1
|
Wang Y, Wang M, Kang J, Zhang Y. Role of fibrinogen-like 2 (FGL2) proteins in implantation: Potential implications and mechanism. Gene 2025; 946:149284. [PMID: 39884406 DOI: 10.1016/j.gene.2025.149284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Revised: 01/20/2025] [Accepted: 01/25/2025] [Indexed: 02/01/2025]
Abstract
Fibrinogen-like (Fgl2) protein belongs to fibrinogen super family, which catalyzes the conversion of prothrombin to thrombin and is involved in the coagulation process. There are two different forms of functional Fgl2 protein: membrane associated Fgl2 (mFgl2) and soluble Fgl2 (sFgl2). mFgl2, as a type II transmembrane protein with property with prothrombinase activity from its N-terminal fragment, was extensively secreted or expressed by inflammatory macrophages, dendritic cells (DCs), Th1 cells and endothelial cells. While sFgl2 was mainly produced by regulatory T cells (Tregs) and then secreted into the vasculature, which contributes to autoimmune disease by regulating maturation of (DCs), polarization of macrophage, inhibiting T cell proliferation and differentiation and inducing apoptosis of B cells. In particular, emerging evidence has shown that Fgl2 is implicated in female reproductive system that contributes to embryo development, ovarian granulosa cells differentiation and implantation failure. This article summarizes the role and potential mechanisms of Fgl2 in reproduction and identifies research gaps along with the future directions.
Collapse
Affiliation(s)
- Yueying Wang
- Center for Reproductive Medicine, Zhongnan Hospital of Wuhan University, Wuhan 430062, China; Clinical Medicine Research Center of Prenatal Diagnosis and Birth Health in Hubei Province, Wuhan, Hubei 430062, China; Department of Reproductive Medicine, Jining No.1 People's Hospital, Jining 272002, China; Key Laboratory of Pregnancy Disorder Research of Jining, 272002, China
| | - Mei Wang
- Center for Reproductive Medicine, Zhongnan Hospital of Wuhan University, Wuhan 430062, China; Clinical Medicine Research Center of Prenatal Diagnosis and Birth Health in Hubei Province, Wuhan, Hubei 430062, China
| | - Jiawei Kang
- Clinical Medicine Research Center of Prenatal Diagnosis and Birth Health in Hubei Province, Wuhan, Hubei 430062, China; Department of Obstetrical, Zhongnan Hospital of Wuhan University, Wuhan 430062, China
| | - Yuanzhen Zhang
- Center for Reproductive Medicine, Zhongnan Hospital of Wuhan University, Wuhan 430062, China; Clinical Medicine Research Center of Prenatal Diagnosis and Birth Health in Hubei Province, Wuhan, Hubei 430062, China.
| |
Collapse
|
2
|
Nencini F, Giurranna E, Borghi S, Taddei N, Fiorillo C, Becatti M. Fibrinogen Oxidation and Thrombosis: Shaping Structure and Function. Antioxidants (Basel) 2025; 14:390. [PMID: 40298646 PMCID: PMC12024030 DOI: 10.3390/antiox14040390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2025] [Revised: 03/19/2025] [Accepted: 03/24/2025] [Indexed: 04/30/2025] Open
Abstract
Fibrinogen, a pivotal plasma glycoprotein, plays an essential role in hemostasis by serving as the precursor to fibrin, which forms the structural framework of blood clots. Beyond coagulation, fibrinogen influences immune responses, inflammation, and tissue repair. Oxidative stress, characterized by an imbalance between reactive oxygen species (ROS) and antioxidants, induces fibrinogen oxidation, significantly altering its structure and function. This narrative review synthesizes findings from in vitro, ex vivo, and clinical studies, emphasizing the impact of fibrinogen oxidation on clot formation, architecture, and degradation. Oxidative modifications result in denser fibrin clots with thinner fibers, reduced permeability, and heightened resistance to fibrinolysis. These structural changes exacerbate prothrombotic conditions in cardiovascular diseases, diabetes, chronic inflammatory disorders and cancer. In contrast, "low-dose" oxidative stress may elicit protective adaptations in fibrinogen, preserving its function. The review also highlights discrepancies in experimental findings due to variability in oxidation protocols and patient conditions. Understanding the interplay between oxidation and fibrinogen function could unveil therapeutic strategies targeting oxidative stress. Antioxidant therapies or selective inhibitors of detrimental oxidation hold potential for mitigating thrombotic risks. However, further research is essential to pinpoint specific fibrinogen oxidation sites, clarify their roles in clot dynamics, and bridge the gap between basic research and clinical practice.
Collapse
|
3
|
Man C, An Y, Wang GX, Mao EQ, Ma L. Recent Advances in Pathogenesis and Anticoagulation Treatment of Sepsis-Induced Coagulopathy. J Inflamm Res 2025; 18:737-750. [PMID: 39845020 PMCID: PMC11752821 DOI: 10.2147/jir.s495223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2024] [Accepted: 12/31/2024] [Indexed: 01/24/2025] Open
Abstract
Coagulopathy in sepsis is common and is associated with high mortality. Although immunothrombosis is necessary for infection control, excessive thrombus formation can trigger a systemic thrombo-inflammatory response. Immunothrombosis plays a core role in sepsis-induced coagulopathy, and research has revealed a complex interplay between inflammation and coagulation. Different mechanisms underlying sepsis-related coagulopathy are discussed, including factors contributing to the imbalance of pro- and anticoagulation relevant to endothelial cells. The potential therapeutic implications of anticoagulants on these mechanisms are discussed. This review contributes to our understanding of the pathogenesis of coagulopathy in patients with sepsis. Recent studies suggest that endothelial cells play an important role in immunoregulation and hemostasis. Meanwhile, the non-anticoagulation effects of anticoagulants, especially heparin, which act in the pathogenesis of coagulopathy in septic patients, have been partially revealed. We believe that further insights into the pathogenesis of sepsis-induced coagulopathy will help physicians evaluate patient conditions effectively, leading to advanced early recognition and better decision-making in the treatment of sepsis.
Collapse
Affiliation(s)
- Chit Man
- Department of Emergency, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, People’s Republic of China
| | - Yuan An
- Department of Emergency, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, People’s Republic of China
| | - Guo-Xin Wang
- Department of Emergency, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, People’s Republic of China
| | - En-Qiang Mao
- Department of Emergency, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, People’s Republic of China
| | - Li Ma
- Department of Emergency, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, People’s Republic of China
| |
Collapse
|
4
|
Lan H, Zhao S, Xiong Y, Yan XZ. The emerging role of fibrin(ogen) in cardiovascular disease. Inflamm Res 2024; 73:1435-1444. [PMID: 39020021 DOI: 10.1007/s00011-024-01916-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 06/27/2024] [Accepted: 07/03/2024] [Indexed: 07/19/2024] Open
Abstract
OBJECTIVE A coagulation factor called fibrinogen is produced by the liver and is proteolyzed by thrombin to become fibrin. The latest studies have revealed that fibrin(ogen) palys an essential role in the regulation of cardiovascular disease. Understanding the relationship and mechanism between fibrin(ogen) and cardiovascular disease is of great significance for maintaining overall health. The objective of this review is to discuss the specific involvement and underlying mechanisms of fibrin(ogen) in cardiovascular disease. METHODS A review was conducted using the PubMed database to identify and analyze the emerging role of fibrinogen in cardiovascular disease. RESULTS The literature review revealed that fibrin(ogen) plays a pivotal role in maintaining cardiovascular disease and are involved in the pathogenesis of cardiovascular disease. Fibrin(ogen) mainly influence various pathophysiological processes, such as participating in thrombosis formation, stimulating the inflammatory response, and other molecular pathways. CONCLUSION This review focuses on the involvement of fibrin(ogen) in cardiovascular disease, with a particular emphasis on the main functions and underlying mechanisms by which fibrin(ogen) influence the pathogenesis and progression of these conditions. This review underscores the potential of fibrin(ogen) as therapeutic targets in managing cardiovascular disease.
Collapse
Affiliation(s)
- Hong Lan
- Shanghai Engineering Research Center of Tooth Restoration and Regeneration & Tongji Research Institute of Stomatology & Department of Periodontology, Stomatological Hospital and Dental School, Tongji University, Yanchang Road 399, Shanghai, 200072, P. R. China
| | - Shengtao Zhao
- Shanghai Engineering Research Center of Tooth Restoration and Regeneration & Tongji Research Institute of Stomatology & Department of Periodontology, Stomatological Hospital and Dental School, Tongji University, Yanchang Road 399, Shanghai, 200072, P. R. China
| | - Yuting Xiong
- Shanghai Engineering Research Center of Tooth Restoration and Regeneration & Tongji Research Institute of Stomatology & Department of Periodontology, Stomatological Hospital and Dental School, Tongji University, Yanchang Road 399, Shanghai, 200072, P. R. China
| | - Xiang-Zhen Yan
- Shanghai Engineering Research Center of Tooth Restoration and Regeneration & Tongji Research Institute of Stomatology & Department of Periodontology, Stomatological Hospital and Dental School, Tongji University, Yanchang Road 399, Shanghai, 200072, P. R. China.
| |
Collapse
|
5
|
Chen X, Xu X, Li Y, Liu F, Zhang B, Zuo L. Association between fibrinogen-to-albumin ratio and functional prognosis of 3 months in patients with acute ischemic stroke after intravenous thrombolysis. Brain Behav 2024; 14:e3364. [PMID: 38376013 PMCID: PMC10757894 DOI: 10.1002/brb3.3364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/23/2023] [Revised: 11/24/2023] [Accepted: 11/26/2023] [Indexed: 02/21/2024] Open
Abstract
BACKGROUND The presence of high fibrinogen and low albumin levels in serum is associated with a negative prognosis in acute ischemic stroke (AIS). Fibrinogen-to-albumin ratio (FAR), a new inflammatory biomarker, may provide better prognostic insights in patients with AIS than separate evaluation of fibrinogen or albumin. The objective of this investigation is to examine the correlation between FAR and 3-month functional prognosis after intravenous thrombolysis (IVT) in AIS patients. METHODS The retrospective study recruited AIS patients who received IVT from June 2014 to December 2021. The 3-month functional prognosis was assessed using the Modified Rankin Scale (mRS). A mRS score of ≤2 indicated a good outcome, whereas a mRS score of >2 suggested a poor outcome. RESULTS A total of 591 AIS patients who underwent IVT were included and 147 patients (24.9 %) had a poor outcome. Among the 102 pairs of patients after propensity score matching, there was a significant association between FAR and 3-month prognosis (adjusted OR, 1.19; 95% CI, 1.03-1.38; p = .020). The optimal FAR cutoff value was found to be 7.57, and even after stratifying patients based on this value, we still observed a significant correlation between high FAR level and poor outcome (adjusted OR, 2.08; 95% CI, 1.28-3.40; p = .003). CONCLUSIONS FAR may serve as a prospective biomarker of predicting 3-month prognosis in AIS patients after IVT.
Collapse
Affiliation(s)
- Xinxin Chen
- Department of NeurologySchool of MedicineShanghai East HospitalTongji UniversityShanghaiChina
| | - Xiahong Xu
- Department of NeurologySchool of MedicineShanghai East HospitalTongji UniversityShanghaiChina
| | - Ying Li
- Department of NeurologySchool of MedicineShanghai East HospitalTongji UniversityShanghaiChina
| | - Feifeng Liu
- Department of NeurologySchool of MedicineShanghai East HospitalTongji UniversityShanghaiChina
| | - Bei Zhang
- Department of NeurologySchool of MedicineShanghai East HospitalTongji UniversityShanghaiChina
| | - Lian Zuo
- Department of NeurologySchool of MedicineShanghai East HospitalTongji UniversityShanghaiChina
| |
Collapse
|
6
|
Lan D, Zhang X, Huang X, Li J, Song J, Zhou D, Meng R. Anti-inflammatory Effect of Batroxobin Combined With Anticoagulation in Patients With Cerebral Venous Thrombosis. Clin Appl Thromb Hemost 2024; 30:10760296241264516. [PMID: 39033421 PMCID: PMC11406583 DOI: 10.1177/10760296241264516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 05/26/2024] [Accepted: 06/10/2024] [Indexed: 07/23/2024] Open
Abstract
Inflammation is pivotal in the pathogenesis and development of cerebral venous thrombosis (CVT). Herein, we aimed to assess the anti-inflammatory effects of batroxobin combined with anticoagulation in CVT. Participants were categorized into the batroxobin group (batroxobin combined with anticoagulation) and the control group (anticoagulation only). Regression analysis was employed to explore the association between the number of episodes of batroxobin administration and the fluctuation of inflammatory indicators, as well as the proportion of patients with inflammatory indicators that were reduced after batroxobin use. Twenty-three cases (age: 39.9 ± 13.8 years, female: 39.1%) in the batroxobin group and 36 cases (40.3 ± 9.6 years, 52.8%) in the control group were analyzed. Compared to the control group, batroxobin combined with anticoagulation significantly decreased fibrinogen (P < .001), platelet-lymphocyte ratio (PLR) (P = .016) and systemic immune-inflammation index (SII) (P = .008), and increased the proportion of the patients with lower fibrinogen (P < .001), neutrophil-lymphocyte ratio (NLR) (P = .005), PLR (P = .026), and SII (P = .006). Linear analysis showed that as the number of episodes of batroxobin administration increased, the fibrinogen (P < .001), the PLR (P = .001), and the SII (P = .020) significantly decreased. Logistic regression analysis showed as the number of episodes of batroxobin administration increased, the ratio of the patients with decreased NLR (P = .008) and PLR (P = .015), as well as SII (P = .013), significantly increased. Batroxobin could decrease NLR, PLR, and SII in CVT. The effect was related to the number of episodes of batroxobin administration. Besides reducing fibrinogen and indirect thrombolysis effects, this may be another critical benefit of batroxobin for CVT.
Collapse
Affiliation(s)
- Duo Lan
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, China
- Advanced Center of Stroke, Beijing Institute for Brain Disorders, Beijing, China
| | - Xiaoming Zhang
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, China
- Advanced Center of Stroke, Beijing Institute for Brain Disorders, Beijing, China
| | - Xiangqian Huang
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, China
- Advanced Center of Stroke, Beijing Institute for Brain Disorders, Beijing, China
| | - Jingrun Li
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, China
- Advanced Center of Stroke, Beijing Institute for Brain Disorders, Beijing, China
| | - Jiahao Song
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, China
- Advanced Center of Stroke, Beijing Institute for Brain Disorders, Beijing, China
| | - Da Zhou
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, China
- Advanced Center of Stroke, Beijing Institute for Brain Disorders, Beijing, China
| | - Ran Meng
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, China
- Advanced Center of Stroke, Beijing Institute for Brain Disorders, Beijing, China
| |
Collapse
|
7
|
Woloszyk A, Aguilar L, Perez L, Salinas EL, Glatt V. Biomimetic hematoma delivers an ultra-low dose of rhBMP-2 to successfully regenerate large femoral bone defects in rats. BIOMATERIALS ADVANCES 2023; 148:213366. [PMID: 36905826 DOI: 10.1016/j.bioadv.2023.213366] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 02/10/2023] [Accepted: 02/26/2023] [Indexed: 03/06/2023]
Abstract
Successful repair of large bone defects remains a clinical challenge. Following fractures, a bridging hematoma immediately forms as a crucial step that initiates bone healing. In larger bone defects the micro-architecture and biological properties of this hematoma are compromised, and spontaneous union cannot occur. To address this need, we developed an ex vivo Biomimetic Hematoma that resembles naturally healing fracture hematoma, using whole blood and the natural coagulants calcium and thrombin, as an autologous delivery vehicle for a very reduced dose of rhBMP-2. When implanted into a rat femoral large defect model, complete and consistent bone regeneration with superior bone quality was achieved with 10-20× less rhBMP-2 compared to that required with the collagen sponges currently used. Moreover, calcium and rhBMP-2 demonstrated a synergistic effect enhancing osteogenic differentiation, and fully restored mechanical strength 8 weeks after surgery. Collectively, these findings suggest the Biomimetic Hematoma provides a natural reservoir for rhBMP-2, and that retention of the protein within the scaffold rather than its sustained release might be responsible for more robust and rapid bone healing. Clinically, this new implant, using FDA-approved components, would not only reduce the risk of adverse events associated with BMPs, but also decrease treatment costs and nonunion rates.
Collapse
Affiliation(s)
- Anna Woloszyk
- Department of Orthopaedics, University of Texas Health Science Center, San Antonio 78229, TX, USA
| | - Leonardo Aguilar
- Department of Orthopaedics, University of Texas Health Science Center, San Antonio 78229, TX, USA
| | - Louis Perez
- Department of Orthopaedics, University of Texas Health Science Center, San Antonio 78229, TX, USA
| | - Emily L Salinas
- Department of Orthopaedics, University of Texas Health Science Center, San Antonio 78229, TX, USA
| | - Vaida Glatt
- Department of Orthopaedics, University of Texas Health Science Center, San Antonio 78229, TX, USA; Sam and Ann Barshop Institute for Longevity and Aging Studies, University of Texas Health Science Center, San Antonio 78229, TX, USA.
| |
Collapse
|
8
|
Cai J, Guo J, Wang S. Application of Polymer Hydrogels in the Prevention of Postoperative Adhesion: A Review. Gels 2023; 9:98. [PMID: 36826268 PMCID: PMC9957106 DOI: 10.3390/gels9020098] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 01/15/2023] [Accepted: 01/17/2023] [Indexed: 01/25/2023] Open
Abstract
Postoperative adhesion is a common post-surgery complication formed between the surface of the body cavity, ranging from a layer of connective tissue to a fibrous bridge containing blood vessels and nerve tissue. Despite achieving a lot of progress, the mechanisms of adhesion formation still need to be further studied. In addition, few current treatments are consistently effective in the prevention of postoperative adhesion. Hydrogel is a kind of water-expanding crosslinked hydrophilic polymer network generated by a simple reaction of one or more monomers. Due to the porous structure, hydrogels can load different drugs and control the drug release kinetics. Evidence from existing studies has confirmed the feasibility and superiority of using hydrogels to counter postoperative adhesions, primarily due to their outstanding antifouling ability. In this review, the current research status of hydrogels as anti-adhesion barriers is summarized, the character of hydrogels in the prevention of postoperative adhesion is briefly introduced, and future research directions are discussed.
Collapse
Affiliation(s)
- Jie Cai
- School of Materials and Chemistry, University of Shanghai for Science and Technology, No. 516 Jungong Road, Shanghai 200093, China
| | - Jiaming Guo
- Department of Radiation Medicine, College of Naval Medicine, Naval Medical University, No. 800 Xiangyin Road, Shanghai 200433, China
| | - Shige Wang
- School of Materials and Chemistry, University of Shanghai for Science and Technology, No. 516 Jungong Road, Shanghai 200093, China
| |
Collapse
|
9
|
Sanz-Horta R, Matesanz A, Gallardo A, Reinecke H, Jorcano JL, Acedo P, Velasco D, Elvira C. Technological advances in fibrin for tissue engineering. J Tissue Eng 2023; 14:20417314231190288. [PMID: 37588339 PMCID: PMC10426312 DOI: 10.1177/20417314231190288] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Accepted: 07/11/2023] [Indexed: 08/18/2023] Open
Abstract
Fibrin is a promising natural polymer that is widely used for diverse applications, such as hemostatic glue, carrier for drug and cell delivery, and matrix for tissue engineering. Despite the significant advances in the use of fibrin for bioengineering and biomedical applications, some of its characteristics must be improved for suitability for general use. For example, fibrin hydrogels tend to shrink and degrade quickly after polymerization, particularly when they contain embedded cells. In addition, their poor mechanical properties and batch-to-batch variability affect their handling, long-term stability, standardization, and reliability. One of the most widely used approaches to improve their properties has been modification of the structure and composition of fibrin hydrogels. In this review, recent advances in composite fibrin scaffolds, chemically modified fibrin hydrogels, interpenetrated polymer network (IPN) hydrogels composed of fibrin and other synthetic or natural polymers are critically reviewed, focusing on their use for tissue engineering.
Collapse
Affiliation(s)
- Raúl Sanz-Horta
- Department of Applied Macromolecular Chemistry, Institute of Polymer Science and Technology, Spanish National Research Council (ICTP-CSIC), Madrid, Spain
| | - Ana Matesanz
- Department of Bioengineering, Universidad Carlos III de Madrid (UC3M), Madrid, Spain
- Department of Electronic Technology, Universidad Carlos III de Madrid (UC3M), Madrid, Spain
| | - Alberto Gallardo
- Department of Applied Macromolecular Chemistry, Institute of Polymer Science and Technology, Spanish National Research Council (ICTP-CSIC), Madrid, Spain
| | - Helmut Reinecke
- Department of Applied Macromolecular Chemistry, Institute of Polymer Science and Technology, Spanish National Research Council (ICTP-CSIC), Madrid, Spain
| | - José Luis Jorcano
- Department of Bioengineering, Universidad Carlos III de Madrid (UC3M), Madrid, Spain
- Instituto de Investigación Sanitaria Gregorio Marañón, Madrid, Spain
| | - Pablo Acedo
- Department of Electronic Technology, Universidad Carlos III de Madrid (UC3M), Madrid, Spain
| | - Diego Velasco
- Department of Bioengineering, Universidad Carlos III de Madrid (UC3M), Madrid, Spain
- Instituto de Investigación Sanitaria Gregorio Marañón, Madrid, Spain
- Fundación Instituto de Investigación Sanitaria de la Fundación Jiménez Díaz, Madrid, Spain
| | - Carlos Elvira
- Department of Applied Macromolecular Chemistry, Institute of Polymer Science and Technology, Spanish National Research Council (ICTP-CSIC), Madrid, Spain
| |
Collapse
|
10
|
Lu H, Xiao L, Wang W, Li X, Ma Y, Zhang Y, Wang X. Fibrinolysis Regulation: A Promising Approach to Promote Osteogenesis. TISSUE ENGINEERING. PART B, REVIEWS 2022; 28:1192-1208. [PMID: 35442086 DOI: 10.1089/ten.teb.2021.0222] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Soon after bone fracture, the initiation of the coagulation cascade results in the formation of a blood clot, which acts as a natural material to facilitate cell migration and osteogenic differentiation at the fracture site. The existence of hematoma is important in early stage of bone healing, but the persistence of hematoma is considered harmful for bone regeneration. Fibrinolysis is recently regarded as a period of critical transition in angiogenic-osteogenic coupling, it thereby is vital for the complete healing of the bone. Moreover, the enhanced fibrinolysis is proposed to boost bone regeneration through promoting the formation of blood vessels, and fibrinolysis system as well as the products of fibrinolysis also play crucial roles in the bone healing process. Therefore, the purpose of this review is to elucidate the fibrinolysis-derived effects on osteogenesis and summarize the potential approaches-improving bone healing by regulating fibrinolysis, with the purpose to further understand the integral roles of fibrinolysis in bone regeneration and to provide theoretical knowledge for potential fibrinolysis-related osteogenesis strategies. Impact statement Fibrinolysis emerging as a new and viable therapeutic intervention to be contained within osteogenesis strategies, however to now, there have been no review articles which collates the information between fibrinolysis and osteogenesis. This review, therefore, focusses on the effects that fibrinolysis exerts on bone healing, with a purpose to provide theoretical reference to develop new strategies to modulate fibrinolysis to accelerate fibrinolysis thus enhancing bone healing.
Collapse
Affiliation(s)
- Haiping Lu
- Department of Orthopaedic Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou, China
| | - Lan Xiao
- School of Mechanical, Medical and Process Engineering, Center for Biomedical Technologies, Queensland University of Technology, Brisbane, Queensland, Australia.,The Australia-China Center for Tissue Engineering and Regenerative Medicine, Kelvin Grove, Brisbane, Queensland, Australia
| | - Weiqun Wang
- Department of Orthopaedic Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou, China
| | - Xuyan Li
- Department of Orthopaedic Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou, China
| | - Yaping Ma
- Department of Orthopaedic Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou, China
| | - Yi Zhang
- Department of Hygiene Toxicology, School of Public Health, Zunyi Medical University, Zunyi, Guizhou, China
| | - Xin Wang
- Department of Orthopaedic Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou, China.,School of Mechanical, Medical and Process Engineering, Center for Biomedical Technologies, Queensland University of Technology, Brisbane, Queensland, Australia.,The Australia-China Center for Tissue Engineering and Regenerative Medicine, Kelvin Grove, Brisbane, Queensland, Australia
| |
Collapse
|
11
|
Yakovlev S, Strickland DK, Medved L. Current View on the Molecular Mechanisms Underlying Fibrin(ogen)-Dependent Inflammation. Thromb Haemost 2022; 122:1858-1868. [PMID: 35896433 PMCID: PMC10680782 DOI: 10.1055/a-1910-4538] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
Abstract
Numerous studies have revealed the involvement of fibrinogen in the inflammatory response. To explain the molecular mechanisms underlying fibrinogen-dependent inflammation, two bridging mechanisms have been proposed in which fibrin(ogen) bridges leukocytes to endothelial cells. The first mechanism suggests that bridging occurs via the interaction of fibrinogen with the leukocyte receptor Mac-1 and the endothelial receptor ICAM-1 (intercellular adhesion molecule-1), which promotes leukocyte transmigration and enhances inflammation. The second mechanism includes bridging of leukocytes to the endothelium by fibrin degradation product E1 fragment through its interaction with leukocyte receptor CD11c and endothelial VE-cadherin to promote leukocyte transmigration. The role of E1 in promoting inflammation is inhibited by the fibrin-derived β15-42 fragment, and this has been suggested to result from its ability to compete for the E1-VE-cadherin interaction and to trigger signaling pathways through the src kinase Fyn. Our recent study revealed that the β15-42 fragment is ineffective in inhibiting the E1- or fibrin-VE-cadherin interaction, leaving the proposed signaling mechanism as the only viable explanation for the inhibitory function of β15-42. We have discovered that fibrin interacts with the very-low-density lipoprotein (VLDL) receptor, and this interaction triggers a signaling pathway that promotes leukocyte transmigration through inhibition of the src kinase Fyn. This pathway is inhibited by another pathway induced by the interaction of β15-42 with a putative endothelial receptor. In this review, we briefly describe the previously proposed molecular mechanisms underlying fibrin-dependent inflammation and their advantages/disadvantages and summarize our recent studies of the novel VLDL receptor-dependent pathway of leukocyte transmigration which plays an important role in fibrin-dependent inflammation.
Collapse
Affiliation(s)
- Sergiy Yakovlev
- Center for Vascular and Inflammatory Diseases, University of Maryland School of Medicine, Baltimore, Maryland, United States
- Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, Maryland, United States
| | - Dudley K. Strickland
- Center for Vascular and Inflammatory Diseases, University of Maryland School of Medicine, Baltimore, Maryland, United States
- Department of Physiology, University of Maryland School of Medicine, Baltimore, Maryland, United States
- Department of Surgery, University of Maryland School of Medicine, Baltimore, Maryland, United States
| | - Leonid Medved
- Center for Vascular and Inflammatory Diseases, University of Maryland School of Medicine, Baltimore, Maryland, United States
- Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, Maryland, United States
| |
Collapse
|
12
|
Forsberg U, Jonsson P, Stegmayr B. Microemboli induced by air bubbles may be deposited in organs as a consequence of contamination during medical care. Clin Kidney J 2022; 16:159-166. [PMID: 36726427 PMCID: PMC9871849 DOI: 10.1093/ckj/sfac217] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Background Larger volumes of accidental air infused during medical care may end up as emboli while microbubbles of air are supposed to be absorbed and cause no harm. The aim of this autopsy study was to investigate if microbubbles of air accidently entering the bloodline may be detected as microemboli (ME) in tissue such as lungs, brain and heart. If so, do differences in prevalence exist between haemodialysis (HD) and amyotrophic lateral sclerosis (ALS) patients. Methods Included were data from 44 patients treated by medical healthcare before death. Twenty-five cases had been treated with chronic HD and 19 cases died from ALS. Since air in the bloodline activates coagulation, ME could appear. To discriminate between microbubbles caused by artificial contamination during autopsy versus microbubbles deposited in vivo, tissues were stained with a polyclonal fluorescent antibody against fibrinogen, fibrin and fragments E and D. Fluorescence staining was used to visualize ME counted within 25 microscopic fields (600×) of a tissue preparation. One tissue preparation was used if available from the lung, heart and frontal lobe of the brain and in five cases also the cerebellum. Results Microbubbles can be verified at autopsy as ME in the lung, heart and brain in tissue from patients exposed to more extensive medical care. There were significantly more ME in the lungs versus the heart or brain. Women had fewer ME than men. The HD group had a higher median of ME per section than the ALS group (lung: 6 versus 3, P = .007; heart: 2.5 versus 1, P = .013; brain: 7.5 versus 2, P = .001) and had more sections with ME findings than the ALS group (P = .002). A correlation existed between the time on HD (months) and ME in the lungs. Conclusions More ME were present in HD patients compared with those who suffered from ALS. Minimizing air contamination from syringes, infusions and bloodlines will decrease ME and subsequent tissue injury.
Collapse
Affiliation(s)
| | - Per Jonsson
- Unit of Medicine, Umeå University, Umeå, Sweden
| | | |
Collapse
|
13
|
Application of Injectable, Crosslinked, Fibrin-Containing Hyaluronic Acid Scaffolds for In Vivo Remodeling. J Funct Biomater 2022; 13:jfb13030119. [PMID: 35997457 PMCID: PMC9396986 DOI: 10.3390/jfb13030119] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 08/10/2022] [Accepted: 08/11/2022] [Indexed: 11/17/2022] Open
Abstract
The present research aimed to characterize soft tissue implants that were prepared with the use of crosslinked hyaluronic acid (HA) using two different crosslinkers and multiple reagent concentrations, alone or in combination with fibrin. The effect of the implants was evaluated in an in vivo mouse model, after 4 weeks in one group and after 12 weeks in the other. The explants were compared using analytical methods, evaluating microscopic images, and a histology analysis. The kinetics of the degradation and remodeling of explants were found to be greatly dependent on the concentration and type of crosslinker; generally, divinyl sulfone (DVS) resists degradation more effectively compared to butanediol diglycidyl ether (BDDE). The presence of fibrin enhances the formation of blood vessels, and the infiltration of cells and extracellular matrix. In summary, if the aim is to create a soft tissue implant with easier degradation of the HA content, then the use of 2-5% BDDE is found to be optimal. For a longer degradation time, 5% DVS is the more suitable crosslinker. The use of fibrin was found to support the biological process of remodeling, while keeping the advances of HA in void filling, enabling the parallel degradation and remodeling processes.
Collapse
|
14
|
Yakovlev S, Medved L. Dual functions of the fibrin βN-domains in the VLDL receptor-dependent pathway of transendothelial migration of leukocytes. Thromb Res 2022; 214:1-7. [PMID: 35421681 PMCID: PMC10680947 DOI: 10.1016/j.thromres.2022.04.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 03/31/2022] [Accepted: 04/05/2022] [Indexed: 11/16/2022]
Abstract
Our previous studies revealed that fibrin interacts with the VLDL receptor (VLDLR) through a pair of its βN-domains and this interaction promotes transendothelial migration of leukocytes and, thereby, inflammation. In agreement, the NDSK-II fragment representing the central part of the fibrin molecule and containing these domains stimulates leukocyte transmigration. However, the recombinant (β15-66)2 fragment corresponding to a pair of the βN-domains inhibits NDSK-II-stimulated leukocyte transmigration. To explain this paradox, we hypothesized that fibrin βN-domains have dual function in fibrin-dependent inflammation, namely, their C-terminal regions containing the VLDLR-binding sites promote leukocyte transmigration while their N-terminal regions are responsible for inhibition of this process. To test this hypothesis and to further clarify the molecular mechanisms underlying fibrin-induced VLDLR-dependent pathway of leukocyte transmigration and its inhibition, we prepared the dimeric (β15-44)2 and (β40-66)2 fragments corresponding to the N- and C-terminal regions of the βN-domains and studied their effect on endothelial permeability and transendothelial migration of leukocytes. The results obtained revealed that (β40-66)2 bound to the VLDLR with high affinity and promoted endothelial permeability and leukocyte transmigration while (β15-44)2 did not interact with this receptor and had no effect on leukocyte transmigration, in agreement with our hypothesis. We also found that the first three N-terminal residues of the βN-domains play a critical role in the inhibitory properties of these domains. Further, the inhibitory properties of the βN-domains were expressed only upon their isolation from the fibrin molecule. The question of whether their inhibitory function may play a role in fibrin remains to be addressed.
Collapse
Affiliation(s)
- Sergiy Yakovlev
- Center for Vascular and Inflammatory Diseases and Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, MD, United States
| | - Leonid Medved
- Center for Vascular and Inflammatory Diseases and Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, MD, United States.
| |
Collapse
|
15
|
Xu H, Liu L, Xie J, Wang D, Huang Z, Wang W, Zhou Z. The Screening of Fixation-Related Infection in Patients Undergoing Conversion Total Hip Arthroplasty after Failed Internal Fixation of Hip Fractures: A Single-Central Retrospective Study. Orthop Surg 2022; 14:1167-1174. [PMID: 35582895 PMCID: PMC9163979 DOI: 10.1111/os.13225] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/10/2021] [Revised: 12/09/2021] [Accepted: 01/19/2022] [Indexed: 02/05/2023] Open
Abstract
Objective To evaluate the diagnostic values of preoperative plasma fibrinogen and platelet count for screening fixation‐related infection (FRI) in patients undergoing conversion total hip arthroplasty (cTHA) after failed internal fixation of hip fractures. Method This was a single‐center retrospective study. Data were retrospectively analyzed for 435 patients who underwent cTHA in our hospital from January 2008 to September 2020. They were divided into infected (n = 30) and non‐infected groups (n = 405) according to the 2013 International Consensus Meeting (ICM) criteria. The diagnostic sensitivity and specificity of plasma fibrinogen and platelet count were determined using receiver operating characteristic (ROC) curves. Optimal predictive cutoffs of these two markers were determined based on the Youden index. In addition, the diagnostic value of preoperative serum C‐reactive protein (CRP) and erythrocyte sedimentation rate (ESR) for screening FRI were also evaluated based on the cutoffs recommended by the 2013 ICM Criteria. Finally, the diagnostic ability of various combinations of the plasma fibrinogen and platelet count as well as serum CRP and ESR was re‐assessed. Results The numbers of patients with and without FRI were 30 (6.9%) and 405 (93.1%), respectively. Areas under the ROC curves were 0.770 for fibrinogen, 0.606 for platelet, 0.844 for CRP and 0.749 for ESR. The optimal predictive cutoff of fibrinogen was 3.73 g/L, which gave sensitivity of 60.0% and specificity of 90.5%. The optimal predictive cutoff for platelet was 241.5 × 109/L, which gave sensitivity of 46.7% and specificity of 83.7%. The CRP gave sensitivity of 66.7% and specificity of 92.5% with the predetermined cutoff of 10 mg/L, while the ESR gave sensitivity of 67.5% and specificity of 72.4% % with the predetermined cutoff of 30 mm/h. The combination of CRP and ESR showed high specificity of 93.2% but low sensitivity of 66.7%, while the corresponding values for CRP with fibrinogen were satisfied both for sensitivity of 80.0% and specificity of 78.7%. The combination of these four biomarkers gave sensitivity of 73.3% and specificity of 85.7%. Conclusion Preoperative serum CRP, ESR, plasma fibrinogen and platelet count have low sensitivity on their own for screening FRI in patients, but the combination of CRP with fibrinogen shows promise for that.
Collapse
Affiliation(s)
- Hong Xu
- Department of Orthopaedic Surgery, West China Hospital, Sichuan University, Chengdu, China
| | - Li Liu
- Department of Orthopaedic Surgery, West China Hospital, Sichuan University/ West China Hospital of Nursing, Sichuan University, Chengdu, China
| | - Jinwei Xie
- Department of Orthopaedic Surgery, West China Hospital, Sichuan University, Chengdu, China
| | - Duan Wang
- Department of Orthopaedic Surgery, West China Hospital, Sichuan University, Chengdu, China
| | - Zeyu Huang
- Department of Orthopaedic Surgery, West China Hospital, Sichuan University, Chengdu, China
| | - Wenqi Wang
- West China School of Medicine, Sichuan University, Chengdu, China
| | - Zongke Zhou
- Department of Orthopaedic Surgery, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
16
|
Liu C, Zhang Y, Niu L, Li J. High Level of the Fibrin Degradation Products at Admission Predicts Parenchymal Hematoma and Unfavorable Outcome of Ischemic Stroke After Intravenous Thrombolysis. Front Neurol 2022; 12:797394. [PMID: 35115995 PMCID: PMC8803633 DOI: 10.3389/fneur.2021.797394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Accepted: 12/20/2021] [Indexed: 12/01/2022] Open
Abstract
Background and Purpose We aim to investigate whether the higher admission fibrin degradation products (FDPs) levels are associated with parenchymal hematomas (PHs) and unfavorable outcome after intravenous thrombolysis (IVT). Methods Consecutive patients with acute ischemic stroke treated with IVT were studied. The FDP level was obtained on admission. PH was evaluated 24 h after treatment. The unfavorable outcome was defined as a 90-day modified Rankin Scale >2. The multivariable linear stepwise regression was used to assess independent factors associated with the log-transformed FDP (lgFDP). The receiver operating characteristics (ROCs) curve analysis was used to determine the predictive value of the FDP level for PH and unfavorable outcome. The logistic regression was used to identify independent predictors for PH and unfavorable outcome. The mediation analyses were performed to investigate associations among the FDP level, PH, and outcome. Results A total of 181 patients were included in the final analyses [median age, 73 (63–79) years; 102 (56.4%) males; and the median baseline National Institutes of Health Stroke Scale (NIHSS) score, 8 (5–15)]. The lgFDP was independently associated with age (B = 0.011, 95% CI 0.006–0.015, p < 0.001) and the baseline NIHSS score (B = 0.016, 95% CI 0.008–0.025, p < 0.001). The FDP was positively associated with PH [odds ratio (OR) 1.034, 95% CI 1.000–1.069; p = 0.047]. According to the ROC analysis, the best discriminating factor for unfavorable outcome was the FDP ≥3.085 μg/ml. The FDP ≥3.085 μg/ml was an independent predictor of unfavorable outcome (OR 7.086, 95% CI 2.818–17.822; p < 0.001). Mediation analysis revealed that the association of the FDP ≥3.085 μg/ml with unfavorable outcome was not mediated by PH (p = 0.161). Conclusion The admission FDP levels can predict PH and unfavorable outcome in patients with acute ischemic stroke after IVT. PH does not mediate the effect of the FDP level on the outcome.
Collapse
Affiliation(s)
- Chang Liu
- Department of Neurology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Yun Zhang
- Department of Neurology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Lingchuan Niu
- Department of Rehabilitation Medicine, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Jiani Li
- Department of Neurology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
- *Correspondence: Jiani Li
| |
Collapse
|
17
|
Lin G, Hu M, Song J, Xu X, Liu H, Qiu L, Zhu H, Xu M, Geng D, Yang L, Huang G, He J, Wang Z. High Fibrinogen to Albumin Ratio: A Novel Marker for Risk of Stroke-Associated Pneumonia? Front Neurol 2022; 12:747118. [PMID: 35095715 PMCID: PMC8792987 DOI: 10.3389/fneur.2021.747118] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Accepted: 12/14/2021] [Indexed: 11/13/2022] Open
Abstract
Background: Stroke-associated pneumonia (SAP) is associated with poor prognosis after acute ischemic stroke (AIS). Purpose: This study aimed to describe the parameters of coagulation function and evaluate the association between the fibrinogen-to-albumin ratio (FAR) and SAP in patients with AIS. Patients and methods: A total of 932 consecutive patients with AIS were included. Coagulation parameters were measured at admission. All patients were classified into two groups according to the optimal cutoff FAR point at which the sum of the specificity and sensitivity was highest. Propensity score matching (PSM) was performed to balance potential confounding factors. Univariate and multivariate logistic regression analyses were applied to identify predictors of SAP. Results: A total of 100 (10.7%) patients were diagnosed with SAP. The data showed that fibrinogen, FAR, and D-dimer, prothrombin time (PT), activated partial thromboplastin time (aPTT) were higher in patients with SAP, while albumin was much lower. Patients with SAP showed a significantly increased FAR when compared with non-SAP (P < 0.001). Patients were assigned to groups of high FAR (≥0.0977) and low FAR (<0.0977) based on the optimal cut-off value. Propensity score matching analysis further confirmed the association between FAR and SAP. After adjusting for confounding and risk factors, multivariate regression analysis showed that the high FAR (≥0.0977) was an independent variable predicting the occurrence of SAP (odds ratio =2.830, 95% CI = 1.654–4.840, P < 0.001). In addition, the FAR was higher in the severe pneumonia group when it was assessed by pneumonia severity index (P = 0.008). Conclusions: High FAR is an independent potential risk factor of SAP, which can help clinicians identify high-risk patients with SAP after AIS.
Collapse
Affiliation(s)
- Gangqiang Lin
- Department of Neurology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Minlei Hu
- Department of Neurology, The First Hospital of Jiaxing, Jiaxing, China
| | - Jiaying Song
- School of Mental Health, Wenzhou Medical University, Wenzhou, China
| | - Xueqian Xu
- Department of Neurology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Haiwei Liu
- Department of Neurology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Linan Qiu
- Department of Neurology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Hanyu Zhu
- Department of Neurology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Minjie Xu
- School of Mental Health, Wenzhou Medical University, Wenzhou, China
| | - Dandan Geng
- Department of Neurology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Lexuan Yang
- Department of Neurology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Guiqian Huang
- Department of Neurology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
- *Correspondence: Guiqian Huang
| | - Jincai He
- Department of Neurology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
- Jincai He
| | - Zhen Wang
- Department of Neurology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
- Zhen Wang
| |
Collapse
|
18
|
Al-Maawi S, Dohle E, Kretschmer W, Rutkowski JL, Sader R, Ghanaati S. A standardized g-force allows the preparation of similar PRF qualities regardless of rotor angle. Tissue Eng Part A 2021; 28:353-365. [PMID: 34555949 DOI: 10.1089/ten.tea.2021.0113] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Platelet rich fibrin (PRF) is an autologous blood concentrate, that supports tissue regeneration. The effect of the centrifuge rotor angle in the fabrication of PRF is still not fully elucidated. The hypothesis of this study is: When applying the same g-force {relative centrifugal force (RCF)} and centrifugation time, PRF components and bioactivity are not modified using either a swing-out or fixed angle rotor. For this purpose, peripheral blood samples (five donors )were used to gain solid matrices (710 xg, 8 minutes) and liquid (44 xg, 8 minutes) PRF matrices using three different centrifuges (one fixed angle as a control; and two different swingout rotor centrifuges). The physical characteristics of the solid PRF were measured to evaluate the clot formation and cellular distribution. Liquid PRF was used to evaluate the cell number, bioactivity and influence on primary human osteoblasts and fibroblasts in vitro. Solid PRF clots were significantly larger in the group of fixed rotor centrifuges compared to either of the two evaluated swing-out rotor centrifuges. No differences were observed when evaluating the cellular distribution within the solid No statistically significant differences were documented in the cell's density in liquid PRF samples (platelets, lymphocytes, neutrophils, eosinophils, and basophils) among the differently gained PRF samples. No statistically significant differences were documented for the released growth factors (VEGF, EGF, TGF-β1) over 7 days. Primary human osteoblasts (pOBs) and primary human fibroblasts (pHFs) viability after treatment with PRF conditioned media showed no statistically significant differences between the evaluated groups. However, the number of adherent cells treated with PRF obtained with the use of the fixed angle rotor was significantly higher when compared to those treated with PRF obtained by using the swing-out rotors. The presented results confirmed that regardless of the centrifuge rotor used, the components and bioactivity of solid and liquid PRF matrices are modified by the applied RCF and centrifugation time. These findings are of great importance for highlighting the essential role of adapting the centrifugation protocols when using different centrifuges and to correctly report the used centrifugation protocols in scientific research to allow for reproducible results.
Collapse
Affiliation(s)
- Sarah Al-Maawi
- Goethe-Universitat Frankfurt am Main, 9173, FORM, Frankfurt Oral Regenerative Medicine, Department for Oral, Cranio-Maxillofacial and Facial Plastic Surgery, Medical Center of the Goethe University, Frankfurt Am Main, Germany, Frankfurt am Main, Hessen, Germany;
| | - Eva Dohle
- Klinikum der Johann Wolfgang Goethe-Universitat Frankfurt, 14984, FORM, Frankfurt Oral Regenerative Medicine, Department for Oral, Cranio-Maxillofacial and Facial Plastic Surgery, Medical Center of the Goethe University, Frankfurt Am Main, Germany, Frankfurt am Main, Germany;
| | - Winfried Kretschmer
- Medius Clinic Ostfildern-Ruit, Ostfildern, Germany, Frankfurt am Main, United States;
| | - James L Rutkowski
- State University of New York at Buffalo, 12292, Buffalo, New York, United States.,Diocese of Salt Lake City Utah Catholic Schools, 190869, Salt Lake City, Utah, United States;
| | - Robert Sader
- Goethe-Universitat Frankfurt am Main, 9173, FORM, Frankfurt Oral Regenerative Medicine, Department for Oral, Cranio-Maxillofacial and Facial Plastic Surgery, Medical Center of the Goethe University, Frankfurt Am Main, Germany, Frankfurt am Main, Hessen, Germany;
| | - Shahram Ghanaati
- Goethe-Universitat Frankfurt am Main, 9173, Department for Oral, Cranio-Maxillofacial and Facial Plastic Surgery, Medical Center of the Goethe University, Frankfurt Am Main, Germany, Frankfurt am Main, Hessen, Germany;
| |
Collapse
|
19
|
Chausheva S, Redwan B, Sharma S, Marella N, Schossleitner K, Mueller AC, Petzelbauer P, Morris T, Lang IM. Synthetic Fibrin-Derived Bβ 15-42 Peptide Delays Thrombus Resolution in a Mouse Model. Arterioscler Thromb Vasc Biol 2021; 41:2168-2180. [PMID: 34078093 DOI: 10.1161/atvbaha.121.316404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
[Figure: see text].
Collapse
Affiliation(s)
- Stella Chausheva
- Division of Cardiology, Department of Internal Medicine II (S.C., S.S., I.M.L.), Medical University of Vienna, Austria
| | - Bassam Redwan
- Department of Thoracic Surgery, Klinik am Park, Klinikum Westfalen, Luenen, Germany (B.R.)
| | - Smriti Sharma
- Division of Cardiology, Department of Internal Medicine II (S.C., S.S., I.M.L.), Medical University of Vienna, Austria
| | - Nara Marella
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Austria (N.M., A.C.M.)
| | - Klaudia Schossleitner
- Skin and Endothelial Research Division, Department of Dermatology (K.S., P.P.), Medical University of Vienna, Austria
| | - André C Mueller
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Austria (N.M., A.C.M.)
| | - Peter Petzelbauer
- Skin and Endothelial Research Division, Department of Dermatology (K.S., P.P.), Medical University of Vienna, Austria
| | - Timothy Morris
- Division of Pulmonary and Critical Care Medicine, University of California San Diego (T.M.)
| | - Irene M Lang
- Division of Cardiology, Department of Internal Medicine II (S.C., S.S., I.M.L.), Medical University of Vienna, Austria
| |
Collapse
|
20
|
Zhang N, Sun J, Ji C, Zhou Y, Bao X, Yuan C. Clinical significance and influencing factors of fibrinogen in ANCA-associated vasculitis: A single-center retrospective study from Southwest China. Medicine (Baltimore) 2020; 99:e22424. [PMID: 32991476 PMCID: PMC7523770 DOI: 10.1097/md.0000000000022424] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/15/2020] [Revised: 08/02/2020] [Accepted: 08/26/2020] [Indexed: 11/29/2022] Open
Abstract
Hypercoagulable is an important pathological state in anti-neutrophil cytoplasmic antibody-associated vasculitis (AAV). Fibrinogen (FIB) is the main protein in coagulation process. In this study, we aimed to investigate the clinical significance and influencing factors of FIB in AAV from Southwest China.A retrospective study was performed on AAV patients from Peoples Hospital of Deyang City from January 2007 to December 2018. Demographic and clinical characteristics were collected.A total of 463 AAV patients were included. In Wilcoxon rank sum test, FIB was significantly higher in AAV active group than inactive group (P = .005). FIB was also higher in bacterial infection group than in non-infection group both in active group (P = .008) and inactive group (P = .017). In receiver operating characteristic (ROC) curve analysis, the critical value of FIB for diagnosis of bacterial infection between AAV active and inactive groups was 3.385 g/L (P = .030), with sensitivity of 70.2% and specificity of 52.9%. In the multivariate analysis of variance (MANOVA), estimated glomerular filtration rate (eGFR) was shown to be an independent factor for FIB (P = .001). Least-significant difference showed the concentration of FIB (P < .05) increased with renal impairment, especially in endstage kidney disease (ESKD).FIB identified a certain reference value in distinguishing AAV activity from bacterial infection. ESKD had a statistical effect on it. Influencing factors of FIB should be evaluated based on the renal function impairment of patients.
Collapse
Affiliation(s)
- Naidan Zhang
- Department of Clinical Laboratory, Peoples Hospital of Deyang City, Deyang
- Department of Clinical Laboratory, West China Hospital of Sichuan University, Chengdu
| | - Jiaxiang Sun
- Department of Clinical Laboratory, Peoples Hospital of Deyang City, Deyang
| | - Chaixia Ji
- Department of Clinical Laboratory, Peoples Hospital of Deyang City, Deyang
| | - Yusha Zhou
- Department of Clinical Laboratory, Peoples Hospital of Deyang City, Deyang
| | - Xiao Bao
- Department of Rheumatology, Peoples Hospital of Deyang City, Deyang, China
| | - Chengliang Yuan
- Department of Clinical Laboratory, Peoples Hospital of Deyang City, Deyang
| |
Collapse
|
21
|
Chen YJ, Wang X, Zhang HY, Du YN, Jin XJ, Zhang ZF. Inverse association between bone mineral density and fibrinogen in menopausal women. Climacteric 2020; 24:146-150. [PMID: 32602367 DOI: 10.1080/13697137.2020.1776249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
OBJECTIVE Inflammatory diseases are risk factors for osteoporosis. We aimed to explore whether fibrinogen, which is linked to chronic inflammation, is associated with bone mineral density (BMD) in menopausal women. METHODS In this cross-sectional study, we analyzed 339 menopausal women from Zhejiang Province between January 2016 and October 2019. Linear regression analysis was performed to assess the relationship between fibrinogen and BMD. RESULTS Significant inverse association was observed between the serum fibrinogen level and BMD in menopausal women. The mean BMD in each quartile of fibrinogen level was 0.901, 0.897, 0.892, and 0.855 g/cm2, respectively (p = 0.027). After adjusting for age, body mass index, metabolic profiles, blood inflammatory factors, and serum levels of estradiol, calcium, phosphorus, and alkaline phosphatase, fibrinogen levels remained significantly associated with BMD (regression coefficients for quartiles 1-3 vs. quartile 4 were 0.046, 0.027, and 0.036, respectively; p for trend <0.05). CONCLUSIONS Higher fibrinogen levels were associated with lower BMD in menopausal women, which was independent of age, body mass index, estradiol, and other factors. Therefore, serum fibrinogen can be used as a new predictor of reduced BMD in menopausal women.
Collapse
Affiliation(s)
- Y J Chen
- Department of fourth Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, China
| | - X Wang
- Nanjing Medical University, Nanjing, China
| | - H Y Zhang
- Department of Obstetrics and Gynecology, Hangzhou Women's Hospital, Hangzhou, China
| | - Y N Du
- Nanjing Medical University, Nanjing, China
| | - X J Jin
- Department of Obstetrics and Gynecology, Hangzhou Women's Hospital, Hangzhou, China
| | - Z F Zhang
- Department of fourth Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, China.,Nanjing Medical University, Nanjing, China.,Department of Obstetrics and Gynecology, Hangzhou Women's Hospital, Hangzhou, China
| |
Collapse
|
22
|
Hoppe B, Schwedler C, Edelmann A, Pistioli A, Poddubnyy D, Burmester GR, Häupl T. Fibrinogen, factor XIII and α 2-antiplasmin genotypes are associated with inflammatory activity and anti-citrullinated protein antibodies. Thromb Res 2020; 191:90-96. [PMID: 32408093 DOI: 10.1016/j.thromres.2020.04.043] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2020] [Revised: 03/07/2020] [Accepted: 04/29/2020] [Indexed: 12/17/2022]
Abstract
BACKGROUND Fibrin(ogen) derivatives, crosslinked fibrin and fibrinolysis play important roles in inflammation and are involved in pathogenesis of rheumatoid arthritis (RA). About 2/3 of RA patients exhibit anti-citrullinated protein antibodies (ACPA) that target deiminated fibrinogen. Genetic variants of β-fibrinogen (FGB) (rs1800790G>A) and factor XIII A-subunit (F13A) Val34Leu (rs5985) are known to influence interactively inflammatory processes. It is hypothesized that predisposition for dense fibrin clots is related to better inflammation control. METHODS To test this hypothetical model a cohort of 924 patients (288 RA and 636 non-RA patients) (3545 observations) was genotyped for FGB (rs1800790G>A, rs1800788C>T), α-fibrinogen (FGA) (rs6050A>G, rs2070006G>A, rs2070016T>C), γ-fibrinogen (FGG) (rs1049636T>C), F13A Val34Leu (rs5985) and α2-antiplasmin (A2AP) Arg6Trp (rs2070863). Genotype constellations potentially predisposing for dense fibrin clots were defined and their relation to inflammatory activity as measured by C-reactive protein (CRP) and disease activity score of 28 joints (DAS28) was assessed in univariate and multivariate analyses. The relation of these genotype constellations with presence of ACPA was tested. RESULTS Genotype constellations involving FGB rs1800790G>A and FGA rs2070016T>C were inversely associated with CRP levels (≥10 mg/L) (OR: 0.49, P < 10-8/7adj = 0.0001; OR: 0.52, P < 0.0005/Padj = 0.01). In RA, both genotype constellations were observed with higher frequencies of low disease activity (DAS28 ≤ 3.2) (OR: 2.66, P = .009; OR 2.78, P = .01) and lower frequencies of high disease activity (DAS28>5.1) (OR: 0.52, P < .03, OR: 0.42, P = .01). Associations with CRP depended on A2AP 6Arg/Arg genotype known to be necessary for optimal anti-fibrinolytic capacity (P = .001). Finally, Genotype constellations involving FGB rs1800790G>A and FGA rs2070016T>C were found to be associated with ACPA-positivity in RA (OR: 2.18, P < .03; OR: 1.95, P = .09). CONCLUSIONS These results support the hypothesis that genotypes, which increase fibrin clot density and anti-fibrinolytic capacity, reduce inflammatory activity and are related to humoral autoimmunity in RA.
Collapse
Affiliation(s)
- Berthold Hoppe
- Institute of Laboratory Medicine, BG Klinikum Unfallkrankenhaus Berlin gGmbH, Warener Straße 7, 12683 Berlin, Germany; Institute of Laboratory Medicine, Clinical Chemistry and Pathobiochemistry, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Augustenburger Platz 1, 13353 Berlin, Germany.
| | - Christian Schwedler
- Institute of Laboratory Medicine, Clinical Chemistry and Pathobiochemistry, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Augustenburger Platz 1, 13353 Berlin, Germany
| | - Anke Edelmann
- Department of Molecular Diagnostics, Labor Berlin - Charité Vivantes GmbH, Sylter Straße 2, 13353 Berlin, Germany
| | - Anneta Pistioli
- Institute of Laboratory Medicine, BG Klinikum Unfallkrankenhaus Berlin gGmbH, Warener Straße 7, 12683 Berlin, Germany
| | - Denis Poddubnyy
- Department of Gastroenterology, Infectious Diseases and Rheumatology, Charité - Universitätsmedizin Berlin, Campus Benjamin Franklin, Hindenburgdamm 30, 12203 Berlin, Germany; Epidemiology Unit, German Rheumatism Research Centre, Berlin, Charité-Platz 1, 10117 Berlin, Germany
| | - Gerd-Rüdiger Burmester
- Department of Rheumatology and Clinical Immunology, Charité - Universitätsmedizin Berlin, Campus Charité Mitte, Charité-Platz 1, 10117 Berlin, Germany
| | - Thomas Häupl
- Department of Rheumatology and Clinical Immunology, Charité - Universitätsmedizin Berlin, Campus Charité Mitte, Charité-Platz 1, 10117 Berlin, Germany
| |
Collapse
|
23
|
Abstract
Two BβN-domains of fibrinogen are formed by the N-terminal portions of its two Bβ chains including amino acid residues Bβ1-65. Although their folding status is not well understood and the recombinant disulfide-linked (Bβ1-66)2 fragment corresponding to a pair of these domains was found to be unfolded, some data suggest that these domains may be folded in the parent molecule. In contrast, their major functional properties are well established. Removal of fibrinopeptides B (amino acid residues Bβ1-14) from these domains upon fibrinogen to fibrin conversion results in the exposure of multiple binding sites in fibrin βN-domains (residues β15-65). These sites provide interactions of the βN-domains with different proteins and cells and their participation in various physiological and pathological processes including fibrin assembly, fibrin-dependent angiogenesis, and fibrin-dependent leukocyte transmigration and thereby inflammation. The major goal of the present review is to summarize current view on the structure and function of these domains in fibrinogen and fibrin and their role in the above-mentioned processes.
Collapse
Affiliation(s)
- Leonid Medved
- Center for Vascular and Inflammatory Diseases and Departments of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, MD, U.S.A
| | - Sergiy Yakovlev
- Center for Vascular and Inflammatory Diseases and Departments of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, MD, U.S.A
| |
Collapse
|
24
|
Ling J, Blair CM, Baillie GS. Fibrin Breakdown Assay. Bio Protoc 2020; 10:e3585. [PMID: 33659554 DOI: 10.21769/bioprotoc.3585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2019] [Revised: 02/13/2020] [Accepted: 02/24/2020] [Indexed: 11/02/2022] Open
Abstract
Fibrinolysis is an integral part of the matrix remodeling process that contributes to tissue repair. Fibrin clots are broken down during fibrinolysis in a controlled process. Fibrin degradation products (FDPs) have also been shown to have a role in the regulation of cell growth and are implicated in various vascular diseases. This protocol was designed to quantitatively measure the extent of fibrin breakdown and how this can be adapted as a tool to further investigate the pathway involved in fibrinolysis or fibrin degradation products. Until now, we haven't found an alternative method to analysis fibrinolysis.
Collapse
Affiliation(s)
- Jiayue Ling
- Institute of Cardiovascular and Medical Sciences, University of Glasgow, Glasgow G12 8QQ, UK
| | - Connor M Blair
- Institute of Cardiovascular and Medical Sciences, University of Glasgow, Glasgow G12 8QQ, UK
| | - George S Baillie
- Institute of Cardiovascular and Medical Sciences, University of Glasgow, Glasgow G12 8QQ, UK
| |
Collapse
|
25
|
Fibrin as a Multipurpose Physiological Platform for Bone Tissue Engineering and Targeted Delivery of Bioactive Compounds. Pharmaceutics 2019; 11:pharmaceutics11110556. [PMID: 31661853 PMCID: PMC6920828 DOI: 10.3390/pharmaceutics11110556] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Revised: 10/18/2019] [Accepted: 10/18/2019] [Indexed: 12/14/2022] Open
Abstract
Although bone graft is still considered as the gold standard method, bone tissue engineering offers promising alternatives designed to mimic the extracellular matrix (ECM) and to guide bone regeneration process. In this attempt, due to their similarity to the ECM and their low toxicity/immunogenicity properties, growing attention is paid to natural polymers. In particular, considering the early critical role of fracture hematoma for bone healing, fibrin, which constitutes blood clot, is a candidate of choice. Indeed, in addition to its physiological roles in bone healing cascade, fibrin biochemical characteristics make it suitable to be used as a multipurpose platform for bioactive agents’ delivery. Thus, taking advantage of these key assets, researchers and clinicians have the opportunity to develop composite systems that might further improve bone tissue reconstruction, and more generally prevent/treat skeletal disorders.
Collapse
|
26
|
Cheng F, Zeng C, Zeng L, Chen Y. Clinicopathological and prognostic value of preoperative plasma fibrinogen in gastric cancer patients: A meta-analysis. Medicine (Baltimore) 2019; 98:e17310. [PMID: 31577724 PMCID: PMC6783169 DOI: 10.1097/md.0000000000017310] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Increasing evidence has revealed that plasma fibrinogen may serve as a prognostic indicator in multiple malignancies. However, there have been some conflicting findings on the prognostic value of plasma fibrinogen in gastric cancer (GC). We conducted a meta-analysis to explore the correlation between plasma fibrinogen and clinic outcome in GC. METHODS A comprehensive literature search was conducted using the Embase, the Web of Science, the Cochrane library, and PubMed databases. Combined hazard ratios (HRs) and odds ratios (ORs) with 95% confidence intervals (CIs) were used to investigate the impact of elevated plasma fibrinogen on the prognosis and clinicopathological features of patients with GC. RESULTS A total of 11 studies involving 8315 patients were selected for this meta-analysis. The pooled results suggested that elevated plasma fibrinogen in GC patients was related to worse overall survival (OS) (HR = 1.57, 95% CI: 1.36-1.81, P < .001) and recurrence-free survival (RFS) (HR = 2.54; 95% CI: 1.19-5.41, P = .016). Additionally, a high level of fibrinogen was closely correlated with advanced tumor stage (OR = 2.14, 95% CI: 1.83-2.50, P < .001), lymph node metastasis (OR = 1.81, 95% CI: 1.56-2.11, P < .001), distant metastasis (OR = 1.48, 95% CI: 1.12-1.94, P = .005), deeper tumor invasion (OR = 2.25, 95% CI: 1.47-3.45, P < .001) and high carcinoembryonic antigen (OR = 1.41, 95% CI: 1.18-1.68, P < .001). However, there was no significant association between plasma fibrinogen and the differentiation grade (OR = 1.00, 95% CI: 0.86-1.17, P = .967). The Egger regression test indicated evidence of publication bias for OS. CONCLUSION Elevated plasma fibrinogen could be a potential predictor for worse OS and RFS in GC patients and a significant risk factor associated with aggressive clinical features.
Collapse
|
27
|
García-García A, Martin I. Extracellular Matrices to Modulate the Innate Immune Response and Enhance Bone Healing. Front Immunol 2019; 10:2256. [PMID: 31616429 PMCID: PMC6764079 DOI: 10.3389/fimmu.2019.02256] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Accepted: 09/06/2019] [Indexed: 01/10/2023] Open
Abstract
Extracellular matrices (ECMs) have emerged as promising off-the-shelf products to induce bone regeneration, with the capacity not only to activate osteoprogenitors, but also to influence the immune response. ECMs generated starting from living cells such as mesenchymal stromal cells (MSCs) have the potential to combine advantages of native tissue-derived ECMs (e.g., physiological presentation of multiple regulatory factors) with those of synthetic ECMs (e.g., customization and reproducibility of composition). MSC-derived ECMs could be tailored by enrichment not only in osteogenic cytokines, but also in immunomodulatory factors, to skew the innate immune response toward regenerative processes. After reviewing the different immunoregulatory properties of ECM components, here we propose different approaches to engineer ECMs enriched in factors capable to regulate macrophage polarization, recruit host immune and mesenchymal cells, and stimulate the synthesis of other immunoinstructive cytokines. Finally, we offer a perspective on the possible evolution of the paradigm based on biological and chemico-physical design considerations, and the use of gene editing approaches.
Collapse
Affiliation(s)
- Andrés García-García
- Tissue Engineering, Department of Biomedicine, University Hospital Basel, University of Basel, Basel, Switzerland
| | - Ivan Martin
- Tissue Engineering, Department of Biomedicine, University Hospital Basel, University of Basel, Basel, Switzerland
| |
Collapse
|
28
|
Yakovlev S, Cao C, Galisteo R, Zhang L, Strickland DK, Medved L. Fibrin-VLDL Receptor-Dependent Pathway Promotes Leukocyte Transmigration by Inhibiting Src Kinase Fyn and is a Target for Fibrin β15-42 Peptide. Thromb Haemost 2019; 119:1816-1826. [PMID: 31466086 DOI: 10.1055/s-0039-1695008] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
According to the current view, binding of fibrin degradation product E1 fragment to endothelial VE-cadherin promotes transendothelial migration of leukocytes and thereby inflammation, and fibrin-derived β15-42 peptide reduces leukocyte transmigration by competing with E1 for binding to VE-cadherin and, in addition, by signaling through Src kinase Fyn. However, the very low affinity of β15-42 to VE-cadherin raised a question about its ability to inhibit E1-VE-cadherin interaction. Further, our previous study revealed that fibrin promotes leukocyte transmigration through the very-low-density lipoprotein (VLDL) receptor (VLDLR)-dependent pathway and suggested a possible link between the inhibitory properties of β15-42 and this pathway. To test such a link and the proposed inhibitory mechanisms for β15-42, we performed in vitro experiments using surface plasmon resonance, enzyme-linked immunosorbent assay, and leukocyte transendothelial migration assay, and in vivo studies with wild-type and VLDLR-deficient mice using mouse model of peritonitis. The experiments revealed that β15-42 cannot inhibit E1-VE-cadherin interaction at the concentrations used in the previous in vivo studies leaving the proposed Fyn-dependent signaling mechanism as a viable explanation for the inhibitory effect of β15-42. While testing this mechanism, we confirmed that Fyn plays a critical role in controlling fibrin-induced transendothelial migration of leukocytes and found that signaling through the VLDLR-dependent pathway results in inhibition of Fyn, thereby increasing leukocyte transmigration. Furthermore, our in vivo experiments revealed that β15-42 inhibits this pathway, thereby preventing inhibition of Fyn and reducing leukocyte transmigration. Thus, this study clarifies the molecular mechanism underlying the VLDLR-dependent pathway of leukocyte transmigration and reveals that this pathway is a target for β15-42.
Collapse
Affiliation(s)
- Sergiy Yakovlev
- Center for Vascular and Inflammatory Diseases, University of Maryland School of Medicine, Baltimore, Maryland, United States.,Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, Maryland, United States
| | - Chunzhang Cao
- Center for Vascular and Inflammatory Diseases, University of Maryland School of Medicine, Baltimore, Maryland, United States.,Department of Physiology, University of Maryland School of Medicine, Baltimore, Maryland, United States
| | - Rebeca Galisteo
- Center for Vascular and Inflammatory Diseases, University of Maryland School of Medicine, Baltimore, Maryland, United States
| | - Li Zhang
- Center for Vascular and Inflammatory Diseases, University of Maryland School of Medicine, Baltimore, Maryland, United States.,Department of Physiology, University of Maryland School of Medicine, Baltimore, Maryland, United States
| | - Dudley K Strickland
- Center for Vascular and Inflammatory Diseases, University of Maryland School of Medicine, Baltimore, Maryland, United States.,Department of Physiology, University of Maryland School of Medicine, Baltimore, Maryland, United States.,Department of Surgery, University of Maryland School of Medicine, Baltimore, Maryland, United States
| | - Leonid Medved
- Center for Vascular and Inflammatory Diseases, University of Maryland School of Medicine, Baltimore, Maryland, United States.,Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, Maryland, United States
| |
Collapse
|
29
|
Huang Q, Geng Z, Chen T, Cheng X, Gu H, Li Q, Li D, Liu R. Comparative proteomic analysis of plasma of children with congenital heart disease. Electrophoresis 2019; 40:1848-1854. [DOI: 10.1002/elps.201900098] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Revised: 05/03/2019] [Accepted: 05/06/2019] [Indexed: 12/12/2022]
Affiliation(s)
- Qiong Huang
- The First Affiliated HospitalNanjing Medical University Nanjing P. R. China
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrializationand National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative MedicineNanjing University of Chinese Medicine Nanjing P. R. China
| | - Zhi Geng
- Cardiovascular Center of the Second Affiliated Hospital of Nanjing Medical University Nanjing P. R. China
| | - Tao Chen
- The First Affiliated HospitalNanjing Medical University Nanjing P. R. China
| | - Xiangjun Cheng
- The First Affiliated HospitalNanjing Medical University Nanjing P. R. China
| | - Haitao Gu
- The First Affiliated HospitalNanjing Medical University Nanjing P. R. China
| | - Qingguo Li
- Cardiovascular Center of the Second Affiliated Hospital of Nanjing Medical University Nanjing P. R. China
| | - Dianfu Li
- The First Affiliated HospitalNanjing Medical University Nanjing P. R. China
| | - Rui Liu
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrializationand National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative MedicineNanjing University of Chinese Medicine Nanjing P. R. China
| |
Collapse
|
30
|
Rowley AT, Nagalla RR, Wang S, Liu WF. Extracellular Matrix-Based Strategies for Immunomodulatory Biomaterials Engineering. Adv Healthc Mater 2019; 8:e1801578. [PMID: 30714328 DOI: 10.1002/adhm.201801578] [Citation(s) in RCA: 121] [Impact Index Per Article: 20.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2018] [Revised: 01/08/2019] [Indexed: 12/14/2022]
Abstract
The extracellular matrix (ECM) is a complex and dynamic structural scaffold for cells within tissues and plays an important role in regulating cell function. Recently it has become appreciated that the ECM contains bioactive motifs that can directly modulate immune responses. This review describes strategies for engineering immunomodulatory biomaterials that utilize natural ECM-derived molecules and have the potential to harness the immune system for applications ranging from tissue regeneration to drug delivery. A top-down approach utilizes full-length ECM proteins, including collagen, fibrin, or hyaluronic acid-based materials, as well as matrices derived from decellularized tissue. These materials have the benefit of maintaining natural conformation and structure but are often heterogeneous and encumber precise control. By contrast, a bottom-up approach leverages immunomodulatory domains, such as Arg-Gly-Asp (RGD), matrix metalloproteinase (MMP)-sensitive peptides, or leukocyte-associated immunoglobulin-like receptor-1(LAIR-1) ligands, by incorporating them into synthetic materials. These materials have tunable control over immune cell functions and allow for combinatorial approaches. However, the synthetic approach lacks the full natural context of the original ECM protein. These two approaches provide a broad range of engineering techniques for immunomodulation through material interactions and hold the potential for the development of future therapeutic applications.
Collapse
Affiliation(s)
- Andrew T. Rowley
- Department of Chemical and Biomolecular EngineeringUniversity of California Irvine CA 92697 USA
| | - Raji R. Nagalla
- Department of Biomedical EngineeringUniversity of California Irvine CA 92697 USA
| | - Szu‐Wen Wang
- Department of Chemical and Biomolecular EngineeringUniversity of California Irvine CA 92697 USA
- Department of Biomedical EngineeringUniversity of California Irvine CA 92697 USA
- Department of Materials Science and EngineeringUniversity of California Irvine CA 92697 USA
| | - Wendy F. Liu
- Department of Chemical and Biomolecular EngineeringUniversity of California Irvine CA 92697 USA
- Department of Biomedical EngineeringUniversity of California Irvine CA 92697 USA
- The Edwards Lifesciences Center for Advanced Cardiovascular TechnologyUniversity of California Irvine CA 92697 USA
| |
Collapse
|
31
|
Luyendyk JP, Schoenecker JG, Flick MJ. The multifaceted role of fibrinogen in tissue injury and inflammation. Blood 2019; 133:511-520. [PMID: 30523120 PMCID: PMC6367649 DOI: 10.1182/blood-2018-07-818211] [Citation(s) in RCA: 336] [Impact Index Per Article: 56.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2018] [Accepted: 11/26/2018] [Indexed: 02/08/2023] Open
Abstract
The canonical role of the hemostatic and fibrinolytic systems is to maintain vascular integrity. Perturbations in either system can prompt primary pathological end points of hemorrhage or thrombosis with vessel occlusion. However, fibrin(ogen) and proteases controlling its deposition and clearance, including (pro)thrombin and plasmin(ogen), have powerful roles in driving acute and reparative inflammatory pathways that affect the spectrum of tissue injury, remodeling, and repair. Indeed, fibrin(ogen) deposits are a near-universal feature of tissue injury, regardless of the nature of the inciting event, including injuries driven by mechanical insult, infection, or immunological derangements. Fibrin can modify multiple aspects of inflammatory cell function by engaging leukocytes through a variety of cellular receptors and mechanisms. Studies on the role of coagulation system activation and fibrin(ogen) deposition in models of inflammatory disease and tissue injury have revealed points of commonality, as well as context-dependent contributions of coagulation and fibrinolytic factors. However, there remains a critical need to define the precise temporal and spatial mechanisms by which fibrinogen-directed inflammatory events may dictate the severity of tissue injury and coordinate the remodeling and repair events essential to restore normal organ function. Current research trends suggest that future studies will give way to the identification of novel hemostatic factor-targeted therapies for a range of tissue injuries and disease.
Collapse
Affiliation(s)
- James P Luyendyk
- Department of Pathobiology and Diagnostic Investigation
- Department of Pharmacology and Toxicology, and
- Institute for Integrative Toxicology, Michigan State University, East Lansing, MI
| | - Jonathan G Schoenecker
- Department of Orthopaedics
- Department of Pharmacology
- Department of Pediatrics, and
- Department of Pathology, Vanderbilt University Medical Center, Nashville, TN; and
| | - Matthew J Flick
- Division of Experimental Hematology and Cancer Biology, Cancer and Blood Diseases Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, OH
| |
Collapse
|
32
|
Cheng P, Li D, Gao Y, Cao T, Jiang H, Wang J, Li J, Zhang S, Song Y, Liu B, Wang C, Yang L, Pei G. Prevascularization promotes endogenous cell-mediated angiogenesis by upregulating the expression of fibrinogen and connective tissue growth factor in tissue-engineered bone grafts. Stem Cell Res Ther 2018; 9:176. [PMID: 29973254 PMCID: PMC6030739 DOI: 10.1186/s13287-018-0925-y] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2018] [Revised: 05/29/2018] [Accepted: 06/13/2018] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Vascularization is one of the most important processes in tissue-engineered bone graft (TEBG)-mediated regeneration of large segmental bone defects. We previously showed that prevascularization of TEBGs promoted capillary vessel formation within the defected site and accelerated new bone formation. However, the precise mechanisms and contribution of endogenous cells were not explored. METHODS We established a large defect (5 mm) model in the femur of EGFP+ transgenic rats and implanted a β-tricalcium phosphate (β-TCP) scaffold seeded with exogenous EGFP- cells; the femoral vascular bundle was inserted into the scaffold before implantation in the prevascularized TEBG group. Histopathology and scanning electron microscopy were performed and connective tissue growth factor (CTGF) and fibrin expression, exogenous cell survival, endogenous cell migration and behavior, and collagen type I and III deposition were assessed at 1 and 4 weeks post implantation. RESULTS We found that the fibrinogen content can be increased at the early stage of vascular bundle transplantation, forming a fibrin reticulate structure and tubular connections between pores of β-TCP material, which provides a support for cell attachment and migration. Meanwhile, CTGF expression is increased, and more endogenous cells can be recruited and promote collagen synthesis and angiogenesis. By 4 weeks post implantation, the tubular connections transformed into von Willebrand factor-positive capillary-like structures with deposition of type III collagen, and accelerated angiogenesis of endogenous cells. CONCLUSIONS These findings demonstrate that prevascularization promotes the recruitment of endogenous cells and collagen deposition by upregulating fibrinogen and CTGF, directly resulting in new blood vessel formation. In addition, this molecular mechanism can be used to establish fast-acting angiogenesis materials in future clinical applications.
Collapse
Affiliation(s)
- Pengzhen Cheng
- Institute of Orthopedic Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, People's Republic of China
| | - Donglin Li
- Institute of Orthopedic Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, People's Republic of China.,Hospital 463 of People's Liberation Army, Shenyang, 110042, People's Republic of China
| | - Yi Gao
- Institute of Orthopedic Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, People's Republic of China
| | - Tianqing Cao
- Institute of Orthopedic Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, People's Republic of China
| | - Huijie Jiang
- Institute of Orthopedic Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, People's Republic of China
| | - Jimeng Wang
- Institute of Orthopedic Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, People's Republic of China.,Department of Orthopedics, The 251st Hospital of PLA, Zhangjiakou, 075000, China
| | - Junqin Li
- Institute of Orthopedic Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, People's Republic of China
| | - Shuaishuai Zhang
- Institute of Orthopedic Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, People's Republic of China
| | - Yue Song
- Institute of Orthopedic Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, People's Republic of China
| | - Bin Liu
- Institute of Orthopedic Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, People's Republic of China
| | - Chunmei Wang
- Institute of Orthopedic Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, People's Republic of China
| | - Liu Yang
- Institute of Orthopedic Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, People's Republic of China.
| | - Guoxian Pei
- Institute of Orthopedic Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, People's Republic of China.
| |
Collapse
|
33
|
Fibrin opens the "gate" for leukocytes in the endothelium. Thromb Res 2017; 162:101-103. [PMID: 29249275 DOI: 10.1016/j.thromres.2017.12.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2017] [Accepted: 12/11/2017] [Indexed: 11/22/2022]
|