1
|
Sexton D, Faucette R, Rivera-Hernandez M, Kenniston JA, Papaioannou N, Cosic J, Kopacz K, Salmon G, Beauchemin C, Juethner S, Yeung D. A novel assay of excess plasma kallikrein-kinin system activation in hereditary angioedema. FRONTIERS IN ALLERGY 2024; 5:1436855. [PMID: 39391687 PMCID: PMC11464748 DOI: 10.3389/falgy.2024.1436855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Accepted: 08/20/2024] [Indexed: 10/12/2024] Open
Abstract
Background Cleaved high-molecular-weight kininogen (HKa) is a disease state biomarker of kallikrein-kinin system (KKS) activation in patients with hereditary angioedema due to C1 inhibitor deficiency (HAE-C1INH), the endogenous inhibitor of plasma kallikrein (PKa). Objective Develop an HKa-specific enzyme-linked immunosorbent assay (ELISA) to monitor KKS activation in the plasma of HAE-C1INH patients. Methods A novel HKa-specific antibody was discovered by antibody phage display and used as a capture reagent to develop an HKa-specific ELISA. Results Specific HKa detection following KKS activation was observed in plasma from healthy controls but not in prekallikrein-, high-molecular-weight kininogen-, or coagulation factor XII (FXII)-deficient plasma. HKa levels in plasma collected from HAE-C1INH patients in a disease quiescent state were higher than in plasma from healthy controls and increased further in HAE-C1INH plasma collected during an angioedema attack. The specificity of the assay for PKa-mediated HKa generation in minimally diluted plasma activated with exogenous FXIIa was demonstrated using a specific monoclonal antibody inhibitor (lanadelumab, IC50 = 0.044 µM). Conclusions An ELISA was developed for the specific and quantitative detection of HKa in human plasma to support HAE-C1INH drug development. Improved quantification of the HKa biomarker may facilitate further pathophysiologic insight into HAE-C1INH and other diseases mediated by a dysregulated KKS and may enable the design of highly potent inhibitors targeting this pathway.
Collapse
Affiliation(s)
- Dan Sexton
- Takeda Development Center Americas Inc., Cambridge, MA, United States
| | - Ryan Faucette
- Takeda Development Center Americas Inc., Cambridge, MA, United States
| | | | - Jon A. Kenniston
- Takeda Development Center Americas Inc., Cambridge, MA, United States
| | | | - Janja Cosic
- Takeda Development Center Americas Inc., Cambridge, MA, United States
| | - Kris Kopacz
- Takeda Development Center Americas Inc., Cambridge, MA, United States
| | - Gary Salmon
- Charles River Laboratories, Harlow, United Kingdom
| | | | - Salomé Juethner
- Takeda Pharmaceuticals USA, Inc., Lexington, MA, United States
| | - Dave Yeung
- Takeda Development Center Americas Inc., Cambridge, MA, United States
| |
Collapse
|
2
|
Johansson K, Johansson L, Nilsson TK, Lind MM. Factor XII Concentrations and Risk of Intracerebral Haemorrhage. A Prospective Case-Referent Study. J Stroke Cerebrovasc Dis 2021; 30:105565. [PMID: 33412399 DOI: 10.1016/j.jstrokecerebrovasdis.2020.105565] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2020] [Revised: 12/10/2020] [Accepted: 12/16/2020] [Indexed: 11/24/2022] Open
Abstract
OBJECTIVES In a previous pilot study, we found an association between high factor XII levels and risk of haemorrhagic stroke suggesting that factor XII is a risk marker for intracerebral haemorrhage (ICH). The aim of this study was to further investigate the association between factor XII and risk of ICH in a larger population. MATERIALS AND METHODS This study was conducted as a prospective nested case-referent study. All participants underwent a health examination and blood sampling for factor XII analysis at baseline. Cases were defined as participants who were diagnosed with a first-ever ICH between 1985 and 2000. Two referents were matched to each case. RESULTS We identified 70 individuals with first-ever ICH and 137 matched referents who had undergone a health examination and donated blood samples before the ICH event. The mean age was 54 years, and 33% were women. The median time-to-event was 3.5 years (range 0.04 to 10.2 years). Conditional logistic regression showed no association between factor XII and risk of ICH, (odds ratio 1.06 per SD; [95% confidence interval: 0.57-1.97] in a multivariable model). CONCLUSIONS A previous finding of an association between high concentration of factor XII and risk of ICH could not be replicated in this larger study.
Collapse
Affiliation(s)
- Kristina Johansson
- Department of Public Health and Clinical Medicine, Skellefteå Research Unit, Umeå University, SE-901 81 Umeå, Sweden.
| | - Lars Johansson
- Department of Public Health and Clinical Medicine, Skellefteå Research Unit, Umeå University, SE-901 81 Umeå, Sweden.
| | - Torbjörn K Nilsson
- Department of Medical Biosciences, Clinical Chemistry, Umeå University, SE-901 81 Umeå, Sweden.
| | - Marcus M Lind
- Department of Public Health and Clinical Medicine, Skellefteå Research Unit, Umeå University, SE-901 81 Umeå, Sweden.
| |
Collapse
|
3
|
Yamamoto-Imoto H, Zamolodchikov D, Chen ZL, Bourne SL, Rizvi S, Singh P, Norris EH, Weis-Garcia F, Strickland S. A novel detection method of cleaved plasma high-molecular-weight kininogen reveals its correlation with Alzheimer's pathology and cognitive impairment. ALZHEIMER'S & DEMENTIA: DIAGNOSIS, ASSESSMENT & DISEASE MONITORING 2018; 10:480-489. [PMID: 30310850 PMCID: PMC6178129 DOI: 10.1016/j.dadm.2018.06.008] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Introduction Accumulation of β-amyloid is a pathological hallmark of Alzheimer's disease (AD). β-Amyloid activates the plasma contact system leading to kallikrein-mediated cleavage of intact high-molecular-weight kininogen (HKi) to cleaved high-molecular-weight kininogen (HKc). Increased HKi cleavage is observed in plasma of AD patients and mouse models by Western blot. For potential diagnostic purposes, a more quantitative method that can measure HKc levels in plasma with high sensitivity and specificity is needed. Methods HKi/c, HKi, and HKc monoclonal antibodies were screened from hybridomas using direct ELISA with a fluorescent substrate. Results We generated monoclonal antibodies recognizing HKi or HKc specifically and developed sandwich ELISAs that can quantitatively detect HKi and HKc levels in human. These new assays show that decreased HKi and increased HKc levels in AD plasma correlate with dementia and neuritic plaque scores. Discussion High levels of plasma HKc could be used as an innovative biomarker for AD. Assay discriminates between intact and cleaved high molecular weight kininogen (HKi vs. HKc). New enzyme-linked immunosorbent assay (ELISA) detects more HKc in Alzheimer's disease plasma. Plasma HKc correlates with dementia and neuritic plaque scores in Alzheimer's disease. Plasma HKc levels could be used as an innovative biomarker for Alzheimer's disease.
Collapse
Affiliation(s)
- Hitomi Yamamoto-Imoto
- Patricia and John Rosenwald Laboratory of Neurobiology and Genetics, The Rockefeller University, New York, NY, USA.,Research fellow of Japan Society for the Promotion of Science, Chiyoda-ku, Tokyo, Japan
| | - Daria Zamolodchikov
- Patricia and John Rosenwald Laboratory of Neurobiology and Genetics, The Rockefeller University, New York, NY, USA
| | - Zu-Lin Chen
- Patricia and John Rosenwald Laboratory of Neurobiology and Genetics, The Rockefeller University, New York, NY, USA
| | - S Lloyd Bourne
- Antibody and Bioresource Core Facility, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Syeda Rizvi
- Antibody and Bioresource Core Facility, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Pradeep Singh
- Patricia and John Rosenwald Laboratory of Neurobiology and Genetics, The Rockefeller University, New York, NY, USA
| | - Erin H Norris
- Patricia and John Rosenwald Laboratory of Neurobiology and Genetics, The Rockefeller University, New York, NY, USA
| | - Frances Weis-Garcia
- Antibody and Bioresource Core Facility, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Sidney Strickland
- Patricia and John Rosenwald Laboratory of Neurobiology and Genetics, The Rockefeller University, New York, NY, USA
| |
Collapse
|
4
|
Ekdahl KN, Teramura Y, Hamad OA, Asif S, Duehrkop C, Fromell K, Gustafson E, Hong J, Kozarcanin H, Magnusson PU, Huber-Lang M, Garred P, Nilsson B. Dangerous liaisons: complement, coagulation, and kallikrein/kinin cross-talk act as a linchpin in the events leading to thromboinflammation. Immunol Rev 2017; 274:245-269. [PMID: 27782319 DOI: 10.1111/imr.12471] [Citation(s) in RCA: 109] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Innate immunity is fundamental to our defense against microorganisms. Physiologically, the intravascular innate immune system acts as a purging system that identifies and removes foreign substances leading to thromboinflammatory responses, tissue remodeling, and repair. It is also a key contributor to the adverse effects observed in many diseases and therapies involving biomaterials and therapeutic cells/organs. The intravascular innate immune system consists of the cascade systems of the blood (the complement, contact, coagulation, and fibrinolytic systems), the blood cells (polymorphonuclear cells, monocytes, platelets), and the endothelial cell lining of the vessels. Activation of the intravascular innate immune system in vivo leads to thromboinflammation that can be activated by several of the system's pathways and that initiates repair after tissue damage and leads to adverse reactions in several disorders and treatment modalities. In this review, we summarize the current knowledge in the field and discuss the obstacles that exist in order to study the cross-talk between the components of the intravascular innate immune system. These include the use of purified in vitro systems, animal models and various types of anticoagulants. In order to avoid some of these obstacles we have developed specialized human whole blood models that allow investigation of the cross-talk between the various cascade systems and the blood cells. We in particular stress that platelets are involved in these interactions and that the lectin pathway of the complement system is an emerging part of innate immunity that interacts with the contact/coagulation system. Understanding the resulting thromboinflammation will allow development of new therapeutic modalities.
Collapse
Affiliation(s)
- Kristina N Ekdahl
- Department of Immunology, Genetics and Pathology (IGP), Rudbeck Laboratory C5:3, Uppsala University, Uppsala, Sweden.,Linnaeus Center of Biomaterials Chemistry, Linnaeus University, Kalmar, Sweden
| | - Yuji Teramura
- Department of Immunology, Genetics and Pathology (IGP), Rudbeck Laboratory C5:3, Uppsala University, Uppsala, Sweden.,Department of Bioengineering, The University of Tokyo, Tokyo, Japan
| | - Osama A Hamad
- Department of Immunology, Genetics and Pathology (IGP), Rudbeck Laboratory C5:3, Uppsala University, Uppsala, Sweden
| | - Sana Asif
- Department of Immunology, Genetics and Pathology (IGP), Rudbeck Laboratory C5:3, Uppsala University, Uppsala, Sweden
| | - Claudia Duehrkop
- Department of Immunology, Genetics and Pathology (IGP), Rudbeck Laboratory C5:3, Uppsala University, Uppsala, Sweden
| | - Karin Fromell
- Department of Immunology, Genetics and Pathology (IGP), Rudbeck Laboratory C5:3, Uppsala University, Uppsala, Sweden
| | - Elisabet Gustafson
- Department of Women's and Children's Health, Uppsala University Hospital, Uppsala, Sweden
| | - Jaan Hong
- Department of Immunology, Genetics and Pathology (IGP), Rudbeck Laboratory C5:3, Uppsala University, Uppsala, Sweden
| | - Huda Kozarcanin
- Department of Immunology, Genetics and Pathology (IGP), Rudbeck Laboratory C5:3, Uppsala University, Uppsala, Sweden
| | - Peetra U Magnusson
- Department of Immunology, Genetics and Pathology (IGP), Rudbeck Laboratory C5:3, Uppsala University, Uppsala, Sweden
| | - Markus Huber-Lang
- Department of Orthopedic Trauma, Hand, Plastic and Reconstructive Surgery, University of Ulm, Ulm, Germany
| | - Peter Garred
- Laboratory of Molecular Medicine, Department of Clinical Immunology, Section 7631, Faculty of Health and Medical Sciences, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - Bo Nilsson
- Department of Immunology, Genetics and Pathology (IGP), Rudbeck Laboratory C5:3, Uppsala University, Uppsala, Sweden.
| |
Collapse
|
5
|
Nickel KF, Long AT, Fuchs TA, Butler LM, Renné T. Factor XII as a Therapeutic Target in Thromboembolic and Inflammatory Diseases. Arterioscler Thromb Vasc Biol 2017; 37:13-20. [DOI: 10.1161/atvbaha.116.308595] [Citation(s) in RCA: 73] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2016] [Accepted: 11/01/2016] [Indexed: 01/08/2023]
Abstract
Coagulation factor XII (FXII, Hageman factor) is a plasma protease that in its active form (FXIIa) initiates the procoagulant and proinflammatory contact system. This name arises from FXII’s unique mechanism of activation that is induced by binding (contact) to negatively charged surfaces. Various substances have the capacity to trigger FXII contact-activation in vivo including mast cell–derived heparin, misfolded protein aggregates, collagen, nucleic acids, and polyphosphate. FXII deficiency is not associated with bleeding, and for decades, the factor was considered to be dispensable for coagulation in vivo. However, despite the fact that humans and animals with deficiency in FXII have a normal hemostatic capacity, animal models revealed a critical role of FXIIa-driven coagulation in thromboembolic diseases. In addition to its role in thrombosis, FXIIa contributes to inflammation through the activation of the inflammatory bradykinin-producing kallikrein-kinin system. Pharmacological inhibition of FXII/FXIIa interferes with thrombosis and inflammation in animal models. Thus, targeting the FXIIa-driven contact system seems to be a promising and safe therapeutic anticoagulation treatment strategy, with additional anti-inflammatory effects. Here, we discuss novel functions of FXIIa in cardiovascular thrombotic and inflammatory disorders.
Collapse
Affiliation(s)
- Katrin F. Nickel
- From the Institute of Clinical Chemistry and Laboratory Medicine, University Medical Center Hamburg-Eppendorf, Germany (K.F.N., A.T.L., T.A.F., L.M.B., T.R.); and Division of Clinical Chemistry, Department of Molecular Medicine and Surgery, Karolinska Institutet and University Hospital, Stockholm, Sweden (K.F.N., T.A.F., L.M.B., T.R.)
| | - Andy T. Long
- From the Institute of Clinical Chemistry and Laboratory Medicine, University Medical Center Hamburg-Eppendorf, Germany (K.F.N., A.T.L., T.A.F., L.M.B., T.R.); and Division of Clinical Chemistry, Department of Molecular Medicine and Surgery, Karolinska Institutet and University Hospital, Stockholm, Sweden (K.F.N., T.A.F., L.M.B., T.R.)
| | - Tobias A. Fuchs
- From the Institute of Clinical Chemistry and Laboratory Medicine, University Medical Center Hamburg-Eppendorf, Germany (K.F.N., A.T.L., T.A.F., L.M.B., T.R.); and Division of Clinical Chemistry, Department of Molecular Medicine and Surgery, Karolinska Institutet and University Hospital, Stockholm, Sweden (K.F.N., T.A.F., L.M.B., T.R.)
| | - Lynn M. Butler
- From the Institute of Clinical Chemistry and Laboratory Medicine, University Medical Center Hamburg-Eppendorf, Germany (K.F.N., A.T.L., T.A.F., L.M.B., T.R.); and Division of Clinical Chemistry, Department of Molecular Medicine and Surgery, Karolinska Institutet and University Hospital, Stockholm, Sweden (K.F.N., T.A.F., L.M.B., T.R.)
| | - Thomas Renné
- From the Institute of Clinical Chemistry and Laboratory Medicine, University Medical Center Hamburg-Eppendorf, Germany (K.F.N., A.T.L., T.A.F., L.M.B., T.R.); and Division of Clinical Chemistry, Department of Molecular Medicine and Surgery, Karolinska Institutet and University Hospital, Stockholm, Sweden (K.F.N., T.A.F., L.M.B., T.R.)
| |
Collapse
|