1
|
Liu Z, Fu Q, Yu Q, Ma X, Yang R. Assessing causal associations of blood counts and biochemical indicators with pulmonary arterial hypertension: a Mendelian randomization study and results from national health and nutrition examination survey 2003-2018. Front Endocrinol (Lausanne) 2024; 15:1418835. [PMID: 38952391 PMCID: PMC11215008 DOI: 10.3389/fendo.2024.1418835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Accepted: 05/27/2024] [Indexed: 07/03/2024] Open
Abstract
Background Blood counts and biochemical markers are among the most common tests performed in hospitals and most readily accepted by patients, and are widely regarded as reliable biomarkers in the literature. The aim of this study was to assess the causal relationship between blood counts, biochemical indicators and pulmonary arterial hypertension (PAH). Methods A two-sample Mendelian randomization (MR) analysis was performed to assess the causal relationship between blood counts and biochemical indicators with PAH. The genome-wide association study (GWAS) for blood counts and biochemical indicators were obtained from the UK Biobank (UKBB), while the GWAS for PAH were sourced from the FinnGen Biobank. Inverse variance weighting (IVW) was used as the primary analysis method, supplemented by three sensitivity analyses to assess the robustness of the results. And we conducted an observational study using data from National Health and Nutrition Examination Survey (NHANES) 2003-2018 to verify the relationship. Results The MR analysis primarily using the IVW method revealed genetic variants of platelet count (OR=2.51, 95% CI 1.56-4.22, P<0.001), platelet crit(OR=1.87, 95% CI1.17-7.65, P=0.022), direct bilirubin (DBIL)(OR=1.71, 95%CI 1.18-2.47,P=0.004), insulin-like growth factor (IGF-1)(OR=0.51, 95% CI 0.27-0.96, P=0.038), Lipoprotein A (Lp(a))(OR=0.66, 95% CI 0.45-0.98, P=0.037) and total bilirubin (TBIL)(OR=0.51, 95% CI 0.27-0.96, P=0.038) were significantly associated with PAH. In NHANES, multivariate logistic regression analyses revealed a significant positive correlation between platelet count and volume and the risk of PAH, and a significant negative correlation between total bilirubin and PAH. Conclusion Our study reveals a causal relationship between blood counts, biochemical indicators and pulmonary arterial hypertension. These findings offer novel insights into the etiology and pathological mechanisms of PAH, and emphasizes the important value of these markers as potential targets for the prevention and treatment of PAH.
Collapse
Affiliation(s)
- Zhekang Liu
- Cardiovascular Medicine Department, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
- Rheumatology and Immunology Department, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Qingan Fu
- Cardiovascular Medicine Department, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Qingyun Yu
- Cardiovascular Medicine Department, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Xiaowei Ma
- Cardiovascular Medicine Department, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Renqiang Yang
- Cardiovascular Medicine Department, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| |
Collapse
|
2
|
Guo J, Cui B, Zheng J, Yu C, Zheng X, Yi L, Zhang S, Wang K. Platelet-derived microparticles and their cargos: The past, present and future. Asian J Pharm Sci 2024; 19:100907. [PMID: 38623487 PMCID: PMC11016590 DOI: 10.1016/j.ajps.2024.100907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 01/05/2024] [Accepted: 01/31/2024] [Indexed: 04/17/2024] Open
Abstract
All eukaryotic cells can secrete extracellular vesicles, which have a double-membrane structure and are important players in the intercellular communication involved in a variety of important biological processes. Platelets form platelet-derived microparticles (PMPs) in response to activation, injury, or apoptosis. This review introduces the origin, pathway, and biological functions of PMPs and their importance in physiological and pathological processes. In addition, we review the potential applications of PMPs in cancer, vascular homeostasis, thrombosis, inflammation, neural regeneration, biomarkers, and drug carriers to achieve targeted drug delivery. In addition, we comprehensively report on the origin, biological functions, and applications of PMPs. The clinical transformation, high heterogeneity, future development direction, and limitations of the current research on PMPs are also discussed in depth. Evidence has revealed that PMPs play an important role in cell-cell communication, providing clues for the development of PMPs as carriers for relevant cell-targeted drugs. The development history and prospects of PMPs and their cargos are explored in this guidebook.
Collapse
Affiliation(s)
- Jingwen Guo
- Department of Pharmacy, The First Hospital of China Medical University, Shenyang 110001 China
- School of Pharmacy, China Medical University, Shenyang 110122, China
| | - Bufeng Cui
- Department of Pharmacy, The First Hospital of China Medical University, Shenyang 110001 China
- School of Pharmacy, China Medical University, Shenyang 110122, China
| | - Jie Zheng
- Department of Pharmacy, The First Hospital of China Medical University, Shenyang 110001 China
- School of Pharmacy, China Medical University, Shenyang 110122, China
| | - Chang Yu
- School of Pharmacy, China Medical University, Shenyang 110122, China
| | - Xuran Zheng
- Key Laboratory of Medical Cell Biology of Ministry of Education, Key Laboratory of Major Chronic Diseases of Nervous System of Liaoning Province, Health Sciences Institute of China Medical University, Shenyang 110122, China
| | - Lixin Yi
- School of Pharmacy, China Medical University, Shenyang 110122, China
- Department of Pharmacy, The Fourth Affiliated Hospital of China Medical University, Shenyang 110032, China
| | - Simeng Zhang
- Department of Medical Oncology, the First Hospital of China Medical University, Shenyang 110001, China
| | - Keke Wang
- Department of Pharmacy, The First Hospital of China Medical University, Shenyang 110001 China
- School of Pharmacy, China Medical University, Shenyang 110122, China
| |
Collapse
|
3
|
Li M, Zhao Y, Chen X, Du X, Luo Y, Li Y, Kang J, Wan L, Tang J, Fu X. Comparative analysis of the quality of platelet concentrates produced by apheresis procedures, platelet rich plasma, and buffy coat. Transfusion 2024; 64:367-379. [PMID: 38174435 DOI: 10.1111/trf.17704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 11/13/2023] [Accepted: 12/04/2023] [Indexed: 01/05/2024]
Abstract
BACKGROUND Platelet concentrates (PCs) could be prepared using either whole-blood processes or apheresis instruments. During collection, processing and storage, some biochemical and functional changes occur, which may result in quality reduction. Quality evaluation of PCs may be helpful for the precise control of platelet (PLT) inventory to reduce the risk of refractoriness and adverse effects caused by platelet transfusion. STUDY DESIGN AND METHODS The study was aimed to evaluate the quality of PCs which were produced by five processes: apheresis (AP) procedures (using three different cell separators: Amicus, Trima Accel and MCS+ instruments), platelet rich plasma (PRP), and buffy coat (BC). A total of 100 PCs (20 of each group) were assessed in respect of routine quality control, morphology, size distribution, destroyed and activated platelets, and production of platelet-derived microparticles (PMPs). RESULTS All PCs have satisfied the recommended quality of volume, platelet count, residual WBC count, residual RBC count, pH, and sterility according to the Chinese Technical Manual. There was no difference among the 5 groups in morphology and size of PLT and PMPs. Dynamic light scattering test showed that apheresis PCs showed peaks around 10-20 nm, but not whole blood-derived PCs. PCs prepared by Amicus had the relatively high percentage of destroyed platelet, activated platelets and PMPs than other groups. DISCUSSION The data suggested high heterogeneity of PMPs, destroyed and activated platelets in PCs produced by different processes, which might be helpful to manage the platelet inventory for targeted use.
Collapse
Affiliation(s)
- Meng Li
- Blood Research Laboratory, Chengdu Blood Center, Chengdu, P.R. China
| | - Yuwei Zhao
- Blood Research Laboratory, Chengdu Blood Center, Chengdu, P.R. China
| | - Xue Chen
- Blood Research Laboratory, Chengdu Blood Center, Chengdu, P.R. China
| | - Xinman Du
- Blood Research Laboratory, Chengdu Blood Center, Chengdu, P.R. China
| | - Yue Luo
- Blood Research Laboratory, Chengdu Blood Center, Chengdu, P.R. China
| | - Ying Li
- Blood Research Laboratory, Chengdu Blood Center, Chengdu, P.R. China
| | - Jianxun Kang
- Blood Research Laboratory, Chengdu Blood Center, Chengdu, P.R. China
| | - Like Wan
- Blood Research Laboratory, Chengdu Blood Center, Chengdu, P.R. China
| | - Jingyun Tang
- Blood Research Laboratory, Chengdu Blood Center, Chengdu, P.R. China
| | - Xuemei Fu
- Blood Research Laboratory, Chengdu Blood Center, Chengdu, P.R. China
| |
Collapse
|
4
|
Du Y, Wu L, Wang L, Reiter RJ, Lip GYH, Ren J. Extracellular vesicles in cardiovascular diseases: From pathophysiology to diagnosis and therapy. Cytokine Growth Factor Rev 2023; 74:40-55. [PMID: 37798169 DOI: 10.1016/j.cytogfr.2023.09.006] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Accepted: 09/26/2023] [Indexed: 10/07/2023]
Abstract
Extracellular vesicles (EVs), encompassing exosomes, microvesicles (MVs), and apoptotic bodies (ABs), are cell-derived heterogeneous nanoparticles with a pivotal role in intercellular communication. EVs are enclosed by a lipid-bilayer membrane to escape enzymatic degradation. EVs contain various functional molecules (e.g., nucleic acids, proteins, lipids and metabolites) which can be transferred from donor cells to recipient cells. EVs provide many advantages including accessibility, modifiability and easy storage, stability, biocompatibility, heterogeneity and they readily penetrate through biological barriers, making EVs ideal and promising candidates for diagnosis/prognosis biomarkers and therapeutic tools. Recently, EVs were implicated in both physiological and pathophysiological settings of cardiovascular system through regulation of cell-cell communication. Numerous studies have reported a role for EVs in the pathophysiological progression of cardiovascular diseases (CVDs) and have evaluated the utility of EVs for the diagnosis/prognosis and therapeutics of CVDs. In this review, we summarize the biology of EVs, evaluate the perceived biological function of EVs in different CVDs along with a consideration of recent progress for the application of EVs in diagnosis/prognosis and therapies of CVDs.
Collapse
Affiliation(s)
- Yuxin Du
- Department of Cardiology, Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital Fudan University, Shanghai 200032, China
| | - Lin Wu
- Department of Cardiology, Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital Fudan University, Shanghai 200032, China
| | - Litao Wang
- Department of Cardiology, Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital Fudan University, Shanghai 200032, China
| | - Russel J Reiter
- Department of Cell Systems and Anatomy, UT Health San Antonio, TX, USA
| | - Gregory Y H Lip
- Department of Clinical Medicine, Aalborg University, Aalborg, Denmark; Liverpool Centre for Cardiovascular Science at University of Liverpool, Liverpool John Moores University and Liverpool Heart & Chest Hospital, Liverpool, United Kingdom
| | - Jun Ren
- Department of Cardiology, Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital Fudan University, Shanghai 200032, China; Department of Laboratory Medicine and Pathology, University of Washington, Seattle WA98195, USA.
| |
Collapse
|
5
|
Zhang J, Hu X, Wang T, Xiao R, Zhu L, Ruiz M, Dupuis J, Hu Q. Extracellular vesicles in venous thromboembolism and pulmonary hypertension. J Nanobiotechnology 2023; 21:461. [PMID: 38037042 PMCID: PMC10691137 DOI: 10.1186/s12951-023-02216-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Accepted: 11/15/2023] [Indexed: 12/02/2023] Open
Abstract
Venous thromboembolism (VTE) is a multifactorial disease, and pulmonary hypertension (PH) is a serious condition characterized by pulmonary vascular remodeling leading with increased pulmonary vascular resistance, ultimately leading to right heart failure and death. Although VTE and PH have distinct primary etiologies, they share some pathophysiologic similarities such as dysfunctional vasculature and thrombosis. In both conditions there is solid evidence that EVs derived from a variety of cell types including platelets, monocytes, endothelial cells and smooth muscle cells contribute to vascular endothelial dysfunction, inflammation, thrombosis, cellular activation and communications. However, the roles and importance of EVs substantially differ between studies depending on experimental conditions and parent cell origins of EVs that modify the nature of their cargo. Numerous studies have confirmed that EVs contribute to the pathophysiology of VTE and PH and increased levels of various EVs in relation with the severity of VTE and PH, confirming its potential pathophysiological role and its utility as a biomarker of disease severity and as potential therapeutic targets.
Collapse
Affiliation(s)
- Jiwei Zhang
- Department of Pathophysiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology (HUST), 13 Hangkong Road, Wuhan, 430030, China
- Key Laboratory of Pulmonary Diseases of Ministry of Health, Tongji Medical College, HUST, Wuhan, China
- Department of Pathology, Union Hospital, Tongji Medical College, HUST, Wuhan, China
| | - Xiaoyi Hu
- Department of Pathophysiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology (HUST), 13 Hangkong Road, Wuhan, 430030, China
- Key Laboratory of Pulmonary Diseases of Ministry of Health, Tongji Medical College, HUST, Wuhan, China
- Department of Cardiopulmonary Circulation, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China
| | - Tao Wang
- Department of Respiratory Medicine, Tongji Hospital, Tongji Medical College, HUST, Wuhan, China
| | - Rui Xiao
- Department of Pathophysiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology (HUST), 13 Hangkong Road, Wuhan, 430030, China
- Key Laboratory of Pulmonary Diseases of Ministry of Health, Tongji Medical College, HUST, Wuhan, China
| | - Liping Zhu
- Department of Pathophysiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology (HUST), 13 Hangkong Road, Wuhan, 430030, China
- Key Laboratory of Pulmonary Diseases of Ministry of Health, Tongji Medical College, HUST, Wuhan, China
| | - Matthieu Ruiz
- Department of Nutrition, Université de Montréal, Montreal, Canada
- Montreal Heart Institute, Montréal, Québec, Canada
| | - Jocelyn Dupuis
- Montreal Heart Institute, Montréal, Québec, Canada
- Department of Medicine, Université de Montréal, Montréal, Québec, Canada
| | - Qinghua Hu
- Department of Pathophysiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology (HUST), 13 Hangkong Road, Wuhan, 430030, China.
- Key Laboratory of Pulmonary Diseases of Ministry of Health, Tongji Medical College, HUST, Wuhan, China.
| |
Collapse
|
6
|
Conti M, Minniti M, Tiné M, De Francesco M, Gaeta R, Nieri D, Semenzato U, Biondini D, Camera M, Cosio MG, Saetta M, Celi A, Bazzan E, Neri T. Extracellular Vesicles in Pulmonary Hypertension: A Dangerous Liaison? BIOLOGY 2023; 12:1099. [PMID: 37626985 PMCID: PMC10451884 DOI: 10.3390/biology12081099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 08/04/2023] [Accepted: 08/05/2023] [Indexed: 08/27/2023]
Abstract
The term pulmonary hypertension (PH) refers to different conditions, all characterized by increased pressure and resistance in the pulmonary arterial bed. PH has a wide range of causes (essentially, cardiovascular, pulmonary, or connective tissue disorders); however, idiopathic (i.e., without a clear cause) PH exists. This chronic, progressive, and sometimes devastating disease can finally lead to right heart failure and eventually death, through pulmonary vascular remodeling and dysfunction. The exact nature of PH pathophysiology is sometimes still unclear. Extracellular vesicles (EVs), previously known as apoptotic bodies, microvesicles, and exosomes, are small membrane-bound vesicles that are generated by almost all cell types and can be detected in a variety of physiological fluids. EVs are involved in intercellular communication, thus influencing immunological response, inflammation, embryogenesis, aging, and regenerative processes. Indeed, they transport chemokines, cytokines, lipids, RNA and miRNA, and other biologically active molecules. Although the precise functions of EVs are still not fully known, there is mounting evidence that they can play a significant role in the pathophysiology of PH. In this review, after briefly recapping the key stages of PH pathogenesis, we discuss the current evidence on the functions of EVs both as PH biomarkers and potential participants in the distinct pathways of disease progression.
Collapse
Affiliation(s)
- Maria Conti
- Department of Cardiac, Thoracic, Vascular Sciences and Public Health, University of Padova, 35128 Padova, Italy; (M.C.); (M.T.); (U.S.); (D.B.); (M.G.C.); (M.S.); (E.B.)
- Centro Cardiologico Monzino IRCCS, 20138 Milan, Italy;
| | - Marianna Minniti
- Centro Dipartimentale di Biologia Cellulare Cardiorespiratoria, Dipartimento di Patologia Chirurgica, Medica, Molecolare e dell’Area Critica, Università Degli Studi di Pisa, 56124 Pisa, Italy; (M.M.); (M.D.F.); (R.G.); (D.N.); (A.C.)
| | - Mariaenrica Tiné
- Department of Cardiac, Thoracic, Vascular Sciences and Public Health, University of Padova, 35128 Padova, Italy; (M.C.); (M.T.); (U.S.); (D.B.); (M.G.C.); (M.S.); (E.B.)
| | - Miriam De Francesco
- Centro Dipartimentale di Biologia Cellulare Cardiorespiratoria, Dipartimento di Patologia Chirurgica, Medica, Molecolare e dell’Area Critica, Università Degli Studi di Pisa, 56124 Pisa, Italy; (M.M.); (M.D.F.); (R.G.); (D.N.); (A.C.)
| | - Roberta Gaeta
- Centro Dipartimentale di Biologia Cellulare Cardiorespiratoria, Dipartimento di Patologia Chirurgica, Medica, Molecolare e dell’Area Critica, Università Degli Studi di Pisa, 56124 Pisa, Italy; (M.M.); (M.D.F.); (R.G.); (D.N.); (A.C.)
| | - Dario Nieri
- Centro Dipartimentale di Biologia Cellulare Cardiorespiratoria, Dipartimento di Patologia Chirurgica, Medica, Molecolare e dell’Area Critica, Università Degli Studi di Pisa, 56124 Pisa, Italy; (M.M.); (M.D.F.); (R.G.); (D.N.); (A.C.)
| | - Umberto Semenzato
- Department of Cardiac, Thoracic, Vascular Sciences and Public Health, University of Padova, 35128 Padova, Italy; (M.C.); (M.T.); (U.S.); (D.B.); (M.G.C.); (M.S.); (E.B.)
| | - Davide Biondini
- Department of Cardiac, Thoracic, Vascular Sciences and Public Health, University of Padova, 35128 Padova, Italy; (M.C.); (M.T.); (U.S.); (D.B.); (M.G.C.); (M.S.); (E.B.)
- Department of Medicine, University of Padova, 35128 Padova, Italy
| | - Marina Camera
- Centro Cardiologico Monzino IRCCS, 20138 Milan, Italy;
- Department of Pharmaceutical Sciences, Università Degli Studi di Milano, 20138 Milan, Italy
| | - Manuel G. Cosio
- Department of Cardiac, Thoracic, Vascular Sciences and Public Health, University of Padova, 35128 Padova, Italy; (M.C.); (M.T.); (U.S.); (D.B.); (M.G.C.); (M.S.); (E.B.)
- Meakins-Christie Laboratories, Respiratory Division, McGill University, Montreal, QC H3A 0G4, Canada
| | - Marina Saetta
- Department of Cardiac, Thoracic, Vascular Sciences and Public Health, University of Padova, 35128 Padova, Italy; (M.C.); (M.T.); (U.S.); (D.B.); (M.G.C.); (M.S.); (E.B.)
| | - Alessandro Celi
- Centro Dipartimentale di Biologia Cellulare Cardiorespiratoria, Dipartimento di Patologia Chirurgica, Medica, Molecolare e dell’Area Critica, Università Degli Studi di Pisa, 56124 Pisa, Italy; (M.M.); (M.D.F.); (R.G.); (D.N.); (A.C.)
| | - Erica Bazzan
- Department of Cardiac, Thoracic, Vascular Sciences and Public Health, University of Padova, 35128 Padova, Italy; (M.C.); (M.T.); (U.S.); (D.B.); (M.G.C.); (M.S.); (E.B.)
| | - Tommaso Neri
- Centro Dipartimentale di Biologia Cellulare Cardiorespiratoria, Dipartimento di Patologia Chirurgica, Medica, Molecolare e dell’Area Critica, Università Degli Studi di Pisa, 56124 Pisa, Italy; (M.M.); (M.D.F.); (R.G.); (D.N.); (A.C.)
| |
Collapse
|
7
|
Bioprotective role of platelet-derived microvesicles in hypothermia: Insight into the differential characteristics of peripheral and splenic platelets. Thromb Res 2023; 223:155-167. [PMID: 36758284 DOI: 10.1016/j.thromres.2023.01.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 12/09/2022] [Accepted: 01/05/2023] [Indexed: 02/05/2023]
Abstract
BACKGROUND Most platelets are present in peripheral blood, but some are stored in the spleen. Because the tissue environments of peripheral blood vessels and the spleen are quite distinct, the properties of platelets present in each may also differ. However, no studies have addressed this difference. We previously reported that hypothermia activates splenic platelets, but not peripheral blood platelets, whose biological significance remains unknown. In this study, we focused on platelet-derived microvesicles (PDMVs) and analyzed their biological significance connected to intrasplenic platelet activation during hypothermia. METHODS C57Bl/6 mice were placed in an environment of -20 °C, and their rectal temperature was decreased to 15 °C to model hypothermia. Platelets and skeletal muscle tissue were collected and analyzed for their interactions. RESULTS Transcriptomic changes between splenic and peripheral platelets were greater in hypothermic mice than in normal mice. Electron microscopy and real-time RT-PCR analysis revealed that platelets activated in the spleen by hypothermia internalized transcripts, encoding tissue repairing proteins, into PDMVs and released them into the plasma. Plasma microvesicles from hypothermic mice promoted wound healing in the mouse myoblast cell line C2C12. Skeletal muscles in hypothermic mice were damaged but recovered within 24 h after rewarming. However, splenectomy delayed recovery from skeletal muscle injury after the mice were rewarmed. CONCLUSIONS These results indicate that PDMVs released from activated platelets in the spleen play an important role in the repair of skeletal muscle damaged by hypothermia.
Collapse
|
8
|
Santos-Gomes J, Gandra I, Adão R, Perros F, Brás-Silva C. An Overview of Circulating Pulmonary Arterial Hypertension Biomarkers. Front Cardiovasc Med 2022; 9:924873. [PMID: 35911521 PMCID: PMC9333554 DOI: 10.3389/fcvm.2022.924873] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Accepted: 06/21/2022] [Indexed: 11/16/2022] Open
Abstract
Pulmonary arterial hypertension (PAH), also known as Group 1 Pulmonary Hypertension (PH), is a PH subset characterized by pulmonary vascular remodeling and pulmonary arterial obstruction. PAH has an estimated incidence of 15-50 people per million in the United States and Europe, and is associated with high mortality and morbidity, with patients' survival time after diagnosis being only 2.8 years. According to current guidelines, right heart catheterization is the gold standard for diagnostic and prognostic evaluation of PAH patients. However, this technique is highly invasive, so it is not used in routine clinical practice or patient follow-up. Thereby, it is essential to find new non-invasive strategies for evaluating disease progression. Biomarkers can be an effective solution for determining PAH patient prognosis and response to therapy, and aiding in diagnostic efforts, so long as their detection is non-invasive, easy, and objective. This review aims to clarify and describe some of the potential new candidates as circulating biomarkers of PAH.
Collapse
Affiliation(s)
- Joana Santos-Gomes
- UnIC@RISE, Department of Surgery and Physiology, Faculty of Medicine of the University of Porto, Porto, Portugal
| | - Inês Gandra
- UnIC@RISE, Department of Surgery and Physiology, Faculty of Medicine of the University of Porto, Porto, Portugal
| | - Rui Adão
- UnIC@RISE, Department of Surgery and Physiology, Faculty of Medicine of the University of Porto, Porto, Portugal
| | - Frédéric Perros
- Paris-Porto Pulmonary Hypertension Collaborative Laboratory (3PH), UMR_S 999, INSERM, Université Paris-Saclay, Paris, France
- Université Paris–Saclay, AP-HP, INSERM UMR_S 999, Service de Pneumologie et Soins Intensifs Respiratoires, Hôpital de Bicêtre, Le Kremlin Bicêtre, France
| | - Carmen Brás-Silva
- UnIC@RISE, Department of Surgery and Physiology, Faculty of Medicine of the University of Porto, Porto, Portugal
- Faculty of Nutrition and Food Sciences, University of Porto, Porto, Portugal
| |
Collapse
|
9
|
Brown PA. Differential and targeted vesiculation: pathologic cellular responses to elevated arterial pressure. Mol Cell Biochem 2022; 477:1023-1040. [PMID: 34989921 DOI: 10.1007/s11010-021-04351-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Accepted: 12/23/2021] [Indexed: 11/29/2022]
Abstract
Extracellular vesicles are small membrane-enclosed particles released during cell activation or injury. They have been investigated for several decades and found to be secreted in various diseases. Their pathogenic role is further supported by the presence of several important molecules among their cargo, including proteins, lipids, and nucleic acids. Many studies have reported enhanced and targeted extracellular vesicle biogenesis in diseases that involve chronic or transient elevation of arterial pressure resulting in endothelial dysfunction, within either the general circulatory system or specific local vascular beds. In addition, several associated pathologic processes have been studied and reported. However, the role of elevated pressure as a common pathogenic trigger across vascular domains and disease chronicity has not been previously described. This review will therefore summarize our current knowledge of the differential and targeted biogenesis of extracellular vesicles in major diseases that are characterized by elevated arterial pressure leading to endothelial dysfunction and propose a unified theory of pressure-induced extracellular vesicle-mediated pathogenesis.
Collapse
Affiliation(s)
- Paul A Brown
- Department of Basic Medical Sciences, Faculty of Medical Sciences Teaching and Research Complex, The University of the West Indies, Mona, Kingston 7, Jamaica.
| |
Collapse
|
10
|
Chebbo M, Duez C, Alessi MC, Chanez P, Gras D. Platelets: a potential role in chronic respiratory diseases? Eur Respir Rev 2021; 30:30/161/210062. [PMID: 34526315 PMCID: PMC9488457 DOI: 10.1183/16000617.0062-2021] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Accepted: 06/05/2021] [Indexed: 12/21/2022] Open
Abstract
Platelets are small anucleate cells known for their role in haemostasis and thrombosis. In recent years, an increasing number of observations have suggested that platelets are also immune cells and key modulators of immunity. They express different receptors and molecules that allow them to respond to pathogens, and to interact with other immune cells. Platelets were linked to the pathogenesis of some inflammatory disorders including respiratory diseases such as asthma and idiopathic pulmonary fibrosis. Here, we discuss the involvement of platelets in different immune responses, and we focus on their potential role in various chronic lung diseases. In addition to their essential role in haemostasis and thrombosis, platelets are strong modulators of different immune responses, and could be involved in the physiopathology of several chronic airway diseaseshttps://bit.ly/3cB6Xnj
Collapse
Affiliation(s)
| | | | - Marie C Alessi
- Aix-Marseille Univ, INSERM, INRAE, Marseille, France.,APHM, CHU de la Timone, Laboratoire d'hématologie, Marseille, France
| | - Pascal Chanez
- Aix-Marseille Univ, INSERM, INRAE, Marseille, France.,APHM, Hôpital NORD, Clinique des Bronches, Allergie et Sommeil, Marseille, France
| | - Delphine Gras
- Aix-Marseille Univ, INSERM, INRAE, Marseille, France
| |
Collapse
|
11
|
Hypoxia-activated platelets stimulate proliferation and migration of pulmonary arterial smooth muscle cells by phosphatidylserine/LOX-1 signaling-impelled intercellular communication. Cell Signal 2021; 87:110149. [PMID: 34520855 DOI: 10.1016/j.cellsig.2021.110149] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Revised: 08/23/2021] [Accepted: 09/09/2021] [Indexed: 11/20/2022]
Abstract
Continuous recruitment and inappropriate activation of platelets in pulmonary arteries contribute to pulmonary vascular remodeling in pulmonary hypertension (PH). Our previous study has demonstrated that lectin like oxidized low-density lipoprotein receptor-1 (LOX-1) regulates the proliferation of pulmonary arterial smooth muscle cells (PASMCs). Phosphatidylserine exposed on the surface of activated platelets is a ligand for LOX-1. However, whether hypoxia-activated platelets stimulate the proliferation and migration of PASMCs by phosphatidylserine/LOX-1 signaling-impelled intercellular communication remains unclear. The present study found that rats treated with hypoxia (10% O2) for 21 days revealed PH with the activation of platelets and the recruitment of platelets in pulmonary arteries, and LOX-1 knockout inhibited hypoxia-induced PH and platelets activation. Notably, co-incubation of PASMCs with hypoxic PH rats-derived platelets up-regulated LOX-1 expression in PASMCs leading to the proliferation and migration of PASMCs, which was inhibited by the phosphatidylserine inhibitor annexin V or the LOX-1 neutralizing antibody. LOX-1 knockout led to decreased proliferation and migration of PASMCs stimulated by hypoxia-activated platelets. In rats, hypoxia up-regulated the phosphorylation of signal transducer and activator of transcription 3 (Stat3) and the expression of Pim-1 in pulmonary arteries. Hypoxia-activated platelets also up-regulated the phosphorylation of Stat3 and the expression of Pim-1 in PASMCs, which was inhibited by annexin V, the LOX-1 neutralizing antibody, the protein kinase C inhibitor and LOX-1 knockout. In conclusion, we for the first time demonstrated that hypoxia-activated platelets stimulated the proliferation and migration of PASMCs by phosphatidylserine/LOX-1/PKC/Stat3/Pim-1 signaling-impelled intercellular communication, thereby potentially contributing to hypoxic pulmonary vascular remodeling.
Collapse
|
12
|
Cullivan S, Murphy CA, Weiss L, Comer SP, Kevane B, McCullagh B, Maguire PB, Ní Ainle F, Gaine SP. Platelets, extracellular vesicles and coagulation in pulmonary arterial hypertension. Pulm Circ 2021; 11:20458940211021036. [PMID: 34158919 PMCID: PMC8182202 DOI: 10.1177/20458940211021036] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/06/2021] [Accepted: 05/10/2021] [Indexed: 01/01/2023] Open
Abstract
Pulmonary arterial hypertension is a rare disease of the pulmonary vasculature, characterised pathologically by proliferation, remodelling and thrombosis in situ. Unfortunately, existing therapeutic interventions do not reverse these findings and the disease continues to result in significant morbidity and premature mortality. A number of haematological derangements have been described in pulmonary arterial hypertension which may provide insights into the pathobiology of the disease and opportunities to explore new therapeutic pathways. These include quantitative and qualitative platelet abnormalities, such as thrombocytopaenia, increased mean platelet volume and altered platelet bioenergetics. Furthermore, a hypercoagulable state and aberrant negative regulatory pathways can be observed, which could contribute to thrombosis in situ in distal pulmonary arteries and arterioles. Finally, there is increasing interest in the role of extracellular vesicle autocrine and paracrine signalling in pulmonary arterial hypertension, and their potential utility as biomarkers and novel therapeutic targets. This review focuses on the potential role of platelets, extracellular vesicles and coagulation pathways in the pathobiology of pulmonary arterial hypertension. We highlight important unanswered clinical questions and the implications of these observations for future research and pulmonary arterial hypertension-directed therapies.
Collapse
Affiliation(s)
- Sarah Cullivan
- National Pulmonary Hypertension Unit, Mater
Misericordiae University Hospital, Dublin, Ireland
- Conway-SPHERE Research Group, Conway Institute,
University College Dublin, Dublin, Ireland
| | - Claire A. Murphy
- Conway-SPHERE Research Group, Conway Institute,
University College Dublin, Dublin, Ireland
- Department of Neonatology, Rotunda Hospital, Dublin,
Ireland
| | - Luisa Weiss
- Conway-SPHERE Research Group, Conway Institute,
University College Dublin, Dublin, Ireland
| | - Shane P. Comer
- Conway-SPHERE Research Group, Conway Institute,
University College Dublin, Dublin, Ireland
| | - Barry Kevane
- Conway-SPHERE Research Group, Conway Institute,
University College Dublin, Dublin, Ireland
- Department of Haematology, Mater Misericordiae
University Hospital, Dublin, Ireland
| | - Brian McCullagh
- National Pulmonary Hypertension Unit, Mater
Misericordiae University Hospital, Dublin, Ireland
| | - Patricia B. Maguire
- Conway-SPHERE Research Group, Conway Institute,
University College Dublin, Dublin, Ireland
| | - Fionnuala Ní Ainle
- Conway-SPHERE Research Group, Conway Institute,
University College Dublin, Dublin, Ireland
- Department of Haematology, Mater Misericordiae
University Hospital, Dublin, Ireland
| | - Sean P. Gaine
- National Pulmonary Hypertension Unit, Mater
Misericordiae University Hospital, Dublin, Ireland
| |
Collapse
|
13
|
Husa P, Snopkova S, Zavrelova J, Zlamal F, Svacinka R, Husa P. Circulating microparticles in patients with chronic hepatitis C and changes during direct-acting antiviral therapy. Biomed Pap Med Fac Univ Palacky Olomouc Czech Repub 2021; 165:146-151. [PMID: 33928944 DOI: 10.5507/bp.2021.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2021] [Accepted: 04/14/2021] [Indexed: 11/23/2022] Open
Abstract
BACKGROUND Microparticles (MPs) are heterogeneous vesicles derived from membranes of different cells. Between 70 to 90% of MPs detected in blood originate from platelets. The release of MPs is associated with proinflammatory and procoagulant states. Elevated levels of MPs have been found in different diseases. We investigated MPs levels in patients with chronic hepatitis C (CHC) and changes in level during treatment using direct-acting antivirotics (DAA). PATIENTS AND METHODS Thirty-six patients with CHC and forty healthy volunteers were included in the study. Concentrations of MPs were determined indirectly by measuring their procoagulant activity in plasma at baseline, end of therapy (EOT), and 12 weeks after EOT when the sustained virological response was assessed (SVR12). RESULTS All patients achieved SVR12, which was associated with rapid improvement of markers of liver damage and function as well as liver stiffness (P=0.002). MPs levels were significantly higher in CHC patients than in healthy volunteers (P<0.001). No statistically significant decrease was found observed between baseline and SVR12 (P=0,330). Analysis of subpopulations with minimal fibrosis F0-1 (P=0.647), advanced fibrosis F2-4 (P=0.370), women(P=0.847), men (P=0.164) and genotype 1 (P=0.077) showed no significant changes during the follow-up period. CONCLUSIONS MPs levels are higher in CHC patients and remain elevated shortly after achieving SVR. Higher concentrations of MPs in plasma are probably caused by a chronic uncontrolled exaggerated inflammatory response caused by CHC. Longer observation would probably confirm the significance of MPs levels decrease because normalization of liver function, inflammation, and structure after SVR requires more than 12 weeks.
Collapse
Affiliation(s)
- Petr Husa
- Department of Infectious Diseases, University Hospital Brno, Jihlavska 20, 62500 Brno, Czech Republic.,Faculty of Medicine, Masaryk University, Kamenice 5, 62500 Brno, Czech Republic
| | - Svatava Snopkova
- Department of Infectious Diseases, University Hospital Brno, Jihlavska 20, 62500 Brno, Czech Republic.,Faculty of Medicine, Masaryk University, Kamenice 5, 62500 Brno, Czech Republic
| | - Jirina Zavrelova
- Department of Hematology, University Hospital Brno, Jihlavska 20, 62500 Brno, Czech Republic
| | - Filip Zlamal
- Research Centre for Toxic Compounds in the Environment, Masaryk University, Kamenice 5, 60200 Brno, Czech Republic
| | - Radek Svacinka
- Department of Infectious Diseases, University Hospital Brno, Jihlavska 20, 62500 Brno, Czech Republic.,Faculty of Medicine, Masaryk University, Kamenice 5, 62500 Brno, Czech Republic
| | - Petr Husa
- Department of Infectious Diseases, University Hospital Brno, Jihlavska 20, 62500 Brno, Czech Republic.,Faculty of Medicine, Masaryk University, Kamenice 5, 62500 Brno, Czech Republic
| |
Collapse
|
14
|
Prostacyclin Analogues Inhibit Platelet Reactivity, Extracellular Vesicle Release and Thrombus Formation in Patients with Pulmonary Arterial Hypertension. J Clin Med 2021; 10:jcm10051024. [PMID: 33801460 PMCID: PMC7958838 DOI: 10.3390/jcm10051024] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Revised: 02/12/2021] [Accepted: 02/19/2021] [Indexed: 12/13/2022] Open
Abstract
(1) Background: Prostacyclin analogues (epoprostenol, treprostinil, and iloprost) induce vasodilation in pulmonary arterial hypertension (PAH) but also inhibit platelet function. (2) Objectives: We assessed platelet function in PAH patients treated with prostacyclin analogues and not receiving prostacyclin analogues. (3) Methods: Venous blood was collected from 42 patients treated with prostacyclin analogues (49.5 ± 15.9 years, 81% female) and 38 patients not receiving prostacyclin analogues (55.5 ± 15.6 years, 74% female). Platelet reactivity was analyzed by impedance aggregometry using arachidonic acid (AA; 0.5 mM), adenosine diphosphate (ADP; 6.5 µM), and thrombin receptor-activating peptide (TRAP; 32 µM) as agonists. In a subset of patients, concentrations of extracellular vesicles (EVs) from all platelets (CD61+), activated platelets (CD61+/CD62P+), leukocytes (CD45+), and endothelial cells (CD146+) were analyzed by flow cytometry. Platelet-rich thrombus formation was measured using a whole blood perfusion system. (4) Results: Compared to controls, PAH patients treated with prostacyclin analogues had lower platelet reactivity in response to AA and ADP (p = 0.01 for both), lower concentrations of platelet and leukocyte EVs (p ≤ 0.04), delayed thrombus formation (p ≤ 0.003), and decreased thrombus size (p = 0.008). Epoprostenol did not affect platelet reactivity but decreased the concentrations of platelet and leukocyte EVs (p ≤ 0.04). Treprostinil decreased platelet reactivity in response to AA and ADP (p ≤ 0.02) but had no effect on the concentrations of EVs. All prostacyclin analogues delayed thrombus formation and decreased thrombus size (p ≤ 0.04). (5) Conclusions: PAH patients treated with prostacyclin analogues had impaired platelet reactivity, EV release, and thrombus formation, compared to patients not receiving prostacyclin analogues.
Collapse
|