1
|
Panda SK, Gupta D, Patel M, Vyver CVD, Koyama H. Functionality of Reactive Oxygen Species (ROS) in Plants: Toxicity and Control in Poaceae Crops Exposed to Abiotic Stress. PLANTS (BASEL, SWITZERLAND) 2024; 13:2071. [PMID: 39124190 PMCID: PMC11313751 DOI: 10.3390/plants13152071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 07/22/2024] [Accepted: 07/23/2024] [Indexed: 08/12/2024]
Abstract
Agriculture and changing environmental conditions are closely related, as weather changes could adversely affect living organisms or regions of crop cultivation. Changing environmental conditions trigger different abiotic stresses, which ultimately cause the accumulation of reactive oxygen species (ROS) in plants. Common ROS production sites are the chloroplast, endoplasmic reticulum, plasma membrane, mitochondria, peroxisomes, etc. The imbalance in ROS production and ROS detoxification in plant cells leads to oxidative damage to biomolecules such as lipids, nucleic acids, and proteins. At low concentrations, ROS initiates signaling events related to development and adaptations to abiotic stress in plants by inducing signal transduction pathways. In plants, a stress signal is perceived by various receptors that induce a signal transduction pathway that activates numerous signaling networks, which disrupt gene expression, impair the diversity of kinase/phosphatase signaling cascades that manage the stress response in the plant, and result in changes in physiological responses under various stresses. ROS production also regulates ABA-dependent and ABA-independent pathways to mitigate drought stress. This review focuses on the common subcellular location of manufacturing, complex signaling mechanisms, and networks of ROS, with an emphasis on cellular effects and enzymatic and non-enzymatic antioxidant scavenging mechanisms of ROS in Poaceae crops against drought stress and how the manipulation of ROS regulates stress tolerance in plants. Understanding ROS systems in plants could help to create innovative strategies to evolve paths of cell protection against the negative effects of excessive ROS in attempts to improve crop productivity in adverse environments.
Collapse
Affiliation(s)
- Sanjib Kumar Panda
- Department of Biochemistry, Central University of Rajasthan, Ajmer 305817, India; (S.K.P.); (D.G.); (M.P.)
| | - Divya Gupta
- Department of Biochemistry, Central University of Rajasthan, Ajmer 305817, India; (S.K.P.); (D.G.); (M.P.)
| | - Mayur Patel
- Department of Biochemistry, Central University of Rajasthan, Ajmer 305817, India; (S.K.P.); (D.G.); (M.P.)
| | - Christell Van Der Vyver
- Institute of Plant Biotechnology, Stellenbosch University, Private Bag X1, Stellenbosch 7601, South Africa;
| | - Hiroyuki Koyama
- Faculty of Applied Biology, Gifu University, Gifu 501-1193, Japan
| |
Collapse
|
2
|
Pouliquen DL, Boissard A, Henry C, Coqueret O, Guette C. Curcuminoids as Modulators of EMT in Invasive Cancers: A Review of Molecular Targets With the Contribution of Malignant Mesothelioma Studies. Front Pharmacol 2022; 13:934534. [PMID: 35873564 PMCID: PMC9304619 DOI: 10.3389/fphar.2022.934534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Accepted: 06/15/2022] [Indexed: 11/21/2022] Open
Abstract
Curcuminoids, which include natural acyclic diarylheptanoids and the synthetic analogs of curcumin, have considerable potential for fighting against all the characteristics of invasive cancers. The epithelial-to-mesenchymal transition (EMT) is a fundamental process for embryonic morphogenesis, however, the last decade has confirmed it orchestrates many features of cancer invasiveness, such as tumor cell stemness, metabolic rewiring, and drug resistance. A wealth of studies has revealed EMT in cancer is in fact driven by an increasing number of parameters, and thus understanding its complexity has now become a cornerstone for defining future therapeutic strategies dealing with cancer progression and metastasis. A specificity of curcuminoids is their ability to target multiple molecular targets, modulate several signaling pathways, modify tumor microenvironments and enhance the host’s immune response. Although the effects of curcumin on these various parameters have been the subject of many reviews, the role of curcuminoids against EMT in the context of cancer have never been reviewed so far. This review first provides an updated overview of all EMT drivers, including signaling pathways, transcription factors, non-coding RNAs (ncRNAs) and tumor microenvironment components, with a special focus on the most recent findings. Secondly, for each of these drivers the effects of curcumin/curcuminoids on specific molecular targets are analyzed. Finally, we address some common findings observed between data reported in the literature and the results of investigations we conducted on experimental malignant mesothelioma, a model of invasive cancer representing a useful tool for studies on EMT and cancer.
Collapse
Affiliation(s)
- Daniel L. Pouliquen
- Inserm, CNRS, Nantes Université, CRCI2NA, Université d’Angers, Angers, France
- *Correspondence: Daniel L. Pouliquen,
| | - Alice Boissard
- ICO, Inserm, CNRS, Nantes Université, CRCI2NA, Université d’Angers, Angers, France
| | - Cécile Henry
- ICO, Inserm, CNRS, Nantes Université, CRCI2NA, Université d’Angers, Angers, France
| | - Olivier Coqueret
- Inserm, CNRS, Nantes Université, CRCI2NA, Université d’Angers, Angers, France
| | - Catherine Guette
- ICO, Inserm, CNRS, Nantes Université, CRCI2NA, Université d’Angers, Angers, France
| |
Collapse
|
3
|
Zavileyskiy L, Bunik V. Regulation of p53 Function by Formation of Non-Nuclear Heterologous Protein Complexes. Biomolecules 2022; 12:biom12020327. [PMID: 35204825 PMCID: PMC8869670 DOI: 10.3390/biom12020327] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2022] [Revised: 02/10/2022] [Accepted: 02/16/2022] [Indexed: 01/10/2023] Open
Abstract
A transcription factor p53 is activated upon cellular exposure to endogenous and exogenous stresses, triggering either homeostatic correction or cell death. Depending on the stress level, often measurable as DNA damage, the dual outcome is supported by p53 binding to a number of regulatory and metabolic proteins. Apart from the nucleus, p53 localizes to mitochondria, endoplasmic reticulum and cytosol. We consider non-nuclear heterologous protein complexes of p53, their structural determinants, regulatory post-translational modifications and the role in intricate p53 functions. The p53 heterologous complexes regulate the folding, trafficking and/or action of interacting partners in cellular compartments. Some of them mainly sequester p53 (HSP proteins, G6PD, LONP1) or its partners (RRM2B, PRKN) in specific locations. Formation of other complexes (with ATP2A2, ATP5PO, BAX, BCL2L1, CHCHD4, PPIF, POLG, SOD2, SSBP1, TFAM) depends on p53 upregulation according to the stress level. The p53 complexes with SIRT2, MUL1, USP7, TXN, PIN1 and PPIF control regulation of p53 function through post-translational modifications, such as lysine acetylation or ubiquitination, cysteine/cystine redox transformation and peptidyl-prolyl cis-trans isomerization. Redox sensitivity of p53 functions is supported by (i) thioredoxin-dependent reduction of p53 disulfides, (ii) inhibition of the thioredoxin-dependent deoxyribonucleotide synthesis by p53 binding to RRM2B and (iii) changed intracellular distribution of p53 through its oxidation by CHCHD4 in the mitochondrial intermembrane space. Increasing knowledge on the structure, function and (patho)physiological significance of the p53 heterologous complexes will enable a fine tuning of the settings-dependent p53 programs, using small molecule regulators of specific protein–protein interactions of p53.
Collapse
Affiliation(s)
- Lev Zavileyskiy
- Faculty of Bioengineering and Bioinformatics, Lomonosov Moscow State University, 119991 Moscow, Russia;
| | - Victoria Bunik
- Faculty of Bioengineering and Bioinformatics, Lomonosov Moscow State University, 119991 Moscow, Russia;
- Department of Biokinetics, Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119991 Moscow, Russia
- Department of Biochemistry, Sechenov University, 119991 Moscow, Russia
- Correspondence:
| |
Collapse
|
4
|
Lei Y, Huang Y, Wen X, Yin Z, Zhang Z, Klionsky DJ. How Cells Deal with the Fluctuating Environment: Autophagy Regulation under Stress in Yeast and Mammalian Systems. Antioxidants (Basel) 2022; 11:antiox11020304. [PMID: 35204187 PMCID: PMC8868404 DOI: 10.3390/antiox11020304] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2022] [Revised: 01/28/2022] [Accepted: 01/31/2022] [Indexed: 12/04/2022] Open
Abstract
Eukaryotic cells frequently experience fluctuations of the external and internal environments, such as changes in nutrient, energy and oxygen sources, and protein folding status, which, after reaching a particular threshold, become a type of stress. Cells develop several ways to deal with these various types of stress to maintain homeostasis and survival. Among the cellular survival mechanisms, autophagy is one of the most critical ways to mediate metabolic adaptation and clearance of damaged organelles. Autophagy is maintained at a basal level under normal growing conditions and gets stimulated by stress through different but connected mechanisms. In this review, we summarize the advances in understanding the autophagy regulation mechanisms under multiple types of stress including nutrient, energy, oxidative, and ER stress in both yeast and mammalian systems.
Collapse
Affiliation(s)
- Yuchen Lei
- Life Sciences Institute, University of Michigan, Ann Arbor, MI 48109, USA; (Y.L.); (Y.H.); (X.W.); (Z.Y.); (Z.Z.)
- Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Yuxiang Huang
- Life Sciences Institute, University of Michigan, Ann Arbor, MI 48109, USA; (Y.L.); (Y.H.); (X.W.); (Z.Y.); (Z.Z.)
- Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Xin Wen
- Life Sciences Institute, University of Michigan, Ann Arbor, MI 48109, USA; (Y.L.); (Y.H.); (X.W.); (Z.Y.); (Z.Z.)
- Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Zhangyuan Yin
- Life Sciences Institute, University of Michigan, Ann Arbor, MI 48109, USA; (Y.L.); (Y.H.); (X.W.); (Z.Y.); (Z.Z.)
- Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Zhihai Zhang
- Life Sciences Institute, University of Michigan, Ann Arbor, MI 48109, USA; (Y.L.); (Y.H.); (X.W.); (Z.Y.); (Z.Z.)
- Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Daniel J. Klionsky
- Life Sciences Institute, University of Michigan, Ann Arbor, MI 48109, USA; (Y.L.); (Y.H.); (X.W.); (Z.Y.); (Z.Z.)
- Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, USA
- Correspondence:
| |
Collapse
|
5
|
Glyap1 regulates pneumocandin B 0 synthesis by controlling the intracellular redox balance in Glarea lozoyensis. Appl Microbiol Biotechnol 2021; 105:6707-6718. [PMID: 34476516 DOI: 10.1007/s00253-021-11522-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 06/02/2021] [Accepted: 08/05/2021] [Indexed: 10/20/2022]
Abstract
Pneumocandin B0, the precursor of the antifungal drug caspofungin, is a lipohexapeptide produced by the fungus Glarea lozoyensis. Oxidative stress and the resulting production of reactive oxygen species (ROS) are known to be involved in the regulation of pneumocandin B0 biosynthesis. In this study, the Glyap1 gene of Glarea lozoyensis, a homologue of the yeast redox regulator YAP1, was knocked out. The intracellular ROS levels of the resulting ΔGlyap1 strain were higher than in the wild-type strain, which was caused by the downregulated expression of superoxide dismutase (SOD) and catalase (CAT). Compared with the wild-type strain, ΔGlyap1 exhibited an oxidative phenotype throughout its life cycle, which resulted in significantly higher pneumocandin B0 production per unit biomass. In addition, ΔGlyap1 showed growth inhibition and decreased pneumocandin B0 production in the presence of CCl4, which leads to strong oxidative stress. To overcome the strain's sensitivity, a three-stage antioxidant addition strategy was developed. This approach significantly improved the growth of ΔGlyap1 while maintaining a high pneumocandin B0 production per unit biomass, which reached 38.78 mg/g DCW. Notably, this result represents a 50% increase over the wild-type strain. These findings provide new insights into the regulatory mechanisms that control pneumocandin B0 production under oxidative stress, which may be applied to improve the production of other secondary metabolites. KEY POINTS: • Glyap1 is involved in expression of redox and pneumocandin B0 synthesis-related genes. • Addition of a three-stage antioxidant alleviated the sensitivity of ΔGlyap1 strain. • The yield of pneumocandin B0 per unit biomass of ΔGlyap1 strain was 38.78 mg/g DCW.
Collapse
|
6
|
Sánchez-Arreguin JA, Ruiz-Herrera J, Mares-Rodriguez FDJ, León-Ramírez CG, Sánchez-Segura L, Zapata-Morín PA, Coronado-Gallegos J, Aréchiga-Carvajal ET. Acid pH Strategy Adaptation through NRG1 in Ustilago maydis. J Fungi (Basel) 2021; 7:91. [PMID: 33525315 PMCID: PMC7912220 DOI: 10.3390/jof7020091] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Revised: 12/19/2020] [Accepted: 12/21/2020] [Indexed: 12/17/2022] Open
Abstract
The role of the Ustilago maydis putative homolog of the transcriptional repressor ScNRG1, previously described in Saccharomyces cerevisiae, Candida albicans and Cryptococcus neoformans, was analyzed by means of its mutation. In S. cerevisiae this gene regulates a set of stress-responsive genes, and in C. neoformans it is involved in pathogenesis. It was observed that the U. maydisNRG1 gene regulates several aspects of the cell response to acid pH, such as the production of mannosyl-erythritol lipids, inhibition of the expression of the siderophore cluster genes, filamentous growth, virulence and oxidative stress. A comparison of the gene expression pattern of the wild type strain versus the nrg1 mutant strain of the fungus, through RNA Seq analyses, showed that this transcriptional factor alters the expression of 368 genes when growing at acid pH (205 up-regulated, 163 down-regulated). The most relevant genes affected by NRG1 were those previously reported as the key ones for particular cellular stress responses, such as HOG1 for osmotic stress and RIM101 for alkaline pH. Four of the seven genes included WCO1 codifying PAS domain ( These has been shown as the key structural motif involved in protein-protein interactions of the circadian clock, and it is also a common motif found in signaling proteins, where it functions as a signaling sensor) domains sensors of blue light, two of the three previously reported to encode opsins, one vacuolar and non-pH-responsive, and another one whose role in the acid pH response was already known. It appears that all these light-reactive cell components are possibly involved in membrane potential equilibrium and as virulence sensors. Among previously described specific functions of this transcriptional regulator, it was found to be involved in glucose repression, metabolic adaptation to adverse conditions, cellular transport, cell rescue, defense and interaction with an acidic pH environment.
Collapse
Affiliation(s)
- José Alejandro Sánchez-Arreguin
- Laboratorio de Micología y Fitopatología, Unidad de Manipulación Genética, Facultad de Ciencias Biológicas, Universidad Autónoma de Nuevo León, 66451 San Nicolás de los Garza, Nuevo León, Mexico
| | - José Ruiz-Herrera
- Departamento de Ingeniería Genética, Unidad Irapuato, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Km 9.6, Libramiento Norte, Carretera Irapuato-León, 36821 Irapuato, Guanajuato, Mexico
| | - F de Jesus Mares-Rodriguez
- Laboratorio de Micología y Fitopatología, Unidad de Manipulación Genética, Facultad de Ciencias Biológicas, Universidad Autónoma de Nuevo León, 66451 San Nicolás de los Garza, Nuevo León, Mexico
| | - Claudia Geraldine León-Ramírez
- Departamento de Ingeniería Genética, Unidad Irapuato, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Km 9.6, Libramiento Norte, Carretera Irapuato-León, 36821 Irapuato, Guanajuato, Mexico
| | - Lino Sánchez-Segura
- Departamento de Ingeniería Genética, Unidad Irapuato, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Km 9.6, Libramiento Norte, Carretera Irapuato-León, 36821 Irapuato, Guanajuato, Mexico
| | - Patricio Adrián Zapata-Morín
- Laboratorio de Micología y Fitopatología, Unidad de Manipulación Genética, Facultad de Ciencias Biológicas, Universidad Autónoma de Nuevo León, 66451 San Nicolás de los Garza, Nuevo León, Mexico
| | - Jordan Coronado-Gallegos
- Laboratorio de Micología y Fitopatología, Unidad de Manipulación Genética, Facultad de Ciencias Biológicas, Universidad Autónoma de Nuevo León, 66451 San Nicolás de los Garza, Nuevo León, Mexico
| | - Elva Teresa Aréchiga-Carvajal
- Laboratorio de Micología y Fitopatología, Unidad de Manipulación Genética, Facultad de Ciencias Biológicas, Universidad Autónoma de Nuevo León, 66451 San Nicolás de los Garza, Nuevo León, Mexico
| |
Collapse
|
7
|
Flohé L. Looking Back at the Early Stages of Redox Biology. Antioxidants (Basel) 2020; 9:E1254. [PMID: 33317108 PMCID: PMC7763103 DOI: 10.3390/antiox9121254] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2020] [Revised: 11/12/2020] [Accepted: 11/24/2020] [Indexed: 12/14/2022] Open
Abstract
The beginnings of redox biology are recalled with special emphasis on formation, metabolism and function of reactive oxygen and nitrogen species in mammalian systems. The review covers the early history of heme peroxidases and the metabolism of hydrogen peroxide, the discovery of selenium as integral part of glutathione peroxidases, which expanded the scope of the field to other hydroperoxides including lipid hydroperoxides, the discovery of superoxide dismutases and superoxide radicals in biological systems and their role in host defense, tissue damage, metabolic regulation and signaling, the identification of the endothelial-derived relaxing factor as the nitrogen monoxide radical (more commonly named nitric oxide) and its physiological and pathological implications. The article highlights the perception of hydrogen peroxide and other hydroperoxides as signaling molecules, which marks the beginning of the flourishing fields of redox regulation and redox signaling. Final comments describe the development of the redox language. In the 18th and 19th century, it was highly individualized and hard to translate into modern terminology. In the 20th century, the redox language co-developed with the chemical terminology and became clearer. More recently, the introduction and inflationary use of poorly defined terms has unfortunately impaired the understanding of redox events in biological systems.
Collapse
Affiliation(s)
- Leopold Flohé
- Dipartimento di Medicina Molecolare, Università degli Studi di Padova, v.le G. Colombo 3, 35121 Padova, Italy;
- Departamento de Bioquímica, Universidad de la República, Avda. General Flores 2125, 11800 Montevideo, Uruguay
| |
Collapse
|
8
|
Mechanisms and consequences of protein cysteine oxidation: the role of the initial short-lived intermediates. Essays Biochem 2020; 64:55-66. [PMID: 31919496 DOI: 10.1042/ebc20190053] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Revised: 12/10/2019] [Accepted: 12/12/2019] [Indexed: 12/27/2022]
Abstract
Thiol groups in protein cysteine (Cys) residues can undergo one- and two-electron oxidation reactions leading to the formation of thiyl radicals or sulfenic acids, respectively. In this mini-review we summarize the mechanisms and kinetics of the formation of these species by biologically relevant oxidants. Most of the latter react with the deprotonated form of the thiol. Since the pKa of the thiols in protein cysteines are usually close to physiological pH, the thermodynamics and the kinetics of their oxidation in vivo are affected by the acidity of the thiol. Moreover, the protein microenvironment has pronounced effects on cysteine residue reactivity, which in the case of the oxidation mediated by hydroperoxides, is known to confer specificity to particular protein cysteines. Despite their elusive nature, both thiyl radicals and sulfenic acids are involved in the catalytic mechanism of several enzymes and in the redox regulation of protein function and/or signaling pathways. They are usually short-lived species that undergo further reactions that converge in the formation of different stable products, resulting in several post-translational modifications of the protein. Some of these can be reversed through the action of specific cellular reduction systems. Others damage the proteins irreversibly, and can make them more prone to aggregation or degradation.
Collapse
|
9
|
Abstract
Significance: The selenium-containing Glutathione peroxidases (GPxs)1-4 protect against oxidative challenge, inhibit inflammation and oxidant-induced regulated cell death. Recent Advances: GPx1 and GPx4 dampen phosphorylation cascades predominantly via prevention of inactivation of phosphatases by H2O2 or lipid hydroperoxides. GPx2 regulates the balance between regeneration and apoptotic cell shedding in the intestine. It inhibits inflammation-induced carcinogenesis in the gut but promotes growth of established cancers. GPx3 deficiency facilitates platelet aggregation likely via disinhibition of thromboxane biosynthesis. It is also considered a tumor suppressor. GPx4 is expressed in three different forms. The cytosolic form proved to inhibit interleukin-1-driven nuclear factor κB activation and leukotriene biosynthesis. Moreover, it is a key regulator of ferroptosis, because it reduces hydroperoxy groups of complex lipids and silences lipoxygenases. By alternate substrate use, the nuclear form contributes to chromatin compaction. Mitochondrial GPx4 forms the mitochondrial sheath of spermatozoa and, thus, guarantees male fertility. Out of the less characterized GPxs, the cysteine-containing GPx7 and GPx8 are unique in contributing to oxidative protein folding in the endoplasmic reticulum by reacting with protein isomerase as an alternate substrate. A yeast 2-Cysteine glutathione peroxidase equipped with CP and CR was reported to sense H2O2 for inducing an adaptive response. Critical Issues: Most of the findings compiled are derived from tissue culture and/or animal studies only. Their impact on human physiology is sometimes questionable. Future Directions: The expression of individual GPxs and GPx-dependent regulatory phenomena are to be further investigated, in particular in respect to human health.
Collapse
Affiliation(s)
- Regina Brigelius-Flohé
- Department of Biochemistry of Micronutrients, German Institute of Human Nutrition-Potsdam-Rehbrücke (DIfE), Nuthetal, Germany
| | - Leopold Flohé
- Depatamento de Biochímica, Universidad de la República, Montevideo, Uruguay.,Dipartimento di Medicina Moleculare, Università degli Studi di Padova, Padova, Italy
| |
Collapse
|
10
|
Ramos-Moreno L, Ramos J, Michán C. Overlapping responses between salt and oxidative stress in Debaryomyces hansenii. World J Microbiol Biotechnol 2019; 35:170. [PMID: 31673816 DOI: 10.1007/s11274-019-2753-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Accepted: 10/22/2019] [Indexed: 11/26/2022]
Abstract
Debaryomyces hansenii is a halotolerant yeast of importance in basic and applied research. Previous reports hinted about possible links between saline and oxidative stress responses in this yeast. The aim of this work was to study that hypothesis at different molecular levels, investigating after oxidative and saline stress: (i) transcription of seven genes related to oxidative and/or saline responses, (ii) activity of two main anti-oxidative enzymes, (iii) existence of common metabolic intermediates, and (iv) generation of damages to biomolecules as lipids and proteins. Our results showed how expression of genes related to oxidative stress was induced by exposure to NaCl and KCl, and, vice versa, transcription of some genes related to osmotic/salt stress responses was regulated by H2O2. Moreover, and contrary to S. cerevisiae, in D. hansenii HOG1 and MSN2 genes were modulated by stress at their transcriptional level. At the enzymatic level, saline stress also induced antioxidative enzymatic defenses as catalase and glutathione reductase. Furthermore, we demonstrated that both stresses are connected by the generation of intracellular ROS, and that hydrogen peroxide can affect the accumulation of in-cell sodium. On the other hand, no significant alterations in lipid oxidation or total glutathione content were observed upon exposure to both stresses tested. The results described in this work could help to understand the responses to both stressors, and to improve the biotechnological potential of D. hansenni.
Collapse
Affiliation(s)
- Laura Ramos-Moreno
- Departamento de Microbiología, Universidad de Córdoba, Campus de Excelencia Internacional Agroalimentario CeiA3, 14071, Córdoba, España, Spain
| | - José Ramos
- Departamento de Microbiología, Universidad de Córdoba, Campus de Excelencia Internacional Agroalimentario CeiA3, 14071, Córdoba, España, Spain
| | - Carmen Michán
- Departamento de Bioquímica y Biología Molecular, Universidad de Córdoba, Campus de Excelencia Internacional Agroalimentario CeiA3, 14071, Córdoba, España, Spain.
| |
Collapse
|
11
|
Auger S, Henry C, Péchaux C, Lejal N, Zanet V, Nikolic MV, Manzano M, Vidic J. Exploring the impact of Mg-doped ZnO nanoparticles on a model soil microorganism Bacillus subtilis. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2019; 182:109421. [PMID: 31301592 DOI: 10.1016/j.ecoenv.2019.109421] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Revised: 05/16/2019] [Accepted: 07/04/2019] [Indexed: 06/10/2023]
Abstract
The environmental contamination of soil by metal oxide nanomaterials is a growing global concern because of their potential toxicity. We investigated the effects of Mg doped ZnO (Mg-nZnO) nanoparticles on a model soil microorganism Bacillus subtilis. Mg-nZnO exhibited only a moderate toxic effect on B. subtilis vegetative cells but was able to prevent biofilm formation and destroy already formed biofilms. Similarly, Mg-nZnO (≤1 mg/mL) was moderately toxic towards Listeria monocytogenes, Staphylococcus aureus, Escherichia coli, Salmonella enterica, Saccharomyces cerevisiae and murine macrophages. Engineered Mg-nZnO produced H2O2 and O2•- radicals in solutions of various salt and organic molecule compositions. A quantitative proteomic analysis of B. subtilis membrane proteins showed that Mg-nZnO increased the expression of proteins involved in detoxification of ROS, translation and biofilm formation. Overall, our results suggest that Mg-nZnO released into the environment may hinder the spreading, colonization and biofilm formation by B. subtilis but also induce a mechanism of bacterial adaptation.
Collapse
Affiliation(s)
- Sandrine Auger
- Micalis Institute, INRA, AgroParisTech, Université Paris-Saclay, 78350, Jouy-en-Josas, France.
| | - Céline Henry
- Micalis Institute, PAPPSO, INRA, AgroParisTech, Université Paris-Saclay, 78350, Jouy-en-Josas, France
| | - Christine Péchaux
- Université Paris-Saclay, Génétique Animale et Biologie Intégrative, UMR 1313, INRA, France
| | - Nathalie Lejal
- Université Paris-Saclay, Virologie et Immunologie Moléculaires, UR 892, INRA, 78350, Jouy-en-Josas, France
| | - Valentina Zanet
- Dipartimento di Scienze AgroAlimentari, Ambientali e Animali, Università di Udine, Italy
| | - Maria Vesna Nikolic
- Department of Materials Science, Institute for Multidisciplinary Research, University of Belgrade, Serbia
| | - Marisa Manzano
- Dipartimento di Scienze AgroAlimentari, Ambientali e Animali, Università di Udine, Italy
| | - Jasmina Vidic
- Micalis Institute, INRA, AgroParisTech, Université Paris-Saclay, 78350, Jouy-en-Josas, France; Université Paris-Saclay, Virologie et Immunologie Moléculaires, UR 892, INRA, 78350, Jouy-en-Josas, France.
| |
Collapse
|
12
|
Zeida A, Trujillo M, Ferrer-Sueta G, Denicola A, Estrin DA, Radi R. Catalysis of Peroxide Reduction by Fast Reacting Protein Thiols. Chem Rev 2019; 119:10829-10855. [PMID: 31498605 DOI: 10.1021/acs.chemrev.9b00371] [Citation(s) in RCA: 66] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Life on Earth evolved in the presence of hydrogen peroxide, and other peroxides also emerged before and with the rise of aerobic metabolism. They were considered only as toxic byproducts for many years. Nowadays, peroxides are also regarded as metabolic products that play essential physiological cellular roles. Organisms have developed efficient mechanisms to metabolize peroxides, mostly based on two kinds of redox chemistry, catalases/peroxidases that depend on the heme prosthetic group to afford peroxide reduction and thiol-based peroxidases that support their redox activities on specialized fast reacting cysteine/selenocysteine (Cys/Sec) residues. Among the last group, glutathione peroxidases (GPxs) and peroxiredoxins (Prxs) are the most widespread and abundant families, and they are the leitmotif of this review. After presenting the properties and roles of different peroxides in biology, we discuss the chemical mechanisms of peroxide reduction by low molecular weight thiols, Prxs, GPxs, and other thiol-based peroxidases. Special attention is paid to the catalytic properties of Prxs and also to the importance and comparative outlook of the properties of Sec and its role in GPxs. To finish, we describe and discuss the current views on the activities of thiol-based peroxidases in peroxide-mediated redox signaling processes.
Collapse
Affiliation(s)
| | | | | | | | - Darío A Estrin
- Departamento de Química Inorgánica, Analítica y Química-Física and INQUIMAE-CONICET , Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires , 2160 Buenos Aires , Argentina
| | | |
Collapse
|
13
|
Bunik VI. Redox-Driven Signaling: 2-Oxo Acid Dehydrogenase Complexes as Sensors and Transmitters of Metabolic Imbalance. Antioxid Redox Signal 2019; 30:1911-1947. [PMID: 30187773 DOI: 10.1089/ars.2017.7311] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
SIGNIFICANCE This article develops a holistic view on production of reactive oxygen species (ROS) by 2-oxo acid dehydrogenase complexes. Recent Advances: Catalytic and structural properties of the complexes and their components evolved to minimize damaging effects of side reactions, including ROS generation, simultaneously exploiting the reactions for homeostatic signaling. CRITICAL ISSUES Side reactions of the complexes, characterized in vitro, are analyzed in view of protein interactions and conditions in vivo. Quantitative data support prevalence of the forward 2-oxo acid oxidation over the backward NADH oxidation in feeding physiologically significant ROS production by the complexes. Special focus on interactions between the active sites within 2-oxo acid dehydrogenase complexes highlights the central relevance of the complex-bound thiyl radicals in regulation of and signaling by complex-generated ROS. The thiyl radicals arise when dihydrolipoyl residues of the complexes regenerate FADH2 from the flavin semiquinone coproduced with superoxide anion radical in 1e- oxidation of FADH2 by molecular oxygen. FUTURE DIRECTIONS Interaction of 2-oxo acid dehydrogenase complexes with thioredoxins (TRXs), peroxiredoxins, and glutaredoxins mediates scavenging of the thiyl radicals and ROS generated by the complexes, underlying signaling of disproportional availability of 2-oxo acids, CoA, and NAD+ in key metabolic branch points through thiol/disulfide exchange and medically important hypoxia-inducible factor, mammalian target of rapamycin (mTOR), poly (ADP-ribose) polymerase, and sirtuins. High reactivity of the coproduced ROS and thiyl radicals to iron/sulfur clusters and nitric oxide, peroxynitrite reductase activity of peroxiredoxins and transnitrosylating function of thioredoxin, implicate the side reactions of 2-oxo acid dehydrogenase complexes in nitric oxide-dependent signaling and damage.
Collapse
Affiliation(s)
- Victoria I Bunik
- 1 Belozersky Institute of Physicochemical Biology, Lomonosov Moscow State University, Moscow, Russian Federation.,2 Faculty of Bioengineering and Bioinformatics, Lomonosov Moscow State University, Moscow, Russian Federation
| |
Collapse
|
14
|
Rodrigues-Pousada C, Devaux F, Caetano SM, Pimentel C, da Silva S, Cordeiro AC, Amaral C. Yeast AP-1 like transcription factors (Yap) and stress response: a current overview. MICROBIAL CELL 2019; 6:267-285. [PMID: 31172012 PMCID: PMC6545440 DOI: 10.15698/mic2019.06.679] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Yeast adaptation to stress has been extensively studied. It involves large reprogramming of genome expression operated by many, more or less specific, transcription factors. Here, we review our current knowledge on the function of the eight Yap transcription factors (Yap1 to Yap8) in Saccharomyces cerevisiae, which were shown to be involved in various stress responses. More precisely, Yap1 is activated under oxidative stress, Yap2/Cad1 under cadmium, Yap4/Cin5 and Yap6 under osmotic shock, Yap5 under iron overload and Yap8/Arr1 by arsenic compounds. Yap3 and Yap7 seem to be involved in hydroquinone and nitrosative stresses, respectively. The data presented in this article illustrate how much knowledge on the function of these Yap transcription factors is advanced. The evolution of the Yap family and its roles in various pathogenic and non-pathogenic fungal species is discussed in the last section.
Collapse
Affiliation(s)
- Claudina Rodrigues-Pousada
- Instituto de Tecnologia Química e Biológica Anónio Xavier, Universidade Nova de Lisboa, Avenida da República, EAN, Oeiras 2781-901, Oeiras, Portugal
| | - Frédéric Devaux
- Sorbonne Université, CNRS, Institut de Biologie Paris-Seine, Laboratory of Computational and Quantitative Biology, F-75005, Paris, France
| | - Soraia M Caetano
- Instituto de Tecnologia Química e Biológica Anónio Xavier, Universidade Nova de Lisboa, Avenida da República, EAN, Oeiras 2781-901, Oeiras, Portugal
| | - Catarina Pimentel
- Instituto de Tecnologia Química e Biológica Anónio Xavier, Universidade Nova de Lisboa, Avenida da República, EAN, Oeiras 2781-901, Oeiras, Portugal
| | - Sofia da Silva
- Instituto de Tecnologia Química e Biológica Anónio Xavier, Universidade Nova de Lisboa, Avenida da República, EAN, Oeiras 2781-901, Oeiras, Portugal
| | - Ana Carolina Cordeiro
- Instituto de Tecnologia Química e Biológica Anónio Xavier, Universidade Nova de Lisboa, Avenida da República, EAN, Oeiras 2781-901, Oeiras, Portugal
| | - Catarina Amaral
- Instituto de Tecnologia Química e Biológica Anónio Xavier, Universidade Nova de Lisboa, Avenida da República, EAN, Oeiras 2781-901, Oeiras, Portugal
| |
Collapse
|
15
|
Simaan H, Lev S, Horwitz BA. Oxidant-Sensing Pathways in the Responses of Fungal Pathogens to Chemical Stress Signals. Front Microbiol 2019; 10:567. [PMID: 30941117 PMCID: PMC6433817 DOI: 10.3389/fmicb.2019.00567] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Accepted: 03/05/2019] [Indexed: 12/04/2022] Open
Abstract
Host defenses expose fungal pathogens to oxidants and antimicrobial chemicals. The fungal cell employs conserved eukaryotic signaling pathways and dedicated transcription factors to program its response to these stresses. The oxidant-sensitive transcription factor of yeast, YAP1, and its orthologs in filamentous fungi, are central to tolerance to oxidative stress. The C-terminal domain of YAP1 contains cysteine residues that, under oxidizing conditions, form an intramolecular disulfide bridge locking the molecule in a conformation where the nuclear export sequence is masked. YAP1 accumulates in the nucleus, promoting transcription of genes that provide the cell with the ability to counteract oxidative stress. Chemicals including xenobiotics and plant signals can also promote YAP1 nuclearization in yeast and filamentous fungi. This could happen via direct or indirect oxidative stress, or by a different biochemical pathway. Plant phenolics are known antioxidants, yet they have been shown to elicit cellular responses that would usually be triggered to counter oxidant stress. Here we will discuss the evidence that YAP1 and MAPK pathways respond to phenolic compounds. Following this and other examples, we explore here how oxidative-stress sensing networks of fungi might have evolved to detect chemical stressors. Furthermore, we draw functional parallels between fungal YAP1 and mammalian Keap1-Nrf2 signaling systems.
Collapse
Affiliation(s)
- Hiba Simaan
- Faculty of Biology, Technion - Israel Institute of Technology, Haifa, Israel
| | - Sophie Lev
- Centre for Infectious Diseases and Microbiology, The Westmead Institute for Medical Research, Westmead, NSW, Australia
| | - Benjamin A Horwitz
- Faculty of Biology, Technion - Israel Institute of Technology, Haifa, Israel
| |
Collapse
|
16
|
Abstract
SIGNIFICANCE Iron is required for growth and is often redox active under cytosolic conditions. As a result of its facile redox chemistry, iron homeostasis is intricately involved with oxidative stress. Bacterial adaptation to iron limitation and oxidative stress often involves ferric uptake regulator (Fur) proteins: a diverse set of divalent cation-dependent, DNA-binding proteins that vary widely in both metal selectivity and sensitivity to metal-catalyzed oxidation. Recent Advances: Bacteria contain two Fur family metalloregulators that use ferrous iron (Fe2+) as their cofactor, Fur and PerR. Fur functions to regulate iron homeostasis in response to changes in intracellular levels of Fe2+. PerR also binds Fe2+, which enables metal-catalyzed protein oxidation as a mechanism for sensing hydrogen peroxide (H2O2). CRITICAL ISSUES To effectively regulate iron homeostasis, Fur has an Fe2+ affinity tuned to monitor the labile iron pool of the cell and may be under selective pressure to minimize iron oxidation, which would otherwise lead to an inappropriate increase in iron uptake under oxidative stress conditions. Conversely, Fe2+ is bound more tightly to PerR but exhibits high H2O2 reactivity, which enables a rapid induction of peroxide stress genes. FUTURE DIRECTIONS The features that determine the disparate reactivity of these proteins with oxidants are still poorly understood. A controlled, comparative analysis of the affinities of Fur/PerR proteins for their metal cofactors and their rate of reactivity with H2O2, combined with structure/function analyses, will be needed to define the molecular mechanisms that have facilitated this divergence of function between these two paralogous regulators.
Collapse
Affiliation(s)
| | - John D Helmann
- Department of Microbiology, Cornell University , Ithaca, New York
| |
Collapse
|
17
|
Song P, Huang B, Zhang S, Zhang K, Yuan K, Ji X, Ren L, Wen J, Huang H. Novel osmotic stress control strategy for improved pneumocandin B 0 production in Glarea lozoyensis combined with a mechanistic analysis at the transcriptome level. Appl Microbiol Biotechnol 2018; 102:10729-10742. [PMID: 30413850 DOI: 10.1007/s00253-018-9440-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2018] [Revised: 08/18/2018] [Accepted: 10/04/2018] [Indexed: 11/26/2022]
Abstract
Pneumocandin B0, the precursor of the antifungal drug caspofungin, is a secondary metabolite of the fungus Glarea lozoyensis. In this study, we investigated the effects of mannitol as the sole carbon source on pneumocandin B0 production by G. lozoyensis. The osmotic pressure is more important in enhancing pneumocandin B0 production than is the substrate concentration. Based on the kinetic analysis, an osmotic stress control fed-batch strategy was developed. This strategy led to a maximum pneumocandin B0 concentration of 2711 mg/L with a productivity of 9.05 mg/L/h, representing 34.67 and 6.47% improvements, respectively, over the best result achieved by the one-stage fermentation. Furthermore, G. lozoyensis accumulated glutamate and proline as compatible solutes to resist osmotic stress, and these amino acids also provided the precursors for the enhanced pneumocandin B0 production. Osmotic stress also activated ROS (reactive oxygen species)-dependent signal transduction by upregulating the levels of related genes and increasing intracellular ROS levels by 20%. We also provided a possible mechanism for pneumocandin B0 accumulation based on signal transduction. These findings will improve our understanding of the regulatory mechanisms of pneumocandin B0 biosynthesis and may be applied to improve secondary metabolite production.
Collapse
Affiliation(s)
- Ping Song
- SynBio Research Platform, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), School of Chemical Engineering and Technology, Tianjin University, 92 Weijin Road, Tianjin, 300072, China
- Jiangsu Synergetic Innovation Center for Advanced Bio-Manufacture, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, 30 South Puzhu Road, Nanjing, 211816, China
| | - Baoqi Huang
- Jiangsu Synergetic Innovation Center for Advanced Bio-Manufacture, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, 30 South Puzhu Road, Nanjing, 211816, China
| | - Sen Zhang
- Jiangsu Collaboration Innovation Center of Chinese Medical Resources Industrialization, College of Pharmacy, Nanjing University of Chinese Medicine, 138 Xianlin Road, Nanjing, 210023, China
| | - Ke Zhang
- Jiangsu Synergetic Innovation Center for Advanced Bio-Manufacture, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, 30 South Puzhu Road, Nanjing, 211816, China
| | - Kai Yuan
- Jiangsu Synergetic Innovation Center for Advanced Bio-Manufacture, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, 30 South Puzhu Road, Nanjing, 211816, China
| | - Xiaojun Ji
- Jiangsu Synergetic Innovation Center for Advanced Bio-Manufacture, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, 30 South Puzhu Road, Nanjing, 211816, China
| | - Lujing Ren
- Jiangsu Synergetic Innovation Center for Advanced Bio-Manufacture, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, 30 South Puzhu Road, Nanjing, 211816, China
| | - Jianping Wen
- SynBio Research Platform, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), School of Chemical Engineering and Technology, Tianjin University, 92 Weijin Road, Tianjin, 300072, China
| | - He Huang
- School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing, 211816, China.
| |
Collapse
|
18
|
Rampon C, Volovitch M, Joliot A, Vriz S. Hydrogen Peroxide and Redox Regulation of Developments. Antioxidants (Basel) 2018; 7:E159. [PMID: 30404180 PMCID: PMC6262372 DOI: 10.3390/antiox7110159] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2018] [Revised: 10/10/2018] [Accepted: 10/10/2018] [Indexed: 01/16/2023] Open
Abstract
Reactive oxygen species (ROS), which were originally classified as exclusively deleterious compounds, have gained increasing interest in the recent years given their action as bona fide signalling molecules. The main target of ROS action is the reversible oxidation of cysteines, leading to the formation of disulfide bonds, which modulate protein conformation and activity. ROS, endowed with signalling properties, are mainly produced by NADPH oxidases (NOXs) at the plasma membrane, but their action also involves a complex machinery of multiple redox-sensitive protein families that differ in their subcellular localization and their activity. Given that the levels and distribution of ROS are highly dynamic, in part due to their limited stability, the development of various fluorescent ROS sensors, some of which are quantitative (ratiometric), represents a clear breakthrough in the field and have been adapted to both ex vivo and in vivo applications. The physiological implication of ROS signalling will be presented mainly in the frame of morphogenetic processes, embryogenesis, regeneration, and stem cell differentiation. Gain and loss of function, as well as pharmacological strategies, have demonstrated the wide but specific requirement of ROS signalling at multiple stages of these processes and its intricate relationship with other well-known signalling pathways.
Collapse
Affiliation(s)
- Christine Rampon
- Center for Interdisciplinary Research in Biology (CIRB), College de France, CNRS, INSERM, PSL Research University, 75231 Paris, France.
- Sorbonne Paris Cité, Univ Paris Diderot, Biology Department, 75205 Paris CEDEX 13, France.
| | - Michel Volovitch
- Center for Interdisciplinary Research in Biology (CIRB), College de France, CNRS, INSERM, PSL Research University, 75231 Paris, France.
- École Normale Supérieure, Department of Biology, PSL Research University, 75005 Paris, France.
| | - Alain Joliot
- Center for Interdisciplinary Research in Biology (CIRB), College de France, CNRS, INSERM, PSL Research University, 75231 Paris, France.
| | - Sophie Vriz
- Center for Interdisciplinary Research in Biology (CIRB), College de France, CNRS, INSERM, PSL Research University, 75231 Paris, France.
- Sorbonne Paris Cité, Univ Paris Diderot, Biology Department, 75205 Paris CEDEX 13, France.
| |
Collapse
|
19
|
Sueoka K, Chikama T, Pertiwi YD, Ko JA, Kiuchi Y, Sakaguchi T, Obana A. Antifungal efficacy of photodynamic therapy with TONS 504 for pathogenic filamentous fungi. Lasers Med Sci 2018; 34:743-747. [DOI: 10.1007/s10103-018-2654-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2018] [Accepted: 09/27/2018] [Indexed: 12/17/2022]
|
20
|
Abstract
SIGNIFICANCE Hydrogen peroxide (H2O2) is a powerful effector of redox signaling. It is able to oxidize cysteine residues, metal ion centers, and lipids. Understanding H2O2-mediated signaling requires, to some extent, measurement of H2O2 level. Recent Advances: Chemically and genetically encoded fluorescent probes for the detection of H2O2 are currently the most sensitive and popular. Novel probes are constantly being developed, with the latest progress particular with boronates and genetically encoded probes. CRITICAL ISSUES All currently available probes display limitations in terms of sensitivity, local and temporal resolution, and specificity in the detection of low H2O2 concentrations. In this review, we discuss the power of fluorescent probes and the systems in which they have been successfully employed. Moreover, we recommend approaches for overcoming probe limitations and for the avoidance of artifacts. FUTURE DIRECTIONS Constant improvements will lead to the generation of probes that are not only more sensitive but also specifically tailored to individual cellular compartments. Antioxid. Redox Signal. 29, 585-602.
Collapse
Affiliation(s)
- Flávia Rezende
- Institute for Cardiovascular Physiology, Goethe-University , Frankfurt am Main, Germany
| | - Ralf P Brandes
- Institute for Cardiovascular Physiology, Goethe-University , Frankfurt am Main, Germany
| | - Katrin Schröder
- Institute for Cardiovascular Physiology, Goethe-University , Frankfurt am Main, Germany
| |
Collapse
|
21
|
Anti-σ factor YlaD regulates transcriptional activity of σ factor YlaC and sporulation via manganese-dependent redox-sensing molecular switch in Bacillus subtilis. Biochem J 2018; 475:2127-2151. [PMID: 29760236 DOI: 10.1042/bcj20170911] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2017] [Revised: 04/29/2018] [Accepted: 05/14/2018] [Indexed: 02/01/2023]
Abstract
YlaD, a membrane-anchored anti-sigma (σ) factor of Bacillus subtilis, contains a HX3CXXC motif that functions as a redox-sensing domain and belongs to one of the zinc (Zn)-co-ordinated anti-σ factor families. Despite previously showing that the YlaC transcription is controlled by YlaD, experimental evidence of how the YlaC-YlaD interaction is affected by active cysteines and/or metal ions is lacking. Here, we showed that the P yla promoter is autoregulated solely by YlaC. Moreover, reduced YlaD contained Zn and iron, while oxidized YlaD did not. Cysteine substitution in YlaD led to changes in its secondary structure; Cys3 had important structural functions in YlaD, and its mutation caused dissociation from YlaC, indicating the essential requirement of a HX3CXXC motif for regulating interactions of YlaC with YlaD. Analyses of the far-UV CD spectrum and metal content revealed that the addition of Mn ions to Zn-YlaD changed its secondary structure and that iron was substituted for manganese (Mn). The ylaC gene expression using βGlu activity from P yla :gusA was observed at the late-exponential and early-stationary phase, and the ylaC-overexpressing mutant constitutively expressed gene transcripts of clpP and sigH, an important alternative σ factor regulated by ClpXP. Collectively, our data demonstrated that YlaD senses redox changes and elicits increase in Mn ion concentrations and that, in turn, YlaD-mediated transcriptional activity of YlaC regulates sporulation initiation under oxidative stress and Mn-substituted conditions by regulating clpP gene transcripts. This is the first report of the involvement of oxidative stress-responsive B. subtilis extracytoplasmic function σ factors during sporulation via a Mn-dependent redox-sensing molecular switch.
Collapse
|
22
|
Kritsiligkou P, Rand JD, Weids AJ, Wang X, Kershaw CJ, Grant CM. Endoplasmic reticulum (ER) stress-induced reactive oxygen species (ROS) are detrimental for the fitness of a thioredoxin reductase mutant. J Biol Chem 2018; 293:11984-11995. [PMID: 29871930 DOI: 10.1074/jbc.ra118.001824] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2018] [Revised: 05/16/2018] [Indexed: 12/16/2022] Open
Abstract
The unfolded protein response (UPR) is constitutively active in yeast thioredoxin reductase mutants, suggesting a link between cytoplasmic thiol redox control and endoplasmic reticulum (ER) oxidative protein folding. The unique oxidative environment of the ER lumen requires tight regulatory control, and we show that the active UPR depends on the presence of oxidized thioredoxins rather than arising because of a loss of thioredoxin function. Preventing activation of the UPR by deletion of HAC1, encoding the UPR transcription factor, rescues a number of thioredoxin reductase mutant phenotypes, including slow growth, shortened longevity, and oxidation of the cytoplasmic GSH pool. This is because the constitutive UPR in a thioredoxin reductase mutant results in the generation of hydrogen peroxide. The oxidation of thioredoxins in a thioredoxin reductase mutant requires aerobic metabolism and the presence of the Tsa1 and Tsa2 peroxiredoxins, indicating that a complete cytoplasmic thioredoxin system is crucial for maintaining ER redox homeostasis.
Collapse
Affiliation(s)
- Paraskevi Kritsiligkou
- Faculty of Biology, Medicine, and Health, University of Manchester, Manchester M13 9PT, United Kingdom
| | - Jonathan D Rand
- Faculty of Biology, Medicine, and Health, University of Manchester, Manchester M13 9PT, United Kingdom
| | - Alan J Weids
- Faculty of Biology, Medicine, and Health, University of Manchester, Manchester M13 9PT, United Kingdom
| | - Ximeng Wang
- Faculty of Biology, Medicine, and Health, University of Manchester, Manchester M13 9PT, United Kingdom
| | - Chris J Kershaw
- Faculty of Biology, Medicine, and Health, University of Manchester, Manchester M13 9PT, United Kingdom
| | - Chris M Grant
- Faculty of Biology, Medicine, and Health, University of Manchester, Manchester M13 9PT, United Kingdom.
| |
Collapse
|
23
|
Ibanez JG, Rincón ME, Gutierrez-Granados S, Chahma M, Jaramillo-Quintero OA, Frontana-Uribe BA. Conducting Polymers in the Fields of Energy, Environmental Remediation, and Chemical–Chiral Sensors. Chem Rev 2018; 118:4731-4816. [DOI: 10.1021/acs.chemrev.7b00482] [Citation(s) in RCA: 264] [Impact Index Per Article: 37.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Jorge G. Ibanez
- Departamento de Ingeniería y Ciencias Químicas, Universidad Iberoamericana, Prolongación Paseo de la Reforma 880, 01219 Ciudad de México, Mexico
| | - Marina. E. Rincón
- Instituto de Energías Renovables, Universidad Nacional Autónoma de México, Apartado Postal 34, 62580, Temixco, MOR, Mexico
| | - Silvia Gutierrez-Granados
- Departamento de Química, DCNyE, Campus Guanajuato, Universidad de Guanajuato, Cerro de la Venada S/N, Pueblito
de Rocha, 36080 Guanajuato, GTO Mexico
| | - M’hamed Chahma
- Laurentian University, Department of Chemistry & Biochemistry, Sudbury, ON P3E2C6, Canada
| | - Oscar A. Jaramillo-Quintero
- CONACYT-Instituto de Energías Renovables, Universidad Nacional Autónoma de México, Apartado Postal 34, 62580 Temixco, MOR, Mexico
| | - Bernardo A. Frontana-Uribe
- Centro Conjunto de Investigación en Química Sustentable, UAEM-UNAM, Km 14.5 Carretera Toluca-Ixtlahuaca, Toluca 50200, Estado de México Mexico
- Instituto de Química, Universidad Nacional Autónoma de México, Circuito
exterior Ciudad Universitaria, 04510 Ciudad de México, Mexico
| |
Collapse
|
24
|
Kritsiligkou P, Chatzi A, Charalampous G, Mironov A, Grant CM, Tokatlidis K. Unconventional Targeting of a Thiol Peroxidase to the Mitochondrial Intermembrane Space Facilitates Oxidative Protein Folding. Cell Rep 2017; 18:2729-2741. [PMID: 28297675 PMCID: PMC5368413 DOI: 10.1016/j.celrep.2017.02.053] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2016] [Revised: 11/01/2016] [Accepted: 02/16/2017] [Indexed: 02/06/2023] Open
Abstract
Thiol peroxidases are conserved hydrogen peroxide scavenging and signaling molecules that contain redox-active cysteine residues. We show here that Gpx3, the major H2O2 sensor in yeast, is present in the mitochondrial intermembrane space (IMS), where it serves a compartment-specific role in oxidative metabolism. The IMS-localized Gpx3 contains an 18-amino acid N-terminally extended form encoded from a non-AUG codon. This acts as a mitochondrial targeting signal in a pathway independent of the hitherto known IMS-import pathways. Mitochondrial Gpx3 interacts with the Mia40 oxidoreductase in a redox-dependent manner and promotes efficient Mia40-dependent oxidative protein folding. We show that cells lacking Gpx3 have aberrant mitochondrial morphology, defective protein import capacity, and lower inner membrane potential, all of which can be rescued by expression of a mitochondrial-only form of Gpx3. Together, our data reveal a novel role for Gpx3 in mitochondrial redox regulation and protein homeostasis. A pool of yeast Gpx3 localizes to mitochondria via translation from a non-AUG codon Loss of Gpx3 causes defects in mitochondrial architecture and membrane potential Gpx3 interacts with the oxidative protein folding machinery in the IMS
Collapse
Affiliation(s)
- Paraskevi Kritsiligkou
- Faculty of Biology, Medicine and Health, University of Manchester, Manchester M13 9PL, UK
| | - Afroditi Chatzi
- Institute of Molecular, Cell and Systems Biology, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8QQ, UK
| | - Georgia Charalampous
- Institute of Molecular, Cell and Systems Biology, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8QQ, UK
| | - Aleksandr Mironov
- Faculty of Biology, Medicine and Health, University of Manchester, Manchester M13 9PL, UK
| | - Chris M Grant
- Faculty of Biology, Medicine and Health, University of Manchester, Manchester M13 9PL, UK.
| | - Kostas Tokatlidis
- Institute of Molecular, Cell and Systems Biology, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8QQ, UK.
| |
Collapse
|
25
|
Cardenas-Rodriguez M, Tokatlidis K. Cytosolic redox components regulate protein homeostasis via additional localisation in the mitochondrial intermembrane space. FEBS Lett 2017; 591:2661-2670. [PMID: 28746987 PMCID: PMC5601281 DOI: 10.1002/1873-3468.12766] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2017] [Revised: 07/15/2017] [Accepted: 07/21/2017] [Indexed: 12/31/2022]
Abstract
Oxidative protein folding is confined to the bacterial periplasm, endoplasmic reticulum and the mitochondrial intermembrane space. Maintaining a redox balance requires the presence of reductive pathways. The major thiol‐reducing pathways engage the thioredoxin and the glutaredoxin systems which are involved in removal of oxidants, protein proofreading and folding. Alterations in redox balance likely affect the flux of these redox pathways and are related to ageing and diseases such as neurodegenerative disorders and cancer. Here, we first review the well‐studied oxidative and reductive processes in the bacterial periplasm and the endoplasmic reticulum, and then discuss the less understood process in the mitochondrial intermembrane space, highlighting its importance for the proper function of the cell.
Collapse
Affiliation(s)
- Mauricio Cardenas-Rodriguez
- Institute of Molecular, Cell and Systems Biology, College of Medical, Veterinary and Life Sciences, University of Glasgow, UK
| | - Kostas Tokatlidis
- Institute of Molecular, Cell and Systems Biology, College of Medical, Veterinary and Life Sciences, University of Glasgow, UK
| |
Collapse
|
26
|
Yu P, Wang C, Chen P, Lee M. YAP1 homologue-mediated redox sensing is crucial for a successful infection by Monilinia fructicola. MOLECULAR PLANT PATHOLOGY 2017; 18:783-797. [PMID: 27239957 PMCID: PMC6638302 DOI: 10.1111/mpp.12438] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2016] [Revised: 05/17/2016] [Accepted: 05/26/2016] [Indexed: 05/20/2023]
Abstract
Monilinia fructicola (G. Winter) Honey is a devastating pathogen on Rosaceae which causes blossom blight and fruit rot. Only a few studies related to the plant-pathogen interaction have been published and there is limited knowledge on the relationship between oxidative stress and successful infection in M. fructicola. In this study, we cloned and characterized a redox-responsive transcription factor MFAP1, a YAP1 homologue. MfAP1-silenced strains were generated by polyethylene glycol-mediated protoplast transformation or Agrobacterium T-DNA-mediated transformation. Pathogenicity assay demonstrated that MfAP1-silenced strains caused smaller lesions on rose and peach petals. Transformants carrying extra copies of MfAP1, driven by the native promoter, were generated for MfAP1 overexpression. Interestingly, MfAP1-overexpressing strains also caused smaller lesions on rose petals. Strains carrying two copies of MfAP1 accumulated reactive oxygen species (ROS) at higher levels and exhibited delayed accumulation of MfAP1 transcripts compared with the wild-type during pathogenesis. By the analysis of ROS production and the expression patterns of redox- and virulence-related genes in the wild-type strain and an MfAP1-overexpressing strain, we found that the M. fructicola wild-type strain responded to oxidative stress at the infection site, activated the expression of MfAP1 and up-regulated the genes required for ROS detoxification and fungal virulence. In contrast, MfAP1 expression in the MfAP1-overexpressing strain was suppressed after the induction of a strong oxidative burst at the infection site, altering the expression of ROS detoxification and virulence-related genes. Our results highlight the importance of MfAP1 and ROS accumulation in the successful infection of M. fructicola.
Collapse
Affiliation(s)
- Pei‐Ling Yu
- Department of Plant PathologyNational Chung‐Hsing University250 Kuo‐Kuang Rd.Taichung402Taiwan
- NCHU‐UCD Plant and Food Biotechnology CenterNational Chung‐Hsing University250 Kuo‐Kuang Rd.Taichung402Taiwan
- Agricultural Biotechnology CenterNational Chung‐Hsing University250 Kuo‐Kuang Rd.Taichung402Taiwan
| | - Chih‐Li Wang
- Department of Plant PathologyNational Chung‐Hsing University250 Kuo‐Kuang Rd.Taichung402Taiwan
| | - Pei‐Yin Chen
- Department of Plant PathologyNational Chung‐Hsing University250 Kuo‐Kuang Rd.Taichung402Taiwan
| | - Miin‐Huey Lee
- Department of Plant PathologyNational Chung‐Hsing University250 Kuo‐Kuang Rd.Taichung402Taiwan
- NCHU‐UCD Plant and Food Biotechnology CenterNational Chung‐Hsing University250 Kuo‐Kuang Rd.Taichung402Taiwan
- Agricultural Biotechnology CenterNational Chung‐Hsing University250 Kuo‐Kuang Rd.Taichung402Taiwan
| |
Collapse
|
27
|
Bilan DS, Belousov VV. New tools for redox biology: From imaging to manipulation. Free Radic Biol Med 2017; 109:167-188. [PMID: 27939954 DOI: 10.1016/j.freeradbiomed.2016.12.004] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/22/2016] [Revised: 12/02/2016] [Accepted: 12/03/2016] [Indexed: 12/12/2022]
Abstract
Redox reactions play a key role in maintaining essential biological processes. Deviations in redox pathways result in the development of various pathologies at cellular and organismal levels. Until recently, studies on transformations in the intracellular redox state have been significantly hampered in living systems. The genetically encoded indicators, based on fluorescent proteins, have provided new opportunities in biomedical research. The existing indicators already enable monitoring of cellular redox parameters in different processes including embryogenesis, aging, inflammation, tissue regeneration, and pathogenesis of various diseases. In this review, we summarize information about all genetically encoded redox indicators developed to date. We provide the description of each indicator and discuss its advantages and limitations, as well as points that need to be considered when choosing an indicator for a particular experiment. One chapter is devoted to the important discoveries that have been made by using genetically encoded redox indicators.
Collapse
Affiliation(s)
- Dmitry S Bilan
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Moscow, Russia
| | | |
Collapse
|
28
|
Wound redox gradients revisited. Semin Cell Dev Biol 2017; 80:13-16. [PMID: 28751250 DOI: 10.1016/j.semcdb.2017.07.038] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2017] [Revised: 07/19/2017] [Accepted: 07/21/2017] [Indexed: 11/20/2022]
Abstract
Evidence emerges that redox gradients regulate morphogenesis, inflammation, regeneration, and healing of tissues. At the example of redox signaling during the zebrafish wound response, I briefly discuss current ideas on how such patterns might be sensed and spatially regulated to guide physiological processes over distances in animals.
Collapse
|
29
|
Deochand DK, Grove A. MarR family transcription factors: dynamic variations on a common scaffold. Crit Rev Biochem Mol Biol 2017; 52:595-613. [PMID: 28670937 DOI: 10.1080/10409238.2017.1344612] [Citation(s) in RCA: 109] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Members of the multiple antibiotic resistance regulator (MarR) family of transcription factors are critical for bacterial cells to respond to chemical signals and to convert such signals into changes in gene activity. Obligate dimers belonging to the winged helix-turn-helix protein family, they are critical for regulation of a variety of functions, including degradation of organic compounds and control of virulence gene expression. The conventional regulatory paradigm is based on a genomic locus in which the gene encoding the MarR protein is divergently oriented from a gene under its control; MarR binding to the intergenic region controls expression of both genes by changing the interaction of RNA polymerase with gene promoters. MarR protein oxidation or binding of a small molecule ligand adversely affects DNA binding, resulting in altered expression of the divergent genes. The generality of this simple paradigm, including the regulation of Escherichia coli MarR by direct binding of antibiotics, has been challenged by reports published in recent years. In addition, structural and biochemical analyses of ligand binding to numerous MarR homologs are converging to identify a shared ligand-binding "hot-spot". This review highlights recent research advances that point to shared features, yet at the same time highlights the remarkable flexibility with which members of this protein family implement responses to inducing signals. A more comprehensive understanding of protein function will pave the way towards the development of both antibacterial agents and biosensors that are based on MarR family proteins.
Collapse
Affiliation(s)
- Dinesh K Deochand
- a Department of Biological Sciences , Louisiana State University , Baton Rouge , LA , USA
| | - Anne Grove
- a Department of Biological Sciences , Louisiana State University , Baton Rouge , LA , USA
| |
Collapse
|
30
|
Bersweiler A, D'Autréaux B, Mazon H, Kriznik A, Belli G, Delaunay-Moisan A, Toledano MB, Rahuel-Clermont S. A scaffold protein that chaperones a cysteine-sulfenic acid in H2O2 signaling. Nat Chem Biol 2017. [DOI: 10.1038/nchembio.2412] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
31
|
Goulev Y, Morlot S, Matifas A, Huang B, Molin M, Toledano MB, Charvin G. Nonlinear feedback drives homeostatic plasticity in H 2O 2 stress response. eLife 2017; 6. [PMID: 28418333 PMCID: PMC5438251 DOI: 10.7554/elife.23971] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2016] [Accepted: 04/14/2017] [Indexed: 12/20/2022] Open
Abstract
Homeostatic systems that rely on genetic regulatory networks are intrinsically limited by the transcriptional response time, which may restrict a cell’s ability to adapt to unanticipated environmental challenges. To bypass this limitation, cells have evolved mechanisms whereby exposure to mild stress increases their resistance to subsequent threats. However, the mechanisms responsible for such adaptive homeostasis remain largely unknown. Here, we used live-cell imaging and microfluidics to investigate the adaptive response of budding yeast to temporally controlled H2O2 stress patterns. We demonstrate that acquisition of tolerance is a systems-level property resulting from nonlinearity of H2O2 scavenging by peroxiredoxins and our study reveals that this regulatory scheme induces a striking hormetic effect of extracellular H2O2 stress on replicative longevity. Our study thus provides a novel quantitative framework bridging the molecular architecture of a cellular homeostatic system to the emergence of nonintuitive adaptive properties. DOI:http://dx.doi.org/10.7554/eLife.23971.001 Harmful external conditions, such as extreme heat or radiation, can cause stress to cells that may lead to permanent damage and even death. Cell stress is responsible for some cancers and degenerative diseases, and is involved in the process of aging. Cells respond to stress by modifying their activities in order to prevent damage from occurring. Some studies have suggested that the ability of cells to survive a stressful situation might depend both on the severity of the stress and also on the way in which the stress is applied. For example, the stress might start suddenly or develop more gradually. Cells exposed to a mild level of stress develop a tolerance that enables them to survive stronger doses of the same stress in the future. However, it is not clear how cells acquire such tolerance, and whether mild levels of stress can have more general benefits to cells, such as increased lifespan. Hydrogen peroxide and other “oxidative” compounds play important roles in cells, but they are also capable of causing damage so their levels must be tightly controlled. Goulev et al. developed a “microfluidic” device to study the effects of oxidative stress on yeast cells. The device made it possible to precisely control the level of hydrogen peroxide in the cells’ environment while monitoring the cells’ stress responses. The experiments show that exposing yeast cells to gradually increasing levels of hydrogen peroxide can train the cells to be able to survive when they are exposed to high levels of this compound. This ability depends on the activity of specific enzymes called peroxidases that are known to be able to destroy hydrogen peroxide inside the cells. The experiments suggest that gradually increasing levels of hydrogen peroxide trigger increases in the production of peroxidases that protect the cells against future oxidative stress. Further experiments show that even a very low dose of hydrogen peroxide is sufficient to activate the production of the enzymes, leading to an increase in the lifespan of the cells. A future challenge will be to investigate whether the principles identified in this work also apply to other stress responses in yeast. DOI:http://dx.doi.org/10.7554/eLife.23971.002
Collapse
Affiliation(s)
- Youlian Goulev
- Developmental Biology and Stem Cells Department, Institut de Génétique et de Biologie Moléculaire et Cellulaire, Strasbourg, France.,Centre National de la Recherche Scientifique, Illkirch, France.,Institut National de la Santé et de la Recherche Médicale, Illkirch, France.,Université de Strasbourg, Illkirch, France
| | - Sandrine Morlot
- Developmental Biology and Stem Cells Department, Institut de Génétique et de Biologie Moléculaire et Cellulaire, Strasbourg, France.,Centre National de la Recherche Scientifique, Illkirch, France.,Institut National de la Santé et de la Recherche Médicale, Illkirch, France.,Université de Strasbourg, Illkirch, France
| | - Audrey Matifas
- Developmental Biology and Stem Cells Department, Institut de Génétique et de Biologie Moléculaire et Cellulaire, Strasbourg, France.,Centre National de la Recherche Scientifique, Illkirch, France.,Institut National de la Santé et de la Recherche Médicale, Illkirch, France.,Université de Strasbourg, Illkirch, France
| | - Bo Huang
- Oxidative Stress and Cancer, IBITECS, SBIGEM, CEA-Saclay, Gif-sur-Yvette, France
| | - Mikael Molin
- Department of Chemistry and Molecular Biology, University of Gothenburg, Gothenburg, Sweden
| | - Michel B Toledano
- Oxidative Stress and Cancer, IBITECS, SBIGEM, CEA-Saclay, Gif-sur-Yvette, France
| | - Gilles Charvin
- Developmental Biology and Stem Cells Department, Institut de Génétique et de Biologie Moléculaire et Cellulaire, Strasbourg, France.,Centre National de la Recherche Scientifique, Illkirch, France.,Institut National de la Santé et de la Recherche Médicale, Illkirch, France.,Université de Strasbourg, Illkirch, France
| |
Collapse
|
32
|
Lim JK, Jung HC, Kang SG, Lee HS. Redox regulation of SurR by protein disulfide oxidoreductase in Thermococcus onnurineus NA1. Extremophiles 2017; 21:491-498. [PMID: 28251348 DOI: 10.1007/s00792-017-0919-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2016] [Accepted: 02/13/2017] [Indexed: 01/22/2023]
Abstract
Protein disulfide oxidoreductases are redox enzymes that catalyze thiol-disulfide exchange reactions. These enzymes include thioredoxins, glutaredoxins, protein disulfide isomerases, disulfide bond formation A (DsbA) proteins, and Pyrococcus furiosus protein disulfide oxidoreductase (PfPDO) homologues. In the genome of a hyperthermophilic archaeon, Thermococcus onnurineus NA1, the genes encoding one PfPDO homologue (TON_0319, Pdo) and three more thioredoxin- or glutaredoxin-like proteins (TON_0470, TON_0472, TON_0834) were identified. All except TON_0470 were recombinantly expressed and purified. Three purified proteins were reduced by a thioredoxin reductase (TrxR), indicating that each protein can form redox complex with TrxR. SurR, a transcription factor involved in the sulfur response, was tested for a protein target of a TrxR-redoxin system and only Pdo was identified to be capable of catalyzing the reduction of SurR. Electromobility shift assay demonstrated that SurR reduced by the TrxR-Pdo system could bind to the DNA probe with the SurR-binding motif, GTTttgAAC. In this study, we present the TrxR-Pdo couple as a redox-regulator for SurR in T. onnurineus NA1.
Collapse
Affiliation(s)
- Jae Kyu Lim
- Marine Biotechnology Research Division, Korea Institute of Ocean Science and Technology, Ansan, 15627, Republic of Korea.,Department of Marine Biotechnology, Korea University of Science and Technology, Daejeon, 34113, Republic of Korea
| | - Hae-Chang Jung
- Marine Biotechnology Research Division, Korea Institute of Ocean Science and Technology, Ansan, 15627, Republic of Korea.,Department of Marine Biotechnology, Korea University of Science and Technology, Daejeon, 34113, Republic of Korea
| | - Sung Gyun Kang
- Marine Biotechnology Research Division, Korea Institute of Ocean Science and Technology, Ansan, 15627, Republic of Korea. .,Department of Marine Biotechnology, Korea University of Science and Technology, Daejeon, 34113, Republic of Korea.
| | - Hyun Sook Lee
- Marine Biotechnology Research Division, Korea Institute of Ocean Science and Technology, Ansan, 15627, Republic of Korea. .,Department of Marine Biotechnology, Korea University of Science and Technology, Daejeon, 34113, Republic of Korea.
| |
Collapse
|
33
|
Bravim F, Mota MM, Fernandes AAR, Fernandes PMB. High hydrostatic pressure leads to free radicals accumulation in yeast cells triggering oxidative stress. FEMS Yeast Res 2016; 16:fow052. [DOI: 10.1093/femsyr/fow052] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/24/2016] [Indexed: 12/22/2022] Open
|
34
|
Booth DM, Joseph SK, Hajnóczky G. Subcellular ROS imaging methods: Relevance for the study of calcium signaling. Cell Calcium 2016; 60:65-73. [PMID: 27209367 DOI: 10.1016/j.ceca.2016.05.001] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2016] [Revised: 05/02/2016] [Accepted: 05/03/2016] [Indexed: 12/20/2022]
Abstract
Recent advances in genetically encoded fluorescent probes have dramatically increased the toolkit available for imaging the intracellular environment. Perhaps the biggest improvements have been made in sensing specific reactive oxygen species (ROS) and redox changes under physiological conditions. The new generation of probes may be targeted to a wide range of subcellular environments. By targeting such probes to compartments and organelle surfaces they may be exposed to environments, which support local signal transduction and regulation. The close apposition of the endoplasmic reticulum (ER) with mitochondria and other organelles forms such a local environment where Ca(2+) dynamics are greatly enhanced compared to the bulk cytosol. We describe here how newly developed genetically encoded redox indicators (GERIs) might be used to monitor ROS and probe their interaction with Ca(2+) at both global and local level.
Collapse
Affiliation(s)
- David M Booth
- MitoCare Center for Mitochondrial Imaging Research and Diagnostics, Department of Pathology, Anatomy and Cell Biology, Thomas Jefferson University, Philadelphia, PA, USA.
| | - Suresh K Joseph
- MitoCare Center for Mitochondrial Imaging Research and Diagnostics, Department of Pathology, Anatomy and Cell Biology, Thomas Jefferson University, Philadelphia, PA, USA
| | - György Hajnóczky
- MitoCare Center for Mitochondrial Imaging Research and Diagnostics, Department of Pathology, Anatomy and Cell Biology, Thomas Jefferson University, Philadelphia, PA, USA.
| |
Collapse
|
35
|
Toledano MB, Huang B. Microbial 2-Cys Peroxiredoxins: Insights into Their Complex Physiological Roles. Mol Cells 2016; 39:31-9. [PMID: 26813659 PMCID: PMC4749871 DOI: 10.14348/molcells.2016.2326] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2015] [Accepted: 12/02/2015] [Indexed: 11/27/2022] Open
Abstract
The peroxiredoxins (Prxs) constitute a very large and highly conserved family of thiol-based peroxidases that has been discovered only very recently. We consider here these enzymes through the angle of their discovery, and of some features of their molecular and physiological functions, focusing on complex phenotypes of the gene mutations of the 2-Cys Prxs subtype in yeast. As scavengers of the low levels of H2O2 and as H2O2 receptors and transducers, 2-Cys Prxs have been highly instrumental to understand the biological impact of H2O2, and in particular its signaling function. 2-Cys Prxs can also become potent chaperone holdases, and unveiling the in vivo relevance of this function, which is still not established, should further increase our knowledge of the biological impact and toxicity of H2O2. The diverse molecular functions of 2-Cys Prx explain the often-hard task of relating them to peroxiredoxin genes phenotypes, which underscores the pleiotropic physiological role of these enzymes and complex biologic impact of H2O2.
Collapse
Affiliation(s)
- Michel B. Toledano
- CEA, DSV, IBITECS, SBIGEM, Laboratoire Stress Oxydant et Cancer (LSOC), CEA-Saclay, 91191 Gif-sur-Yvette,
France
| | - Bo Huang
- CEA, DSV, IBITECS, SBIGEM, Laboratoire Stress Oxydant et Cancer (LSOC), CEA-Saclay, 91191 Gif-sur-Yvette,
France
| |
Collapse
|
36
|
Ji CJ, Kim JH, Won YB, Lee YE, Choi TW, Ju SY, Youn H, Helmann JD, Lee JW. Staphylococcus aureus PerR Is a Hypersensitive Hydrogen Peroxide Sensor using Iron-mediated Histidine Oxidation. J Biol Chem 2015; 290:20374-86. [PMID: 26134568 DOI: 10.1074/jbc.m115.664961] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2015] [Indexed: 12/23/2022] Open
Abstract
In many Gram-positive bacteria PerR is a major peroxide sensor whose repressor activity is dependent on a bound metal cofactor. The prototype for PerR sensors, the Bacillus subtilis PerRBS protein, represses target genes when bound to either Mn(2+) or Fe(2+) as corepressor, but only the Fe(2+)-bound form responds to H2O2. The orthologous protein in the human pathogen Staphylococcus aureus, PerRSA, plays important roles in H2O2 resistance and virulence. However, PerRSA is reported to only respond to Mn(2+) as corepressor, which suggests that it might rely on a distinct, iron-independent mechanism for H2O2 sensing. Here we demonstrate that PerRSA uses either Fe(2+) or Mn(2+) as corepressor, and that, like PerRBS, the Fe(2+)-bound form of PerRSA senses physiological levels of H2O2 by iron-mediated histidine oxidation. Moreover, we show that PerRSA is poised to sense very low levels of endogenous H2O2, which normally cannot be sensed by B. subtilis PerRBS. This hypersensitivity of PerRSA accounts for the apparent lack of Fe(2+)-dependent repressor activity and consequent Mn(2+)-specific repressor activity under aerobic conditions. We also provide evidence that the activity of PerRSA is directly correlated with virulence, whereas it is inversely correlated with H2O2 resistance, suggesting that PerRSA may be an attractive target for the control of S. aureus pathogenesis.
Collapse
Affiliation(s)
- Chang-Jun Ji
- From the Department of Life Science and Research Center for Natural Sciences, Hanyang University, Seoul 133-791, Republic of Korea
| | - Jung-Hoon Kim
- From the Department of Life Science and Research Center for Natural Sciences, Hanyang University, Seoul 133-791, Republic of Korea
| | - Young-Bin Won
- From the Department of Life Science and Research Center for Natural Sciences, Hanyang University, Seoul 133-791, Republic of Korea
| | - Yeh-Eun Lee
- From the Department of Life Science and Research Center for Natural Sciences, Hanyang University, Seoul 133-791, Republic of Korea
| | - Tae-Woo Choi
- From the Department of Life Science and Research Center for Natural Sciences, Hanyang University, Seoul 133-791, Republic of Korea
| | - Shin-Yeong Ju
- From the Department of Life Science and Research Center for Natural Sciences, Hanyang University, Seoul 133-791, Republic of Korea
| | - Hwan Youn
- the Department of Biology, California State University Fresno, Fresno, California 93740-8034, and
| | - John D Helmann
- the Department of Microbiology, Cornell University, Ithaca, New York 14853-8101
| | - Jin-Won Lee
- From the Department of Life Science and Research Center for Natural Sciences, Hanyang University, Seoul 133-791, Republic of Korea,
| |
Collapse
|
37
|
Lismont C, Nordgren M, Van Veldhoven PP, Fransen M. Redox interplay between mitochondria and peroxisomes. Front Cell Dev Biol 2015; 3:35. [PMID: 26075204 PMCID: PMC4444963 DOI: 10.3389/fcell.2015.00035] [Citation(s) in RCA: 132] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2015] [Accepted: 05/09/2015] [Indexed: 12/14/2022] Open
Abstract
Reduction-oxidation or “redox” reactions are an integral part of a broad range of cellular processes such as gene expression, energy metabolism, protein import and folding, and autophagy. As many of these processes are intimately linked with cell fate decisions, transient or chronic changes in cellular redox equilibrium are likely to contribute to the initiation and progression of a plethora of human diseases. Since a long time, it is known that mitochondria are major players in redox regulation and signaling. More recently, it has become clear that also peroxisomes have the capacity to impact redox-linked physiological processes. To serve this function, peroxisomes cooperate with other organelles, including mitochondria. This review provides a comprehensive picture of what is currently known about the redox interplay between mitochondria and peroxisomes in mammals. We first outline the pro- and antioxidant systems of both organelles and how they may function as redox signaling nodes. Next, we critically review and discuss emerging evidence that peroxisomes and mitochondria share an intricate redox-sensitive relationship and cooperate in cell fate decisions. Key issues include possible physiological roles, messengers, and mechanisms. We also provide examples of how data mining of publicly-available datasets from “omics” technologies can be a powerful means to gain additional insights into potential redox signaling pathways between peroxisomes and mitochondria. Finally, we highlight the need for more studies that seek to clarify the mechanisms of how mitochondria may act as dynamic receivers, integrators, and transmitters of peroxisome-derived mediators of oxidative stress. The outcome of such studies may open up exciting new avenues for the community of researchers working on cellular responses to organelle-derived oxidative stress, a research field in which the role of peroxisomes is currently highly underestimated and an issue of discussion.
Collapse
Affiliation(s)
- Celien Lismont
- Laboratory of Lipid Biochemistry and Protein Interactions, Department of Cellular and Molecular Medicine, KU Leuven - University of Leuven Leuven, Belgium
| | - Marcus Nordgren
- Laboratory of Lipid Biochemistry and Protein Interactions, Department of Cellular and Molecular Medicine, KU Leuven - University of Leuven Leuven, Belgium
| | - Paul P Van Veldhoven
- Laboratory of Lipid Biochemistry and Protein Interactions, Department of Cellular and Molecular Medicine, KU Leuven - University of Leuven Leuven, Belgium
| | - Marc Fransen
- Laboratory of Lipid Biochemistry and Protein Interactions, Department of Cellular and Molecular Medicine, KU Leuven - University of Leuven Leuven, Belgium
| |
Collapse
|
38
|
Respiration triggers heme transfer from cytochrome c peroxidase to catalase in yeast mitochondria. Proc Natl Acad Sci U S A 2014; 111:17468-73. [PMID: 25422453 DOI: 10.1073/pnas.1409692111] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
In exponentially growing yeast, the heme enzyme, cytochrome c peroxidase (Ccp1) is targeted to the mitochondrial intermembrane space. When the fermentable source (glucose) is depleted, cells switch to respiration and mitochondrial H2O2 levels rise. It has long been assumed that CCP activity detoxifies mitochondrial H2O2 because of the efficiency of this activity in vitro. However, we find that a large pool of Ccp1 exits the mitochondria of respiring cells. We detect no extramitochondrial CCP activity because Ccp1 crosses the outer mitochondrial membrane as the heme-free protein. In parallel with apoCcp1 export, cells exhibit increased activity of catalase A (Cta1), the mitochondrial and peroxisomal catalase isoform in yeast. This identifies Cta1 as a likely recipient of Ccp1 heme, which is supported by low Cta1 activity in ccp1Δ cells and the accumulation of holoCcp1 in cta1Δ mitochondria. We hypothesized that Ccp1's heme is labilized by hyperoxidation of the protein during the burst in H2O2 production as cells begin to respire. To test this hypothesis, recombinant Ccp1 was hyperoxidized with excess H2O2 in vitro, which accelerated heme transfer to apomyoglobin added as a surrogate heme acceptor. Furthermore, the proximal heme Fe ligand, His175, was found to be ∼ 85% oxidized to oxo-histidine in extramitochondrial Ccp1 isolated from 7-d cells, indicating that heme labilization results from oxidation of this ligand. We conclude that Ccp1 responds to respiration-derived H2O2 via a previously unidentified mechanism involving H2O2-activated heme transfer to apoCta1. Subsequently, the catalase activity of Cta1, not CCP activity, contributes to mitochondrial H2O2 detoxification.
Collapse
|
39
|
Ragu S, Dardalhon M, Sharma S, Iraqui I, Buhagiar-Labarchède G, Grondin V, Kienda G, Vernis L, Chanet R, Kolodner RD, Huang ME, Faye G. Loss of the thioredoxin reductase Trr1 suppresses the genomic instability of peroxiredoxin tsa1 mutants. PLoS One 2014; 9:e108123. [PMID: 25247923 PMCID: PMC4172583 DOI: 10.1371/journal.pone.0108123] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2014] [Accepted: 08/25/2014] [Indexed: 11/19/2022] Open
Abstract
The absence of Tsa1, a key peroxiredoxin that scavenges H2O2 in Saccharomyces cerevisiae, causes the accumulation of a broad spectrum of mutations. Deletion of TSA1 also causes synthetic lethality in combination with mutations in RAD51 or several key genes involved in DNA double-strand break repair. In the present study, we propose that the accumulation of reactive oxygen species (ROS) is the primary cause of genome instability of tsa1Δ cells. In searching for spontaneous suppressors of synthetic lethality of tsa1Δ rad51Δ double mutants, we identified that the loss of thioredoxin reductase Trr1 rescues their viability. The trr1Δ mutant displayed a Can(R) mutation rate 5-fold lower than wild-type cells. Additional deletion of TRR1 in tsa1Δ mutant reduced substantially the Can(R) mutation rate of tsa1Δ strain (33-fold), and to a lesser extent, of rad51Δ strain (4-fold). Loss of Trr1 induced Yap1 nuclear accumulation and over-expression of a set of Yap1-regulated oxido-reductases with antioxidant properties that ultimately re-equilibrate intracellular redox environment, reducing substantially ROS-associated DNA damages. This trr1Δ -induced effect was largely thioredoxin-dependent, probably mediated by oxidized forms of thioredoxins, the primary substrates of Trr1. Thioredoxin Trx1 and Trx2 were constitutively and strongly oxidized in the absence of Trr1. In trx1Δ trx2Δ cells, Yap1 was only moderately activated; consistently, the trx1Δ trx2Δ double deletion failed to efficiently rescue the viability of tsa1Δ rad51Δ. Finally, we showed that modulation of the dNTP pool size also influences the formation of spontaneous mutation in trr1Δ and trx1Δ trx2Δ strains. We present a tentative model that helps to estimate the respective impact of ROS level and dNTP concentration in the generation of spontaneous mutations.
Collapse
Affiliation(s)
- Sandrine Ragu
- Centre National de la Recherche Scientifique, UMR3348, Orsay, France
- Institut Curie, Centre de Recherche, Orsay, France
| | - Michèle Dardalhon
- Centre National de la Recherche Scientifique, UMR3348, Orsay, France
- Institut Curie, Centre de Recherche, Orsay, France
| | - Sushma Sharma
- Department of Medical Biochemistry and Biophysics, Umea University, Umea, Sweden
| | - Ismail Iraqui
- Centre National de la Recherche Scientifique, UMR3348, Orsay, France
- Institut Curie, Centre de Recherche, Orsay, France
| | - Géraldine Buhagiar-Labarchède
- Centre National de la Recherche Scientifique, UMR3348, Orsay, France
- Institut Curie, Centre de Recherche, Orsay, France
| | - Virginie Grondin
- Centre National de la Recherche Scientifique, UMR3348, Orsay, France
- Institut Curie, Centre de Recherche, Orsay, France
| | - Guy Kienda
- Centre National de la Recherche Scientifique, UMR3348, Orsay, France
- Institut Curie, Centre de Recherche, Orsay, France
| | - Laurence Vernis
- Centre National de la Recherche Scientifique, UMR3348, Orsay, France
- Institut Curie, Centre de Recherche, Orsay, France
| | - Roland Chanet
- Centre National de la Recherche Scientifique, UMR3348, Orsay, France
- Institut Curie, Centre de Recherche, Orsay, France
| | - Richard D. Kolodner
- Ludwig Institute for Cancer Research, University of California School of Medicine San Diego, La Jolla, California, United States of America
| | - Meng-Er Huang
- Centre National de la Recherche Scientifique, UMR3348, Orsay, France
- Institut Curie, Centre de Recherche, Orsay, France
| | - Gérard Faye
- Centre National de la Recherche Scientifique, UMR3348, Orsay, France
- Institut Curie, Centre de Recherche, Orsay, France
| |
Collapse
|
40
|
Piccoli C, Agriesti F, Scrima R, Falzetti F, Di Ianni M, Capitanio N. To breathe or not to breathe: the haematopoietic stem/progenitor cells dilemma. Br J Pharmacol 2014; 169:1652-71. [PMID: 23714011 DOI: 10.1111/bph.12253] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2013] [Revised: 05/11/2013] [Accepted: 05/16/2013] [Indexed: 12/13/2022] Open
Abstract
UNLABELLED Adult haematopoietic stem/progenitor cells (HSPCs) constitute the lifespan reserve for the generation of all the cellular lineages in the blood. Although massive progress in identifying the cluster of master genes controlling self-renewal and multipotency has been achieved in the past decade, some aspects of the physiology of HSPCs still need to be clarified. In particular, there is growing interest in the metabolic profile of HSPCs in view of their emerging role as determinants of cell fate. Indeed, stem cells and progenitors have distinct metabolic profiles, and the transition from stem to progenitor cell corresponds to a critical metabolic change, from glycolysis to oxidative phosphorylation. In this review, we summarize evidence, reported in the literature and provided by our group, highlighting the peculiar ability of HSPCs to adapt their mitochondrial oxidative/bioenergetic metabolism to survive in the hypoxic microenvironment of the endoblastic niche and to exploit redox signalling in controlling the balance between quiescence versus active cycling and differentiation. Especial prominence is given to the interplay between hypoxia inducible factor-1, globins and NADPH oxidases in managing the mitochondrial dioxygen-related metabolism and biogenesis in HSPCs under different ambient conditions. A mechanistic model is proposed whereby 'mitochondrial differentiation' is a prerequisite in uncommitted stem cells, paving the way for growth/differentiation factor-dependent processes. Advancing the understanding of stem cell metabolism will, hopefully, help to (i) improve efforts to maintain, expand and manipulate HSPCs ex vivo and realize their potential therapeutic benefits in regenerative medicine; (ii) reprogramme somatic cells to generate stem cells; and (iii) eliminate, selectively, malignant stem cells. LINKED ARTICLES This article is part of a themed section on Emerging Therapeutic Aspects in Oncology. To view the other articles in this section visit http://dx.doi.org/10.1111/bph.2013.169.issue-8.
Collapse
Affiliation(s)
- C Piccoli
- Department of Medical and Experimental Medicine, University of Foggia, Foggia, Italy.
| | | | | | | | | | | |
Collapse
|
41
|
Hormetic concentrations of hydrogen peroxide but not ethanol induce cross-adaptation to different stresses in budding yeast. Int J Microbiol 2014; 2014:485792. [PMID: 24669223 PMCID: PMC3942194 DOI: 10.1155/2014/485792] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2013] [Revised: 10/23/2013] [Accepted: 10/23/2013] [Indexed: 11/18/2022] Open
Abstract
The biphasic-dose response of microorganisms to hydrogen peroxide is a phenomenon of particular interest in hormesis research. In different animal models, the dose-response curve for ethanol is also nonlinear showing an inhibitory effect at high doses but a stimulatory effect at low doses. In this study, we observed the hormetic-dose response to ethanol in budding yeast S. cerevisiae. Cross-protection is a phenomenon in which exposure to mild stress results in the acquisition of cellular resistance to lethal stress induced by different factors. Since both hydrogen peroxide and ethanol at low concentrations were found to stimulate yeast colony growth, we evaluated the role of one substance in cell cross-adaptation to the other substance as well as some weak organic acid preservatives. This study demonstrates that, unlike ethanol, hydrogen peroxide at hormetic concentrations causes cross-resistance of S. cerevisiae to different stresses. The regulatory protein Yap1 plays an important role in the hormetic effects by low concentrations of either hydrogen peroxide or ethanol, and it is involved in the yeast cross-adaptation by low sublethal doses of hydrogen peroxide.
Collapse
|
42
|
Aller I, Meyer AJ. The oxidative protein folding machinery in plant cells. PROTOPLASMA 2013; 250:799-816. [PMID: 23090240 DOI: 10.1007/s00709-012-0463-x] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2012] [Accepted: 10/02/2012] [Indexed: 06/01/2023]
Abstract
Formation of intra-molecular disulfides and concomitant oxidative protein folding is essential for stability and catalytic function of many soluble and membrane-bound proteins in the endomembrane system, the mitochondrial inter-membrane space and the thylakoid lumen. Disulfide generation from free cysteines in nascent polypeptide chains is generally a catalysed process for which distinct pathways exist in all compartments. A high degree of similarities between highly diverse eukaryotic and bacterial systems for generation of protein disulfides indicates functional conservation of key processes throughout evolution. However, while many aspects about molecular function of enzymatic systems promoting disulfide formation have been demonstrated for bacterial and non-plant eukaryotic organisms, it is now clear that the plant machinery for oxidative protein folding displays distinct details, suggesting that the different pathways have been adapted to plant-specific requirements in terms of compartmentation, molecular function and regulation. Here, we aim to evaluate biological diversity by comparing the plant systems for oxidative protein folding to the respective systems from non-plant eukaryotes.
Collapse
Affiliation(s)
- Isabel Aller
- INRES-Chemical Signalling, University of Bonn, Friedrich-Ebert-Allee 144, D-53113 Bonn, Germany
| | | |
Collapse
|
43
|
Gillet FX, Cattoni DI, Petiot-Bécard S, Delalande F, Poignavent V, Brizard JP, Bessin Y, Dorsselaer AV, Declerck N, Sanglier-Cianférani S, Brugidou C, Vignols F. The RYMV-Encoded Viral Suppressor of RNA Silencing P1 Is a Zinc-Binding Protein with Redox-Dependent Flexibility. J Mol Biol 2013; 425:2423-35. [DOI: 10.1016/j.jmb.2013.03.028] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2012] [Revised: 03/14/2013] [Accepted: 03/18/2013] [Indexed: 10/27/2022]
|
44
|
Campylobacter jejuni Dps protein binds DNA in the presence of iron or hydrogen peroxide. J Bacteriol 2013; 195:1970-8. [PMID: 23435977 DOI: 10.1128/jb.00059-13] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Iron is an essential cofactor for many enzymes; however, this metal can lead to the formation of reactive oxygen species. Ferritin proteins bind and oxidize Fe(2+) to Fe(3+), storing this metal in a nonreactive form. In some organisms, a particular subfamily of ferritins, namely, Dps proteins, have the ability to bind DNA. Here we show that the Campylobacter jejuni Dps has DNA binding activity that is uniquely activated by Fe(2+) or H2O2 at below neutral pH. The Dps-DNA binding activity correlated with the ability of Dps to self-aggregate. The Dps-DNA interaction was inhibited by NaCl and Mg(2+), suggesting the formation of ionic interactions between Dps and DNA. Alkylation of cysteines affected DNA binding in the presence of H2O2 but not in the presence of Fe(2+). Replacement of all cysteines in C. jejuni Dps with serines did not affect DNA binding, excluding the participation of cysteine in H2O2 sensing. Dps was able to protect DNA in vitro from enzymatic cleavage and damage by hydroxyl radicals. A C. jejuni dps mutant was less resistant to H2O2 in vivo. The concerted activation of Dps-DNA binding in response to low pH, H2O2, and Fe(2+) may protect C. jejuni DNA during host colonization.
Collapse
|
45
|
|
46
|
Chung KR. Stress Response and Pathogenicity of the Necrotrophic Fungal Pathogen Alternaria alternata. SCIENTIFICA 2012; 2012:635431. [PMID: 24278721 PMCID: PMC3820455 DOI: 10.6064/2012/635431] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/12/2012] [Accepted: 10/03/2012] [Indexed: 05/07/2023]
Abstract
The production of host-selective toxins by the necrotrophic fungus Alternaria alternata is essential for the pathogenesis. A. alternata infection in citrus leaves induces rapid lipid peroxidation, accumulation of hydrogen peroxide (H2O2), and cell death. The mechanisms by which A. alternata avoids killing by reactive oxygen species (ROS) after invasion have begun to be elucidated. The ability to coordinate of signaling pathways is essential for the detoxification of cellular stresses induced by ROS and for pathogenicity in A. alternata. A low level of H2O2, produced by the NADPH oxidase (NOX) complex, modulates ROS resistance and triggers conidiation partially via regulating the redox-responsive regulators (YAP1 and SKN7) and the mitogen-activated protein (MAP) kinase (HOG1) mediated pathways, which subsequently regulate the genes required for the biosynthesis of siderophore, an iron-chelating compound. Siderophore-mediated iron acquisition plays a key role in ROS detoxification because of the requirement of iron for the activities of antioxidants (e.g., catalase and SOD). Fungal strains impaired for the ROS-detoxifying system severely reduce the virulence on susceptible citrus cultivars. This paper summarizes the current state of knowledge of signaling pathways associated with cellular responses to multidrugs, oxidative and osmotic stress, and fungicides, as well as the pathogenicity/virulence in the tangerine pathotype of A. alternata.
Collapse
Affiliation(s)
- Kuang-Ren Chung
- Citrus Research and Education Center, Institute of Food and Agricultural Sciences (IFAS), University of Florida, 700 Experiment Station Road, Lake Alfred, FL 33850, USA
- Department of Plant Pathology, IFAS, University of Florida, Gainesville, FL 32611, USA
| |
Collapse
|
47
|
Michán C, Martínez JL, Alvarez MC, Turk M, Sychrova H, Ramos J. Salt and oxidative stress tolerance in Debaryomyces hansenii and Debaryomyces fabryi. FEMS Yeast Res 2012; 13:180-8. [PMID: 23122272 DOI: 10.1111/1567-1364.12020] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2012] [Revised: 09/24/2012] [Accepted: 10/30/2012] [Indexed: 11/28/2022] Open
Abstract
We report the characterization of five strains belonging to the halotolerant highly related Debaryomyces hansenii/fabryi species. The analysis performed consisted in studying tolerance properties, membrane characteristics, and cation incell amounts. We have specifically investigated (1) tolerance to different chemicals, (2) tolerance to osmotic and salt stress, (3) tolerance and response to oxidative stress, (4) reactive oxygen species (ROS) content, (5) relative membrane potential, (6) cell volume, (7) K(+) and Na(+) ion content, and (8) membrane fluidity. Unexpectedly, no direct relationship was found between one particular strain, Na(+) content and its tolerance to NaCl or between its ROS content and its tolerance to H(2)O(2). Results show that, although in general, human origin D. fabryi strains were more resistant to oxidative stress and presented shorter doubling times and smaller cell volume than food isolated D. hansenii ones, strains belonging to the same species can be significantly different. Debaryomyces fabryi CBS1793 strain highlighted for its extremely tolerant behavior when exposed to the diverse stress factors studied.
Collapse
Affiliation(s)
- Carmen Michán
- Departamento de Bioquímica y Biología Molecular, Universidad de Córdoba, Córdoba, Spain
| | | | | | | | | | | |
Collapse
|
48
|
Walther A, Wendland J. Yap1-dependent oxidative stress response provides a link to riboflavin production in Ashbya gossypii. Fungal Genet Biol 2012; 49:697-707. [PMID: 22750190 DOI: 10.1016/j.fgb.2012.06.006] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2011] [Revised: 06/08/2012] [Accepted: 06/13/2012] [Indexed: 12/23/2022]
Abstract
Ashbya gossypii is a natural overproducer of riboflavin. Overproduction of riboflavin can be induced by environmental stress, e.g. nutritional or oxidative stress. The Yap-protein family has a well-documented role in stress response. Particularly, Yap1 has a major role in directing the oxidative stress responses. The A. gossypii YAP-family consists of only three genes in contrast to its closest relative Eremothecium cymbalariae, which has four YAP-homologs. Gene order at Eremothecium YAP-loci is conserved with the reconstructed yeast ancestor. AgYap1p is unique amongst Yap-homologs as it lacks the cysteine-rich domains (CRDs). AgYAP1 expression is inducible and GFP-AgYap1 localizes to the nucleus. Agyap1 mutants displayed higher sensitivity against oxidative stress - H(2)O(2) and menadione - and are strongly reduced in riboflavin production. High levels of cAMP, which also reduce riboflavin production, show a synergistic effect on this sensitivity. AgYAP1 and a chimera of AgYAP1 (with the DNA-binding domain) and ScYAP1 (with the CRDs) can both complement the Scyap1 oxidative stress sensitivity. This suggests that the DNA-binding sites of ScYap1 are conserved in A. gossypii. Expression of AgRIB4, which contains three putative Yap1-binding sites, assayed via a lacZ-reporter gene was strongly reduced in an Agyap1 mutant suggesting a direct involvement of AgYap1 in riboflavin production. Furthermore, our data show that application of H(2)O(2) stress leads to an increase in riboflavin production in a Yap1-dependent manner.
Collapse
Affiliation(s)
- Andrea Walther
- Carlsberg Laboratory, Yeast Biology, Gamle Carlsberg Vej 10, DK-2500 Valby, Copenhagen, Denmark
| | | |
Collapse
|
49
|
Abstract
Oxidative damage to cellular constituents has frequently been associated with aging in a wide range of organisms. The power of yeast genetics and biochemistry has provided the opportunity to analyse in some detail how reactive oxygen and nitrogen species arise in cells, how cells respond to the damage that these reactive species cause, and to begin to dissect how these species may be involved in the ageing process. This chapter reviews the major sources of reactive oxygen species that occur in yeast cells, the damage they cause and how cells sense and respond to this damage.
Collapse
Affiliation(s)
- May T Aung-Htut
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, NSW, 2052, Australia,
| | | | | | | |
Collapse
|
50
|
Zaffagnini M, Bedhomme M, Groni H, Marchand CH, Puppo C, Gontero B, Cassier-Chauvat C, Decottignies P, Lemaire SD. Glutathionylation in the photosynthetic model organism Chlamydomonas reinhardtii: a proteomic survey. Mol Cell Proteomics 2011; 11:M111.014142. [PMID: 22122882 DOI: 10.1074/mcp.m111.014142] [Citation(s) in RCA: 110] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Protein glutathionylation is a redox post-translational modification occurring under oxidative stress conditions and playing a major role in cell regulation and signaling. This modification has been mainly studied in nonphotosynthetic organisms, whereas much less is known in photosynthetic organisms despite their important exposure to oxidative stress caused by changes in environmental conditions. We report a large scale proteomic analysis using biotinylated glutathione and streptavidin affinity chromatography that allowed identification of 225 glutathionylated proteins in the eukaryotic unicellular green alga Chlamydomonas reinhardtii. Moreover, 56 sites of glutathionylation were also identified after peptide affinity purification and tandem mass spectrometry. The targets identified belong to a wide range of biological processes and pathways, among which the Calvin-Benson cycle appears to be a major target. The glutathionylation of four enzymes of this cycle, phosphoribulokinase, glyceraldehyde-3-phosphate dehydrogenase, ribose-5-phosphate isomerase, and phosphoglycerate kinase was confirmed by Western blot and activity measurements. The results suggest that glutathionylation could constitute a major mechanism of regulation of the Calvin-Benson cycle under oxidative stress conditions.
Collapse
Affiliation(s)
- Mirko Zaffagnini
- Laboratoire de Biologie Moléculaire et Cellulaire des Eucaryotes, FRE3354 Centre National de la Recherche Scientifique, Université Pierre et Marie Curie, Institut de Biologie Physico-Chimique, 75005 Paris, France
| | | | | | | | | | | | | | | | | |
Collapse
|