1
|
Tang S, Ye JX, Li RY, Wang JL, Xie HC, Zhang YQ, Wang M, Sun GB. Formononetin attenuates myocardial ischemia/reperfusion injury by regulating neutrophil extracellular traps formation and platelet activation via platelet CD36. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2025; 141:156736. [PMID: 40250000 DOI: 10.1016/j.phymed.2025.156736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2025] [Revised: 03/11/2025] [Accepted: 04/06/2025] [Indexed: 04/20/2025]
Abstract
BACKGROUND Prothrombotic and proinflammatory responses are crucial in the pathology of myocardial ischemia-reperfusion injury (MIRI). Platelets and neutrophil extracellular traps (NETs) are essential to linking inflammation with thrombosis. Formononetin (FMN), an isoflavone extracted from Astragalus membranaceus, has anti-inflammatory and anti-thrombotic effects and confers benefits on MIRI. However, the mechanisms of FMN against MIRI remain unclear. PURPOSE This study explored FMN's roles and mechanisms in modulating platelet activation and NETs formation to mitigate MIRI. STUDY DESIGN AND METHODS A rat model of MIRI by the left anterior descending coronary artery ligation was utilized to evaluate the role of FMN. 60 Sprague-Dawley male rats were randomly divided into 7 groups. Proteomics, flow cytometry, immunofluorescence, ELISA, and western blotting assays were performed to reveal the potential mechanisms of FMN. Neutrophils treated with platelet-rich plasma were applied to further explore the mechanisms of FMN in vitro. RESULTS We showed that FMN administration declined myocardial infarct size and improved cardiac function. Moreover, FMN significantly reduced MIRI-induced platelet activation including platelet aggregation, platelet adhesion, platelet granule secretion, and platelet-leukocyte aggregation without affecting tail bleeding time. Additionally, FMN inhibited microthrombus, platelet-neutrophil aggregation, and NETs formation in myocardial tissue. Mechanistically, FMN attenuated MIRI-induced CD36 expression and phosphorylation of ERK5 in platelets. Furthermore, up-regulation of CD36 content in vitro counteracted the potency of FMN to inhibit platelet activation and NETs formation. CONCLUSION FMN mitigates thrombosis and inflammation in MIRI by inhibiting platelet activation and NETs formation via the CD36 pathway. This research offers important insights for future studies on MIRI prevention.
Collapse
Affiliation(s)
- Shuang Tang
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Institute of Medicinal Plant Development, Chinese Academy of Medical Science & Peking Union Medical College, Beijing, 100193, PR China; Key Laboratory of new drug discovery based on Classic Chinese medicine prescription, Chinese Academy of Medical Sciences, Beijing, 100193, PR China
| | - Jing-Xue Ye
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Institute of Medicinal Plant Development, Chinese Academy of Medical Science & Peking Union Medical College, Beijing, 100193, PR China; Key Laboratory of new drug discovery based on Classic Chinese medicine prescription, Chinese Academy of Medical Sciences, Beijing, 100193, PR China
| | - Ruo-Yun Li
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Institute of Medicinal Plant Development, Chinese Academy of Medical Science & Peking Union Medical College, Beijing, 100193, PR China; Key Laboratory of new drug discovery based on Classic Chinese medicine prescription, Chinese Academy of Medical Sciences, Beijing, 100193, PR China
| | - Jia-Lu Wang
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Institute of Medicinal Plant Development, Chinese Academy of Medical Science & Peking Union Medical College, Beijing, 100193, PR China; Key Laboratory of new drug discovery based on Classic Chinese medicine prescription, Chinese Academy of Medical Sciences, Beijing, 100193, PR China
| | - Hao-Chen Xie
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Institute of Medicinal Plant Development, Chinese Academy of Medical Science & Peking Union Medical College, Beijing, 100193, PR China; Key Laboratory of new drug discovery based on Classic Chinese medicine prescription, Chinese Academy of Medical Sciences, Beijing, 100193, PR China
| | - Ya-Qi Zhang
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Institute of Medicinal Plant Development, Chinese Academy of Medical Science & Peking Union Medical College, Beijing, 100193, PR China; Key Laboratory of new drug discovery based on Classic Chinese medicine prescription, Chinese Academy of Medical Sciences, Beijing, 100193, PR China
| | - Min Wang
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Institute of Medicinal Plant Development, Chinese Academy of Medical Science & Peking Union Medical College, Beijing, 100193, PR China; Key Laboratory of new drug discovery based on Classic Chinese medicine prescription, Chinese Academy of Medical Sciences, Beijing, 100193, PR China.
| | - Gui-Bo Sun
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Institute of Medicinal Plant Development, Chinese Academy of Medical Science & Peking Union Medical College, Beijing, 100193, PR China; Key Laboratory of new drug discovery based on Classic Chinese medicine prescription, Chinese Academy of Medical Sciences, Beijing, 100193, PR China.
| |
Collapse
|
2
|
Jiang Q, Huang K, Lin S, Wang D, Tang Z, Hu S. Impact of Multiarterial versus Single Arterial Coronary Bypass Graft Surgery on Postoperative Atrial Fibrillation. Am J Cardiol 2025; 234:30-37. [PMID: 39447720 DOI: 10.1016/j.amjcard.2024.10.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Revised: 10/01/2024] [Accepted: 10/10/2024] [Indexed: 10/26/2024]
Abstract
The effect of multiarterial (MA) versus single arterial (SA) coronary bypass graft surgery on postoperative atrial fibrillation (POAF) was not investigated. From May 2017 to May 2024, the patients with CYP2C19*2 or *3 allele receiving coronary artery grafting and postoperational aspirin 100 mg/day and clopidogrel 75 mg/day were retrospectively reviewed and assigned to the MA or SA group. The primary end point was the incidence rate of POAF in the first week. The secondary end points were POAF burden, platelet aggregation, systemic immune-inflammation index, and heart rate variability. The study included 58 cases in the MA group and 174 cases in the SA group. The incidence of POAF was 17% in the MA group, contrasting with 42% in the SA group (hazard ratio 0.353, 95% confidence interval 0.218 to 0.569, p = 0.0012). A lower POAF burden was observed in the MA group than in SA group (2 [1 to 5] vs 10 hours [6 to 20], p = 0.02). Platelet aggregation (arachidonic acid: 46 ± 10% vs 56 ± 8%, p <0.01; adenosine diphosphate: 58 ± 17% vs 75 ± 13%, p <0.01) and inflammation response index (neutrophil to lymphocyte ratio: 26 ± 4 vs 28 ± 5, p = 0.006; systemic immune-inflammation index: 5,019 ± 771 vs 5,382 ± 1,204, p = 0.032) was notably lower in MA group than those in SA group at 1 day after coronary artery bypass grafting. Holter electrocardiogram showed a higher heart rate variability value in the SD of the normal-to-normal RR intervals and decreased low frequency/high frequency ratio in the MA group. In conclusion, MA was associated with a lower incidence rate of POAF and paralleled with a lower atrial fibrillation burden, platelet aggregation, and inflammation reaction and a higher parasympathetic nerve tone than the SA regimen.
Collapse
Affiliation(s)
- Qin Jiang
- Department of Cardiac Surgery, Sichuan Provincial People's Hospital; Affiliated hospital of University of Electronic Science and Technology, Chengdu, China.
| | - Keli Huang
- Department of Cardiac Surgery, Sichuan Provincial People's Hospital; Affiliated hospital of University of Electronic Science and Technology, Chengdu, China
| | - Shanshan Lin
- Department of Cardiac Surgery, Sichuan Provincial People's Hospital; Affiliated hospital of University of Electronic Science and Technology, Chengdu, China
| | - Deliang Wang
- Department of Cardiac Surgery, Sichuan Provincial People's Hospital; Affiliated hospital of University of Electronic Science and Technology, Chengdu, China
| | - Zhiai Tang
- Department of Cardiology, Xinjiang 474 Hospital, Urumqi, China
| | - Shengshou Hu
- Department of Cardiac Surgery, Fuwai Hospital, Beijing, China
| |
Collapse
|
3
|
Zhang LJ, Hu YX, Huang RZ, Xu YY, Dong SH, Guo FH, Guo JJ, Qiu JJ, Cao ZY, Wei LJ, Mao JH, Lyu A, Liu JL, Zhao XX, Guo ZF, Jing Q. Intraplatelet miRNA-126 regulates thrombosis and its reduction contributes to platelet inhibition. Cardiovasc Res 2024; 120:1622-1635. [PMID: 38900927 DOI: 10.1093/cvr/cvae138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 07/17/2023] [Accepted: 01/08/2024] [Indexed: 06/22/2024] Open
Abstract
AIMS MicroRNA-126 (miR-126), one of the most abundant microRNAs in platelets, is involved in the regulation of platelet activity and the circulating miR-126 is reduced during antiplatelet therapy. However, whether intraplatelet miR-126 plays a role in thrombosis and platelet inhibition remains unclear. METHODS AND RESULTS Here, using tissue-specific knockout mice, we reported that the deficiency of miR-126 in platelets and vascular endothelial cells significantly prevented thrombosis and prolonged bleeding time. Using chimeric mice, we identified that the lack of intraplatelet miR-126 significantly prevented thrombosis. Ex vivo experiments further demonstrated that miR-126-deficient platelets displayed impaired platelet aggregation, spreading, and secretory functions. Next, miR-126 was confirmed to target phosphoinositol-3 kinase regulatory subunit 2 (PIK3R2) in platelet, which encodes a negative regulator of the phosphoinositide 3-kinase/protein kinase B pathway, enhancing platelet activation through activating the integrin αIIbβ3-mediated outside-in signalling. After undergoing myocardial infarction (MI), chimeric mice lacking intraplatelet miR-126 displayed reduced microvascular obstruction and prevented MI expansion in vivo. In contrast, overexpression of miR-126 by the administration of miR-126 agonist (agomiR-126) in wild-type mice aggravated microvascular obstruction and promoted MI expansion, which can be almost abolished by aspirin administration. In patients with cardiovascular diseases, antiplatelet therapies, either aspirin alone or combined with clopidogrel, decreased the level of intraplatelet miR-126. The reduction of intraplatelet miR-126 level was associated with the decrease in platelet activity. CONCLUSION Our murine and human data reveal that (i) intraplatelet miR-126 contributes to platelet activity and promotes thrombus formation, and (ii) the reduction of intraplatelet miR-126 contributes to platelet inhibition during antiplatelet therapy.
Collapse
Affiliation(s)
- Lu-Jun Zhang
- Department of Cardiology, Shanghai Changhai Hospital, 168 Changhai Road, Shanghai 200433, China
| | - Yang-Xi Hu
- Department of Cardiology, Shanghai Changzheng Hospital, Shanghai, China
| | - Rong-Zhong Huang
- Department of Geriatrics, Second Hospital Affiliated to Chongqing Medical University, Chongqing Medical University, Chongqing, China
| | - Yan-Yan Xu
- Department of Biochemistry and Molecular Cell Biology, Shanghai Key Laboratory of Tumor Microenvironment and Inflammation, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Shao-Hua Dong
- Department of Cardiology, Shanghai Changhai Hospital, 168 Changhai Road, Shanghai 200433, China
| | - Fang-Hao Guo
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Innovation Center for Intervention of Chronic Disease and Promotion of Health, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 320 Yue-Yang Road, Shanghai 200031, China
| | - Jun-Jun Guo
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Innovation Center for Intervention of Chronic Disease and Promotion of Health, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 320 Yue-Yang Road, Shanghai 200031, China
| | - Jing-Jing Qiu
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Innovation Center for Intervention of Chronic Disease and Promotion of Health, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 320 Yue-Yang Road, Shanghai 200031, China
| | - Zi-Yun Cao
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Innovation Center for Intervention of Chronic Disease and Promotion of Health, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 320 Yue-Yang Road, Shanghai 200031, China
| | - Li-Jiang Wei
- Department of Cardiology, Rui Jin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jia-Hao Mao
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Innovation Center for Intervention of Chronic Disease and Promotion of Health, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 320 Yue-Yang Road, Shanghai 200031, China
| | - Ankang Lyu
- Department of Cardiology, Rui Jin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jun-Ling Liu
- Department of Biochemistry and Molecular Cell Biology, Shanghai Key Laboratory of Tumor Microenvironment and Inflammation, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xian-Xian Zhao
- Department of Cardiology, Shanghai Changhai Hospital, 168 Changhai Road, Shanghai 200433, China
| | - Zhi-Fu Guo
- Department of Cardiology, Shanghai Changhai Hospital, 168 Changhai Road, Shanghai 200433, China
| | - Qing Jing
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Innovation Center for Intervention of Chronic Disease and Promotion of Health, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 320 Yue-Yang Road, Shanghai 200031, China
| |
Collapse
|
4
|
Lei F, Zhang J, Deng Y, Wang X, Tang J, Tian J, Wan Y, Wang L, Zhou X, Zhang Y, Li C. Biomimetic nanoplatform treats myocardial ischemia/reperfusion injury by synergistically promoting angiogenesis and inhibiting inflammation. Colloids Surf B Biointerfaces 2024; 243:114159. [PMID: 39137530 DOI: 10.1016/j.colsurfb.2024.114159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 08/08/2024] [Accepted: 08/09/2024] [Indexed: 08/15/2024]
Abstract
After myocardial ischemia/reperfusion injury (MI/RI), endothelial cell injury causes impaired angiogenesis and obstruction of microcirculation, resulting in an inflammatory outburst that exacerbates the damage. Therefore, synergistic blood vessel repair and inflammation inhibition are effective therapeutic strategies. In this study, we developed a platelet membrane (PM)-encapsulated baicalin nanocrystalline (BA NC) nanoplatform with a high drug load, BA NC@PM, which co-target to endothelial cells and macrophages through the transmembrane proteins of the PM to promote angiogenesis and achieve anti-inflammatory effects. In vitro cell scratch assays and transwell assay manifested that BA NC@PM could promote endothelial cell migration, as well as increase mRNA expression of CD31 and VEGF in the heart after treatment of MI/RI mice, suggesting its favorable vascular repair function. In addition, the preparation significantly reduced the expression of pro-inflammatory factors and increased the expression of anti-inflammatory factors in plasma, promoting the polarization of macrophages. Our study highlights a strategy for enhancing the treatment of MI/RI by promoting angiogenesis and regulating macrophage polarization via the biomimetic BA NC@PM nanoplatform.
Collapse
Affiliation(s)
- Fenting Lei
- Analysis and Testing Center, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan 646000, China
| | - Jie Zhang
- Department of Nuclear Medicine, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, China
| | - Yiping Deng
- Analysis and Testing Center, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan 646000, China
| | - Xueqin Wang
- Department of Thyroid Surgery, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, China
| | - Jun Tang
- Analysis and Testing Center, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan 646000, China
| | - Ji Tian
- Analysis and Testing Center, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan 646000, China
| | - Ying Wan
- School of Basic Medical Sciences, Southwest Medical University, Luzhou, Sichuan 646000, China
| | - Li Wang
- Department of Nuclear Medicine, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, China
| | - Xiangyu Zhou
- Department of Thyroid Surgery, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, China; Basic Medicine Research Innovation Center for Cardiometabolic Disease, Ministry of Education, Southwest Medical University, Luzhou, Sichuan 646000, China.
| | - Yingying Zhang
- Department of Anaesthesiology, The Affiliated Hospital of Southwest Medical University, Luzhou, China.
| | - Chunhong Li
- Basic Medicine Research Innovation Center for Cardiometabolic Disease, Ministry of Education, Southwest Medical University, Luzhou, Sichuan 646000, China; Department of Pharmaceutical Sciences, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan 646000, China.
| |
Collapse
|
5
|
Bai Y, Chen Y, Jin Q, Deng C, Xu L, Huang T, He S, Fu Y, Qiu J, Xu J, Gao T, Wu W, Lv Q, Yang Y, Zhang L, Xie M, Dong X, Wang J. Platelet membrane-derived biomimetic microbubbles with enhanced targeting ability for the early detection of myocardial ischemia-reperfusion injury. Colloids Surf B Biointerfaces 2024; 234:113680. [PMID: 38101143 DOI: 10.1016/j.colsurfb.2023.113680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 11/19/2023] [Accepted: 11/29/2023] [Indexed: 12/17/2023]
Abstract
Myocardial ischemia-reperfusion injury (MIRI) is a widely recognized cardiovascular disease that significantly impacts the prognosis of patients undergoing myocardial infarction recanalization. This condition can be fatal and involves complex pathophysiological mechanisms. Early diagnosis of MIRI is crucial to minimize myocardial damage and reducing mortality. Based on the inherent relationship between platelets and MIRI, we developed biomimetic microbubbles coated with platelet membrane (MB-pla) for early identification of MIRI. The MB-pla were prepared through a recombination process involving platelet membrane obtained from rat whole blood and phospholipids, blended in appropriate proportions. By coating the microbubbles with platelet membrane, MB-pla acquired various adhesion molecules, thereby gaining the capability to selectively adhere to damaged endothelial cells in the context of MIRI. In vitro experiments demonstrated that MB-pla exhibited remarkable targeting characteristics, particularly toward type IV collagen and human umbilical vein endothelial cells that had been injured through hypoxia/reoxygenation procedures. In a rat model of MIRI, the signal intensity produced by MB-pla was notably higher than that of control microbubbles. These findings were consistent with results obtained from fluorescence imaging of isolated hearts and immunofluorescence staining of tissue sections. In conclusion, MB-pla has great potential as a non-invasive early detection method for MIRI. Furthermore, this approach can potentially find application in other conditions involving endothelial injury in the future.
Collapse
Affiliation(s)
- Ying Bai
- Department of Ultrasound Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; Clinical Research Center for Medical Imaging in Hubei Province, China; Hubei Province Key Laboratory of Molecular Imaging, Wuhan, China
| | - Yihan Chen
- Department of Ultrasound Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; Clinical Research Center for Medical Imaging in Hubei Province, China; Hubei Province Key Laboratory of Molecular Imaging, Wuhan, China; Department of Ultrasonography, The Fourth Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Qiaofeng Jin
- Department of Ultrasound Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; Clinical Research Center for Medical Imaging in Hubei Province, China; Hubei Province Key Laboratory of Molecular Imaging, Wuhan, China
| | - Cheng Deng
- Department of Ultrasound Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; Clinical Research Center for Medical Imaging in Hubei Province, China; Hubei Province Key Laboratory of Molecular Imaging, Wuhan, China
| | - Lingling Xu
- Department of Ultrasound Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; Clinical Research Center for Medical Imaging in Hubei Province, China; Hubei Province Key Laboratory of Molecular Imaging, Wuhan, China
| | - Tian Huang
- Department of Ultrasound Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; Clinical Research Center for Medical Imaging in Hubei Province, China; Hubei Province Key Laboratory of Molecular Imaging, Wuhan, China
| | - Shukun He
- Department of Ultrasound Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; Clinical Research Center for Medical Imaging in Hubei Province, China; Hubei Province Key Laboratory of Molecular Imaging, Wuhan, China
| | - Yanan Fu
- Department of Ultrasound Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; Clinical Research Center for Medical Imaging in Hubei Province, China; Hubei Province Key Laboratory of Molecular Imaging, Wuhan, China
| | - Jiani Qiu
- Department of Ultrasound Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; Clinical Research Center for Medical Imaging in Hubei Province, China; Hubei Province Key Laboratory of Molecular Imaging, Wuhan, China
| | - Jia Xu
- Department of Ultrasound Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; Clinical Research Center for Medical Imaging in Hubei Province, China; Hubei Province Key Laboratory of Molecular Imaging, Wuhan, China
| | - Tang Gao
- Department of Ultrasound Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; Clinical Research Center for Medical Imaging in Hubei Province, China; Hubei Province Key Laboratory of Molecular Imaging, Wuhan, China
| | - Wenqian Wu
- Department of Ultrasound Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; Clinical Research Center for Medical Imaging in Hubei Province, China; Hubei Province Key Laboratory of Molecular Imaging, Wuhan, China
| | - Qing Lv
- Department of Ultrasound Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; Clinical Research Center for Medical Imaging in Hubei Province, China; Hubei Province Key Laboratory of Molecular Imaging, Wuhan, China
| | - Yali Yang
- Department of Ultrasound Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; Clinical Research Center for Medical Imaging in Hubei Province, China; Hubei Province Key Laboratory of Molecular Imaging, Wuhan, China
| | - Li Zhang
- Department of Ultrasound Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; Clinical Research Center for Medical Imaging in Hubei Province, China; Hubei Province Key Laboratory of Molecular Imaging, Wuhan, China; Shenzhen Huazhong University of Science and Technology Research Institute, China
| | - Mingxing Xie
- Department of Ultrasound Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; Clinical Research Center for Medical Imaging in Hubei Province, China; Hubei Province Key Laboratory of Molecular Imaging, Wuhan, China; Shenzhen Huazhong University of Science and Technology Research Institute, China
| | - Xiaoqiu Dong
- Department of Ultrasonography, The Fourth Affiliated Hospital of Harbin Medical University, Harbin, China.
| | - Jing Wang
- Department of Ultrasound Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; Clinical Research Center for Medical Imaging in Hubei Province, China; Hubei Province Key Laboratory of Molecular Imaging, Wuhan, China.
| |
Collapse
|
6
|
Zarà M, Baggiano A, Amadio P, Campodonico J, Gili S, Annoni A, De Dona G, Carerj ML, Cilia F, Formenti A, Fusini L, Banfi C, Gripari P, Tedesco CC, Mancini ME, Chiesa M, Maragna R, Marchetti F, Penso M, Tassetti L, Volpe A, Bonomi A, Marenzi G, Pontone G, Barbieri SS. Circulating Small Extracellular Vesicles Reflect the Severity of Myocardial Damage in STEMI Patients. Biomolecules 2023; 13:1470. [PMID: 37892152 PMCID: PMC10605123 DOI: 10.3390/biom13101470] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 09/15/2023] [Accepted: 09/28/2023] [Indexed: 10/29/2023] Open
Abstract
Circulating small extracellular vesicles (sEVs) contribute to inflammation, coagulation and vascular injury, and have great potential as diagnostic markers of disease. The ability of sEVs to reflect myocardial damage assessed by Cardiac Magnetic Resonance (CMR) in ST-segment elevation myocardial infarction (STEMI) is unknown. To fill this gap, plasma sEVs were isolated from 42 STEMI patients treated by primary percutaneous coronary intervention (pPCI) and evaluated by CMR between days 3 and 6. Nanoparticle tracking analysis showed that sEVs were greater in patients with anterior STEMI (p = 0.0001), with the culprit lesion located in LAD (p = 0.045), and in those who underwent late revascularization (p = 0.038). A smaller sEV size was observed in patients with a low myocardial salvage index (MSI, p = 0.014). Patients with microvascular obstruction (MVO) had smaller sEVs (p < 0.002) and lower expression of the platelet marker CD41-CD61 (p = 0.039). sEV size and CD41-CD61 expression were independent predictors of MVO/MSI (OR [95% CI]: 0.93 [0.87-0.98] and 0.04 [0-0.61], respectively). In conclusion, we provide evidence that the CD41-CD61 expression in sEVs reflects the CMR-assessed ischemic damage after STEMI. This finding paves the way for the development of a new strategy for the timely identification of high-risk patients and their treatment optimization.
Collapse
Affiliation(s)
- Marta Zarà
- Centro Cardiologico Monzino IRCCS, 20138 Milan, Italy; (M.Z.); (A.B.); (G.M.)
| | - Andrea Baggiano
- Centro Cardiologico Monzino IRCCS, 20138 Milan, Italy; (M.Z.); (A.B.); (G.M.)
- Department of Clinical Sciences and Community Health, University of Milan, 20122 Milan, Italy
| | - Patrizia Amadio
- Centro Cardiologico Monzino IRCCS, 20138 Milan, Italy; (M.Z.); (A.B.); (G.M.)
| | - Jeness Campodonico
- Centro Cardiologico Monzino IRCCS, 20138 Milan, Italy; (M.Z.); (A.B.); (G.M.)
| | - Sebastiano Gili
- Centro Cardiologico Monzino IRCCS, 20138 Milan, Italy; (M.Z.); (A.B.); (G.M.)
| | - Andrea Annoni
- Centro Cardiologico Monzino IRCCS, 20138 Milan, Italy; (M.Z.); (A.B.); (G.M.)
| | - Gianluca De Dona
- Centro Cardiologico Monzino IRCCS, 20138 Milan, Italy; (M.Z.); (A.B.); (G.M.)
| | | | - Francesco Cilia
- Centro Cardiologico Monzino IRCCS, 20138 Milan, Italy; (M.Z.); (A.B.); (G.M.)
| | - Alberto Formenti
- Centro Cardiologico Monzino IRCCS, 20138 Milan, Italy; (M.Z.); (A.B.); (G.M.)
| | - Laura Fusini
- Centro Cardiologico Monzino IRCCS, 20138 Milan, Italy; (M.Z.); (A.B.); (G.M.)
- Department of Electronics, Information and Bioengineering, Politecnico di Milano, 20156 Milan, Italy
| | - Cristina Banfi
- Centro Cardiologico Monzino IRCCS, 20138 Milan, Italy; (M.Z.); (A.B.); (G.M.)
| | - Paola Gripari
- Centro Cardiologico Monzino IRCCS, 20138 Milan, Italy; (M.Z.); (A.B.); (G.M.)
| | | | | | - Mattia Chiesa
- Centro Cardiologico Monzino IRCCS, 20138 Milan, Italy; (M.Z.); (A.B.); (G.M.)
| | - Riccardo Maragna
- Centro Cardiologico Monzino IRCCS, 20138 Milan, Italy; (M.Z.); (A.B.); (G.M.)
| | - Francesca Marchetti
- Centro Cardiologico Monzino IRCCS, 20138 Milan, Italy; (M.Z.); (A.B.); (G.M.)
| | - Marco Penso
- Centro Cardiologico Monzino IRCCS, 20138 Milan, Italy; (M.Z.); (A.B.); (G.M.)
| | - Luigi Tassetti
- Centro Cardiologico Monzino IRCCS, 20138 Milan, Italy; (M.Z.); (A.B.); (G.M.)
| | - Alessandra Volpe
- Centro Cardiologico Monzino IRCCS, 20138 Milan, Italy; (M.Z.); (A.B.); (G.M.)
| | - Alice Bonomi
- Centro Cardiologico Monzino IRCCS, 20138 Milan, Italy; (M.Z.); (A.B.); (G.M.)
| | - Giancarlo Marenzi
- Centro Cardiologico Monzino IRCCS, 20138 Milan, Italy; (M.Z.); (A.B.); (G.M.)
| | - Gianluca Pontone
- Centro Cardiologico Monzino IRCCS, 20138 Milan, Italy; (M.Z.); (A.B.); (G.M.)
- Department of Biomedical, Surgical and Dental Sciences, University of Milan, 20122 Milan, Italy
| | | |
Collapse
|