1
|
Mereweather LJ, Harwood D, Ahnström J, van Batenburg-Sherwood J, Salles-Crawley II, Crawley JTB. Role of von Willebrand factor (VWF), platelets, and aberrant flow in the initiation of venous thrombosis. SCIENCE ADVANCES 2025; 11:eadr5250. [PMID: 39908367 PMCID: PMC11797557 DOI: 10.1126/sciadv.adr5250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Accepted: 01/03/2025] [Indexed: 02/07/2025]
Abstract
Deep vein thrombosis is a major cause of morbidity and mortality worldwide. However, because of the absence of overt blood vessel damage, how venous thrombosis is actually initiated remains unclear. Using endothelialized fluidic devices, we show that aberrant flow patterns that may occur in venous valve pockets of individuals with common stasis-related risk factors can cause the formation of von Willebrand factor-platelet tangles that are resistant to ADAMTS13 removal. These von Willebrand factor-bound platelets specifically recruit neutrophils in a manner that is dependent on platelet-activated αIIbβ3, neutrophil SLC44A2, and endothelial P-selectin. The interaction of SLC44A2 with activated αIIbβ3 promotes formation of prothrombotic neutrophil extracellular traps. These data provide molecular and cellular insights into the proclivity for venous thrombosis to develop in venous valve pockets and suggest an alternative strategy to protect against the initiation of venous thrombosis.
Collapse
Affiliation(s)
- Laura J. Mereweather
- Centre for Haematology, Department of Immunology and Inflammation, Hammersmith Hospital Campus, Imperial College London, London, UK
| | - Daniel Harwood
- Department of Bioengineering, White City Campus, Imperial College London, London, UK
| | - Josefin Ahnström
- Centre for Haematology, Department of Immunology and Inflammation, Hammersmith Hospital Campus, Imperial College London, London, UK
| | | | - Isabelle I. Salles-Crawley
- Centre for Haematology, Department of Immunology and Inflammation, Hammersmith Hospital Campus, Imperial College London, London, UK
- Cardiovascular and Genomics Research Institute, School of Health and Medical Sciences, City St George’s University of London, London, UK
| | - James T. B. Crawley
- Centre for Haematology, Department of Immunology and Inflammation, Hammersmith Hospital Campus, Imperial College London, London, UK
| |
Collapse
|
2
|
Kumar R, Patil G, Dayal S. NLRP3-Induced NETosis: A Potential Therapeutic Target for Ischemic Thrombotic Diseases? Cells 2023; 12:2709. [PMID: 38067137 PMCID: PMC10706381 DOI: 10.3390/cells12232709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 11/22/2023] [Accepted: 11/24/2023] [Indexed: 12/18/2023] Open
Abstract
Ischemic thrombotic disease, characterized by the formation of obstructive blood clots within arteries or veins, is a condition associated with life-threatening events, such as stroke, myocardial infarction, deep vein thrombosis, and pulmonary embolism. The conventional therapeutic strategy relies on treatments with anticoagulants that unfortunately pose an inherent risk of bleeding complications. These anticoagulants primarily target clotting factors, often overlooking upstream events, including the release of neutrophil extracellular traps (NETs). Neutrophils are integral components of the innate immune system, traditionally known for their role in combating pathogens through NET formation. Emerging evidence has now revealed that NETs contribute to a prothrombotic milieu by promoting platelet activation, increasing thrombin generation, and providing a scaffold for clot formation. Additionally, NET components enhance clot stability and resistance to fibrinolysis. Clinical and preclinical studies have underscored the mechanistic involvement of NETs in the pathogenesis of thrombotic complications, since the clots obtained from patients and experimental models consistently exhibit the presence of NETs. Given these insights, the inhibition of NETs or NET formation is emerging as a promising therapeutic approach for ischemic thrombotic diseases. Recent investigations also implicate a role for the nucleotide-binding oligomerization domain (NOD)-like receptor family pyrin domain-containing 3 (NLRP3) inflammasome as a mediator of NETosis and thrombosis, suggesting that NLRP3 inhibition may also hold potential for mitigating thrombotic events. Therefore, future preclinical and clinical studies aimed at identifying and validating NLRP3 inhibition as a novel therapeutic intervention for thrombotic disorders are imperative.
Collapse
Affiliation(s)
- Rahul Kumar
- Department of Internal Medicine, University of Iowa Carver College of Medicine, Iowa City, IA 52242, USA; (R.K.); (G.P.)
- Department of Biotechnology, GITAM School of Sciences, GITAM (Deemed to be) University, Visakhapatnam 530045, India
| | - Gokul Patil
- Department of Internal Medicine, University of Iowa Carver College of Medicine, Iowa City, IA 52242, USA; (R.K.); (G.P.)
| | - Sanjana Dayal
- Department of Internal Medicine, University of Iowa Carver College of Medicine, Iowa City, IA 52242, USA; (R.K.); (G.P.)
- Holden Comprehensive Cancer Center, University of Iowa Carver College of Medicine, Iowa City, IA 52242, USA
- Iowa City VA Healthcare System, Iowa City, IA 52246, USA
| |
Collapse
|
3
|
Intharanut K, Suttanon P, Nathalang O. Integrin Subunit Alpha M, ITGAM Nonsynonymous SNP Is Associated with Knee Osteoarthritis among Thais: A Case-Control Study. Curr Issues Mol Biol 2023; 45:4168-4180. [PMID: 37232734 DOI: 10.3390/cimb45050265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 05/02/2023] [Accepted: 05/08/2023] [Indexed: 05/27/2023] Open
Abstract
Knee osteoarthritis (OA), which is one of the most common degenerative joint diseases, presents a multifactorial etiology, involving multiple causative factors including genetic and environmental determinants. Four human neutrophil antigen (HNA) systems can be determined using each HNA allele by single-nucleotide polymorphisms (SNPs). However, there are no data on HNA polymorphisms and knee OA in Thailand, so we investigated the association of HNA SNPs and knee OA in the Thai population. In a case-control study, detection of HNA-1, -3, -4, and -5 alleles by polymerase chain reaction with sequence-specific priming (PCR-SSP) was performed in participants with and without symptomatic knee OA. Logistic regression models were used to estimate the odds ratio (OR) and 95% confidence interval (CI) between cases and controls. Among 200 participants, 117 (58.5%) had knee OA; 83 (41.5%) did not and were included as controls in this study. An integrin subunit alpha M (ITGAM) nonsynonymous SNP, rs1143679, was markedly associated with symptomatic knee OA. The ITGAM*01*01 genotype was identified as an important increased risk factor for knee OA (adjusted OR = 5.645, 95% CI = 1.799-17.711, p = 0.003). These findings may contribute to our understanding of the application prospects for therapeutic approaches to knee OA.
Collapse
Affiliation(s)
- Kamphon Intharanut
- Graduate Program in Biomedical Sciences, Faculty of Allied Health Sciences, Thammasat University, Pathumtani 12120, Thailand
| | - Plaiwan Suttanon
- Thammasat University Research Unit in Health, Physical Performance, Movement, and Quality of Life for Longevity Society, Department of Physical Therapy, Faculty of Allied Health Sciences, Thammasat University, Pathumtani 12120, Thailand
| | - Oytip Nathalang
- Graduate Program in Biomedical Sciences, Faculty of Allied Health Sciences, Thammasat University, Pathumtani 12120, Thailand
| |
Collapse
|
4
|
Koehl B, Vrignaud C, Mikdar M, Nair TS, Yang L, Landry S, Laiguillon G, Giroux‐Lathuile C, Anselme‐Martin S, El Kenz H, Hermine O, Mohandas N, Cartron JP, Colin Y, Detante O, Marlu R, Le Van Kim C, Carey TE, Azouzi S, Peyrard T. Lack of the human choline transporter-like protein SLC44A2 causes hearing impairment and a rare red blood phenotype. EMBO Mol Med 2023; 15:e16320. [PMID: 36695047 PMCID: PMC9994479 DOI: 10.15252/emmm.202216320] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 01/06/2023] [Accepted: 01/10/2023] [Indexed: 01/26/2023] Open
Abstract
Blood phenotypes are defined by the presence or absence of specific blood group antigens at the red blood cell (RBC) surface, due to genetic polymorphisms among individuals. The recent development of genomic and proteomic approaches enabled the characterization of several enigmatic antigens. The choline transporter-like protein CTL2 encoded by the SLC44A2 gene plays an important role in platelet aggregation and neutrophil activation. By investigating alloantibodies to a high-prevalence antigen of unknown specificity, found in patients with a rare blood type, we showed that SLC44A2 is also expressed in RBCs and carries a new blood group system. Furthermore, we identified three siblings homozygous for a large deletion in SLC44A2, resulting in complete SLC44A2 deficiency. Interestingly, the first-ever reported SLC44A2-deficient individuals suffer from progressive hearing impairment, recurrent arterial aneurysms, and epilepsy. Furthermore, SLC44A2null individuals showed no significant platelet aggregation changes and do not suffer from any apparent hematological disorders. Overall, our findings confirm the function of SLC44A2 in hearing preservation and provide new insights into the possible role of this protein in maintaining cerebrovascular homeostasis.
Collapse
Affiliation(s)
- Bérengère Koehl
- Université Paris Cité and Université des Antilles, INSERM, BIGRParisFrance
- Department of Child HematologyReference Center for Sickle‐Cell Disease Robert Debré University Hospital, Assistance Publique‐Hôpitaux de ParisParisFrance
| | - Cédric Vrignaud
- Université Paris Cité and Université des Antilles, INSERM, BIGRParisFrance
| | - Mahmoud Mikdar
- Université Paris Cité and Université des Antilles, INSERM, BIGRParisFrance
| | - Thankam S Nair
- Kresge Hearing Research Institute, Department of Otolaryngology/Head and Neck SurgeryUniversity of MichiganAnn ArborMIUSA
| | - Lucy Yang
- Kresge Hearing Research Institute, Department of Otolaryngology/Head and Neck SurgeryUniversity of MichiganAnn ArborMIUSA
| | - Seyve Landry
- Hemostasis LaboratoryGrenoble Alpes University Hospital GrenobleGrenobleFrance
| | - Guy Laiguillon
- Établissement Français de Sang (EFS) Ile‐de‐France, Centre National de Référence pour les Groupes SanguinsParisFrance
| | | | - Sophie Anselme‐Martin
- Etablissement Français du Sang Auvergne Rhône Alpes, Immunohematology LaboratoryGrenobleFrance
| | - Hanane El Kenz
- Department of Transfusion, Blood Bank, CHU‐Brugmann and Hôpital Universitaire des Enfants Reine FabiolaUniversité Libre de BruxellesBrusselsBelgium
| | - Olivier Hermine
- Université de Paris, Imagine Institute, INSERM UMR 1163ParisFrance
| | - Narla Mohandas
- Red Cell Physiology Laboratory, New York Blood CenterNew YorkNYUSA
| | | | - Yves Colin
- Université Paris Cité and Université des Antilles, INSERM, BIGRParisFrance
| | - Olivier Detante
- Stroke Unit, Neurology Department, Grenoble Hospital, Grenoble Institute of Neurosciences, Inserm U1216University of Grenoble AlpesGrenobleFrance
| | - Raphaël Marlu
- Hemostasis LaboratoryGrenoble Alpes University Hospital GrenobleGrenobleFrance
- University Grenoble Alpes, CNRS UMR5525, TIMCGrenobleFrance
| | | | - Thomas E Carey
- Kresge Hearing Research Institute, Department of Otolaryngology/Head and Neck SurgeryUniversity of MichiganAnn ArborMIUSA
| | - Slim Azouzi
- Université Paris Cité and Université des Antilles, INSERM, BIGRParisFrance
- Établissement Français de Sang (EFS) Ile‐de‐France, Centre National de Référence pour les Groupes SanguinsParisFrance
| | - Thierry Peyrard
- Université Paris Cité and Université des Antilles, INSERM, BIGRParisFrance
- Établissement Français de Sang (EFS) Ile‐de‐France, Centre National de Référence pour les Groupes SanguinsParisFrance
| |
Collapse
|
5
|
Platelet-Neutrophil Crosstalk in Thrombosis. Int J Mol Sci 2023; 24:ijms24021266. [PMID: 36674781 PMCID: PMC9861587 DOI: 10.3390/ijms24021266] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 01/02/2023] [Accepted: 01/04/2023] [Indexed: 01/11/2023] Open
Abstract
Platelets are essential for the formation of a haemostatic plug to prevent bleeding, while neutrophils are the guardians of our immune defences against invading pathogens. The interplay between platelets and innate immunity, and subsequent triggering of the activation of coagulation is part of the host system to prevent systemic spread of pathogen in the blood stream. Aberrant immunothrombosis and excessive inflammation can however, contribute to the thrombotic burden observed in many cardiovascular diseases. In this review, we highlight how platelets and neutrophils interact with each other and how their crosstalk is central to both arterial and venous thrombosis and in COVID-19. While targeting platelets and coagulation enables efficient antithrombotic treatments, they are often accompanied with a bleeding risk. We also discuss how novel approaches to reduce platelet-mediated recruitment of neutrophils could represent promising therapies to treat thrombosis without affecting haemostasis.
Collapse
|
6
|
Nair TS, Kakaraparthi BN, Yang L, Lu L, Thomas TB, Morris AC, Kommareddi P, Kanicki A, Carey TE. Slc44a2 deletion alters tetraspanin and N-cadherin expression: Reduced adhesion and enhanced proliferation in cultured mesenchymal lung cells. Tissue Cell 2021; 73:101599. [PMID: 34371293 DOI: 10.1016/j.tice.2021.101599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Revised: 07/11/2021] [Accepted: 07/23/2021] [Indexed: 10/20/2022]
Abstract
Slc44a2 is reported to interact with tetraspanins CD9 and CD81. To investigate how Slc44a2 affects adhesion protein expression, cells from wild-type (WT) Slc44a2+/+, heterozygous (HET) Slc44a2+/-, and knockout (KO) Slc44a2-/- mice were cultured from lung tissue. The cultured cells expressed vimentin, N-cadherin, p120 catenin, beta-catenin, actin, CD9, and CD81, but not E-cadherin. Vimentin expression with lack of E-cadherin indicated that the cultured cells were of mesenchymal origin. Slc44a2 KO cells and HET cells demonstrated lower adherence and faster proliferation than the WT cells. All three groups displayed dramatically altered intracellular distribution of N-cadherin, CD9, and CD81. The CD9 membrane foci observed in WT cell membranes were less frequent and diminished in size in HET cells and KO cells. N-cadherin was dispersed throughout both the cytoplasm and membrane in WT cells, with similar yet weaker distribution in HET cells; however, in KO cells, N-cadherin was densely aggregated in the perinuclear cytoplasm. CD81 had a distribution pattern in WT, HET, and KO cells similar to that of N-cadherin with dense cytoplasmic clusters in the cells. KO cells also exhibited reduced filamentous actin as compared to WT cells. These results suggest that Slc44a2 is necessary for proper cellular localization of adhesion proteins and growth regulation that may be related to altered adhesion signals.
Collapse
Affiliation(s)
- Thankam S Nair
- Kresge Hearing Research Institute, Department of Otolaryngology-Head & Neck Surgery, Michigan Medicine, University of Michigan, Ann Arbor, MI, 48109-5616, United States
| | - Bala Naveen Kakaraparthi
- Kresge Hearing Research Institute, Department of Otolaryngology-Head & Neck Surgery, Michigan Medicine, University of Michigan, Ann Arbor, MI, 48109-5616, United States
| | - Lucy Yang
- Kresge Hearing Research Institute, Department of Otolaryngology-Head & Neck Surgery, Michigan Medicine, University of Michigan, Ann Arbor, MI, 48109-5616, United States
| | - Lillian Lu
- Kresge Hearing Research Institute, Department of Otolaryngology-Head & Neck Surgery, Michigan Medicine, University of Michigan, Ann Arbor, MI, 48109-5616, United States
| | - Trey B Thomas
- Kresge Hearing Research Institute, Department of Otolaryngology-Head & Neck Surgery, Michigan Medicine, University of Michigan, Ann Arbor, MI, 48109-5616, United States
| | - Anna C Morris
- Kresge Hearing Research Institute, Department of Otolaryngology-Head & Neck Surgery, Michigan Medicine, University of Michigan, Ann Arbor, MI, 48109-5616, United States
| | - Pavan Kommareddi
- Kresge Hearing Research Institute, Department of Otolaryngology-Head & Neck Surgery, Michigan Medicine, University of Michigan, Ann Arbor, MI, 48109-5616, United States
| | - Ariane Kanicki
- Kresge Hearing Research Institute, Department of Otolaryngology-Head & Neck Surgery, Michigan Medicine, University of Michigan, Ann Arbor, MI, 48109-5616, United States
| | - Thomas E Carey
- Kresge Hearing Research Institute, Department of Otolaryngology-Head & Neck Surgery, Michigan Medicine, University of Michigan, Ann Arbor, MI, 48109-5616, United States.
| |
Collapse
|
7
|
Constantinescu-Bercu A, Salles-Crawley II, Crawley JTB. SLC44A2 - A novel therapeutic target for venous thrombosis? J Thromb Haemost 2020; 18:1556-1558. [PMID: 32619343 DOI: 10.1111/jth.14834] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Accepted: 04/06/2020] [Indexed: 12/17/2022]
Affiliation(s)
| | | | - James T B Crawley
- Department of Immunology & Inflammation, Imperial College London, London, UK
| |
Collapse
|
8
|
Constantinescu-Bercu A, Grassi L, Frontini M, Salles-Crawley II, Woollard K, Crawley JTB. Activated α IIbβ 3 on platelets mediates flow-dependent NETosis via SLC44A2. eLife 2020; 9:e53353. [PMID: 32314961 PMCID: PMC7253179 DOI: 10.7554/elife.53353] [Citation(s) in RCA: 67] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Accepted: 04/20/2020] [Indexed: 01/03/2023] Open
Abstract
Platelet-neutrophil interactions are important for innate immunity, but also contribute to the pathogenesis of deep vein thrombosis, myocardial infarction and stroke. Here we report that, under flow, von Willebrand factor/glycoprotein Ibα-dependent platelet 'priming' induces integrin αIIbβ3 activation that, in turn, mediates neutrophil and T-cell binding. Binding of platelet αIIbβ3 to SLC44A2 on neutrophils leads to mechanosensitive-dependent production of highly prothrombotic neutrophil extracellular traps. A polymorphism in SLC44A2 (rs2288904-A) present in 22% of the population causes an R154Q substitution in an extracellular loop of SLC44A2 that is protective against venous thrombosis results in severely impaired binding to both activated αIIbβ3 and VWF-primed platelets. This was confirmed using neutrophils homozygous for the SLC44A2 R154Q polymorphism. Taken together, these data reveal a previously unreported mode of platelet-neutrophil crosstalk, mechanosensitive NET production, and provide mechanistic insight into the protective effect of the SLC44A2 rs2288904-A polymorphism in venous thrombosis.
Collapse
Affiliation(s)
- Adela Constantinescu-Bercu
- Centre for Haematology, Department of Immunology and Inflammation, Imperial College LondonLondonUnited Kingdom
- Centre for Inflammatory Disease, Department of Immunology and Inflammation, Imperial College LondonLondonUnited Kingdom
| | - Luigi Grassi
- Department of Haematology, University of Cambridge, Cambridge Biomedical CampusCambridgeUnited Kingdom
- National Health Service Blood and Transplant, Cambridge Biomedical CampusCambridgeUnited Kingdom
- National Institute for Health Research BioResource, Rare Diseases, Cambridge University HospitalsCambridgeUnited Kingdom
| | - Mattia Frontini
- Department of Haematology, University of Cambridge, Cambridge Biomedical CampusCambridgeUnited Kingdom
- National Health Service Blood and Transplant, Cambridge Biomedical CampusCambridgeUnited Kingdom
- British Heart Foundation Centre of Excellence, Cambridge Biomedical CampusCambridgeUnited Kingdom
| | - Isabelle I Salles-Crawley
- Centre for Haematology, Department of Immunology and Inflammation, Imperial College LondonLondonUnited Kingdom
| | - Kevin Woollard
- Centre for Inflammatory Disease, Department of Immunology and Inflammation, Imperial College LondonLondonUnited Kingdom
| | - James TB Crawley
- Centre for Haematology, Department of Immunology and Inflammation, Imperial College LondonLondonUnited Kingdom
| |
Collapse
|