1
|
Chen J, Wu L, Xie X, Peng C. Carthamus tinctorius L. protects cerebral ischemia/reperfusion injury via arachidonic acid/p53-mediated apoptosis axis. Front Pharmacol 2024; 15:1504109. [PMID: 39776584 PMCID: PMC11703823 DOI: 10.3389/fphar.2024.1504109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Accepted: 12/11/2024] [Indexed: 01/11/2025] Open
Abstract
Introduction Stroke is a debilitating disease and the second leading cause of death worldwide, of which ischemic stroke is the dominant type. Carthamus tinctorius L., also known as safflower, has been used to treat cerebrovascular diseases, especially ischemic stroke in many Asian countries. However, the underlying mechanisms of safflower in preventing ischemic stroke remains elusive. This study aims to elucidate the potential of safflower as a drug candidate for the prevention of ischemic stroke and to delineate its protective effects and potential mechanisms in a rat model of cerebral ischemia-reperfusion injury (CI/RI). Methods The aqueous extract of safflower (AESF) was verified using HPLC-UV, HPLC-MS, and TLC. The inhibitory effect of AESF on platelet aggregation was detected in vitro and in zebrafish and mice. A CI/RI model in rats was established by middle cerebral artery occlusion and reperfusion to study the protective effect of AESF on ischemic stroke. 2,3,5-triphenyltetrazolium chloride, hematoxylin and eosin, and Nissl's staining were employed to evaluate the pathological changes of brain tissue. In addition, metabolomics, ELISA, and Western blot were used to uncover the molecular alteration induced by AESF. Results AESF significantly inhibited platelet aggregation in vitro, reduced the thrombogenesis in zebrafish, and prolonged clotting time in mice. In addition, AESF alleviated neurological dysfunction, cerebral oedema, cerebral infarct size, cerebral histopathological damage induced by ischemia-reperfusion, improved neuronal survival, increased serum levels of SOD and CAT, and decreased levels of iNOS and NO. Metabolomics revealed that AESF attenuated the metabolic disturbances in brain caused by I/R injury via regulating 38 metabolites particularly related to the arachidonic acid (AA) metabolism. Moreover, AESF elevated the serum levels of 6-keto-PGF1α, a pivotal metabolite of AA, downregulated the protein expression of p53, Bax, cleaved caspase-9, cleaved caspase-3, and cleaved caspase-8, and upregulated that of Bcl-2. Conclusion AESF mitigated CI/RI through preventing platelet aggregation, alleviating oxidative stress, and suppressing apoptosis partially via modulating AA metabolism/p53-mediated apoptosis axis.
Collapse
Affiliation(s)
| | | | - Xiaofang Xie
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Cheng Peng
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
2
|
Tatezawa R, Abumiya T, Ito Y, Gekka M, Okamoto W, Ishii K, Kohyama N, Komatsu T, Fujimura M. Neuroprotective effects of a hemoglobin-based oxygen carrier (stroma-free hemoglobin nanoparticle) on ischemia reperfusion injury. Brain Res 2023; 1821:148592. [PMID: 37748569 DOI: 10.1016/j.brainres.2023.148592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 09/17/2023] [Accepted: 09/20/2023] [Indexed: 09/27/2023]
Abstract
The application of hemoglobin (Hb)-based oxygen carriers (HBOCs) to the treatment of cerebral ischemia has been investigated. A cluster of 1 Hb and 3 human serum albumins (Hb-HSA3) was found to exert neuroprotective effects on ischemia/reperfusion injury. Stroma-free hemoglobin nanoparticles (SFHbNP), a subsequently developed HBOC consisting of a spherical polymerized stroma-free Hb core with a HSA shell, contains the natural antioxidant enzyme catalase and, thus, is expected to exert additive effects. We herein investigated whether SFHbNP exerted enhanced neuroprotective effects in a rat transient middle cerebral artery occlusion (tMCAO) model. Rats were subjected to 2-hour tMCAO and divided into the following 3 groups with the intravenous administration of the respective reagents: (1) phosphate-buffered saline (PBS), as a vehicle (2) Hb-HSA3, and (3) SFHbNP. After 24-hour reperfusion, infarct and edema volumes decreased in the order of the PBS, Hb-HSA3, and SFHbNP groups, with a significant difference (p < 0.05) between the PBS and SFHbNP groups. Similar reductions were observed in oxidative stress, leukocyte recruitment, and blood-brain barrier disruption in the order of the PBS, Hb-HSA3, and SFHbNP groups. In the early phase of reperfusion within 6 h, microvascular HBOC perfusion and cerebral blood flow were maintained at high levels during the reperfusion period in the Hb-HSA3 and SFHbNP groups. However, a difference was observed in tissue oxygen partial pressure levels, which significantly decreased after 6-hour reperfusion in the Hb-HSA3 group, but remained high in the SFHbNP group. A superior oxygen transport ability appears to be related to the enhanced neuroprotective effects of SFHbNP.
Collapse
Affiliation(s)
- Ryota Tatezawa
- Department of Neurosurgery, Hokkaido University Graduate School of Medicine, Sapporo, Japan
| | - Takeo Abumiya
- Department of Neurosurgery, Hokkaido University Graduate School of Medicine, Sapporo, Japan.
| | - Yasuhiro Ito
- Department of Neurosurgery, Hokkaido University Graduate School of Medicine, Sapporo, Japan
| | - Masayuki Gekka
- Department of Neurosurgery, Hokkaido University Graduate School of Medicine, Sapporo, Japan
| | - Wataru Okamoto
- Department of Applied Chemistry, Faculty of Science and Engineering, Chuo University, Tokyo, Japan
| | - Kohta Ishii
- Department of Applied Chemistry, Faculty of Science and Engineering, Chuo University, Tokyo, Japan
| | - Natsumi Kohyama
- Department of Applied Chemistry, Faculty of Science and Engineering, Chuo University, Tokyo, Japan
| | - Teruyuki Komatsu
- Department of Applied Chemistry, Faculty of Science and Engineering, Chuo University, Tokyo, Japan
| | - Miki Fujimura
- Department of Neurosurgery, Hokkaido University Graduate School of Medicine, Sapporo, Japan
| |
Collapse
|
3
|
Thromboxane A2 synthase inhibition ameliorates endothelial dysfunction, memory deficits, oxidative stress and neuroinflammation in rat model of streptozotocin diabetes induced dementia. Physiol Behav 2021; 241:113592. [PMID: 34534530 DOI: 10.1016/j.physbeh.2021.113592] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 09/11/2021] [Accepted: 09/12/2021] [Indexed: 11/20/2022]
Abstract
RATIONALE Vascular dementia (VaD) is the second leading cause of dementia worldwide. It is very important to find the possible pharmacological agents which may be useful in management and therapy of VaD. OBJECTIVES The present study investigates the effect of ozagrel, a selective thromboxane A2 (TXA2) synthase inhibitor, in a rat model of VaD. METHODS Single intraperitoneal injection of streptozotocin [STZ, (50 mg/kg)] was administered to Wistar rats to induced diabetes-associated vascular endothelial dysfunction and memory impairment. Morris water maze (MWM) test was employed to assess learning and memory. Endothelial dysfunction was assessed in the isolated aorta by observing endothelial-dependent vasorelaxation and levels of serum nitrite. Various biochemical and histopathological estimations were also performed. RESULTS STZ treatment produced endothelial dysfunction, impairment of learning and memory, reduction in body weight and serum nitrite/nitrate, and increase in serum glucose, brain oxidative stress (increased brain thiobarbituric acid reactive species and decreased reduced glutathione levels), brain acetylcholinesterase activity and brain myeloperoxidase activity. Further a significant rise in brain tumor necrosis factor-α & interleukin-6 levels and brain neutrophil infiltration were also observed. Treatment of ozagrel (10 & 20 mg/kg, p. o.)/donepezil (0. 5 mg/kg, i.p., serving as standard) ameliorated STZ induced endothelial dysfunction; memory deficits; biochemical and histopathological changes. CONCLUSIONS It may be concluded that ozagrel markedly improved endothelial dysfunction; learning and memory; biochemical and histopathological alteration associated with STZ induced dementia and that TXA2 can be considered as an important therapeutic target for the management of VaD.
Collapse
|
4
|
PAF Receptor Inhibition Attenuates Neuronal Pyroptosis in Cerebral Ischemia/Reperfusion Injury. Mol Neurobiol 2021; 58:6520-6539. [PMID: 34562185 DOI: 10.1007/s12035-021-02537-0] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2021] [Accepted: 08/17/2021] [Indexed: 02/07/2023]
Abstract
Ischemic stroke is an inflammation-related disease, during which process activation of NLRP3 inflammasome and subsequent pyroptosis play crucial roles. Platelet-activating factor (PAF) is a potent phospholipid regulator of inflammation which exerts its effect via binding specific PAF receptor (PAFR). However, whether PAFR contributes to pyroptosis during ischemia/reperfusion (I/R) injury remains to be elucidated. To explore the underlying effect of PAFR on ischemic stroke from the perspective of pyroptosis, mice were subjected to middle cerebral artery occlusion/reperfusion (MCAO/R) injury and primary cultures of mice cerebral cortical neurons were exposed to oxygen-glucose deprivation/reoxygenation (OGD/R) injury to mimic I/R in vivo and in vitro, after which indexes associated with pyroptosis were analyzed. Intriguingly, our results indicated that inhibition of PAFR with its inhibitor XQ-1H or PAFR siRNA exerted a neuroprotective effect against I/R injury both in vivo and in vitro. Furthermore, inflammasome activation and pyroptosis after ischemic challenge were attenuated by XQ-1H or PAFR siRNA. Besides, the protection of XQ-1H was abolished by PAF stimulaiton to some extent. Moreover, XQ-1H or PAFR siRNA alleviated the neuronal pyroptosis induced by LPS and nigericin (an NLRP3 activator) in cortical neurons. Taken together, this study firstly demonstrates that PAFR is involved in neuronal pyroptosis after I/R injury, and XQ-1H, a specific PAFR inhibitor, has a promising prospect in attenuating I/R injury from the perspective of anti-pyroptosis.
Collapse
|
5
|
Bhatia P, Kaur G, Singh N. Ozagrel a thromboxane A2 synthase inhibitor extenuates endothelial dysfunction, oxidative stress and neuroinflammation in rat model of bilateral common carotid artery occlusion induced vascular dementia. Vascul Pharmacol 2021; 137:106827. [PMID: 33346090 DOI: 10.1016/j.vph.2020.106827] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Revised: 08/14/2020] [Accepted: 12/15/2020] [Indexed: 12/16/2022]
Abstract
The present study investigates the potential of ozagrel, a thromboxane A2 (TXA2) synthase inhibitor, in bilateral common carotid artery occlusion (BCCAo) induced vascular dementia (VaD). Wistar rats were subjected to BCCAo procedure under anesthesia to induce VaD. Morris water maze (MWM) test was employed on 7th day post-surgery to determine learning and memory. Endothelial dysfunction was assessed in isolated aorta by observing endothelial dependent vasorelaxation and levels of serum nitrite. A battery of biochemical and histopathological estimations was performed. Expression analysis of inflammatory cytokines TNF-α and IL-6 was carried out by RT-PCR. BCCAo produced significant impairment in endothelium dependent vasorelaxation and decrease in serum nitrite levels indicating endothelial dysfunction along with poor performance on MWM represents impairment of learning and memory. There was a significant rise in brain oxidative stress level (indicated by increase in brain thiobarbituric acid reactive species and decrease in reduced glutathione levels); increase in brain acetylcholinesterase activity; brain myeloperoxidase activity; brain TNF-α & IL-6 levels, brain TNF-α & IL-6 mRNA expression and brain neutrophil infiltration (as marker of inflammation) were also observed. Treatment of ozagrel (10 & 20 mg/kg, p. o.)/donepezil (0. 5 mg/kg, i.p., serving as standard) ameliorated BCCAo induced endothelial dysfunction; memory deficits; biochemical and histopathological changes in a significant manner. It may be concluded that ozagrel markedly improved endothelial dysfunction; learning and memory; biochemical and histopathological alteration associated with BCCAo induced VaD and that TXA2 can be considered as an important therapeutic target for the treatment of VaD.
Collapse
MESH Headings
- Animals
- Behavior, Animal/drug effects
- Brain/drug effects
- Brain/enzymology
- Brain/physiopathology
- Carotid Artery, Common/surgery
- Carotid Stenosis/complications
- Dementia, Vascular/drug therapy
- Dementia, Vascular/enzymology
- Dementia, Vascular/etiology
- Dementia, Vascular/physiopathology
- Endothelium, Vascular/drug effects
- Endothelium, Vascular/enzymology
- Endothelium, Vascular/physiopathology
- Enzyme Inhibitors/pharmacology
- Female
- Inflammation Mediators/metabolism
- Ligation
- Male
- Methacrylates/pharmacology
- Morris Water Maze Test/drug effects
- Oxidative Stress/drug effects
- Rats, Wistar
- Thromboxane-A Synthase/antagonists & inhibitors
- Thromboxane-A Synthase/metabolism
- Rats
Collapse
Affiliation(s)
- Pankaj Bhatia
- CNS Research lab., Pharmacology division, Department of Pharmaceutical Sciences and Drug Research, Faculty of Medicine, Punjabi University, Patiala 147002, Punjab, India
| | - Gagandeep Kaur
- CNS Research lab., Pharmacology division, Department of Pharmaceutical Sciences and Drug Research, Faculty of Medicine, Punjabi University, Patiala 147002, Punjab, India
| | - Nirmal Singh
- Pharmacology division, Department of Pharmaceutical Sciences and Drug Research, Faculty of Medicine, Punjabi University, Patiala 147002, Punjab, India.
| |
Collapse
|
6
|
Li P, Huang J, Geng D, Liu P, Chu Z, Zou J, Yang G, Liu L. Semi-Mechanistic Modeling of HY-021068 Based on Irreversible Inhibition of Thromboxane Synthetase. Front Pharmacol 2021; 11:588286. [PMID: 33390963 PMCID: PMC7774308 DOI: 10.3389/fphar.2020.588286] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Accepted: 10/13/2020] [Indexed: 11/13/2022] Open
Abstract
Background: HY-021068 [4-(2-(1H-imidazol-1-yl) ethoxy)-3-methoxybenzoate], developed by Hefei Industrial Pharmaceutical Institute Co., Ltd. (Anhui, China), is a potential thromboxane synthetase inhibitor under development as an anti-platelet agent for the treatment of stroke. A semi-mechanistic pharmacokinetic/pharmacodynamic (PK/PD) model was developed to characterize the PK of HY-021068 and its platelet aggregation inhibitory effect in beagle dogs. Method: Beagle dogs received single oral administration of 2.5 mg/kg HY-021068 or consecutively oral administration of 5 mg/kg HY-021068 once daily for 7 days. The plasma concentration of HY-021068 and the platelet aggregation rate (PAR) were determined by liquid chromatography tandem-mass spectrometry (LC-MS/MS) assay and a photometric method, respectively. The PK/PD data was sequentially fitted by Phoenix NLME. The PK/PD parameters of HY-021068 in beagle dogs were estimated by 2.5 and 5 mg/kg dosing on the 1st day, and then used to simulate the PAR of HY-021068 on the 7th day after 5 mg/kg dosing daily. Result: A one-compartment model with saturable Michaelis-Menten elimination was best fitted to the PK of HY-021068. A mechanistic PD model based on irreversible inhibition of thromboxane synthetase was constructed to describe the relationship between plasma concentration of HY-021068 and PAR. Diagnostic plots showed no obvious bias. Visual predictive check confirmed the stability and reliability of the model. Most of PK/PD observed data on the 7th day after 5 mg/kg dosing fell in the 90% prediction interval. Conclusion: We established a semi-mechanistic PK/PD model for characterizing the PK of HY-021068 and its anti-platelet effect in beagle dogs. The model can be used to predict the concentration and PAR under different dosage regimen of HY-021068, and might be served as a reference for dose design in the future clinical studies.
Collapse
Affiliation(s)
- Ping Li
- Center of Pharmacokinetics and Metabolism, School of Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Jie Huang
- Center of Clinical Pharmacology, The Third Xiangya Hospital of Central South University, Changsha, China
| | - Donghao Geng
- Center of Pharmacokinetics and Metabolism, School of Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Peihua Liu
- Center of Pharmacokinetics and Metabolism, School of Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Zhaoxing Chu
- Center of Pharmacokinetics and Metabolism, School of Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Jianjun Zou
- Department of Clinical Pharmacology, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Guoping Yang
- Center of Clinical Pharmacology, The Third Xiangya Hospital of Central South University, Changsha, China
| | - Li Liu
- Center of Pharmacokinetics and Metabolism, School of Pharmacy, China Pharmaceutical University, Nanjing, China
| |
Collapse
|
7
|
Cheng TF, Zhao J, Wu QL, Zeng HW, Sun YT, Zhang YH, Mi R, Qi XP, Zou JT, Liu AJ, Jin HZ, Zhang WD. Compound Dan Zhi tablet attenuates experimental ischemic stroke via inhibiting platelet activation and thrombus formation. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2020; 79:153330. [PMID: 32932202 DOI: 10.1016/j.phymed.2020.153330] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Revised: 08/09/2020] [Accepted: 08/17/2020] [Indexed: 06/11/2023]
Abstract
BACKGROUND Compound Dan Zhi tablet (DZT) is a commonly used traditional Chinese medicine formula. It has been used for the treatment of ischemic stroke for many years in clinical. However, its pharmacological mechanism is unclear. PURPOSE The aim of the current study was to understand the protective effects and underlying mechanisms of DZT on ischemic stroke. METHODS Fifteen representative chemical markers in DZT were determined by ultra-performance liquid chromatography coupled with tandem quadrupole time-of-flight mass spectrometry (UPLC-QTOF-MS). The protective effect of DZT against ischemic stroke was studied in a rat model of middle cerebral artery occlusion (MCAO), and the mechanism was further explored through a combination of network pharmacology and experimental verification. RESULTS Quantitative analysis showed that the contents of phenolic acids, furan sulfonic acids, tanshinones, flavonoids, saponins and phthalides in DZT were calculated as 7.47, 0.788, 0.627, 0.531 and 0.256 mg/g, respectively. Phenolic acids were the most abundant constituents. Orally administered DZT (1.701 g kg-1) significantly alleviated the infarct size and neurological scores in MCAO rats. The network analysis predicted that 53 absorbed active compounds in DZT-treated plasma targeted 189 proteins and 47 pathways. Ten pathways were associated with anti-platelet activity. In further experiments, DZT (0.4 and 0.8 mg mL-1) markedly inhibited in vitro prostaglandin G/H synthase 1 (PTGS1) activity. DZT (0.4 and 0.8 mg mL-1) significantly inhibited in vitro platelet aggregation in response to ADP or AA. DZT (113 and 226 mg kg-1, p.o.) also produced a marked inhibition of ADP- or AA-induced ex vivo platelet aggregation with a short duration of action. DZT decreased the level of thromboxane A2 (TXA2) in MCAO rats. In the carrageenan-induced tail thrombosis model and ADP-induced acute pulmonary thromboembolism mice model, DZT (113 and 226 mg kg-1, p.o.) prevented thrombus formation. Importantly, DZT (113 and 226 mg kg-1, p.o.) exhibited a low bleeding liability. CONCLUSION DZT protected against cerebral ischemic injury. The inhibition of TXA2 level, platelet aggregation and thrombosis formation might involve in the protective mechanism.
Collapse
Affiliation(s)
- Tao-Fang Cheng
- School of Pharmacy, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Jing Zhao
- Institute of Interdisciplinary Complex Research, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Qiu-Lin Wu
- School of Pharmacy, Fujian University of Traditional Chinese Medicine, Fuzhou, 350122, China
| | - Hua-Wu Zeng
- School of Pharmacy, Second Military Medical University, Shanghai, 200433, China
| | - Yu-Ting Sun
- Institute of Interdisciplinary Complex Research, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Yu-Hao Zhang
- Institute of Interdisciplinary Complex Research, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Rui Mi
- School of Pharmacy, Second Military Medical University, Shanghai, 200433, China
| | - Xiao-Po Qi
- School of Pharmacy, Second Military Medical University, Shanghai, 200433, China
| | - Jing-Tao Zou
- Tonghua Huaxia Pharmaceutical Co., Ltd., Tonghua, 134100, China
| | - Ai-Jun Liu
- School of Pharmacy, Second Military Medical University, Shanghai, 200433, China.
| | - Hui-Zi Jin
- School of Pharmacy, Shanghai Jiao Tong University, Shanghai 200240, China.
| | - Wei-Dong Zhang
- School of Pharmacy, Shanghai Jiao Tong University, Shanghai 200240, China; Institute of Interdisciplinary Complex Research, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China; School of Pharmacy, Second Military Medical University, Shanghai, 200433, China; School of Pharmacy, Fujian University of Traditional Chinese Medicine, Fuzhou, 350122, China.
| |
Collapse
|
8
|
JLX001 attenuates blood-brain barrier dysfunction in MCAO/R rats via activating the Wnt/β-catenin signaling pathway. Life Sci 2020; 260:118221. [PMID: 32768578 DOI: 10.1016/j.lfs.2020.118221] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Revised: 07/28/2020] [Accepted: 08/03/2020] [Indexed: 12/19/2022]
Abstract
JLX001, a new dihydrochloride of Cyclovirobuxine D (CVB-D), has bioactivities against ischemia injury. The blood-brain barrier (BBB) disruption is involved in the pathogeneses of ischemic stroke. This study was designed to explore the effect and potential mechanism of JLX001 on the BBB after ischemic stroke. Rats were subjected to middle cerebral artery occlusion/reperfusion (MCAO/R) to mimic cerebral ischemia in vivo. In vitro, rat primary brain microvascular endothelial cells (PBMECs) were cultured and exposed to oxygen-glucose deprivation/reoxygenation (OGD/R). Posttreatment of JLX001 for 15 days after MCAO/R improved the behavior, learning and memory ability. Pretreatment of JLX001 for 3 days significantly attenuated infarct volume, lessened brain edema, mitigated BBB disruption and decreased the neurological deficit score in MCAO/R rats. Moreover, JLX001 increased cell viability and reduced sodium fluorescein leakage after OGD/R injury. In addition, JLX001 increased the expressions of Claudin-5 and Occludin, decreased the expression of MMP-9 both in vivo and in vitro. Moreover, immunofluorescence staining and western immunoblotting results showed that JLX001 increased the expressions of tight junction proteins via activating Wnt/β-catenin signal pathway in vivo and in vitro, which may be associated with the activation of PI3K/Akt signaling. Besides, XAV939 (an inhibitor of the Wnt/β-catenin pathway) proved the connection of JLX001 and Wnt/β-catenin pathway. These results suggest that JLX001 alleviates BBB disruption after MCAO/R and OGD/R possibly by alleviating MMP-9 and activating the Wnt/β-catenin signaling pathway.
Collapse
|
9
|
Bhatia P, Singh N. Ameliorative effect of ozagrel, a thromboxane A2 synthase inhibitor, in hyperhomocysteinemia-induced experimental vascular cognitive impairment and dementia. Fundam Clin Pharmacol 2020; 35:650-666. [PMID: 33020931 DOI: 10.1111/fcp.12610] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Revised: 09/24/2020] [Accepted: 09/29/2020] [Indexed: 10/23/2022]
Abstract
The present study investigates the effect of ozagrel, a selective thromboxane A2 (TXA2) inhibitor, in rat model of hyperhomocysteinemia (HHcy)-induced vascular cognitive impairment and dementia (VCID). Wistar rats were administered L-methionine (1.7 g/kg/day; p.o. × 8 weeks) to induce VCID. Morris water maze (MWM) test was employed to assess learning and memory. Endothelial dysfunction was assessed in the isolated aorta by observing endothelial-dependent vasorelaxation and levels of serum nitrite. Various biochemical and histopathological estimations were also performed. L-methionine produced significant impairment in endothelium-dependent vasorelaxation and decreases serum nitrite levels indicating endothelial dysfunction. Further, these animals performed poorly on MWM, depicting impairment of learning and memory. Further, a significant rise in brain oxidative stress level (indicated by increase in brain thiobarbituric acid-reactive species and decrease in reduced glutathione levels), brain acetylcholinesterase activity, brain myeloperoxidase activity, brain TNF-α and IL-6 levels, and brain leukocyte (neutrophil) infiltration was also observed. Treatment of ozagrel (10 and 20 mg/kg, p. o.)/donepezil (0.5 mg/kg, i.p., serving as standard) ameliorated L-methionine-induced endothelial dysfunction, memory deficits, and biochemical and histopathological changes. It may be concluded that ozagrel markedly improved endothelial dysfunction, learning and memory, and biochemical and histopathological alteration associated with L-methionine-induced VCID and that TXA2 can be considered as an important therapeutic target for the management of VCID.
Collapse
Affiliation(s)
- Pankaj Bhatia
- CNS Research Lab., Pharmacology Division, Department of Pharmaceutical Sciences and Drug Research, Faculty of Medicine, Punjabi University, Patiala, Punjab, 147002, India
| | - Nirmal Singh
- Pharmacology Division, Department of Pharmaceutical Sciences and Drug Research, Faculty of Medicine, Punjabi University, Patiala, Punjab, 147002, India
| |
Collapse
|
10
|
Effects and Mechanisms of Five Psoralea Prenylflavonoids on Aging-Related Diseases. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2020; 2020:2128513. [PMID: 32655760 PMCID: PMC7320294 DOI: 10.1155/2020/2128513] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Revised: 05/12/2020] [Accepted: 05/28/2020] [Indexed: 01/09/2023]
Abstract
During the aging process, senescent cells gradually accumulate in the organs; they secrete proinflammatory cytokines and other factors, collectively known as the senescence-associated secretory phenotype (SASP). SASP secretions contribute to “inflammaging,” which is a state of chronic, systemic, sterility, low-grade inflammatory microenvironment and a key risk factor in the development of aging-related diseases. Fructus psoraleae is a traditional Chinese medical herb best known for delaying aging and treating osteoporosis. Prenylflavonoids from fructus psoraleae are the main bioactive compounds responsible for its pharmacological applications, such as beaching, bavachinin, bavachalcone, isobavachalcone, and neobavaisoflavone. In previous decades, there have been some promising studies on the pharmacology of fructus psoraleae. Here, we focus on the anti-inflammatory and antiaging diseases of five psoralea prenylflavonoids, such as cardiovascular protection, diabetes and obesity intervention, neuroprotection, and osteoporosis, and discuss the mechanism of these active ingredients for better understanding the material basis and drug application of fructus psoraleae in Chinese medicine.
Collapse
|
11
|
Li X, Huang L, Liu G, Fan W, Li B, Liu R, Wang Z, Fan Q, Xiao W, Li Y, Fang W. Ginkgo diterpene lactones inhibit cerebral ischemia/reperfusion induced inflammatory response in astrocytes via TLR4/NF-κB pathway in rats. JOURNAL OF ETHNOPHARMACOLOGY 2020; 249:112365. [PMID: 31678414 DOI: 10.1016/j.jep.2019.112365] [Citation(s) in RCA: 63] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Revised: 10/26/2019] [Accepted: 10/27/2019] [Indexed: 05/26/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Ginkgo biloba L. (Ginkgoaceae) is a traditional Chinese medicine known to treating stroke and other cardio-cerebrovascular diseases for thousands of years in China. Ginkgo diterpene lactones (GDL) attracted much attention because of their neuroprotective properties. AIM OF THE STUDY To uncover the effects of GDL, which consist of ginkgolide A (GA), ginkgolide B (GB), and ginkgolide K (GK), on ischemic stroke, as well as the underlying molecular mechanisms. MATERIALS AND METHODS We used middle cerebral artery occlusion/reperfusion (MCAO/R) and oxygen-glucose deprivation/reoxygenation (OGD/R) models mimicking the process of ischemia/reperfusion in vivo and in vitro, respectively. Anticoagulant effects of GDL were investigated on platelet activating factor (PAF), arachidonic acid (AA) and adenosine diphosphate (ADP)-induced platelet aggregation both in vivo and in vitro. We also evaluated the effects of GDL on lipopolysaccharide (LPS)-induced inflammatory response in primary cultured rats' astrocytes. Infarct size, neurological deficit score, and brain edema were measured at 72 h after MCAO. Immunohistochemistry was utilized to analyze neurons necrosis and astrocytes activation. Expression of pro-inflammatory cytokines, including tumor necrotic factor-α (TNF-α) and interleukin-1β (IL-1β) were detected using enzyme-linked immunosorbent assay (ELISA) and real time PCR. The levels of toll-like receptor 4 (TLR4) and nuclear factor κB (NF-κB) were assessed by real time PCR or Western blot. RESULTS Compared with MCAO/R rats, GDL significantly reduced infarct size and brain edema, improved neurological deficit score. Meanwhile, GDL suppressed platelet aggregation, astrocytes activation, pro-inflammatory cytokines releasing, TLR4 mRNA expression and transfer of NF-κB from cytoplasm to nucleus. Furthermore, GDL alleviated OGD/R injury and LPS-induced inflammatory response in primary astrocytes, characterized by promoting cell viability, decreasing lactate dehydrogenase (LDH) activity, and inhibiting IL-1β and TNF-α releasing. CONCLUSIONS In summary, GDL attenuate cerebral ischemic injury, inhibit platelet aggregation and astrocytes activation. The anti-inflammatory activity might be associated with the downregulation of TLR4/NF-κB signal pathway. Our present findings provide an innovative insight into the novel treatment of GDL in ischemic stroke therapy.
Collapse
Affiliation(s)
- Xiang Li
- State Key Laboratory of Natural Medicines, School of Basic Medical Sciences and Clinical Pharmacy, China Pharmaceutical University, Nanjing, 210009, China.
| | - Liangliang Huang
- State Key Laboratory of Natural Medicines, School of Basic Medical Sciences and Clinical Pharmacy, China Pharmaceutical University, Nanjing, 210009, China.
| | - Ge Liu
- State Key Laboratory of Natural Medicines, School of Basic Medical Sciences and Clinical Pharmacy, China Pharmaceutical University, Nanjing, 210009, China.
| | - Wenxiang Fan
- Department of Pharmacy, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, 210009, China.
| | - Binbin Li
- State Key Laboratory of Natural Medicines, School of Basic Medical Sciences and Clinical Pharmacy, China Pharmaceutical University, Nanjing, 210009, China.
| | - Rui Liu
- State Key Laboratory of Natural Medicines, School of Basic Medical Sciences and Clinical Pharmacy, China Pharmaceutical University, Nanjing, 210009, China.
| | - Ziyu Wang
- State Key Laboratory of Natural Medicines, School of Basic Medical Sciences and Clinical Pharmacy, China Pharmaceutical University, Nanjing, 210009, China.
| | - Qiru Fan
- Faculty of Life Science and Technology, China Pharmaceutical University, Nanjing, 210009, China.
| | - Wei Xiao
- State Key Laboratory of New-tech for Chinese Medicine Pharmaceutical Process, Jiangsu Kanion Pharmaceutical Co., Ltd., Lianyungang, 222001, China.
| | - Yunman Li
- State Key Laboratory of Natural Medicines, School of Basic Medical Sciences and Clinical Pharmacy, China Pharmaceutical University, Nanjing, 210009, China.
| | - Weirong Fang
- State Key Laboratory of Natural Medicines, School of Basic Medical Sciences and Clinical Pharmacy, China Pharmaceutical University, Nanjing, 210009, China.
| |
Collapse
|
12
|
Zhou L, Ao LY, Yan YY, Li WT, Ye AQ, Li CY, Shen WY, Liang BW, Xiong-Zhu, Li YM. JLX001 Ameliorates Ischemia/Reperfusion Injury by Reducing Neuronal Apoptosis via Down-Regulating JNK Signaling Pathway. Neuroscience 2019; 418:189-204. [PMID: 31487541 DOI: 10.1016/j.neuroscience.2019.08.053] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2019] [Revised: 08/29/2019] [Accepted: 08/30/2019] [Indexed: 01/26/2023]
Abstract
JLX001, a novel compound with similar structure with cyclovirobuxine D (CVB-D), has been proved to exert therapeutical effects on permanent focal cerebral ischemia. However, the protective effects of JLX001 on cerebral ischemia/reperfusion (I/R) injury and its anti-apoptotic effects have not been reported. We investigated the efficacy of JLX001 in two pharmacodynamic tests (pre-treatment test and post-treatment) with rats subjected to middle cerebral artery occlusion/reperfusion (MCAO/R). The pharmacodynamic tests demonstrated that JLX001 ameliorated I/R injury by reducing infarct sizes and brain edema. The results of Morris water maze, neurological scores, cylinder test and posture reflex test implied that JLX001 improved the learning, memory and motor ability after MCAO/R in the long term. Anti-apoptotic effects of JLX001 and its regulation of cytosolic c-Jun N-terminal Kinases (JNKs) signal pathway were confirmed in vivo by co-immunofluorescence staining and western immunoblotting. Furthermore, primary cortical neuron cultures were prepared and exposed to oxygen glucose deprivation/reoxygenation (OGD/R) for in vitro studies. Cytotoxicity test and mitochondrial membrane potential (MMP) test showed that JLX001 enhanced cell survival rate and maintained MMP. Flow cytometry and TdT-mediated dUTP-X nick end labeling (TUNEL) staining demonstrated the anti-apoptotic effects of JLX001 in vitro. Likewise, JLX001 regulated JNK signal pathway in vivo, which was also confirmed by western immunoblotting. Collectively, this study presents the first evidence that JLX001 exerted protective effects against I/R injury by reducing neuronal apoptosis via down-regulating JNK signaling pathway.
Collapse
Affiliation(s)
- Lin Zhou
- State Key Laboratory of Natural Medicines, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing 210009, PR China
| | - Lu-Yao Ao
- State Key Laboratory of Natural Medicines, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing 210009, PR China
| | - Yun-Yi Yan
- State Key Laboratory of Natural Medicines, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing 210009, PR China
| | - Wan-Ting Li
- State Key Laboratory of Natural Medicines, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing 210009, PR China
| | - An-Qi Ye
- State Key Laboratory of Natural Medicines, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing 210009, PR China
| | - Cheng-Yuan Li
- State Key Laboratory of Natural Medicines, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing 210009, PR China
| | - Wei-Yang Shen
- School of Sciences, China Pharmaceutical University, Nanjing 210009, PR China
| | - Bing-Wen Liang
- Jiangsu Jinglixin Pharmaceutical Technology Company Limited, Nanjing 211100, PR China
| | - Xiong-Zhu
- Jiangsu Jinglixin Pharmaceutical Technology Company Limited, Nanjing 211100, PR China; Medicine & Chemical Institute, China Pharmaceutical University, Nanjing 210009, PR China.
| | - Yun-Man Li
- State Key Laboratory of Natural Medicines, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing 210009, PR China.
| |
Collapse
|
13
|
Indole-3-carbinol improves neurobehavioral symptoms in a cerebral ischemic stroke model. Naunyn Schmiedebergs Arch Pharmacol 2018; 391:613-625. [PMID: 29602953 DOI: 10.1007/s00210-018-1488-2] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2017] [Accepted: 03/19/2018] [Indexed: 12/27/2022]
Abstract
Stroke is one of the most common causes of death worldwide and also responsible for permanent disability. Ischemic stroke has been found to affect 80% of stroke patients. Recombinant tissue plasminogen activator (rtPA) is the widely used drug for the ischemic stroke with narrow therapeutic window. Indole-3-carbinol (I3C) is a natural compound obtained from brassica species having antithrombotic activity. Middle cerebral artery occlusion (MCAO) model was used followed by reperfusion after 2 h of ischemia for the evaluation of the I3C against ischemic stroke. After reperfusion, I3C (12.5, 25, and 50 mg/kg) was given by oral route once daily and continued up to the 14th day. Behavioral studies including postural reflex, forelimb placing, and cylinder tests showed I3C attenuated the MCAO-induced increase in average score and asymmetry score efficiently. Mean cerebral blood flow (CBF) was improved by treatment with I3C (12.5 mg/kg) by 60% of baseline at 6 h. I3C inhibited ADP-induced platelet aggregation and reduced ischemic volume significantly. It also inhibited in vitro the ADP-induced platelet aggregation in healthy human volunteers. I3C improves behavioral scores and mean CBF after focal cerebral ischemia in rats. Furthermore, I3C showed prophylactic anti-thrombotic activity against carrageenan induced tail thrombosis. Therefore, preclinical evidence points to I3C as a potential candidate for use in cerebral ischemic stroke.
Collapse
|
14
|
Xu S, Zhong A, Ma H, Li D, Hu Y, Xu Y, Zhang J. Neuroprotective effect of salvianolic acid B against cerebral ischemic injury in rats via the CD40/NF-κB pathway associated with suppression of platelets activation and neuroinflammation. Brain Res 2017; 1661:37-48. [DOI: 10.1016/j.brainres.2017.02.011] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2016] [Revised: 02/07/2017] [Accepted: 02/12/2017] [Indexed: 11/16/2022]
|
15
|
L L, X W, Z Y. Ischemia-reperfusion Injury in the Brain: Mechanisms and Potential Therapeutic Strategies. ACTA ACUST UNITED AC 2016; 5. [PMID: 29888120 DOI: 10.4172/2167-0501.1000213] [Citation(s) in RCA: 115] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Ischemia-reperfusion injury is a common feature of ischemic stroke, which occurs when blood supply is restored after a period of ischemia. Reperfusion can be achieved either by thrombolysis using thrombolytic reagents such as tissue plasminogen activator (tPA), or through mechanical removal of thrombi. Spontaneous reperfusion also occurs after ischemic stroke. However, despite the beneficial effect of restored oxygen supply by reperfusion, it also causes deleterious effect compared with permanent ischemia. With the recent advancement in endovascular therapy including thrombectomy and thrombus disruption, reperfusion-injury has become an increasingly critical challenge in stroke treatment. It is therefore of extreme importance to understand the mechanisms of ischemia-reperfusion injury in the brain in order to develop effective therapeutics. Accumulating experimental evidence have suggested that the mechanisms of ischemia-reperfusion injury include oxidative stress, leukocyte infiltration, platelet adhesion and aggregation, complement activation, mitochondrial mediated mechanisms, and blood-brain-barrier (BBB) disruption, which altogether ultimately lead to edema or hemorrhagic transformation (HT) in the brain. Potential therapeutic strategies against ischemia-reperfusion injury may be developed targeting these mechanisms. In this review, we briefly discuss the pathophysiology and cellular and molecular mechanisms of cerebral ischemia-reperfusion injury, and potential therapeutic strategies.
Collapse
Affiliation(s)
- Lin L
- Institute of Molecular Pharmacology, Wenzhou Medical University, Wenzhou 325035, PR China.,Departments of Radiology and Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Wang X
- Departments of Radiology and Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Yu Z
- Departments of Radiology and Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| |
Collapse
|