test Results and a Novel Diagnostic Algorithm for Clinicians. Diseases 2023; 11:132. [PMID: 37873776 PMCID: PMC10594506 DOI: 10.3390/diseases11040132] [Citation(s) in RCA: 37] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 09/15/2023] [Accepted: 09/19/2023] [Indexed: 10/25/2023] Open
Abstract
The current literature provides a body of evidence on C-Reactive Protein (CRP) and its potential role in inflammation. However, most pieces of evidence are sparse and controversial. This critical state-of-the-art monography provides all the crucial data on the potential biochemical properties of the protein, along with further evidence on its potential pathobiology, both for its pentameric and monomeric forms, including information for its ligands as well as the possible function of autoantibodies against the protein. Furthermore, the current evidence on its potential utility as a biomarker of various diseases is presented, of all cardiovascular, respiratory, hepatobiliary, gastrointestinal, pancreatic, renal, gynecological, andrological, dental, oral, otorhinolaryngological, ophthalmological, dermatological, musculoskeletal, neurological, mental, splenic, thyroid conditions, as well as infections, autoimmune-supposed conditions and neoplasms, including other possible factors that have been linked with elevated concentrations of that protein. Moreover, data on molecular diagnostics on CRP are discussed, and possible etiologies of false test results are highlighted. Additionally, this review evaluates all current pieces of evidence on CRP and systemic inflammation, and highlights future goals. Finally, a novel diagnostic algorithm to carefully assess the CRP level for a precise diagnosis of a medical condition is illustrated.
Collapse
|
3
|
Monomeric C-Reactive Protein in Atherosclerotic Cardiovascular Disease: Advances and Perspectives. Int J Mol Sci 2023; 24:ijms24032079. [PMID: 36768404 PMCID: PMC9917083 DOI: 10.3390/ijms24032079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 01/16/2023] [Accepted: 01/16/2023] [Indexed: 01/21/2023] Open
Abstract
This review aimed to trace the inflammatory pathway from the NLRP3 inflammasome to monomeric C-reactive protein (mCRP) in atherosclerotic cardiovascular disease. CRP is the final product of the interleukin (IL)-1β/IL-6/CRP axis. Its monomeric form can be produced at sites of local inflammation through the dissociation of pentameric CRP and, to some extent, local synthesis. mCRP has a distinct proinflammatory profile. In vitro and animal-model studies have suggested a role for mCRP in: platelet activation, adhesion, and aggregation; endothelial activation; leukocyte recruitment and polarization; foam-cell formation; and neovascularization. mCRP has been shown to deposit in atherosclerotic plaques and damaged tissues. In recent years, the first published papers have reported the development and application of mCRP assays. Principally, these studies demonstrated the feasibility of measuring mCRP levels. With recent advances in detection techniques and the introduction of first assays, mCRP-level measurement should become more accessible and widely used. To date, anti-inflammatory therapy in atherosclerosis has targeted the NLRP3 inflammasome and upstream links of the IL-1β/IL-6/CRP axis. Large clinical trials have provided sufficient evidence to support this strategy. However, few compounds target CRP. Studies on these agents are limited to animal models or small clinical trials.
Collapse
|
4
|
Driever EG, Lisman T. Fibrin clot properties and thrombus composition in cirrhosis. Res Pract Thromb Haemost 2023; 7:100055. [PMID: 36798901 PMCID: PMC9925609 DOI: 10.1016/j.rpth.2023.100055] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 11/28/2022] [Accepted: 11/30/2022] [Indexed: 01/21/2023] Open
Abstract
Patients with cirrhosis frequently acquire profound hemostatic alterations, which may affect thrombus quality and composition-factors that determine the susceptibility to embolization and fibrinolysis. In this narrative review, we describe in vitro studies on fibrin clot formation and quantitative and qualitative changes in fibrinogen in patients with cirrhosis, and describe recent findings on the composition of portal vein thrombi in patients with cirrhosis. Patients with mild cirrhosis have increased thrombin generation capacity and plasma fibrinogen levels, which may be balanced by delayed fibrin polymerization and decreased factor XIII levels. With progressing illness, plasma fibrinogen levels decrease, but thrombin generation capacity remains elevated. Fibrinogen is susceptible to posttranslational protein modifications and is, for example, hypersialylated and carbonylated in patients with cirrhosis. Despite changes in thrombin generation, factor XIII levels and the fibrinogen molecule, fibrin fiber thickness, and density are normal in patients with cirrhosis. Paradoxically, fibrin clot permeability in patients with cirrhosis is decreased, possibly because of posttranslational protein modifications. Most patients have normal fibrinolytic potential. We have recently demonstrated that portal vein thrombosis is likely a misnomer as the material that may obstruct the cirrhotic portal vein frequently consists of a thickened portal vein wall, rather than a true thrombus. Patients with cirrhosis often have thrombocytopenia and anemia, which may also affect clot stability and composition, but the role of cellular components in clot quality in cirrhosis has not been extensively studied. Finally, we summarize abstracts on fibrin formation and clot quality that were presented at the ISTH 2022 meeting in London.
Collapse
Affiliation(s)
| | - Ton Lisman
- Correspondence Ton Lisman, University Medical Center Groningen, Department of Surgery, BA33, Hanzeplein 1, 9713 GZ Groningen, The Netherlands.
| |
Collapse
|
5
|
Labarrere CA, Kassab GS. Glutathione: A Samsonian life-sustaining small molecule that protects against oxidative stress, ageing and damaging inflammation. Front Nutr 2022; 9:1007816. [PMID: 36386929 PMCID: PMC9664149 DOI: 10.3389/fnut.2022.1007816] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Accepted: 10/12/2022] [Indexed: 11/26/2022] Open
Abstract
Many local and systemic diseases especially diseases that are leading causes of death globally like chronic obstructive pulmonary disease, atherosclerosis with ischemic heart disease and stroke, cancer and severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) causing coronavirus disease 19 (COVID-19), involve both, (1) oxidative stress with excessive production of reactive oxygen species (ROS) that lower glutathione (GSH) levels, and (2) inflammation. The GSH tripeptide (γ- L-glutamyl-L-cysteinyl-glycine), the most abundant water-soluble non-protein thiol in the cell (1-10 mM) is fundamental for life by (a) sustaining the adequate redox cell signaling needed to maintain physiologic levels of oxidative stress fundamental to control life processes, and (b) limiting excessive oxidative stress that causes cell and tissue damage. GSH activity is facilitated by activation of the Kelch-like ECH-associated protein 1 (Keap1)-Nuclear factor erythroid 2-related factor 2 (Nrf2)-antioxidant response element (ARE) redox regulator pathway, releasing Nrf2 that regulates expression of genes controlling antioxidant, inflammatory and immune system responses. GSH exists in the thiol-reduced (>98% of total GSH) and disulfide-oxidized (GSSG) forms, and the concentrations of GSH and GSSG and their molar ratio are indicators of the functionality of the cell. GSH depletion may play a central role in inflammatory diseases and COVID-19 pathophysiology, host immune response and disease severity and mortality. Therapies enhancing GSH could become a cornerstone to reduce severity and fatal outcomes of inflammatory diseases and COVID-19 and increasing GSH levels may prevent and subdue these diseases. The life value of GSH makes for a paramount research field in biology and medicine and may be key against systemic inflammation and SARS-CoV-2 infection and COVID-19 disease. In this review, we emphasize on (1) GSH depletion as a fundamental risk factor for diseases like chronic obstructive pulmonary disease and atherosclerosis (ischemic heart disease and stroke), (2) importance of oxidative stress and antioxidants in SARS-CoV-2 infection and COVID-19 disease, (3) significance of GSH to counteract persistent damaging inflammation, inflammaging and early (premature) inflammaging associated with cell and tissue damage caused by excessive oxidative stress and lack of adequate antioxidant defenses in younger individuals, and (4) new therapies that include antioxidant defenses restoration.
Collapse
|
6
|
Labarrere CA, Kassab GS. Pattern Recognition Proteins: First Line of Defense Against Coronaviruses. Front Immunol 2021; 12:652252. [PMID: 34630377 PMCID: PMC8494786 DOI: 10.3389/fimmu.2021.652252] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Accepted: 08/31/2021] [Indexed: 01/08/2023] Open
Abstract
The rapid outbreak of COVID-19 caused by the novel coronavirus SARS-CoV-2 in Wuhan, China, has become a worldwide pandemic affecting almost 204 million people and causing more than 4.3 million deaths as of August 11 2021. This pandemic has placed a substantial burden on the global healthcare system and the global economy. Availability of novel prophylactic and therapeutic approaches are crucially needed to prevent development of severe disease leading to major complications both acutely and chronically. The success in fighting this virus results from three main achievements: (a) Direct killing of the SARS-CoV-2 virus; (b) Development of a specific vaccine, and (c) Enhancement of the host's immune system. A fundamental necessity to win the battle against the virus involves a better understanding of the host's innate and adaptive immune response to the virus. Although the role of the adaptive immune response is directly involved in the generation of a vaccine, the role of innate immunity on RNA viruses in general, and coronaviruses in particular, is mostly unknown. In this review, we will consider the structure of RNA viruses, mainly coronaviruses, and their capacity to affect the lungs and the cardiovascular system. We will also consider the effects of the pattern recognition protein (PRP) trident composed by (a) Surfactant proteins A and D, mannose-binding lectin (MBL) and complement component 1q (C1q), (b) C-reactive protein, and (c) Innate and adaptive IgM antibodies, upon clearance of viral particles and apoptotic cells in lungs and atherosclerotic lesions. We emphasize on the role of pattern recognition protein immune therapies as a combination treatment to prevent development of severe respiratory syndrome and to reduce pulmonary and cardiovascular complications in patients with SARS-CoV-2 and summarize the need of a combined therapeutic approach that takes into account all aspects of immunity against SARS-CoV-2 virus and COVID-19 disease to allow mankind to beat this pandemic killer.
Collapse
Affiliation(s)
| | - Ghassan S Kassab
- California Medical Innovations Institute, San Diego, CA, United States
| |
Collapse
|
7
|
Zeinolabediny Y, Kumar S, Slevin M. Monomeric C-Reactive Protein - A Feature of Inflammatory Disease Associated With Cardiovascular Pathophysiological Complications? In Vivo 2021; 35:693-697. [PMID: 33622861 DOI: 10.21873/invivo.12309] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Revised: 12/15/2020] [Accepted: 12/17/2020] [Indexed: 01/08/2023]
Abstract
Monomeric C-reactive protein (mCRP), the dissociated form of native C-reactive protein, is a critical molecule that causes and perpetuates inflammation in serious diseases. It has 'adhesive'-like properties causing aggregation of blood cells and platelets, and can stick permanently within arterial tissue where it can contribute to further complications including thrombosis, linking it potentially to atherosclerosis and subsequent acute coronary events. In this mini review, we discuss briefly the implications and the potential value of measuring and manipulating it for clinical diagnostics and therapeutic purposes.
Collapse
Affiliation(s)
- Yasmin Zeinolabediny
- Department of Life Sciences, Metropolitan University, Manchester, Manchester, U.K
| | - Shant Kumar
- Department of Life Sciences, Metropolitan University, Manchester, Manchester, U.K
| | - Mark Slevin
- Department of Life Sciences, Metropolitan University, Manchester, Manchester, U.K.
| |
Collapse
|
8
|
Swanepoel AC, de Lange-Loots Z, Cockeran M, Pieters M. Lifestyle Influences Changes in Fibrin Clot Properties Over a 10-Year Period on a Population Level. Thromb Haemost 2021; 122:67-79. [PMID: 33906245 DOI: 10.1055/a-1492-6143] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Case-control and observational studies have provided a plausible mechanistic link between clot structure and thrombosis. We aimed to identify lifestyle, demographic, biochemical, and genetic factors that influence changes in total fibrinogen concentration and clot properties over a 10-year period in 2,010 black South Africans. Clot properties were assessed with turbidimetry and included lag time, slope, maximum absorbance, and clot lysis time. Linear mixed models with restricted maximum likelihood were used to determine whether (1) outcome variables changed over the 10-year period; (2) demographic and lifestyle variables, biochemical variables, and fibrinogen single-nucleotide polymorphisms influenced the change in outcome variables over the 10-year period; and (3) there was an interaction between the exposures and time in predicting the outcomes. A procoagulant risk score was furthermore created, and multinomial logistic regression was used to determine the exposures that were associated with the different risk score categories. In this population setting, female gender, obesity, poor glycemic control, increased low-density lipoprotein cholesterol, and decreased high-density lipoprotein cholesterol contributed to the enhanced progression to prothrombotic clot properties with increasing age. Alcohol consumption on the other hand, offered a protective effect. The above evidence suggest that the appropriate lifestyle changes can improve fibrin clot properties on a population level, decreasing cardiovascular disease risk and thus alleviate the strain on the medical health care system.
Collapse
Affiliation(s)
- Albe Carina Swanepoel
- Centre of Excellence for Nutrition, North-West University, Potchefstroom, South Africa
| | - Zelda de Lange-Loots
- Centre of Excellence for Nutrition, North-West University, Potchefstroom, South Africa.,Medical Research Council Unit for Hypertension and Cardiovascular Disease, North-West University, Potchefstroom, South Africa
| | - Marike Cockeran
- School of Mathematical and Statistical Sciences, Faculty of Natural and Agricultural Sciences, North-West University, Potchefstroom, South Africa
| | - Marlien Pieters
- Centre of Excellence for Nutrition, North-West University, Potchefstroom, South Africa.,Medical Research Council Unit for Hypertension and Cardiovascular Disease, North-West University, Potchefstroom, South Africa
| |
Collapse
|
9
|
Williams RD, Moran JA, Fryer AA, Littlejohn JR, Williams HM, Greenhough TJ, Shrive AK. Monomeric C-Reactive Protein in Serum With Markedly Elevated CRP Levels Shares Common Calcium-Dependent Ligand Binding Properties With an in vitro Dissociated Form of C-Reactive Protein. Front Immunol 2020; 11:115. [PMID: 32117266 PMCID: PMC7010908 DOI: 10.3389/fimmu.2020.00115] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2019] [Accepted: 01/16/2020] [Indexed: 01/16/2023] Open
Abstract
A monomeric form of C-reactive protein (CRP) which precipitates with cell wall pneumococcal C polysaccharide (CWPS) and retains the ability to reversibly bind to its ligand phosphocholine has been produced through urea-induced dissociation at an optimized concentration of 3 M urea over a 10 weeks period. Dissociated samples were purified via size exclusion chromatography and characterized by western blot, phosphocholine affinity chromatography and CWPS precipitation. Human serum samples from patients with raised CRP levels (>100 mg/L as determined by the clinical laboratory assay) were purified by affinity and size exclusion chromatography and analyzed (n = 40) to determine whether circulating monomeric CRP could be detected ex vivo. All 40 samples tested positive for pentameric CRP via western blot and enzyme linked immunosorbent assay (ELISA) analysis. Monomeric C-reactive protein was also identified in all 40 patient samples tested, with an average level recorded of 1.03 mg/L (SE = ±0.11). Both the in vitro monomeric C-reactive protein and the human serum monomeric protein displayed a molecular weight of approximately 23 kDa, both were recognized by the same anti-CRP monoclonal antibody and both reversibly bound to phosphocholine in a calcium-dependent manner. In common with native pentameric CRP, the in vitro mCRP precipitated with CWPS. These overlapping characteristics suggest that a physiologically relevant, near-native monomeric CRP, which retains the structure and binding properties of native CRP subunits, has been produced through in vitro dissociation of pentameric CRP and also isolated from serum with markedly elevated CRP levels. This provides a clear route toward the in-depth study of the structure and function of physiological monomeric CRP.
Collapse
Affiliation(s)
- Robert D Williams
- School of Life Sciences, Keele University, Staffordshire, United Kingdom
| | - Jennifer A Moran
- School of Life Sciences, Keele University, Staffordshire, United Kingdom
| | - Anthony A Fryer
- Department of Clinical Biochemistry, Institute for Applied Clinical Sciences, University Hospitals of North Midlands, Keele University, Staffordshire, United Kingdom
| | - Jamie R Littlejohn
- School of Life Sciences, Keele University, Staffordshire, United Kingdom
| | - Harry M Williams
- School of Life Sciences, Keele University, Staffordshire, United Kingdom
| | | | - Annette K Shrive
- School of Life Sciences, Keele University, Staffordshire, United Kingdom
| |
Collapse
|
10
|
Farkas ÁZ, Farkas VJ, Gubucz I, Szabó L, Bálint K, Tenekedjiev K, Nagy AI, Sótonyi P, Hidi L, Nagy Z, Szikora I, Merkely B, Kolev K. Neutrophil extracellular traps in thrombi retrieved during interventional treatment of ischemic arterial diseases. Thromb Res 2019; 175:46-52. [PMID: 30703701 DOI: 10.1016/j.thromres.2019.01.006] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2018] [Revised: 12/11/2018] [Accepted: 01/14/2019] [Indexed: 10/27/2022]
Abstract
INTRODUCTION The ultrastructure and cellular composition of thrombi has a profound effect on the outcome of acute ischemic stroke (AIS), coronary (CAD) and peripheral artery disease (PAD). Activated neutrophils release a web-like structure composed mainly of DNA and citrullinated histones, called neutrophil extracellular traps (NET) that modify the stability and lysability of fibrin. Here, we investigated the NET-related structural features of thrombi retrieved from different arterial localizations and their interrelations with routinely available clinical data. PATIENTS AND METHODS Thrombi extracted from AIS (n = 78), CAD (n = 66) or PAD (n = 64) patients were processed for scanning electron microscopy, (immune)stained for fibrin, citrullinated histone H3 (cH3) and extracellular DNA. Fibrin fiber diameter, cellular components, DNA and cH3 were measured and analyzed in relation to clinical parameters. RESULTS DNA was least present in AIS thrombi showing a 2.5-fold lower DNA/fibrin ratio than PAD, whereas cH3 antigen was unvaryingly present at all locations. The NET content of thrombi correlated parabolically with systemic inflammatory markers and positively with patients' age. The median platelet content was lower in PAD (2.2%) than in either AIS (3.9%) or CAD (3.1%) and thrombi from smokers contained less platelets than non-smokers. Fibrin fibers were significantly thicker in male patients with CAD (median fiber diameter 76.3 nm) compared to AIS (64.1 nm) or PAD (62.1 nm) and their diameter correlated parabolically with systemic inflammatory markers. CONCLUSIONS The observed NET-related variations in thrombus structure shed light on novel determinants of thrombus stability that eventually affect both the spontaneous progress and therapeutic outcome of ischemic arterial diseases.
Collapse
Affiliation(s)
- Ádám Z Farkas
- Department of Medical Biochemistry, Semmelweis University, Budapest, Hungary
| | - Veronika J Farkas
- Department of Medical Biochemistry, Semmelweis University, Budapest, Hungary
| | - István Gubucz
- National Institute of Clinical Neurosciences, Budapest, Hungary
| | - László Szabó
- Department of Functional and Structural Materials, Institute of Materials and Environmental Chemistry, Research Centre for Natural Sciences, Hungarian Academy of Sciences, Budapest, Hungary
| | - Krisztián Bálint
- Department of Medical Biochemistry, Semmelweis University, Budapest, Hungary
| | - Kiril Tenekedjiev
- Department of Information Technology, Nikola Vaptsarov Naval Academy, Varna, Bulgaria; Australian Maritime College, University of Tasmania, Launceston, Australia
| | - Anikó I Nagy
- Heart and Vascular Center, Semmelweis University, Budapest, Hungary
| | - Péter Sótonyi
- Heart and Vascular Center, Semmelweis University, Budapest, Hungary
| | - László Hidi
- Heart and Vascular Center, Semmelweis University, Budapest, Hungary
| | - Zoltán Nagy
- National Institute of Clinical Neurosciences, Budapest, Hungary
| | - István Szikora
- National Institute of Clinical Neurosciences, Budapest, Hungary
| | - Béla Merkely
- Heart and Vascular Center, Semmelweis University, Budapest, Hungary
| | - Krasimir Kolev
- Department of Medical Biochemistry, Semmelweis University, Budapest, Hungary.
| |
Collapse
|
11
|
Sproston NR, El Mohtadi M, Slevin M, Gilmore W, Ashworth JJ. The Effect of C-Reactive Protein Isoforms on Nitric Oxide Production by U937 Monocytes/Macrophages. Front Immunol 2018; 9:1500. [PMID: 30013561 PMCID: PMC6036124 DOI: 10.3389/fimmu.2018.01500] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2018] [Accepted: 06/15/2018] [Indexed: 12/22/2022] Open
Abstract
Inflammation is regulated by many endogenous factors including estrogen, a steroid hormone that declines with increasing age, leading to excessive inflammation in the elderly. C-reactive protein (CRP) is an acute phase inflammatory protein that exists in two forms, native CRP (nCRP) and monomeric CRP (mCRP), which mediate distinct biological activities. It is unclear how each CRP isoform mediates nitric oxide (NO), a signaling molecule generated by NO synthase (NOS). This study investigated whether CRP isoforms have distinct effects on NO production by unstimulated and lipopolysaccharide (LPS)-activated monocytes/macrophages and whether estrogen mediates CRP-induced NO production in an in vitro model of aging. NO and inducible NOS (iNOS) were measured (n = 12) by the Griess assay and an enzyme-linked immunosorbent assay, respectively following incubation (24 h) of human-derived U937 monocytes/macrophages with CRP isoforms [(nCRP) = 500 and 1,000 µg/ml; (mCRP) = 100 and 250 µg/ml] in the absence or presence of 17 beta-estradiol (1 × 10-7, 1 × 10-8, and 1 × 10-9 M). The response to each CRP isoform and estrogen was dependent on the differentiation and activation status of cells. Monocytes with or without prior LPS-activation significantly increased (P < 0.01) NO/iNOS production when treated with mCRP. The mCRP isoform had no effect (P > 0.05) on NO/iNOS production by unactivated or LPS-activated macrophages, whereas nCRP significantly (P < 0.05) reduced NO/iNOS production by macrophages, with or without prior LPS-activation. The nCRP isoform had opposing actions on monocytes, significantly (P < 0.01) increasing and reducing NO/iNOS by unactivated and LPS-activated monocytes, respectively. Estrogen significantly (P < 0.01) reversed nCRP-mediated NO inhibition by unactivated macrophages but decreased CRP-induced NO by unactivated monocytes treated with nCRP or mCRP and LPS-activated monocytes treated with mCRP. NO was differentially mediated by CRP isoforms in a cell-type/state-specific manner, with production corresponding to concomitant changes in iNOS levels. Collectively, the findings indicate nCRP and estrogen predominantly reduce NO production, whereas mCRP increases NO production. This supports growing evidence that mCRP exacerbates inflammation while nCRP and estrogen dampen the overall inflammatory response. Therapeutic strategies that restore estrogen levels to those found in youth and promote the stability of nCRP or/and prevent the formation of mCRP may reduce NO production in age-related inflammatory conditions.
Collapse
Affiliation(s)
| | | | | | | | - Jason J. Ashworth
- School of Healthcare Science, Manchester Metropolitan University, Manchester, United Kingdom
| |
Collapse
|
12
|
Dominguez-Rodriguez A, Abreu-Gonzalez P, Consuegra-Sanchez L, Avanzas P, Sanchez-Grande A, Conesa-Zamora P. Thrombus Aspirated from Patients with ST-Elevation Myocardial Infarction: Association between 3-Nitrotyrosine and Inflammatory Markers - Insights from ARTERIA Study. Int J Med Sci 2016; 13:477-82. [PMID: 27429583 PMCID: PMC4946117 DOI: 10.7150/ijms.15463] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/06/2016] [Accepted: 05/04/2016] [Indexed: 11/29/2022] Open
Abstract
Recent studies have demonstrated that inflammatory cells are a component that plays a role in thrombus formation in ST-elevation myocardial infarction (STEMI). 3-nitrotyrosine (3-NO2-Tyr), a specific marker for protein modification by nitric oxide-derived oxidants, is increased in human atherosclerotic lesions. The purpose of this study was to determine the possible association of inflammatory markers of coronary thrombi with nitroxidative stress. Intracoronary thrombus (n=51) and blood from the systemic circulation were obtained by thromboaspiration in 138 consecutive STEMI patients presenting for primary percutaneous coronary intervention (PCI). Each blood and intracoronary thrombus were measured simultaneously the following biomarkers: C-reactive protein (CRP), 3-NO2-Tyr, soluble CD 40 ligand (sCD40L), vascular cellular adhesion molecule-1 (VCAM-1) and haemoglobin content (only in coronary thrombus). Time delay in minutes from symptom onset to PCI was 244 ± 324. Serum CRP was positively correlated to CRP content in the thrombus (r= 0.395; p = 0.02) and serum sCD40L was negatively correlated to sCD40L in the thrombus (r= -0.394; p = 0.02). Patients were divided into tertiles according to thrombi 3-NO2-Tyr concentration: 1(st)tertile (<0.146ng/mg), 2(nd)tertile (0.146-0.485ng/mg) and 3(rd)tertile (>0.485ng/mg). Thus, thrombus in the highest tertile had significantly higher levels of CRP (p=0.002), VCAM-1 (p=0.003) and haemoglobin (p=0.002). In conclusion, the present study demonstrated that coronary thrombi with higher levels of 3-NO2-Tyr content often contain more inflammatory markers which could have a direct impact on the efficacy of drugs or devices used for coronary reperfusion.
Collapse
Affiliation(s)
- Alberto Dominguez-Rodriguez
- 1. Hospital Universitario de Canarias. Servicio de Cardiología. Santa Cruz de Tenerife. Spain.; 2. Facultad de Ciencias de la Salud. Universidad Europea de Canarias. La Orotava. Santa Cruz de Tenerife. Spain
| | - Pedro Abreu-Gonzalez
- 3. Departamento de Ciencias Médicas Básicas (Unidad de Fisiología), Universidad de La Laguna. Santa Cruz de Tenerife. Spain
| | | | - Pablo Avanzas
- 5. Hospital Universitario Central de Asturias. Área del Corazón. Oviedo. Spain
| | | | - Pablo Conesa-Zamora
- 6. Hospital Universitario de Santa Lucía de Cartagena, Servicio de Anatomía Patológica. Murcia. Spain
| |
Collapse
|
13
|
C-Reactive Protein: An In-Depth Look into Structure, Function, and Regulation. INTERNATIONAL SCHOLARLY RESEARCH NOTICES 2014; 2014:653045. [PMID: 27433484 PMCID: PMC4897210 DOI: 10.1155/2014/653045] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/31/2014] [Accepted: 11/01/2014] [Indexed: 12/15/2022]
Abstract
Cardiovascular disease is the leading cause of morbidity and mortality in the adult population worldwide, with atherosclerosis being its key pathophysiologic component. Atherosclerosis possesses a fundamental chronic inflammatory aspect, and the involvement of numerous inflammatory molecules has been studied in this scenario, particularly C-reactive protein (CRP). CRP is a plasma protein with strong phylogenetic conservation and high resistance to proteolysis, predominantly synthesized in the liver in response to proinflammatory cytokines, especially IL-6, IL-1β, and TNF. CRP may intervene in atherosclerosis by directly activating the complement system and inducing apoptosis, vascular cell activation, monocyte recruitment, lipid accumulation, and thrombosis, among other actions. Moreover, CRP can dissociate in peripheral tissue—including atheromatous plaques—from its native pentameric form into a monomeric form, which may also be synthesized de novo in extrahepatic sites. Each form exhibits distinct affinities for ligands and receptors, and exerts different effects in the progression of atherosclerosis. In view of epidemiologic evidence associating high CRP levels with cardiovascular risk—reflecting the biologic impact it bears on atherosclerosis—measurement of serum levels of high-sensitivity CRP has been proposed as a tool for assessment of cardiovascular risk.
Collapse
|
14
|
Kotzé RCM, Ariëns RAS, de Lange Z, Pieters M. CVD risk factors are related to plasma fibrin clot properties independent of total and or γ' fibrinogen concentration. Thromb Res 2014; 134:963-9. [PMID: 25213709 DOI: 10.1016/j.thromres.2014.08.018] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2014] [Revised: 08/07/2014] [Accepted: 08/19/2014] [Indexed: 10/24/2022]
Abstract
INTRODUCTION Cardiovascular disease (CVD) risk factors are associated with total fibrinogen concentration and/or altered clot structure. It is however, unclear whether such associations with clot structure are ascribed to fibrinogen concentration or other independent mechanisms. We aimed to determine whether CVD risk factors associated with increased total and/or γ' fibrinogen concentration, were also associated with altered fibrin clot properties and secondly whether such associations were due to the fibrinogen concentration or through independent associations. MATERIALS AND METHODS In a plasma setting CVD risk factors (including total and γ' fibrinogen concentration) were cross-sectionally analysed in 2010 apparently healthy black South African participants. Kinetics of clot formation (lag time, slope and maximum absorbance) as well as clot lysis times were calculated from turbidity curves. RESULTS Of the measured CVD risk factors age, metabolic syndrome, C-reactive protein (CRP), high density lipoprotein (HDL)-cholesterol and homocysteine were significantly associated with altered fibrin clot properties after adjustment for total and or γ' fibrinogen concentration. Aging was associated with thicker fibres (p=0.004) while both metabolic syndrome and low HDL-cholesterol levels were associated with lower rates of lateral aggregation (slope), (p=0.0004 and p=0.0009), and the formation of thinner fibres (p=0.007 and p=0.0004). Elevated CRP was associated with increased rates of lateral aggregation (p=0.002) and consequently thicker fibres (p<0.0001). Hyperhomocysteinemia was associated with increased rates of lateral aggregation (p=0.0007) without affecting fibre thickness. CONCLUSION Final clot structure may contribute to increased CVD risk in vivo through associations with other CVD risk factors independent from total or γ' fibrinogen concentration.
Collapse
Affiliation(s)
- Retha C M Kotzé
- Centre of Excellence for Nutrition, North-West University, Potchefstroom, South Africa
| | - Robert A S Ariëns
- Theme Thrombosis, Division of Cardiovascular and Diabetes Research, Multidisciplinary Cardiovascular Research Centre and Leeds Institute for Genetics, Health and Therapeutics, School of Medicine, University of Leeds, UK
| | - Zelda de Lange
- Centre of Excellence for Nutrition, North-West University, Potchefstroom, South Africa
| | - Marlien Pieters
- Centre of Excellence for Nutrition, North-West University, Potchefstroom, South Africa.
| |
Collapse
|
15
|
Lu D, Owens J, Kreutz RP. Plasma and whole blood clot strength measured by thrombelastography in patients treated with clopidogrel during acute coronary syndromes. Thromb Res 2013; 132:e94-8. [PMID: 23920429 DOI: 10.1016/j.thromres.2013.07.012] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2013] [Revised: 05/27/2013] [Accepted: 07/09/2013] [Indexed: 10/26/2022]
Abstract
INTRODUCTION Treatment with clopidogrel, a selective platelet P2Y12 receptor antagonist, reduces risk of recurrent ischemic events in patients with acute coronary syndrome (ACS), by limiting platelet aggregation and activation. Stable whole blood clot formation requires activation of platelets, generation of fibrin and final fibrin crosslinks. In this study we intended to compare plasma and whole blood thrombelastography (TEG) measurements in patients during ACS. MATERIALS AND METHODS Whole blood and plasma samples from 32 patients with non-ST segment elevation myocardial infarction (NSTEMI) were collected after administration of clopidogrel. Whole blood and plasma fibrin clot strength (MA) were determined by TEG. Platelet aggregation was determined by light transmittance aggregometry (LTA) using adenosine 5'-diphosphate (ADP), thrombin receptor activation peptide (TRAP), or collagen as agonists. Fibrinogen and C-reactive protein (CRP) concentrations were measured by ELISA. RESULTS Heightened plasma fibrin clot strength was associated with increased platelet reactivity stimulated by ADP (ρ=0.536; p=0.002), TRAP (ρ=0.481; p=0.007), and collagen (ρ=0.538; p=0.01). In contrast to plasma fibrin MA, whole blood MA did not correlate with platelet aggregation. Platelet count was the primary contributor to the difference in thrombin induced whole blood MA and plasma fibrin MA. Increasing levels of CRP were associated with increased plasma fibrin clot strength and platelet reactivity. CONCLUSIONS Our data suggest that inflammation is associated with increased plasma fibrin clot strength and lower platelet inhibition by clopidogrel during ACS. Platelet count is a main contributor to additional contractile force of whole blood TEG as compared to plasma TEG during treatment with clopidogrel.
Collapse
Affiliation(s)
- Deshun Lu
- Division of Clinical Pharmacology, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | | | | |
Collapse
|
16
|
Regulated conformation changes in C-reactive protein orchestrate its role in atherogenesis. ACTA ACUST UNITED AC 2012. [DOI: 10.1007/s11434-012-5591-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
17
|
Affiliation(s)
- David D McManus
- National Heart Lung and Blood Institute's and Boston University's Framingham Heart Study, Framingham, MA, USA.
| | | | | |
Collapse
|
18
|
|