1
|
Yazbeck A, Akika R, Awada Z, Zgheib NK. Pharmacogenetic considerations in therapy with novel antiplatelet and anticoagulant agents. Pharmacogenet Genomics 2024; 34:61-72. [PMID: 38372412 DOI: 10.1097/fpc.0000000000000520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/20/2024]
Abstract
Antiplatelets and anticoagulants are extensively used in cardiovascular medicine for the prevention and treatment of thrombosis in the venous and arterial circulations. Wide inter-individual variability has been observed in response to antiplatelets and anticoagulants, which triggered researchers to investigate the genetic basis of this variability. Data from extensive pharmacogenetic studies pointed to strong evidence of association between polymorphisms in candidate genes and the pharmacokinetics and pharmacodynamic action and clinical response of the antiplatelets clopidogrel and the anticoagulant warfarin. In this review, we conducted an extensive search on Medline for the time period of 2009-2023. We also searched the PharmGKB website for levels of evidence of variant-drug combinations and for drug labels and clinical guidelines. We focus on the pharmacogenetics of novel antiplatelets and anticoagulants while excluding acetylsalicylic acid, warfarin and heparins, and discuss the current knowledge with emphasis on the level of evidence.
Collapse
Affiliation(s)
| | - Reem Akika
- Department of Pharmacology and Toxicology, Faculty of Medicine, American University of Beirut, Beirut, Lebanon
| | - Zainab Awada
- Department of Pharmacology and Toxicology, Faculty of Medicine, American University of Beirut, Beirut, Lebanon
| | - Nathalie K Zgheib
- Department of Pharmacology and Toxicology, Faculty of Medicine, American University of Beirut, Beirut, Lebanon
| |
Collapse
|
2
|
Van Doren L, Nguyen N, Garzia C, Fletcher EK, Stevenson R, Jaramillo D, Kuliopulos A, Covic L. Lipid Receptor GPR31 (G-Protein-Coupled Receptor 31) Regulates Platelet Reactivity and Thrombosis Without Affecting Hemostasis. Arterioscler Thromb Vasc Biol 2021; 41:e33-e45. [PMID: 33267659 PMCID: PMC8108540 DOI: 10.1161/atvbaha.120.315154] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Accepted: 11/09/2020] [Indexed: 12/23/2022]
Abstract
OBJECTIVE 12-LOX (12-lipoxygenase) produces a number of bioactive lipids including 12(S)-HETE that are involved in inflammation and platelet reactivity. The GPR31 (G-protein-coupled receptor 31) is the proposed receptor of 12(S)-HETE; however, it is not known whether the 12(S)-HETE-GPR31 signaling axis serves to enhance or inhibit platelet activity. Approach and Results: Using pepducin technology and biochemical approaches, we provide evidence that 12(S)-HETE-GPR31 signals through Gi to enhance PAR (protease-activated receptor)-4-mediated platelet activation and arterial thrombosis using both human platelets and mouse carotid artery injury models. 12(S)-HETE suppressed AC (adenylyl cyclase) activity through GPR31 and resulted in Rap1 (Ras-related protein 1) and p38 activation and low but detectable calcium flux but did not induce platelet aggregation. A GPR31 third intracellular (i3) loop-derived pepducin, GPR310 (G-protein-coupled receptor 310), significantly inhibited platelet aggregation in response to thrombin, collagen, and PAR4 agonist, AYPGKF, in human and mouse platelets but relative sparing of PAR1 agonist SFLLRN in human platelets. GPR310 treatment gave a highly significant 80% protection (P=0.0018) against ferric chloride-induced carotid artery injury in mice by extending occlusion time, without any effect on tail bleeding. PAR4-mediated dense granule secretion and calcium flux were both attenuated by GPR310. Consistent with these results, GPR310 inhibited 12(S)-HETE-mediated and PAR4-mediated Rap1-GTP and RASA3 translocation to the plasma membrane and attenuated PAR4-Akt and ERK activation. GPR310 caused a right shift in thrombin-mediated human platelet aggregation, comparable to the effects of inhibition of the Gi-coupled P2Y12 receptor. Co-immunoprecipitation studies revealed that GPR31 and PAR4 form a heterodimeric complex in recombinant systems. CONCLUSIONS The 12-LOX product 12(S)-HETE stimulates GPR31-Gi-signaling pathways, which enhance thrombin-PAR4 platelet activation and arterial thrombosis in human platelets and mouse models. Suppression of this bioactive lipid pathway, as exemplified by a GPR31 pepducin antagonist, may provide beneficial protective effects against platelet aggregation and arterial thrombosis with minimal effect on hemostasis.
Collapse
Affiliation(s)
- Layla Van Doren
- Division of Hematology/Oncology, Center for Hemostasis and Thrombosis Research, Tufts Medical Center, Boston, MA (L.V.D., N.N., C.G., E.K.F., R.S., L.C., A.K.)
| | - Nga Nguyen
- Division of Hematology/Oncology, Center for Hemostasis and Thrombosis Research, Tufts Medical Center, Boston, MA (L.V.D., N.N., C.G., E.K.F., R.S., L.C., A.K.)
| | - Christopher Garzia
- Division of Hematology/Oncology, Center for Hemostasis and Thrombosis Research, Tufts Medical Center, Boston, MA (L.V.D., N.N., C.G., E.K.F., R.S., L.C., A.K.)
| | - Elizabeth K Fletcher
- Division of Hematology/Oncology, Center for Hemostasis and Thrombosis Research, Tufts Medical Center, Boston, MA (L.V.D., N.N., C.G., E.K.F., R.S., L.C., A.K.)
| | - Ryan Stevenson
- Division of Hematology/Oncology, Center for Hemostasis and Thrombosis Research, Tufts Medical Center, Boston, MA (L.V.D., N.N., C.G., E.K.F., R.S., L.C., A.K.)
| | | | - Athan Kuliopulos
- Division of Hematology/Oncology, Center for Hemostasis and Thrombosis Research, Tufts Medical Center, Boston, MA (L.V.D., N.N., C.G., E.K.F., R.S., L.C., A.K.)
- Departments of Medicine (L.C., A.K.), Tufts University School of Medicine, Boston, MA
- Biochemistry (L.C., A.K.), Tufts University School of Medicine, Boston, MA
| | - Lidija Covic
- Division of Hematology/Oncology, Center for Hemostasis and Thrombosis Research, Tufts Medical Center, Boston, MA (L.V.D., N.N., C.G., E.K.F., R.S., L.C., A.K.)
- Departments of Medicine (L.C., A.K.), Tufts University School of Medicine, Boston, MA
- Biochemistry (L.C., A.K.), Tufts University School of Medicine, Boston, MA
| |
Collapse
|
3
|
Inhibitory Effects of P2Y12 Receptor Antagonist on PAR1- and PAR4-AP-Induced Platelet Aggregation in Patients with Stroke or TIA. J Stroke Cerebrovasc Dis 2020; 30:105547. [PMID: 33360254 DOI: 10.1016/j.jstrokecerebrovasdis.2020.105547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Revised: 11/28/2020] [Accepted: 12/07/2020] [Indexed: 11/20/2022] Open
Abstract
OBJECTIVES The inhibitory effects of P2Y12 receptor antagonist on PAR1- and PAR4-activating peptide (AP)-induced platelet aggregation have not been fully elucidated. The present study aimed to investigate the inhibitory effects of P2Y12 receptor antagonist on PAR1- and PAR4-AP-induced platelet aggregation using platelet-rich plasma (PRP) from individuals including patients with stroke or transient ischemic attack (TIA). MATERIALS AND METHODS PRP was given to 10 healthy individuals pretreated in vitro with cangrelor, then stimulated with adenosine diphosphate (ADP), PAR4-AP, or PAR1-AP. Moreover, 20 patients were enrolled from 148 consecutive patients with acute ischemic stroke or TIA admitted to our institute between December 2017 and April 2019. PRP obtained from each patient before and >7 days after initiation of clopidogrel was similarly stimulated with these agonists. Platelet aggregation was measured using an automatic coagulation analyzer in all participants. RESULTS In healthy individuals, ADP- and PAR4-AP-induced platelet aggregations were significantly inhibited depending on the cangrelor concentration in vitro, while PAR1-AP-induced platelet aggregation was slightly inhibited. In patients with stroke or TIA, clopidogrel inhibited ADP-induced platelet aggregation at all concentrations, and significantly inhibited PAR4-AP-induced platelet aggregation at 50 µmol/L of PAR4-AP (p<0.05), especially in 5 patients who showed high reactivity to PAR4-AP. PAR1-AP-induced platelet aggregation was also slightly inhibited. CONCLUSIONS We showed significant inhibitory effects on PAR4-AP-induced platelet aggregation by clopidogrel in patients with stroke or TIA who had high reactivity to PAR4-AP.
Collapse
|
4
|
Han X, Hofmann L, de la Fuente M, Alexander N, Palczewski K, Nieman MT. PAR4 activation involves extracellular loop 3 and transmembrane residue Thr153. Blood 2020; 136:2217-2228. [PMID: 32575122 PMCID: PMC7645988 DOI: 10.1182/blood.2019004634] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2019] [Accepted: 05/24/2020] [Indexed: 12/17/2022] Open
Abstract
Protease-activated receptor 4 (PAR4) mediates sustained thrombin signaling in platelets and is required for a stable thrombus. PAR4 is activated by proteolysis of the N terminus to expose a tethered ligand. The structural basis for PAR4 activation and the location of its ligand binding site (LBS) are unknown. Using hydrogen/deuterium exchange (H/D exchange), computational modeling, and signaling studies, we determined the molecular mechanism for tethered ligand-mediated PAR4 activation. H/D exchange identified that the LBS is composed of transmembrane 3 (TM3) domain and TM7. Unbiased computational modeling further predicted an interaction between Gly48 from the tethered ligand and Thr153 from the LBS. Mutating Thr153 significantly decreased PAR4 signaling. H/D exchange and modeling also showed that extracellular loop 3 (ECL3) serves as a gatekeeper for the interaction between the tethered ligand and LBS. A naturally occurring sequence variant (P310L, rs2227376) and 2 experimental mutations (S311A and P312L) determined that the rigidity conferred by prolines in ECL3 are essential for PAR4 activation. Finally, we examined the role of the polymorphism at position 310 in venous thromboembolism (VTE) using the International Network Against Venous Thrombosis (INVENT) consortium multi-ancestry genome-wide association study (GWAS) meta-analysis. Individuals with the PAR4 Leu310 allele had a 15% reduction in relative risk for VTE (odds ratio, 0.85; 95% confidence interval, 0.77-0.94) compared with the Pro310 allele. These data are consistent with our H/D exchange, molecular modeling, and signaling studies. In conclusion, we have uncovered the structural basis for PAR4 activation and identified a previously unrecognized role for PAR4 in VTE.
Collapse
Affiliation(s)
- Xu Han
- Case Western Reserve University, School of Medicine, Cleveland, OH; and
| | - Lukas Hofmann
- Case Western Reserve University, School of Medicine, Cleveland, OH; and
| | | | - Nathan Alexander
- Case Western Reserve University, School of Medicine, Cleveland, OH; and
| | | | - Marvin T Nieman
- Case Western Reserve University, School of Medicine, Cleveland, OH; and
| |
Collapse
|