1
|
Santema LL, Fraaije MW. Activity assays for flavoprotein oxidases: an overview. Appl Microbiol Biotechnol 2025; 109:115. [PMID: 40341429 PMCID: PMC12062150 DOI: 10.1007/s00253-025-13494-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2025] [Revised: 04/16/2025] [Accepted: 04/22/2025] [Indexed: 05/10/2025]
Abstract
Flavoprotein oxidases have found many biotechnological applications. For identifying and improving their characteristics, it is essential to have reliable and robust assay methodology available. The methodologies used to monitor their activity seem to be scattered in the literature and seem often selected based on convenience. Due to the diversity of reactions catalyzed by flavoprotein oxidases, it is virtually impossible to recommend a single activity assay. A literature analysis of 60 recent papers describing flavoprotein oxidases revealed that continuous spectrophotometric assays, in particular colorimetric assays, are the preferred choice, as they are facile, scalable and allow for better interpretation of data than discontinuous assays. Colorimetric assays typically rely on the extinction coefficient of a monitored chromogenic product, which can be highly variable depending on the experimental conditions. Therefore, it is important to determine the extinction coefficient under the specific experimental conditions used, rather than taking it directly from the literature. To provide a guideline and assist in standardization, this review describes the most commonly utilized activity assays for flavoprotein oxidases, along with their respective merits and limitations. KEY POINTS: • Researchers should be more aware of limitations of activity assays. • Extinction coefficients should be determined for the appropriate experimental setup. • New robust activity assays are desired.
Collapse
Affiliation(s)
- Lars L Santema
- Molecular Enzymology, University of Groningen, Nijenborgh 3, 9747 AG, Groningen, The Netherlands
| | - Marco W Fraaije
- Molecular Enzymology, University of Groningen, Nijenborgh 3, 9747 AG, Groningen, The Netherlands.
| |
Collapse
|
2
|
Giovannoni M, Scortica A, Scafati V, Piccirilli E, Sorio D, Benedetti M, Mattei B. The reducing end of cell wall oligosaccharides is critical for DAMP activity in Arabidopsis thaliana and can be exploited by oligosaccharide oxidases in the reduction of oxidized phenolics. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2025; 220:109466. [PMID: 39793330 DOI: 10.1016/j.plaphy.2024.109466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Revised: 12/27/2024] [Accepted: 12/28/2024] [Indexed: 01/13/2025]
Abstract
The enzymatic hydrolysis of cell wall polysaccharides results in the production of oligosaccharides with nature of damage-associated molecular patterns (DAMPs) that are perceived by plants as danger signals. The in vitro oxidation of oligogalacturonides and cellodextrins by plant FAD-dependent oligosaccharide-oxidases (OSOXs) suppresses their elicitor activity in vivo, suggesting a protective role of OSOXs against a prolonged activation of defense responses potentially deleterious for plant health. However, OSOXs are also produced by phytopathogens and saprotrophs, complicating the understanding of their role in plant-microbe interactions. Here, we demonstrate the oxidation catalyzed by specific fungal OSOXs also converts the elicitor-active cello-tetraose and xylo-tetraose into elicitor-inactive forms, indicating that the oxidation state of cell wall oligosaccharides is crucial for their DAMP function, irrespective of whether the OSOX originates from fungi or plants. In addition, we also found that certain OSOXs can transfer the electrons from the reducing end of these oligosaccharides to oxidized phenolics (bi-phenoquinones) instead of molecular O2, highlighting an unexpected sub-functionalization of these enzymes. The activity of OSOXs may be crucial for a thorough understanding of cell wall metabolism since these enzymes can redirect the reducing power from sugars to phenolic components of the plant cell wall, an insight with relevant implications for plant physiology and biotechnology.
Collapse
Affiliation(s)
- Moira Giovannoni
- Department of Life, Health and Environmental Sciences, University of L'Aquila, 67100, L'Aquila, Italy
| | - Anna Scortica
- Department of Life, Health and Environmental Sciences, University of L'Aquila, 67100, L'Aquila, Italy
| | - Valentina Scafati
- Department of Life, Health and Environmental Sciences, University of L'Aquila, 67100, L'Aquila, Italy
| | - Emilia Piccirilli
- Department of Life, Health and Environmental Sciences, University of L'Aquila, 67100, L'Aquila, Italy; University School for Advanced Studies IUSS Pavia, Pavia, 27100, Italy
| | - Daniela Sorio
- Centro Piattaforme Tecnologiche, University of Verona, 37134, Verona, Italy
| | - Manuel Benedetti
- Department of Life, Health and Environmental Sciences, University of L'Aquila, 67100, L'Aquila, Italy.
| | - Benedetta Mattei
- Department of Life, Health and Environmental Sciences, University of L'Aquila, 67100, L'Aquila, Italy
| |
Collapse
|
3
|
Guerriere TB, Vancheri A, Ricotti I, Serapian SA, Eggerichs D, Tischler D, Colombo G, Mascotti ML, Fraaije MW, Mattevi A. Dehydrogenase versus oxidase function: the interplay between substrate binding and flavin microenvironment. ACS Catal 2025; 15:1046-1060. [PMID: 39781101 PMCID: PMC7617285 DOI: 10.1021/acscatal.4c05944] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2025]
Abstract
Redox enzymes, mostly equipped with metal or organic cofactors, can vary their reactivity with oxygen by orders of magnitudes. Understanding how oxygen reactivity is controlled by the protein milieu remains an open issue with broad implications for mechanistic enzymology and enzyme design. Here, we address this problem by focusing on a widespread group of flavoenzymes that oxidize phenolic compounds derived from microbial lignin degradation, using either oxygen or a cytochrome c as electron acceptors. A comprehensive phylogenetic analysis revealed conserved amino acid motifs in their flavin-binding site. Using a combination of kinetics, mutagenesis, structural, and computational methods, we examined the role of these residues. Our results demonstrate that subtle and localized changes in the flavin environment can drastically impact on oxygen reactivity. These effects are afforded through the creation or blockade of pathways for oxygen diffusion. Substrate binding plays a crucial role by potentially obstructing oxygen access to the flavin, thus influencing the enzyme's reactivity. The switch between oxidase and dehydrogenase functionalities is thereby achieved through targeted, site-specific amino acid replacements that finely tune the microenvironment around the flavin. Our findings explain how very similar enzymes can exhibit distinct functional properties, operating as oxidases or dehydrogenases. They further provide valuable insights for the rational design and engineering of enzymes with tailored functions.
Collapse
Affiliation(s)
| | | | - Ilaria Ricotti
- Department of Chemistry, University of Pavia, 27100Pavia, Italy
| | | | - Daniel Eggerichs
- Microbial Biotechnology, Ruhr University Bochum, 44780, Bochum, Germany
| | - Dirk Tischler
- Microbial Biotechnology, Ruhr University Bochum, 44780, Bochum, Germany
| | - Giorgio Colombo
- Department of Chemistry, University of Pavia, 27100Pavia, Italy
| | - Maria L. Mascotti
- IHEM CONICET, Universidad Nacional de Cuyo, Mendoza, Argentina, M5502JMA
| | - Marco W. Fraaije
- Molecular Enzymology Group, University of Groningen, Groningen, The Netherlands, 9747AG
| | - Andrea Mattevi
- Department of Biology and Biotechnology “Lazzaro Spallanzani”, University of Pavia, Pavia, Italy27100
| |
Collapse
|
4
|
Santema LL, Rotilio L, Xiang R, Tjallinks G, Guallar V, Mattevi A, Fraaije MW. Discovery and biochemical characterization of thermostable glycerol oxidases. Appl Microbiol Biotechnol 2024; 108:61. [PMID: 38183484 PMCID: PMC10771423 DOI: 10.1007/s00253-023-12883-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 10/10/2023] [Accepted: 10/20/2023] [Indexed: 01/08/2024]
Abstract
Alditol oxidases are promising tools for the biocatalytic oxidation of glycerol to more valuable chemicals. By integrating in silico bioprospecting with cell-free protein synthesis and activity screening, an effective pipeline was developed to rapidly identify enzymes that are active on glycerol. Three thermostable alditol oxidases from Actinobacteria Bacterium, Streptomyces thermoviolaceus, and Thermostaphylospora chromogena active on glycerol were discovered. The characterization of these three flavoenzymes demonstrated their glycerol oxidation activities, preference for alkaline conditions, and excellent thermostabilities with melting temperatures higher than 75 °C. Structural elucidation of the alditol oxidase from Actinobacteria Bacterium highlighted a constellation of side chains that engage the substrate through several hydrogen bonds, a histidine residue covalently bound to the FAD prosthetic group, and a tunnel leading to the active site. Upon computational simulations of substrate binding, a double mutant targeting a residue pair at the tunnel entrance was created and found to display an improved thermal stability and catalytic efficiency for glycerol oxidation. The hereby described alditol oxidases form a valuable panel of oxidative biocatalysts that can perform regioselective oxidation of glycerol and other polyols. KEY POINTS: • Rapid pipeline designed to identify putative oxidases • Biochemical and structural characterization of alditol oxidases • Glycerol oxidation to more valuable derivatives.
Collapse
Affiliation(s)
- Lars L Santema
- Molecular Enzymology, University of Groningen, Nijenborgh 4, 9747AG, Groningen, The Netherlands
| | - Laura Rotilio
- Department of Biology and Biotechnology, University of Pavia, via Ferrata 9, 27100, Pavia, Italy
| | - Ruite Xiang
- Barcelona Supercomputing Center (BSC), Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, 08034, Spain
| | - Gwen Tjallinks
- Molecular Enzymology, University of Groningen, Nijenborgh 4, 9747AG, Groningen, The Netherlands
| | - Victor Guallar
- Barcelona Supercomputing Center (BSC), Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, 08034, Spain.
| | - Andrea Mattevi
- Department of Biology and Biotechnology, University of Pavia, via Ferrata 9, 27100, Pavia, Italy.
| | - Marco W Fraaije
- Molecular Enzymology, University of Groningen, Nijenborgh 4, 9747AG, Groningen, The Netherlands.
| |
Collapse
|
5
|
Gayda G, Demkiv O, Stasyuk N, Boretsky Y, Gonchar M, Nisnevitch M. Peroxidase-like Nanoparticles of Noble Metals Stimulate Increasing Sensitivity of Flavocytochrome b2-Based L-Lactate Biosensors. BIOSENSORS 2024; 14:562. [PMID: 39590021 PMCID: PMC11591947 DOI: 10.3390/bios14110562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2024] [Revised: 11/15/2024] [Accepted: 11/18/2024] [Indexed: 11/28/2024]
Abstract
We report the development of amperometric biosensors (ABSs) employing flavocytochrome b2 (Fcb2) coupled with nanoparticles (NPs) of noble metals on graphite electrode (GE) surfaces. Each NPs/GE configuration was evaluated for its ability to decompose hydrogen peroxide (H2O2), mimicking peroxidase (PO) activity. The most effective nanoPO (nPO) was selected for developing ABSs targeting L-lactate. Consequently, several Fcb2/nPO-based ABSs with enhanced sensitivity to L-lactate were developed, demonstrating mediated ET between Fcb2 and the GE surface. The positive effect of noble metal NPs on Fcb2-based sensor sensitivity may be explained by the synergy between their dual roles as both PO mimetics and electron transfer mediators. Furthermore, our findings provide preliminary data that may prompt a re-evaluation of the mechanism of L-lactate oxidation in Fcb2-mediated catalysis. Previously, it was believed that L-lactate oxidation via Fcb2 catalysis did not produce H2O2, unlike catalysis via L-lactate oxidase. Our initial research revealed that the inclusion of nPO in Fcb2-based ABSs significantly increased their sensitivity. Employing other PO mimetics in ABSs for L-lactate yielded similar results, reinforcing our hypothesis that trace amounts of H2O2 may be generated as a transient intermediate in this reaction. The presence of nPO enhances the L-lactate oxidation rate through H2O2 utilization, leading to signal amplification and heightened bioelectrode sensitivity. The proposed ABSs have been successfully tested on blood serum and fermented food samples, showing their promise for L-lactate monitoring in medicine and the food industry.
Collapse
Affiliation(s)
- Galina Gayda
- Department of Analytical Biotechnology, Institute of Cell Biology National Academy of Sciences of Ukraine, 14/16 Drahomanov Str., 79005 Lviv, Ukraine; (O.D.); (N.S.); (M.G.)
| | - Olha Demkiv
- Department of Analytical Biotechnology, Institute of Cell Biology National Academy of Sciences of Ukraine, 14/16 Drahomanov Str., 79005 Lviv, Ukraine; (O.D.); (N.S.); (M.G.)
| | - Nataliya Stasyuk
- Department of Analytical Biotechnology, Institute of Cell Biology National Academy of Sciences of Ukraine, 14/16 Drahomanov Str., 79005 Lviv, Ukraine; (O.D.); (N.S.); (M.G.)
| | - Yuriy Boretsky
- Department of Biochemistry and Hygiene, Ivan Boberskyi Lviv State University of Physical Culture, 11 Kostiushko Str., 79000 Lviv, Ukraine;
| | - Mykhailo Gonchar
- Department of Analytical Biotechnology, Institute of Cell Biology National Academy of Sciences of Ukraine, 14/16 Drahomanov Str., 79005 Lviv, Ukraine; (O.D.); (N.S.); (M.G.)
| | - Marina Nisnevitch
- Department of Chemical Engineering, Ariel University, Kyriat-ha-Mada, Ariel 4070000, Israel
| |
Collapse
|
6
|
Dubach VRA, San Segundo-Acosta P, Murphy BJ. Structural and mechanistic insights into Streptococcus pneumoniae NADPH oxidase. Nat Struct Mol Biol 2024; 31:1769-1777. [PMID: 39039317 PMCID: PMC11564096 DOI: 10.1038/s41594-024-01348-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Accepted: 06/06/2024] [Indexed: 07/24/2024]
Abstract
Nicotinamide adenine dinucleotide phosphate (NADPH) oxidases (NOXs) have a major role in the physiology of eukaryotic cells by mediating reactive oxygen species production. Evolutionarily distant proteins with the NOX catalytic core have been found in bacteria, including Streptococcus pneumoniae NOX (SpNOX), which is proposed as a model for studying NOXs because of its high activity and stability in detergent micelles. We present here cryo-electron microscopy structures of substrate-free and nicotinamide adenine dinucleotide (NADH)-bound SpNOX and of NADPH-bound wild-type and F397A SpNOX under turnover conditions. These high-resolution structures provide insights into the electron-transfer pathway and reveal a hydride-transfer mechanism regulated by the displacement of F397. We conducted structure-guided mutagenesis and biochemical analyses that explain the absence of substrate specificity toward NADPH and suggest the mechanism behind constitutive activity. Our study presents the structural basis underlying SpNOX enzymatic activity and sheds light on its potential in vivo function.
Collapse
Affiliation(s)
- Victor R A Dubach
- Redox and Metalloprotein Research Group, Max Planck Institute of Biophysics, Frankfurt am Main, Germany
- Redox and Metalloprotein Research Group, IMPRS on Cellular Biophysics, Frankfurt am Main, Germany
| | - Pablo San Segundo-Acosta
- Redox and Metalloprotein Research Group, Max Planck Institute of Biophysics, Frankfurt am Main, Germany.
- Chronic Disease Programme, UFIEC, Carlos III Health Institute, Madrid, Spain.
| | - Bonnie J Murphy
- Redox and Metalloprotein Research Group, Max Planck Institute of Biophysics, Frankfurt am Main, Germany.
| |
Collapse
|
7
|
Santema LL, Rozeboom HJ, Borger VP, Kaya SG, Fraaije MW. Identification of a robust bacterial pyranose oxidase that displays an unusual pH dependence. J Biol Chem 2024; 300:107885. [PMID: 39395808 DOI: 10.1016/j.jbc.2024.107885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 09/30/2024] [Accepted: 10/06/2024] [Indexed: 10/14/2024] Open
Abstract
Pyranose oxidases are valuable biocatalysts, yet only a handful of bacterial pyranose oxidases are known. These bacterial enzymes exhibit noteworthy distinctions from their extensively characterized fungal counterparts, encompassing variations in substrate specificity and structural attributes. Herein a bacterial pyranose oxidase from Oscillatoria princeps (OPOx) was biochemically characterized in detail. In contrast to the fungal pyranose oxidases, OPOx could be well expressed in Escherichia coli as soluble, fully flavinylated, and active oxidase. It was found to be highly thermostable (melting temperature >90 °C) and showed activity on glucose, exhibiting an exceptionally low KM value (48 μM). Elucidation of its crystal structure revealed similarities with fungal pyranose oxidases, such as being a tetramer with a large central void leading to a narrow substrate access tunnel. In the active site, the FAD cofactor is covalently bound to a histidine. OPOx displays a relatively narrow pH optimum for activity with a sharp decline at relatively basic pH values which is accompanied by a drastic change in its flavin absorbance spectrum. The pH-dependent switch in flavin absorbance features and oxidase activity was shown to be fully reversible. It is hypothesized that a glutamic acid helps to stabilize the protonated form of the histidine that is tethered to the FAD. OPOx presents itself as a valuable biocatalyst as it is highly robust, well-expressed in E. coli, shows low KM values for monosaccharides, and has a peculiar pH-dependent "on-off switch".
Collapse
Affiliation(s)
- Lars L Santema
- Molecular Enzymology, University of Groningen, Groningen, The Netherlands
| | | | - Veronica P Borger
- Molecular Enzymology, University of Groningen, Groningen, The Netherlands
| | - Saniye G Kaya
- Molecular Enzymology, University of Groningen, Groningen, The Netherlands
| | - Marco W Fraaije
- Molecular Enzymology, University of Groningen, Groningen, The Netherlands.
| |
Collapse
|
8
|
Tjallinks G, Mattevi A, Fraaije MW. Biosynthetic Strategies of Berberine Bridge Enzyme-like Flavoprotein Oxidases toward Structural Diversification in Natural Product Biosynthesis. Biochemistry 2024; 63:2089-2110. [PMID: 39133819 PMCID: PMC11375781 DOI: 10.1021/acs.biochem.4c00320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 07/24/2024] [Accepted: 07/29/2024] [Indexed: 09/04/2024]
Abstract
Berberine bridge enzyme-like oxidases are often involved in natural product biosynthesis and are seen as essential enzymes for the generation of intricate pharmacophores. These oxidases have the ability to transfer a hydride atom to the FAD cofactor, which enables complex substrate modifications and rearrangements including (intramolecular) cyclizations, carbon-carbon bond formations, and nucleophilic additions. Despite the diverse range of activities, the mechanistic details of these reactions often remain incompletely understood. In this Review, we delve into the complexity that BBE-like oxidases from bacteria, fungal, and plant origins exhibit by providing an overview of the shared catalytic features and emphasizing the different reactivities. We propose four generalized modes of action by which BBE-like oxidases enable the synthesis of natural products, ranging from the classic alcohol oxidation reactions to less common amine and amide oxidation reactions. Exploring the mechanisms utilized by nature to produce its vast array of natural products is a subject of considerable interest and can lead to the discovery of unique biochemical activities.
Collapse
Affiliation(s)
- Gwen Tjallinks
- Biomolecular
Sciences and Biotechnology Institute, University
of Groningen, Groningen 9747 AG, The Netherlands
- Department
of Biology and Biotechnology, University
of Pavia, Pavia 27100, Italy
| | - Andrea Mattevi
- Department
of Biology and Biotechnology, University
of Pavia, Pavia 27100, Italy
| | - Marco W. Fraaije
- Biomolecular
Sciences and Biotechnology Institute, University
of Groningen, Groningen 9747 AG, The Netherlands
| |
Collapse
|
9
|
Serrano A, Cinca-Fernando P, Carro J, Velázquez-Campoy A, Martínez-Júlvez M, Martínez ÁT, Ferreira P. Unveiling the kinetic versatility of aryl-alcohol oxidases with different electron acceptors. Front Bioeng Biotechnol 2024; 12:1440598. [PMID: 39161354 PMCID: PMC11330772 DOI: 10.3389/fbioe.2024.1440598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Accepted: 07/22/2024] [Indexed: 08/21/2024] Open
Abstract
Introduction: Aryl-alcohol oxidase (AAO) shows a pronounced duality as oxidase and dehydrogenase similar to that described for other glucose-methanol-choline (GMC) oxidase/dehydrogenase superfamily proteins involved in lignocellulose decomposition. In this work, we detail the overall mechanism of AAOs from Pleurotus eryngii and Bjerkandera adusta for catalyzing the oxidation of natural aryl-alcohol substrates using either oxygen or quinones as electron acceptors and describe the crystallographic structure of AAO from B. adusta in complex with a product analogue. Methods: Kinetic studies with 4-methoxybenzyl and 3-chloro-4- methoxybenzyl alcohols, including both transient-state and steady-state analyses, along with interaction studies, provide insight into the oxidase and dehydrogenase mechanisms of these enzymes. Moreover, the resolution of the crystal structure of AAO from B. adusta allowed us to compare their overall folding and the structure of the active sites of both AAOs in relation to their activities. Results and Discussion: Although both enzymes show similar mechanistic properties, notable differences are highlighted in this study. In B. adusta, the AAO oxidase activity is limited by the reoxidation of the flavin, while in P. eryngii the slower step takes place during the reductive half-reaction, which determines the overall reaction rate. By contrast, dehydrogenase activity in both enzymes, irrespective of the alcohol participating in the reaction, is limited by the hydroquinone release from the active site. Despite these differences, both AAOs are more efficient as dehydrogenases, supporting the physiological role of this activity in lignocellulosic decay. This dual activity would allow these enzymes to adapt to different environments based on the available electron acceptors.
Collapse
Affiliation(s)
- Ana Serrano
- Centro de Investigaciones Biológicas Margarita Salas, CSIC, Madrid, Spain
| | - Paula Cinca-Fernando
- Departamento de Bioquímica y Biología Molecular y Celular, Facultad de Ciencias, Universidad de Zaragoza, Zaragoza, Spain
- Instituto de Biocomputación y Física de Sistemas Complejos, BIFI (GBsC-CSIC Joint Unit), Universidad de Zaragoza, Zaragoza, Spain
| | - Juan Carro
- Centro de Investigaciones Biológicas Margarita Salas, CSIC, Madrid, Spain
| | - Adrián Velázquez-Campoy
- Departamento de Bioquímica y Biología Molecular y Celular, Facultad de Ciencias, Universidad de Zaragoza, Zaragoza, Spain
- Instituto de Biocomputación y Física de Sistemas Complejos, BIFI (GBsC-CSIC Joint Unit), Universidad de Zaragoza, Zaragoza, Spain
- Institute for Health Research Aragon (IIS Aragon), Zaragoza, Spain
- Biomedical Research Networking Center in Hepatic and Digestive Diseases (CIBERehd), Madrid, Spain
| | - Marta Martínez-Júlvez
- Departamento de Bioquímica y Biología Molecular y Celular, Facultad de Ciencias, Universidad de Zaragoza, Zaragoza, Spain
- Instituto de Biocomputación y Física de Sistemas Complejos, BIFI (GBsC-CSIC Joint Unit), Universidad de Zaragoza, Zaragoza, Spain
| | - Ángel T. Martínez
- Centro de Investigaciones Biológicas Margarita Salas, CSIC, Madrid, Spain
| | - Patricia Ferreira
- Departamento de Bioquímica y Biología Molecular y Celular, Facultad de Ciencias, Universidad de Zaragoza, Zaragoza, Spain
- Instituto de Biocomputación y Física de Sistemas Complejos, BIFI (GBsC-CSIC Joint Unit), Universidad de Zaragoza, Zaragoza, Spain
| |
Collapse
|
10
|
Li Q, Zhang S, Liu F, Su H, Sheng X. Quantum chemical modeling of enantioselective sulfoxidation and epoxidation reactions by indole monooxygenase VpIndA1. Phys Chem Chem Phys 2024; 26:16521-16528. [PMID: 38809594 DOI: 10.1039/d4cp00552j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/30/2024]
Abstract
Indole monooxygenases (IMOs) are enzymes from the family of Group E monooxygenases, requiring flavin adenine dinucleotide (FAD) for their activities. IMOs play important roles in both sulfoxidation and epoxidation reactions. The broad substrate range and high selectivity of IMOs make them promising biocatalytic tools for synthesizing chiral compounds. In the present study, quantum chemical calculations using the cluster approach were performed to investigate the reaction mechanism and the enantioselectivity of the IMO from Variovorax paradoxus EPS (VpIndA1). The sulfoxidation of methyl phenyl sulfide (MPS) and the epoxidation of indene were chosen as the representative reactions. The calculations confirmed that the FADOOH intermediate is the catalytic species in the VpIndA1 reactions. The oxidation of MPS adopts a one-step mechanism involving the direct oxygen-transfer from FADOOH to the substrate and the proton transfer from the -OH group back to FAD, while the oxidation of indene follows a stepwise mechanism involving a carbocation intermediate. It was computationally predicted that VpIndA1 prefers the formation of (S)-product for the MPS sulfoxidation and (1S,2R)-product for the indene epoxidation, consistent with the experimental observations. Importantly, the factors controlling the stereo-preference of the two reactions are identified. The findings in the present study provide valuable insights into the VpIndA1-catalyzed reactions, which are essential for the rational design of this enzyme and other IMOs for industrial applications. It is also worth emphasizing that the quantum chemical cluster approach is again demonstrated to be powerful in studying the enantioselectivity of enzymatic reactions.
Collapse
Affiliation(s)
- Qinrou Li
- College of Biotechnology, Tianjin University of Science and Technology, Tianjin, 300457, P. R. China
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, P. R. China.
| | - Shiqing Zhang
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, P. R. China.
- National Center of Technology Innovation for Synthetic Biology, National Engineering Research Center of Industrial Enzymes and Key Laboratory of Engineering Biology for Low-Carbon Manufacturing, Tianjin 300308, P. R. China
| | - Fufeng Liu
- College of Biotechnology, Tianjin University of Science and Technology, Tianjin, 300457, P. R. China
| | - Hao Su
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, P. R. China.
- National Center of Technology Innovation for Synthetic Biology, National Engineering Research Center of Industrial Enzymes and Key Laboratory of Engineering Biology for Low-Carbon Manufacturing, Tianjin 300308, P. R. China
| | - Xiang Sheng
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, P. R. China.
- National Center of Technology Innovation for Synthetic Biology, National Engineering Research Center of Industrial Enzymes and Key Laboratory of Engineering Biology for Low-Carbon Manufacturing, Tianjin 300308, P. R. China
| |
Collapse
|
11
|
Stare J. Oxidation of Flavin by Molecular Oxygen: Computational Insights into a Possible Radical Mechanism. ACS OMEGA 2024; 9:23431-23441. [PMID: 38854520 PMCID: PMC11154890 DOI: 10.1021/acsomega.4c00307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 04/19/2024] [Accepted: 05/13/2024] [Indexed: 06/11/2024]
Abstract
As a highly electrophilic moiety capable of oxidizing a variety of small organic molecules and biomolecules, flavin is an important prosthetic group in many enzymes. Upon oxidation of the substrate, flavin is converted into its reduced (dihydrogenated) form. The catalytic cycle is completed through oxidation back to the oxidized form, thus restoring the enzyme's oxidizing capability. While it has been firmly established that oxidation of the reduced form of flavin is cast by molecular oxygen, yielding oxidized flavin and hydrogen peroxide, the mechanism of this process is still poorly understood. Herein, we investigate the radical mechanism, which is one of the possible reaction mechanisms, by quantum chemical calculations. Because molecular oxygen exists as a triplet in its electronic ground state, whereas the products are singlets, the reaction is accompanied by hopping between electronic surfaces. We find that the rate-limiting factor of flavin oxidation is likely associated with the change in the spin state of the system. By considering several possible reactions involving flavin and its derivatives in the radical form and by examining the corresponding parts of the potential energy surface in various spin states, we estimate the effective barrier of the kinetically and thermodynamically preferred variant of flavin oxidation to be about 15 kcal/mol in the gas phase and about 7 kcal/mol in a polar (aqueous) environment. This is in agreement with kinetic studies of the corresponding monoamine oxidase enzymes, confirming the radical mechanism as a viable option for flavin regeneration in enzymes.
Collapse
Affiliation(s)
- Jernej Stare
- National Institute of Chemistry,Hajdrihova 19, SI-1000 Ljubljana, Slovenia
| |
Collapse
|
12
|
Quaye JA, Wood KE, Snelgrove C, Ouedraogo D, Gadda G. An active site mutation induces oxygen reactivity in D-arginine dehydrogenase: A case of superoxide diverting protons. J Biol Chem 2024; 300:107381. [PMID: 38762175 PMCID: PMC11193025 DOI: 10.1016/j.jbc.2024.107381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 05/09/2024] [Accepted: 05/13/2024] [Indexed: 05/20/2024] Open
Abstract
Enzymes are potent catalysts that increase biochemical reaction rates by several orders of magnitude. Flavoproteins are a class of enzymes whose classification relies on their ability to react with molecular oxygen (O2) during catalysis using ionizable active site residues. Pseudomonas aeruginosa D-arginine dehydrogenase (PaDADH) is a flavoprotein that oxidizes D-arginine for P. aeruginosa survival and biofilm formation. The crystal structure of PaDADH reveals the interaction of the glutamate 246 (E246) side chain with the substrate and at least three other active site residues, establishing a hydrogen bond network in the active site. Additionally, E246 likely ionizes to facilitate substrate binding during PaDADH catalysis. This study aimed to investigate how replacing the E246 residue with leucine affects PaDADH catalysis and its ability to react with O2 using steady-state kinetics coupled with pH profile studies. The data reveal a gain of O2 reactivity in the E246L variant, resulting in a reduced flavin semiquinone species and superoxide (O2•-) during substrate oxidation. The O2•- reacts with active site protons, resulting in an observed nonstoichiometric slope of 1.5 in the enzyme's log (kcat/Km) pH profile with D-arginine. Adding superoxide dismutase results in an observed correction of the slope to 1.0. This study demonstrates how O2•- can alter the slopes of limbs in the pH profiles of flavin-dependent enzymes and serves as a model for correcting nonstoichiometric slopes in elucidating reaction mechanisms of flavoproteins.
Collapse
Affiliation(s)
- Joanna A Quaye
- Department of Chemistry, Georgia State University, Atlanta, Georgia, USA
| | - Kendall E Wood
- Biology Department, Morehouse College, Atlanta, Georgia, USA
| | - Claire Snelgrove
- The Gwinnett School of Mathematics, Science, and Technology, Lawrenceville, Georgia, USA
| | - Daniel Ouedraogo
- Department of Chemistry, Georgia State University, Atlanta, Georgia, USA
| | - Giovanni Gadda
- Department of Chemistry, Georgia State University, Atlanta, Georgia, USA; Department of Biology, Georgia State University, Atlanta, Georgia, USA; Department of the Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, Georgia, USA.
| |
Collapse
|
13
|
Kılıç M, Ensing B. Redox Properties of Flavin in BLUF and LOV Photoreceptor Proteins from Hybrid QM/MM Molecular Dynamics Simulation. J Phys Chem B 2024; 128:3069-3080. [PMID: 38518376 DOI: 10.1021/acs.jpcb.3c06245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/24/2024]
Abstract
Flavins play an important role in many oxidation and reduction processes in biological systems. For example, flavin adenine dinucleotide (FAD) and flavin mononucleotide (FMN) are common cofactors found in enzymatic proteins that use the special redox properties of these flavin molecules for their catalytic or photoactive functions. The redox potential of the flavin is strongly affected by its (protein) environment; however, the underlying molecular interactions of this effect are still unknown. Using hybrid quantum mechanics/molecular mechanics (QM/MM) simulation techniques, we have studied the redox properties of flavin in the gas phase, aqueous solution, and two different protein environments, in particular, a BLUF and a LOV photoreceptor domain. By mapping the changes in electrostatic potential and solvent structure, we gain insight into how specific polarization of the flavin by its environment tunes the reduction potential. We find also that accurate calculation of the reduction potentials of these systems by using the hybrid QM/MM approach is hampered by a too limited sampling of the counterion configurations and by artifacts at the QM/MM boundary. We make suggestions for how these issues can be overcome.
Collapse
Affiliation(s)
- Murat Kılıç
- Van't Hoff Institute for Molecular Sciences, University of Amsterdam, Park 904, Amsterdam 1098 XH, The Netherlands
| | - Bernd Ensing
- Van't Hoff Institute for Molecular Sciences, University of Amsterdam, Park 904, Amsterdam 1098 XH, The Netherlands
| |
Collapse
|
14
|
Zhang Q, Chen Q, Shaik S, Wang B. Flavin-N5OOH Functions as both a Powerful Nucleophile and a Base in the Superfamily of Flavoenzymes. Angew Chem Int Ed Engl 2024; 63:e202318629. [PMID: 38299700 DOI: 10.1002/anie.202318629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 01/30/2024] [Accepted: 01/31/2024] [Indexed: 02/02/2024]
Abstract
Flavoenzymes can mediate a large variety of oxidation reactions through the activation of oxygen. However, the O2 activation chemistry of flavin enzymes is not yet fully exploited. Normally, the O2 activation occurs at the C4a site of the flavin cofactor, yielding the flavin C4a-(hydro)hydroperoxyl species in monooxygenases or oxidases. Using extensive MD simulations, QM/MM calculations and QM calculations, our studies reveal the formation of the common nucleophilic species, Flavin-N5OOH, in two distinct flavoenzymes (RutA and EncM). Our studies show that Flavin-N5OOH acts as a powerful nucleophile that promotes C-N cleavage of uracil in RutA, and a powerful base in the deprotonation of substrates in EncM. We reason that Flavin-N5OOH can be a common reactive species in the superfamily of flavoenzymes, which accomplish generally selective general base catalysis and C-X (X=N, S, Cl, O) cleavage reactions that are otherwise challenging with solvated hydroxide ion base. These results expand our understanding of the chemistry and catalysis of flavoenzymes.
Collapse
Affiliation(s)
- Qiaoyu Zhang
- State Key Laboratory of Physical Chemistry of Solid Surfaces and Fujian Provincial Key Laboratory of Theoretical and Computational Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, P. R. China
| | - Qianqian Chen
- State Key Laboratory of Physical Chemistry of Solid Surfaces and Fujian Provincial Key Laboratory of Theoretical and Computational Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, P. R. China
| | - Sason Shaik
- Institute of Chemistry and the Lise Meitner-Minerva Center for Computational Quantum Chemistry, The Hebrew University of Jerusalem, 91904, Jerusalem, Israel
| | - Binju Wang
- State Key Laboratory of Physical Chemistry of Solid Surfaces and Fujian Provincial Key Laboratory of Theoretical and Computational Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, P. R. China
| |
Collapse
|
15
|
Libardi SH, Ahmad A, Ferreira FB, Oliveira RJ, Caruso ÍP, Melo FA, de Albuquerque S, Cardoso DR, Burtoloso ACB, Borges JC. Interaction between diterpene icetexanes and old yellow enzymes of Leishmania braziliensis and Trypanosoma cruzi. Int J Biol Macromol 2024; 259:129192. [PMID: 38216013 DOI: 10.1016/j.ijbiomac.2023.129192] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2023] [Revised: 12/21/2023] [Accepted: 12/31/2023] [Indexed: 01/14/2024]
Abstract
Old Yellow Enzymes (OYEs) are flavin-dependent redox enzymes that promote the asymmetric reduction of activated alkenes. Due to the high importance of flavoenzymes in the metabolism of organisms, the interaction between OYEs from the parasites Trypanosoma cruzi and Leishmania braziliensis and three diterpene icetexanes (brussonol and two analogs), were evaluated in the present study, and differences in the binding mechanism and inhibition capacity of these molecules were examined. Although the aforementioned compounds showed poor and negligible activities against T. cruzi and L. braziliensis cells, respectively, the experiments with the purified enzymes indicated that the interaction occurs by divergent mechanisms. Overall, the ligands' inhibitory effect depends on their accessibility to the N5 position of the flavin's isoalloxazine ring. The results also indicated that the OYEs found in both parasites share structural similarities and showed affinities for the diterpene icetexanes in the same range. Nevertheless, the interaction between OYEs and ligands is directed by enthalpy and/or entropy in distinct ways. In conclusion, the binding site of both OYEs exhibits remarkable plasticity, and a large range of different molecules, including that can be substrates and inhibitors, can bind this site. This plasticity should be considered in drug design using OYE as a target.
Collapse
Affiliation(s)
- Silvia H Libardi
- Instituto de Química de São Carlos, Universidade de São Paulo - USP, 13560-970 São Carlos, SP, Brazil
| | - Anees Ahmad
- Instituto de Química de São Carlos, Universidade de São Paulo - USP, 13560-970 São Carlos, SP, Brazil
| | | | - Ronaldo J Oliveira
- Instituto de Ciências Exatas, Naturais e Educação, Universidade Federal do Triângulo Mineiro, 38064-200 Uberaba, MG, Brazil
| | - Ícaro P Caruso
- Instituto de Biociências, Letras e Ciências Exatas (IBILCE) - UNESP, 15054-000 São José do Rio Preto, SP, Brazil; Instituto de Bioquímica Médica Leopoldo de Meis and Centro Nacional para Biologia Estrutural e Bioimagem, Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, RJ, Brazil
| | - Fernando A Melo
- Instituto de Biociências, Letras e Ciências Exatas (IBILCE) - UNESP, 15054-000 São José do Rio Preto, SP, Brazil
| | - Sergio de Albuquerque
- Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo - USP, Ribeirão Preto, SP CEP 14040-903, Brazil
| | - Daniel R Cardoso
- Instituto de Química de São Carlos, Universidade de São Paulo - USP, 13560-970 São Carlos, SP, Brazil
| | - Antonio C B Burtoloso
- Instituto de Química de São Carlos, Universidade de São Paulo - USP, 13560-970 São Carlos, SP, Brazil
| | - Júlio C Borges
- Instituto de Química de São Carlos, Universidade de São Paulo - USP, 13560-970 São Carlos, SP, Brazil.
| |
Collapse
|
16
|
Zhao Z, Li J, Yuan W, Cheng D, Ma S, Li YF, Shi ZJ, Hu K. Nature-Inspired Photocatalytic Azo Bond Cleavage with Red Light. J Am Chem Soc 2024; 146:1364-1373. [PMID: 38082478 DOI: 10.1021/jacs.3c09837] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2024]
Abstract
The emerging field of photoredox catalysis in mammalian cells enables spatiotemporal regulation of a wealth of biological processes. However, the selective cleavage of stable covalent bonds driven by low-energy visible light remains a great challenge. Herein, we report that red light excitation of a commercially available dye, abbreviated NMB+, leads to catalytic cleavage of stable azo bonds in both aqueous solutions and hypoxic cells and hence a means to photodeliver drugs or functional molecules. Detailed mechanistic studies reveal that azo bond cleavage is triggered by a previously unknown consecutive two-photon process. The first photon generates a triplet excited state, 3NMB+*, that is reductively quenched by an electron donor to generate a protonated NMBH•+. The NMBH•+ undergoes a disproportionation reaction that yields the initial NMB+ and two-electron-reduced NMBH (i.e., leuco-NMB, abbreviated as LNMB). Interestingly, LNMB forms a charge transfer complex with all four azo substrates that possess an intense absorption band in the red region. A second red photon induces electron transfer from LNMB to the azo substrate, resulting in azo bond cleavage. The charge transfer complex mediated two-photon catalytic mechanism reported herein is reminiscent of the flavin-dependent natural photoenzyme that catalyzes bond cleavage reactions with high-energy photons. The red-light-driven photocatalytic strategy offers a new approach to bioorthogonal azo bond cleavage for photodelivery of drugs or functional molecules.
Collapse
Affiliation(s)
- Zijian Zhao
- Department of Chemistry, Fudan University, 220 Handan Road, Shanghai 200433, People's Republic of China
| | - Jili Li
- Department of Chemistry, Fudan University, 220 Handan Road, Shanghai 200433, People's Republic of China
| | - Wei Yuan
- Shanghai Frontiers Science Research Base of Intelligent Optoelectronics and Perception, Institute of Optoelectronics, Fudan University, 2005 Songhu Road, Shanghai 200438, People's Republic of China
- Institute of Optoelectronics, Fudan University, 2005 Songhu Road, Shanghai 200438, People's Republic of China
| | - Dajiao Cheng
- Department of Chemistry, Fudan University, 220 Handan Road, Shanghai 200433, People's Republic of China
| | - Suze Ma
- Department of Chemistry, Fudan University, 220 Handan Road, Shanghai 200433, People's Republic of China
| | - Ye-Fei Li
- Department of Chemistry, Fudan University, 220 Handan Road, Shanghai 200433, People's Republic of China
| | - Zhang-Jie Shi
- Department of Chemistry, Fudan University, 220 Handan Road, Shanghai 200433, People's Republic of China
| | - Ke Hu
- Department of Chemistry, Fudan University, 220 Handan Road, Shanghai 200433, People's Republic of China
| |
Collapse
|
17
|
Feng C, Zheng W, Han L, Wang JK, Zha XP, Xiao Q, He ZJ, Kang JC. AaLaeA targets AaFla1 to mediate the production of antitumor compound in Alternaria alstroemeria. J Basic Microbiol 2024; 64:68-80. [PMID: 37717245 DOI: 10.1002/jobm.202300319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 08/25/2023] [Accepted: 09/05/2023] [Indexed: 09/19/2023]
Abstract
Endophytic fungi are an important source of novel antitumor substances. Previously, we isolated an endophytic fungus, Alternaria alstroemeria, from the medicinal plant Artemisia artemisia, whose crude extracts strongly inhibited A549 tumor cells. We obtained a transformant, namely AaLaeAOE26 , which completely loses its antitumor activity due to overexpression of the global regulator AaLaeA. Re-sequencing analysis of the genome revealed that the insertion site was in the noncoding region and did not destroy any other genes. Metabolomics analysis revealed that the level of secondary antitumor metabolic substances was significantly lower in AaLaeAOE26 compared with the wild strain, in particular flavonoids were more downregulated according to the metabolomics analysis. A further comparative transcriptome analysis revealed that a gene encoding FAD-binding domain protein (Fla1) was significantly downregulated. On the other hand, overexpression of AaFla1 led to significant enhancement of antitumor activity against A549 with a sevenfold higher inhibition ratio than the wild strain. At the same time, we also found a significant increase in the accumulation of antitumor metabolites including quercetin, gitogenin, rhodioloside, liensinine, ginsenoside Rg2 and cinobufagin. Our data suggest that the global regulator AaLaeA negatively affects the production of antitumor compounds via controlling the transcription of AaFla1 in endophytic A. alstroemeria.
Collapse
Affiliation(s)
- Can Feng
- College of Pharmacy, Guizhou University, Guiyang, People's Republic of China
- Southwest Biomedical Resources of the Ministry of Education, Guizhou University, Guiyang, People's Republic of China
| | - Wen Zheng
- Southwest Biomedical Resources of the Ministry of Education, Guizhou University, Guiyang, People's Republic of China
| | - Long Han
- Southwest Biomedical Resources of the Ministry of Education, Guizhou University, Guiyang, People's Republic of China
| | - Jian-Kang Wang
- Southwest Biomedical Resources of the Ministry of Education, Guizhou University, Guiyang, People's Republic of China
| | - Xing-Ping Zha
- Southwest Biomedical Resources of the Ministry of Education, Guizhou University, Guiyang, People's Republic of China
| | - Qing Xiao
- Southwest Biomedical Resources of the Ministry of Education, Guizhou University, Guiyang, People's Republic of China
| | - Zhang-Jiang He
- College of Pharmacy, Guizhou University, Guiyang, People's Republic of China
- Southwest Biomedical Resources of the Ministry of Education, Guizhou University, Guiyang, People's Republic of China
| | - Ji-Chuan Kang
- College of Pharmacy, Guizhou University, Guiyang, People's Republic of China
- Southwest Biomedical Resources of the Ministry of Education, Guizhou University, Guiyang, People's Republic of China
| |
Collapse
|
18
|
Phintha A, Chaiyen P. Unifying and versatile features of flavin-dependent monooxygenases: Diverse catalysis by a common C4a-(hydro)peroxyflavin. J Biol Chem 2023; 299:105413. [PMID: 37918809 PMCID: PMC10696468 DOI: 10.1016/j.jbc.2023.105413] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 10/18/2023] [Accepted: 10/22/2023] [Indexed: 11/04/2023] Open
Abstract
Flavin-dependent monooxygenases (FDMOs) are known for their remarkable versatility and for their crucial roles in various biological processes and applications. Extensive research has been conducted to explore the structural and functional relationships of FDMOs. The majority of reported FDMOs utilize C4a-(hydro)peroxyflavin as a reactive intermediate to incorporate an oxygen atom into a wide range of compounds. This review discusses and analyzes recent advancements in our understanding of the structural and mechanistic features governing the enzyme functions. State-of-the-art discoveries related to common and distinct structural properties governing the catalytic versatility of the C4a-(hydro)peroxyflavin intermediate in selected FDMOs are discussed. Specifically, mechanisms of hydroxylation, dehalogenation, halogenation, and light-emitting reactions by FDMOs are highlighted. We also provide new analysis based on the structural and mechanistic features of these enzymes to gain insights into how the same intermediate can be harnessed to perform a wide variety of reactions. Challenging questions to obtain further breakthroughs in the understanding of FDMOs are also proposed.
Collapse
Affiliation(s)
- Aisaraphon Phintha
- School of Biomolecular Science and Engineering, Vidyasirimedhi Institute of Science and Technology (VISTEC), Wangchan Valley, Rayong, Thailand
| | - Pimchai Chaiyen
- School of Biomolecular Science and Engineering, Vidyasirimedhi Institute of Science and Technology (VISTEC), Wangchan Valley, Rayong, Thailand.
| |
Collapse
|
19
|
Dulchavsky M, Mitra R, Wu K, Li J, Boer K, Liu X, Zhang Z, Vasquez C, Clark CT, Funckes K, Shankar K, Bonnet-Zahedi S, Siddiq M, Sepulveda Y, Suhandynata RT, Momper JD, Calabrese AN, George O, Stull F, Bardwell JCA. Directed evolution unlocks oxygen reactivity for a nicotine-degrading flavoenzyme. Nat Chem Biol 2023; 19:1406-1414. [PMID: 37770699 PMCID: PMC10611581 DOI: 10.1038/s41589-023-01426-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Accepted: 08/23/2023] [Indexed: 09/30/2023]
Abstract
The flavoenzyme nicotine oxidoreductase (NicA2) is a promising injectable treatment to aid in the cessation of smoking, a behavior responsible for one in ten deaths worldwide. NicA2 acts by degrading nicotine in the bloodstream before it reaches the brain. Clinical use of NicA2 is limited by its poor catalytic activity in the absence of its natural electron acceptor CycN. Without CycN, NicA2 is instead oxidized slowly by dioxygen (O2), necessitating unfeasibly large doses in a therapeutic setting. Here, we report a genetic selection strategy that directly links CycN-independent activity of NicA2 to growth of Pseudomonas putida S16. This selection enabled us to evolve NicA2 variants with substantial improvement in their rate of oxidation by O2. The encoded mutations cluster around a putative O2 tunnel, increasing flexibility and accessibility to O2 in this region. These mutations further confer desirable clinical properties. A variant form of NicA2 is tenfold more effective than the wild type at degrading nicotine in the bloodstream of rats.
Collapse
Affiliation(s)
- Mark Dulchavsky
- Howard Hughes Medical Institute and Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, MI, USA
- Cellular and Molecular Biology Program, University of Michigan, Ann Arbor, MI, USA
| | - Rishav Mitra
- Howard Hughes Medical Institute and Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, MI, USA
| | - Kevin Wu
- Howard Hughes Medical Institute and Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, MI, USA
| | - Joshua Li
- Howard Hughes Medical Institute and Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, MI, USA
| | - Karli Boer
- Department of Chemistry, Western Michigan University, Kalamazoo, MI, USA
| | - Xiaomeng Liu
- Howard Hughes Medical Institute and Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, MI, USA
| | - Zhiyao Zhang
- Department of Chemistry, Western Michigan University, Kalamazoo, MI, USA
| | - Cristian Vasquez
- Department of Chemistry, Western Michigan University, Kalamazoo, MI, USA
| | | | - Kaitrin Funckes
- Department of Chemistry, Western Michigan University, Kalamazoo, MI, USA
| | - Kokila Shankar
- Department of Psychiatry, University of California, San Diego, La Jolla, CA, USA
| | - Selene Bonnet-Zahedi
- Department of Psychiatry, University of California, San Diego, La Jolla, CA, USA
| | - Mohammad Siddiq
- Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, MI, USA
| | - Yadira Sepulveda
- School of Pharmacy and Pharmaceutical Science, University of California, San Diego, La Jolla, CA, USA
| | - Raymond T Suhandynata
- School of Pharmacy and Pharmaceutical Science, University of California, San Diego, La Jolla, CA, USA
- Department of Pathology, University of California, San Diego, La Jolla, CA, USA
| | - Jeremiah D Momper
- School of Pharmacy and Pharmaceutical Science, University of California, San Diego, La Jolla, CA, USA
| | - Antonio N Calabrese
- Astbury Centre for Structural Molecular Biology, S chool of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, UK
| | - Olivier George
- Department of Psychiatry, University of California, San Diego, La Jolla, CA, USA
| | - Frederick Stull
- Department of Chemistry, Western Michigan University, Kalamazoo, MI, USA
| | - James C A Bardwell
- Howard Hughes Medical Institute and Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, MI, USA.
| |
Collapse
|
20
|
Matysik J, Gerhards L, Theiss T, Timmermann L, Kurle-Tucholski P, Musabirova G, Qin R, Ortmann F, Solov'yov IA, Gulder T. Spin Dynamics of Flavoproteins. Int J Mol Sci 2023; 24:ijms24098218. [PMID: 37175925 PMCID: PMC10179055 DOI: 10.3390/ijms24098218] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 04/19/2023] [Accepted: 04/27/2023] [Indexed: 05/15/2023] Open
Abstract
This short review reports the surprising phenomenon of nuclear hyperpolarization occurring in chemical reactions, which is called CIDNP (chemically induced dynamic nuclear polarization) or photo-CIDNP if the chemical reaction is light-driven. The phenomenon occurs in both liquid and solid-state, and electron transfer systems, often carrying flavins as electron acceptors, are involved. Here, we explain the physical and chemical properties of flavins, their occurrence in spin-correlated radical pairs (SCRP) and the possible involvement of flavin-carrying SCRPs in animal magneto-reception at earth's magnetic field.
Collapse
Affiliation(s)
- Jörg Matysik
- Institut für Analytische Chemie, Universität Leipzig, Linnéstr. 3, 04103 Leipzig, Germany
| | - Luca Gerhards
- Institut für Physik, Carl von Ossietzky Universität Oldenburg, Carl-von Ossietzky-Str. 9-11, 26129 Oldenburg, Germany
| | - Tobias Theiss
- Institut für Organische Chemie, Universität Leipzig, Johannisallee 29, 04103 Leipzig, Germany
| | - Lisa Timmermann
- Institut für Organische Chemie, Universität Leipzig, Johannisallee 29, 04103 Leipzig, Germany
| | | | - Guzel Musabirova
- Institut für Analytische Chemie, Universität Leipzig, Linnéstr. 3, 04103 Leipzig, Germany
| | - Ruonan Qin
- Institut für Analytische Chemie, Universität Leipzig, Linnéstr. 3, 04103 Leipzig, Germany
| | - Frank Ortmann
- TUM School of Natural Sciences, Technische Universität München, Lichtenbergstr. 4, 85748 Garching, Germany
| | - Ilia A Solov'yov
- Institut für Physik, Carl von Ossietzky Universität Oldenburg, Carl-von Ossietzky-Str. 9-11, 26129 Oldenburg, Germany
- Research Center for Neurosensory Science, Carl von Ossietzky Universität Oldenburg, Carl-von-Ossietzky-Str. 9-11, 26129 Oldenburg, Germany
- Center for Nanoscale Dynamics (CENAD), Carl von Ossietzky Universität Oldenburg, Carl-von-Ossietzky-Str. 9-11, 26129 Oldenburg, Germany
| | - Tanja Gulder
- Institut für Organische Chemie, Universität Leipzig, Johannisallee 29, 04103 Leipzig, Germany
| |
Collapse
|
21
|
Ortega P, Gil-Guerrero S, González-Sánchez L, Sanz-Sanz C, Jambrina PG. Spin-Forbidden Addition of Molecular Oxygen to Stable Enol Intermediates-Decarboxylation of 2-Methyl-1-tetralone-2-carboxylic Acid. Int J Mol Sci 2023; 24:ijms24087424. [PMID: 37108586 PMCID: PMC10138960 DOI: 10.3390/ijms24087424] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 04/12/2023] [Accepted: 04/13/2023] [Indexed: 04/29/2023] Open
Abstract
The deprotonation of an organic substrate is a common preactivation step for the enzymatic cofactorless addition of O2 to this substrate, as it promotes charge-transfer between the two partners, inducing intersystem crossing between the triplet and singlet states involved in the process. Nevertheless, the spin-forbidden addition of O2 to uncharged ligands has also been observed in the laboratory, and the detailed mechanism of how the system circumvents the spin-forbiddenness of the reaction is still unknown. One of these examples is the cofactorless peroxidation of 2-methyl-3,4-dihydro-1-naphthol, which will be studied computationally using single and multi-reference electronic structure calculations. Our results show that the preferred mechanism is that in which O2 picks a proton from the substrate in the triplet state, and subsequently hops to the singlet state in which the product is stable. For this reaction, the formation of the radical pair is associated with a higher barrier than that associated with the intersystem crossing, even though the absence of the negative charge leads to relatively small values of the spin-orbit coupling.
Collapse
Affiliation(s)
- Pablo Ortega
- Departamento de Química-Física, Universidad de Salamanca, 37008 Salamanca, Spain
| | - Sara Gil-Guerrero
- Departamento de Química-Física, Universidad de Salamanca, 37008 Salamanca, Spain
- CICECO-Aveiro Institute of Materials, University of Aveiro, 3810-193 Aveiro, Portugal
| | | | - Cristina Sanz-Sanz
- Departamento de Química Física Aplicada, Universidad Autónoma de Madrid, 28049 Madrid, Spain
| | - Pablo G Jambrina
- Departamento de Química-Física, Universidad de Salamanca, 37008 Salamanca, Spain
| |
Collapse
|
22
|
Scortica A, Scafati V, Giovannoni M, Benedetti M, Mattei B. Radical cation scavenging activity of berberine bridge enzyme-like oligosaccharide oxidases acting on short cell wall fragments. Sci Rep 2023; 13:4123. [PMID: 36914850 PMCID: PMC10011498 DOI: 10.1038/s41598-023-31335-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Accepted: 03/09/2023] [Indexed: 03/16/2023] Open
Abstract
Oligogalacturonide-oxidases (OGOXs) and cellodextrin-oxidase (CELLOX) are plant berberine bridge enzyme-like oligosaccharide-oxidases (OSOXs) that oxidize, respectively, oligogalacturonides (OGs) and cellodextrins (CDs), thereby inactivating their elicitor nature and concomitantly releasing H2O2. Little is known about the physiological role of OSOX activity. By using an ABTS·+-reduction assay, we identified a novel reaction mechanism through which the activity of OSOXs on cell wall oligosaccharides scavenged the radical cation ABTS·+ with an efficiency dependent on the type and length of the oxidized oligosaccharide. In contrast to the oxidation of longer oligomers such as OGs (degree of polymerization from 10 to 15), the activity of OSOXs on short galacturonan- and cellulose-oligomers (degree of polymerization ≤ 4) successfully counteracted the radical cation-generating activity of a fungal laccase, suggesting that OSOXs can generate radical cation scavenging activity in the apoplast with a power proportional to the extent of degradation of the plant cell wall, with possible implications for redox homeostasis and defense against oxidative stress.
Collapse
Affiliation(s)
- Anna Scortica
- Department of Life, Health and Environmental Sciences, University of L'Aquila, 67100, L'Aquila, Italy
| | - Valentina Scafati
- Department of Life, Health and Environmental Sciences, University of L'Aquila, 67100, L'Aquila, Italy
| | - Moira Giovannoni
- Department of Life, Health and Environmental Sciences, University of L'Aquila, 67100, L'Aquila, Italy
| | - Manuel Benedetti
- Department of Life, Health and Environmental Sciences, University of L'Aquila, 67100, L'Aquila, Italy.
| | - Benedetta Mattei
- Department of Life, Health and Environmental Sciences, University of L'Aquila, 67100, L'Aquila, Italy
| |
Collapse
|
23
|
Yang Y, Luo X, Xie Y, Li X, Liu S, Liu N, Chen X. Regulation of different protonated states of two intimate histidine residues on the reductive half-reaction of glucose oxidase. Phys Chem Chem Phys 2022; 24:25788-25800. [PMID: 36263785 DOI: 10.1039/d2cp03502b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Glucose oxidase (GOx) can catalyze the oxidation of β-D-glucose under mild conditions to directly convert biological energy into electrical energy, which has great potential for applications in the fields of enzyme biofuel cells and glucose biosensors. In enzymatic biofuel cells, GOx is often used as an anodic catalyst to improve the performance. The important role of two intimate histidine residues, His505 and His548 (PDB code 4YNU), in the GOx active center has been highlighted in the catalytic oxidation of β-D-glucose, but there is still a lack of systematic examination on the influence of different protonated states of His505 and His548 on the catalytic oxidation of β-D-glucose in GOx. Therefore, in the present work, the GOx active center under the possible protonated states of His548 and His505 is systematically examined by using ONIOM calculations, as well as the influence of remote Arg210 is considered. The calculations reveal that the intimate His505 and His548 can modulate the interaction of the β-D-glucose substrate with isoalloxazine and then control the deprotonization of the hydroxyl group bound to the anomeric carbon of β-D-glucose like controllers. The remote Arg210 provides the driving force for the transfer of two electrons from β-D-glucose to isoalloxazine of FAD via the long-range electrostatic attraction like a horse. Specially, the protonated His505 can serve as a good helper of Arg210 to promote the occurring of the two-proton-coupled two-electron transfer from β-D-glucose to isoalloxazine and His548 in the active center of GOx. These findings provide much insight into the catalytic reactions of GOx in a low pH environment, which may be beneficial to expand the applications of GOx.
Collapse
Affiliation(s)
- Yuning Yang
- Chongqing Key Laboratory of Theoretical and Computational Chemistry, School of Chemistry and Chemical Engineering, Chongqing University, Chongqing, 401331, P. R. China.
| | - Xin Luo
- Chongqing Key Laboratory of Theoretical and Computational Chemistry, School of Chemistry and Chemical Engineering, Chongqing University, Chongqing, 401331, P. R. China.
| | - Yuxin Xie
- Chongqing Key Laboratory of Theoretical and Computational Chemistry, School of Chemistry and Chemical Engineering, Chongqing University, Chongqing, 401331, P. R. China.
| | - Xin Li
- Chongqing Key Laboratory of Theoretical and Computational Chemistry, School of Chemistry and Chemical Engineering, Chongqing University, Chongqing, 401331, P. R. China.
| | - Sijun Liu
- Chongqing Key Laboratory of Theoretical and Computational Chemistry, School of Chemistry and Chemical Engineering, Chongqing University, Chongqing, 401331, P. R. China.
| | - Nian Liu
- Chongqing Key Laboratory of Theoretical and Computational Chemistry, School of Chemistry and Chemical Engineering, Chongqing University, Chongqing, 401331, P. R. China.
| | - Xiaohua Chen
- Chongqing Key Laboratory of Theoretical and Computational Chemistry, School of Chemistry and Chemical Engineering, Chongqing University, Chongqing, 401331, P. R. China.
| |
Collapse
|
24
|
Mumby EJ, Willoughby JA, Vasquez C, Delavari N, Zhang Z, Clark CT, Stull F. Binding Interface and Electron Transfer Between Nicotine Oxidoreductase and Its Cytochrome c Electron Acceptor. Biochemistry 2022; 61:2182-2187. [PMID: 36154019 PMCID: PMC10163435 DOI: 10.1021/acs.biochem.2c00472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The enzyme nicotine oxidoreductase (NicA2) is a member of the flavoprotein amine oxidase family that uses a cytochrome c protein (CycN) as its oxidant instead of dioxygen, which is the oxidant used by most other members of this enzyme family. We recently identified a potential binding site for CycN on the surface of NicA2 through rigid body docking [J. Biol. Chem. 2022, 298 (8), 102251]. However, this potential binding interface has not been experimentally validated. In this paper, we used unnatural amino acid incorporation to probe the binding interface between NicA2 and CycN. Our results are consistent with a structural model of the NicA2-CycN complex predicted by protein-protein docking and AlphaFold, suggesting that this is the binding site for CycN on NicA2's surface. Based on additional mutagenesis of potentially redox active residues in NicA2, we propose that electron transfer from NicA2's flavin to CycN's heme occurs without the assistance of a protein-derived wire.
Collapse
Affiliation(s)
- Elizabeth J Mumby
- Department of Chemistry, Western Michigan University, Kalamazoo, Michigan 49008, United States
| | - Jamin A Willoughby
- Department of Chemistry, Western Michigan University, Kalamazoo, Michigan 49008, United States
| | - Cristian Vasquez
- Department of Chemistry, Western Michigan University, Kalamazoo, Michigan 49008, United States
| | - Niusha Delavari
- Department of Chemistry, Western Michigan University, Kalamazoo, Michigan 49008, United States
| | - Zhiyao Zhang
- Department of Chemistry, Western Michigan University, Kalamazoo, Michigan 49008, United States
| | - Christopher T Clark
- Department of Chemistry, Western Michigan University, Kalamazoo, Michigan 49008, United States
| | - Frederick Stull
- Department of Chemistry, Western Michigan University, Kalamazoo, Michigan 49008, United States
| |
Collapse
|
25
|
Partipilo M, Yang G, Mascotti ML, Wijma HJ, Slotboom DJ, Fraaije MW. A conserved sequence motif in the Escherichia coli soluble FAD-containing pyridine nucleotide transhydrogenase is important for reaction efficiency. J Biol Chem 2022; 298:102304. [PMID: 35933012 PMCID: PMC9460512 DOI: 10.1016/j.jbc.2022.102304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 07/20/2022] [Accepted: 07/21/2022] [Indexed: 11/06/2022] Open
Abstract
Soluble pyridine nucleotide transhydrogenases (STHs) are flavoenzymes involved in the redox homeostasis of the essential cofactors NAD(H) and NADP(H). They catalyze the reversible transfer of reducing equivalents between the two nicotinamide cofactors. The soluble transhydrogenase from Escherichia coli (SthA) has found wide use in both in vivo and in vitro applications to steer reducing equivalents toward NADPH-requiring reactions. However, mechanistic insight into SthA function is still lacking. In this work, we present a biochemical characterization of SthA, focusing for the first time on the reactivity of the flavoenzyme with molecular oxygen. We report on oxidase activity of SthA that takes place both during transhydrogenation and in the absence of an oxidized nicotinamide cofactor as an electron acceptor. We find that this reaction produces the reactive oxygen species hydrogen peroxide and superoxide anion. Furthermore, we explore the evolutionary significance of the well-conserved CXXXXT motif that distinguishes STHs from the related family of flavoprotein disulfide reductases in which a CXXXXC motif is conserved. Our mutational analysis revealed the cysteine and threonine combination in SthA leads to better coupling efficiency of transhydrogenation and reduced reactive oxygen species release compared to enzyme variants with mutated motifs. These results expand our mechanistic understanding of SthA by highlighting reactivity with molecular oxygen and the importance of the evolutionarily conserved sequence motif.
Collapse
Affiliation(s)
- Michele Partipilo
- Membrane Enzymology Group, Groningen Institute of Biomolecular Sciences & Biotechnology, University of Groningen, Groningen, The Netherlands
| | - Guang Yang
- Molecular Enzymology Group, Groningen Institute of Biomolecular Sciences & Biotechnology, University of Groningen, Groningen, The Netherlands
| | - Maria Laura Mascotti
- Molecular Enzymology Group, Groningen Institute of Biomolecular Sciences & Biotechnology, University of Groningen, Groningen, The Netherlands; IMIBIO-SL CONICET, Facultad de Química Bioquímica y Farmacia, Universidad Nacional de San Luis, San Luis, Argentina
| | - Hein J Wijma
- Molecular Enzymology Group, Groningen Institute of Biomolecular Sciences & Biotechnology, University of Groningen, Groningen, The Netherlands
| | - Dirk Jan Slotboom
- Membrane Enzymology Group, Groningen Institute of Biomolecular Sciences & Biotechnology, University of Groningen, Groningen, The Netherlands.
| | - Marco W Fraaije
- Molecular Enzymology Group, Groningen Institute of Biomolecular Sciences & Biotechnology, University of Groningen, Groningen, The Netherlands.
| |
Collapse
|
26
|
Zhuang B, Vos MH, Aleksandrov A. Photochemical and Molecular Dynamics Studies of Halide Binding in Flavoenzyme Glucose Oxidase. Chembiochem 2022; 23:e202200227. [PMID: 35876386 DOI: 10.1002/cbic.202200227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Revised: 07/11/2022] [Indexed: 11/11/2022]
Abstract
Glucose oxidase (GOX), a characteristic flavoprotein oxidase with widespread industrial applications, binds fluoride (F - ) and chloride (Cl - ). We investigated binding properties of halide inhibitors of GOX through time-resolved spectral characterization of flavin-related photochemical processes and molecular dynamic simulations. Cl - and F - bind differently to the protein active site and have substantial but opposite effects on the population and decay of the flavin excited state. Cl - binds closer to the flavin, whose excited-state decays in <100 fs due to anion-π interactions. Such interactions appear absent in F - binding, which, however, significantly increases the active-site rigidity leading to more homogeneous, picosecond fluorescence decay kinetics. These findings are discussed in relation to the mechanism of halide inhibition of GOX by occupying the accommodation site of catalytic intermediates and increasing the active-site rigidity.
Collapse
Affiliation(s)
- Bo Zhuang
- Ecole Polytechnique, LOB, CNRS, INSERM, École Polytechnique, Institut Polytechnique de Paris, 91128, Palaiseau, FRANCE
| | - Marten H Vos
- CNRS UMR7645, Laboratory of Optics and Biosciences, CNRS, INSERM, École Polytechnique, Institut Polytechnique de Paris, 91128, Palaiseau, FRANCE
| | - Alexey Aleksandrov
- Ecole Polytechnique, Laboratory of Optics and Biosciences, Department of Biology, rue du Saclay, 91128, Palaiseau, FRANCE
| |
Collapse
|
27
|
Choudhary V, Wu K, Zhang Z, Dulchavsky M, Barkman T, Bardwell JCA, Stull F. The enzyme pseudooxynicotine amine oxidase from Pseudomonas putida S16 is not an oxidase, but a dehydrogenase. J Biol Chem 2022; 298:102251. [PMID: 35835223 PMCID: PMC9396064 DOI: 10.1016/j.jbc.2022.102251] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 07/07/2022] [Accepted: 07/08/2022] [Indexed: 11/16/2022] Open
Abstract
The soil-dwelling bacterium Pseudomonas putida S16 can survive on nicotine as its sole carbon and nitrogen source. The enzymes nicotine oxidoreductase (NicA2) and pseudooxynicotine amine oxidase (Pnao), both members of the flavin containing amine oxidase family, catalyze the first two steps in the nicotine catabolism pathway. Our laboratory has previously shown that, contrary to other members of its enzyme family, NicA2 is actually a dehydrogenase that uses a cytochrome c protein (CycN) as its electron acceptor. The natural electron acceptor for Pnao is unknown; however, within the P. putida S16 genome, pnao forms an operon with cycN and nicA2, leading us to hypothesize that Pnao may also be a dehydrogenase that uses CycN as its electron acceptor. Here we characterized the kinetic properties of Pnao and show that Pnao is poorly oxidized by O2, but can be rapidly oxidized by CycN, indicating that Pnao indeed acts as a dehydrogenase that uses CycN as its oxidant. Comparing steady-state kinetics with transient kinetic experiments revealed that product release primarily limits turnover by Pnao. We also resolved the crystal structure of Pnao at 2.60 Å, which shows that Pnao has a similar structural fold as NicA2. Furthermore, rigid-body docking of the structure of CycN with Pnao and NicA2 identified a potential conserved binding site for CycN on these two enzymes. Taken together, our results demonstrate that although Pnao and NicA2 show a high degree of similarity to flavin containing amine oxidases that use dioxygen directly, both enzymes are actually dehydrogenases.
Collapse
Affiliation(s)
- Vishakha Choudhary
- Department of Chemistry, Western Michigan University, Kalamazoo, Michigan, USA
| | - Kevin Wu
- Howard Hughes Medical Institute, University of Michigan, Ann Arbor, Michigan, USA; Department of Biophysics, University of Michigan, Ann Arbor, Michigan, USA
| | - Zhiyao Zhang
- Department of Chemistry, Western Michigan University, Kalamazoo, Michigan, USA
| | - Mark Dulchavsky
- Howard Hughes Medical Institute, University of Michigan, Ann Arbor, Michigan, USA; Cellular and Molecular Biology Program, University of Michigan, Ann Arbor, Michigan, USA
| | - Todd Barkman
- Department of Biological Sciences, Western Michigan University, Kalamazoo, Michigan, USA
| | - James C A Bardwell
- Howard Hughes Medical Institute, University of Michigan, Ann Arbor, Michigan, USA; Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, Michigan, USA
| | - Frederick Stull
- Department of Chemistry, Western Michigan University, Kalamazoo, Michigan, USA.
| |
Collapse
|
28
|
Bauer JA, Zámocká M, Majtán J, Bauerová-Hlinková V. Glucose Oxidase, an Enzyme "Ferrari": Its Structure, Function, Production and Properties in the Light of Various Industrial and Biotechnological Applications. Biomolecules 2022; 12:472. [PMID: 35327664 PMCID: PMC8946809 DOI: 10.3390/biom12030472] [Citation(s) in RCA: 74] [Impact Index Per Article: 24.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 03/14/2022] [Accepted: 03/17/2022] [Indexed: 01/25/2023] Open
Abstract
Glucose oxidase (GOx) is an important oxidoreductase enzyme with many important roles in biological processes. It is considered an "ideal enzyme" and is often called an oxidase "Ferrari" because of its fast mechanism of action, high stability and specificity. Glucose oxidase catalyzes the oxidation of β-d-glucose to d-glucono-δ-lactone and hydrogen peroxide in the presence of molecular oxygen. d-glucono-δ-lactone is sequentially hydrolyzed by lactonase to d-gluconic acid, and the resulting hydrogen peroxide is hydrolyzed by catalase to oxygen and water. GOx is presently known to be produced only by fungi and insects. The current main industrial producers of glucose oxidase are Aspergillus and Penicillium. An important property of GOx is its antimicrobial effect against various pathogens and its use in many industrial and medical areas. The aim of this review is to summarize the structure, function, production strains and biophysical and biochemical properties of GOx in light of its various industrial, biotechnological and medical applications.
Collapse
Affiliation(s)
- Jacob A. Bauer
- Institute of Molecular Biology, Slovak Academy of Sciences, 845 51 Bratislava, Slovakia; (J.A.B.); (M.Z.); (J.M.)
| | - Monika Zámocká
- Institute of Molecular Biology, Slovak Academy of Sciences, 845 51 Bratislava, Slovakia; (J.A.B.); (M.Z.); (J.M.)
| | - Juraj Majtán
- Institute of Molecular Biology, Slovak Academy of Sciences, 845 51 Bratislava, Slovakia; (J.A.B.); (M.Z.); (J.M.)
- Department of Microbiology, Faculty of Medicine, Slovak Medical University, Limbová 12, 833 03 Bratislava, Slovakia
| | - Vladena Bauerová-Hlinková
- Institute of Molecular Biology, Slovak Academy of Sciences, 845 51 Bratislava, Slovakia; (J.A.B.); (M.Z.); (J.M.)
| |
Collapse
|
29
|
Understanding flavin electronic structure and spectra. WIRES COMPUTATIONAL MOLECULAR SCIENCE 2022. [DOI: 10.1002/wcms.1541] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
30
|
Improving the kinetic parameters of nicotine oxidizing enzymes by homologous structure comparison and rational design. Arch Biochem Biophys 2022; 718:109122. [DOI: 10.1016/j.abb.2022.109122] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Revised: 12/17/2021] [Accepted: 01/14/2022] [Indexed: 11/17/2022]
|
31
|
Helicobacter pylori FabX contains a [4Fe-4S] cluster essential for unsaturated fatty acid synthesis. Nat Commun 2021; 12:6932. [PMID: 34836944 PMCID: PMC8626469 DOI: 10.1038/s41467-021-27148-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Accepted: 10/29/2021] [Indexed: 11/08/2022] Open
Abstract
Unsaturated fatty acids (UFAs) are essential for functional membrane phospholipids in most bacteria. The bifunctional dehydrogenase/isomerase FabX is an essential UFA biosynthesis enzyme in the widespread human pathogen Helicobacter pylori, a bacterium etiologically related to 95% of gastric cancers. Here, we present the crystal structures of FabX alone and in complexes with an octanoyl-acyl carrier protein (ACP) substrate or with holo-ACP. FabX belongs to the nitronate monooxygenase (NMO) flavoprotein family but contains an atypical [4Fe-4S] cluster absent in all other family members characterized to date. FabX binds ACP via its positively charged α7 helix that interacts with the negatively charged α2 and α3 helices of ACP. We demonstrate that the [4Fe-4S] cluster potentiates FMN oxidation during dehydrogenase catalysis, generating superoxide from an oxygen molecule that is locked in an oxyanion hole between the FMN and the active site residue His182. Both the [4Fe-4S] and FMN cofactors are essential for UFA synthesis, and the superoxide is subsequently excreted by H. pylori as a major resource of peroxide which may contribute to its pathogenic function in the corrosion of gastric mucosa.
Collapse
|
32
|
A shared mechanistic pathway for pyridoxal phosphate-dependent arginine oxidases. Proc Natl Acad Sci U S A 2021; 118:2012591118. [PMID: 34580201 DOI: 10.1073/pnas.2012591118] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/21/2021] [Indexed: 01/02/2023] Open
Abstract
The mechanism by which molecular oxygen is activated by the organic cofactor pyridoxal phosphate (PLP) for oxidation reactions remains poorly understood. Recent work has identified arginine oxidases that catalyze desaturation or hydroxylation reactions. Here, we investigate a desaturase from the Pseudoalteromonas luteoviolacea indolmycin pathway. Our work, combining X-ray crystallographic, biochemical, spectroscopic, and computational studies, supports a shared mechanism with arginine hydroxylases, involving two rounds of single-electron transfer to oxygen and superoxide rebound at the 4' carbon of the PLP cofactor. The precise positioning of a water molecule in the active site is proposed to control the final reaction outcome. This proposed mechanism provides a unified framework to understand how oxygen can be activated by PLP-dependent enzymes for oxidation of arginine and elucidates a shared mechanistic pathway and intertwined evolutionary history for arginine desaturases and hydroxylases.
Collapse
|
33
|
Matthews A, Schönfelder J, Lagies S, Schleicher E, Kammerer B, Ellis HR, Stull F, Teufel R. Bacterial flavoprotein monooxygenase YxeK salvages toxic S-(2-succino)-adducts via oxygenolytic C-S bond cleavage. FEBS J 2021; 289:787-807. [PMID: 34510734 DOI: 10.1111/febs.16193] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 08/18/2021] [Accepted: 09/09/2021] [Indexed: 01/23/2023]
Abstract
Thiol-containing nucleophiles such as cysteine react spontaneously with the citric acid cycle intermediate fumarate to form S-(2-succino)-adducts. In Bacillus subtilis, a salvaging pathway encoded by the yxe operon has recently been identified for the detoxification and exploitation of these compounds as sulfur sources. This route involves acetylation of S-(2-succino)cysteine to N-acetyl-2-succinocysteine, which is presumably converted to oxaloacetate and N-acetylcysteine, before a final deacetylation step affords cysteine. The critical oxidative cleavage of the C-S bond of N-acetyl-S-(2-succino)cysteine was proposed to depend on the predicted flavoprotein monooxygenase YxeK. Here, we characterize YxeK and verify its role in S-(2-succino)-adduct detoxification and sulfur metabolism. Detailed biochemical and mechanistic investigation of YxeK including 18 O-isotope-labeling experiments, homology modeling, substrate specificity tests, site-directed mutagenesis, and (pre-)steady-state kinetics provides insight into the enzyme's mechanism of action, which may involve a noncanonical flavin-N5-peroxide species for C-S bond oxygenolysis.
Collapse
Affiliation(s)
| | | | - Simon Lagies
- Institute of Organic Chemistry, University of Freiburg, Germany
| | - Erik Schleicher
- Institute of Physical Chemistry, University of Freiburg, Germany
| | - Bernd Kammerer
- Institute of Organic Chemistry, University of Freiburg, Germany.,BIOSS Center for Biological Signaling Studies, University of Freiburg, Germany
| | - Holly R Ellis
- Brody School of Medicine, East Carolina University, Greenville, NC, USA
| | - Frederick Stull
- Department of Chemistry, Western Michigan University, Kalamazoo, MI, USA
| | - Robin Teufel
- Faculty of Biology, University of Freiburg, Germany
| |
Collapse
|
34
|
Kalinina S, Freymueller C, Naskar N, von Einem B, Reess K, Sroka R, Rueck A. Bioenergetic Alterations of Metabolic Redox Coenzymes as NADH, FAD and FMN by Means of Fluorescence Lifetime Imaging Techniques. Int J Mol Sci 2021; 22:5952. [PMID: 34073057 PMCID: PMC8199032 DOI: 10.3390/ijms22115952] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 05/26/2021] [Accepted: 05/28/2021] [Indexed: 12/15/2022] Open
Abstract
Metabolic FLIM (fluorescence lifetime imaging) is used to image bioenergetic status in cells and tissue. Whereas an attribution of the fluorescence lifetime of coenzymes as an indicator for cell metabolism is mainly accepted, it is debated whether this is valid for the redox state of cells. In this regard, an innovative algorithm using the lifetime characteristics of nicotinamide adenine dinucleotide (phosphate) (NAD(P)H) and flavin adenine dinucleotide (FAD) to calculate the fluorescence lifetime induced redox ratio (FLIRR) has been reported so far. We extended the FLIRR approach and present new results, which includes FLIM data of the various enzymes, such as NAD(P)H, FAD, as well as flavin mononucleotide (FMN). Our algorithm uses a two-exponential fitting procedure for the NAD(P)H autofluorescence and a three-exponential fit of the flavin signal. By extending the FLIRR approach, we introduced FLIRR1 as protein-bound NAD(P)H related to protein-bound FAD, FLIRR2 as protein-bound NAD(P)H related to free (unbound) FAD and FLIRR3 as protein-bound NAD(P)H related to protein-bound FMN. We compared the significance of extended FLIRR to the metabolic index, defined as the ratio of protein-bound NAD(P)H to free NAD(P)H. The statistically significant difference for tumor and normal cells was found to be highest for FLIRR1.
Collapse
Affiliation(s)
- Sviatlana Kalinina
- Core Facility Confocal and Multiphoton Microscopy, Ulm University, Albert-Einstein-Allee 11, 89081 Ulm, Germany; (N.N.); (K.R.)
| | - Christian Freymueller
- Laser-Forschungslabor, LIFE Center, University Hospital, LMU Munich, Fraunhoferstrasse 20, 82152 Planegg, Germany; (C.F.); (R.S.)
- Department of Urology, University Hospital, LMU Munich, Marchioninistraße 15, 81377 Munich, Germany
| | - Nilanjon Naskar
- Core Facility Confocal and Multiphoton Microscopy, Ulm University, Albert-Einstein-Allee 11, 89081 Ulm, Germany; (N.N.); (K.R.)
| | - Bjoern von Einem
- Zentrum Biomedizinische Forschung (ZBMF), Department of Neurology, Ulm University, Helmholtzstrasse, 8/1, 89081 Ulm, Germany;
| | - Kirsten Reess
- Core Facility Confocal and Multiphoton Microscopy, Ulm University, Albert-Einstein-Allee 11, 89081 Ulm, Germany; (N.N.); (K.R.)
| | - Ronald Sroka
- Laser-Forschungslabor, LIFE Center, University Hospital, LMU Munich, Fraunhoferstrasse 20, 82152 Planegg, Germany; (C.F.); (R.S.)
- Department of Urology, University Hospital, LMU Munich, Marchioninistraße 15, 81377 Munich, Germany
| | - Angelika Rueck
- Core Facility Confocal and Multiphoton Microscopy, Ulm University, Albert-Einstein-Allee 11, 89081 Ulm, Germany; (N.N.); (K.R.)
| |
Collapse
|
35
|
Liu S, Tian M, Bu X, Tian H, Yang X. Covalent Organic Frameworks toward Diverse Photocatalytic Aerobic Oxidations. Chemistry 2021; 27:7738-7744. [PMID: 33788327 DOI: 10.1002/chem.202100398] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Indexed: 12/18/2022]
Abstract
Photoactive two-dimensional covalent organic frameworks (2D-COFs) have become promising heterogenous photocatalysts in visible-light-driven organic transformations. Herein, a visible-light-driven selective aerobic oxidation of various small organic molecules by using 2D-COFs as the photocatalyst was developed. In this protocol, due to the remarkable photocatalytic capability of hydrazone-based 2D-COF-1 on molecular oxygen activation, a wide range of amides, quinolones, heterocyclic compounds, and sulfoxides were obtained with high efficiency and excellent functional group tolerance under very mild reaction conditions. Furthermore, benefiting from the inherent advantage of heterogenous photocatalysis, prominent sustainability and easy photocatalyst recyclability, a drug molecule (modafinil) and an oxidized mustard gas simulant (2-chloroethyl ethyl sulfoxide) were selectively and easily obtained in scale-up reactions. Mechanistic investigations were conducted using radical quenching experiments and in situ ESR spectroscopy, all corroborating the proposed role of 2D-COF-1 in photocatalytic cycle.
Collapse
Affiliation(s)
- Shuyang Liu
- Institute of Catalysis for Energy and Environment, College of Chemistry and Chemical Engineering, Shenyang Normal University, 110034, Shenyang, P. R. China
| | - Miao Tian
- Institute of Catalysis for Energy and Environment, College of Chemistry and Chemical Engineering, Shenyang Normal University, 110034, Shenyang, P. R. China
| | - Xiubin Bu
- Institute of Catalysis for Energy and Environment, College of Chemistry and Chemical Engineering, Shenyang Normal University, 110034, Shenyang, P. R. China
| | - Hua Tian
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, and Beijing Key Laboratory of Active Substances Discovery and Druggability Evaluation, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, 100050, Beijing, P. R. China
| | - Xiaobo Yang
- Institute of Catalysis for Energy and Environment, College of Chemistry and Chemical Engineering, Shenyang Normal University, 110034, Shenyang, P. R. China.,Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology (Ministry of Education), Department of Chemistry, Tsinghua University, 100084, Beijing, P. R. China
| |
Collapse
|
36
|
Dulchavsky M, Clark CT, Bardwell JCA, Stull F. A cytochrome c is the natural electron acceptor for nicotine oxidoreductase. Nat Chem Biol 2021; 17:344-350. [PMID: 33432238 PMCID: PMC7904663 DOI: 10.1038/s41589-020-00712-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Revised: 11/02/2020] [Accepted: 11/17/2020] [Indexed: 01/28/2023]
Abstract
Nicotine oxidoreductase (NicA2), a member of the flavin-containing amine oxidase family, is of medical relevance as it shows potential as a therapeutic to aid cessation of smoking due to its ability to oxidize nicotine into a non-psychoactive metabolite. However, the use of NicA2 in this capacity is stymied by its dismal O2-dependent activity. Unlike other enzymes in the amine oxidase family, NicA2 reacts very slowly with O2, severely limiting its nicotine-degrading activity. Instead of using O2 as an oxidant, we discovered that NicA2 donates electrons to a cytochrome c, which means that NicA2 is actually a dehydrogenase. This is surprising, as enzymes of the flavin-containing amine oxidase family were invariably thought to use O2 as an electron acceptor. Our findings establish new perspectives for engineering this potentially useful therapeutic and prompt a reconsideration of the term 'oxidase' in referring to members of the flavin-containing amine 'oxidase' family.
Collapse
Affiliation(s)
- Mark Dulchavsky
- Howard Hughes Medical Institute, University of Michigan, Ann Arbor, MI, USA.,Cellular and Molecular Biology Program, University of Michigan, Ann Arbor, MI, USA
| | | | - James C. A. Bardwell
- Howard Hughes Medical Institute, University of Michigan, Ann Arbor, MI, USA.,Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, MI, USA., or
| | - Frederick Stull
- Department of Chemistry, Western Michigan University, Kalamazoo, MI, USA., or
| |
Collapse
|
37
|
Small Molecule-Based Enzyme Inhibitors in the Treatment of Primary Hyperoxalurias. J Pers Med 2021; 11:jpm11020074. [PMID: 33513899 PMCID: PMC7912158 DOI: 10.3390/jpm11020074] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Revised: 01/21/2021] [Accepted: 01/22/2021] [Indexed: 02/07/2023] Open
Abstract
Primary hyperoxalurias (PHs) are a group of inherited alterations of the hepatic glyoxylate metabolism. PHs classification based on gene mutations parallel a variety of enzymatic defects, and all involve the harmful accumulation of calcium oxalate crystals that produce systemic damage. These geographically widespread rare diseases have a deep impact in the life quality of the patients. Until recently, treatments were limited to palliative measures and kidney/liver transplants in the most severe forms. Efforts made to develop pharmacological treatments succeeded with the biotechnological agent lumasiran, a siRNA product against glycolate oxidase, which has become the first effective therapy to treat PH1. However, small molecule drugs have classically been preferred since they benefit from experience and have better pharmacological properties. The development of small molecule inhibitors designed against key enzymes of glyoxylate metabolism is on the focus of research. Enzyme inhibitors are successful and widely used in several diseases and their pharmacokinetic advantages are well known. In PHs, effective enzymatic targets have been determined and characterized for drug design and interesting inhibitory activities have been achieved both in vitro and in vivo. This review describes the most recent advances towards the development of small molecule enzyme inhibitors in the treatment of PHs, introducing the multi-target approach as a more effective and safe therapeutic option.
Collapse
|
38
|
Tararina MA, Dam KK, Dhingra M, Janda KD, Palfey BA, Allen KN. Fast Kinetics Reveals Rate-Limiting Oxidation and the Role of the Aromatic Cage in the Mechanism of the Nicotine-Degrading Enzyme NicA2. Biochemistry 2021; 60:259-273. [PMID: 33464876 DOI: 10.1021/acs.biochem.0c00855] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
In Pseudomonas putida, the flavoprotein nicotine oxidoreductase (NicA2) catalyzes the oxidation of (S)-nicotine to N-methyl-myosmine, which is nonenzymatically hydrolyzed to pseudooxynicotine. Structural analysis reveals a monoamine oxidase (MAO)-like fold with a conserved FAD-binding domain and variable substrate-binding domain. The flavoenzyme has a unique variation of the classic aromatic cage with flanking residue pair W427/N462. Previous mechanistic studies using O2 as the oxidizing substrate show that NicA2 has a low apparent Km of 114 nM for (S)-nicotine with a very low apparent turnover number (kcat of 0.006 s-1). Herein, the mechanism of NicA2 was analyzed by transient kinetics. Single-site variants of W427 and N462 were used to probe the roles of these residues. Although several variants had moderately higher oxidase activity (7-12-fold), their reductive half-reactions using (S)-nicotine were generally significantly slower than that of wild-type NicA2. Notably, the reductive half-reaction of wild-type NicA2 is 5 orders of magnitude faster than the oxidative half-reaction with an apparent pseudo-first-order rate constant for the reaction of oxygen similar to kcat. X-ray crystal structures of the N462V and N462Y/W427Y variants complexed with (S)-nicotine (at 2.7 and 2.3 Å resolution, respectively) revealed no significant active-site rearrangements. A second substrate-binding site was identified in N462Y/W427Y, consistent with observed substrate inhibition. Together, these findings elucidate the mechanism of a flavoenzyme that preferentially oxidizes tertiary amines with an efficient reductive half-reaction and a very slow oxidative half-reaction when O2 is the oxidizing substrate, suggesting that the true oxidizing agent is unknown.
Collapse
Affiliation(s)
- Margarita A Tararina
- Program in Biomolecular Pharmacology, Boston University School of Medicine, 72 East Concord Street, Boston, Massachusetts 02118, United States
| | - Katie K Dam
- Department of Chemistry, Boston University, 590 Commonwealth Avenue, Boston, Massachusetts 02215, United States
| | - Manaswni Dhingra
- Department of Chemistry, Boston University, 590 Commonwealth Avenue, Boston, Massachusetts 02215, United States
| | | | - Bruce A Palfey
- Department of Biological Chemistry, University of Michigan, 5220E MSRB III 1150 West Medical Center Drive, Ann Arbor, Michigan 48109, United States
| | - Karen N Allen
- Program in Biomolecular Pharmacology, Boston University School of Medicine, 72 East Concord Street, Boston, Massachusetts 02118, United States.,Department of Chemistry, Boston University, 590 Commonwealth Avenue, Boston, Massachusetts 02215, United States
| |
Collapse
|
39
|
Toplak M, Matthews A, Teufel R. The devil is in the details: The chemical basis and mechanistic versatility of flavoprotein monooxygenases. Arch Biochem Biophys 2020; 698:108732. [PMID: 33358998 DOI: 10.1016/j.abb.2020.108732] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Revised: 12/15/2020] [Accepted: 12/19/2020] [Indexed: 02/07/2023]
Abstract
The ubiquitous flavoenzymes commonly catalyze redox chemistry such as the monooxygenation of organic substrates and are both widely utilized in nature (e.g., in primary and secondary metabolism) and of significant industrial interest. In this work, we highlight the structural and mechanistic characteristics of the distinct types of flavoprotein monooxygenases (FPMOs). We thereby illustrate the chemical basis of FPMO catalysis, which enables reactions such as (aromatic) hydroxylation, epoxidation, (de)halogenation, heteroatom oxygenation, Baeyer-Villiger oxidation, α-hydroxylation of ketones, or non-oxidative carbon-hetero bond cleavage. This seemingly unmatched versatility in oxygenation chemistry results from extensive fine-tuning and regiospecific functionalization of the flavin cofactor that is tightly controlled by the surrounding protein matrix. Accordingly, FPMOs steer the formation of covalent flavin-oxygen adducts for oxygen transfer in the form of the classical flavin-C4a-(hydro)peroxide or the recently discovered N5-functionalized flavins (i.e. the flavin-N5-oxide and the flavin-N5-peroxide), while in rare cases covalent oxygen adduct formation may be foregone entirely. Finally, we speculate about hitherto undiscovered flavin-mediated oxygenation reactions and compare FPMOs to cytochrome P450 monooxygenases, before addressing open questions and challenges for the future investigation of FPMOs.
Collapse
Affiliation(s)
- Marina Toplak
- Faculty of Biology, University of Freiburg, 79104, Freiburg, Germany
| | - Arne Matthews
- Faculty of Biology, University of Freiburg, 79104, Freiburg, Germany
| | - Robin Teufel
- Faculty of Biology, University of Freiburg, 79104, Freiburg, Germany.
| |
Collapse
|
40
|
Abstract
Many flavin-dependent phenolic hydroxylases (monooxygenases) have been extensively investigated. Their crystal structures and reaction mechanisms are well understood. These enzymes belong to groups A and D of the flavin-dependent monooxygenases and can be classified as single-component and two-component flavin-dependent monooxygenases. The insertion of molecular oxygen into the substrates catalyzed by these enzymes is beneficial for modifying the biological properties of phenolic compounds and their derivatives. This chapter provides an in-depth discussion of the structural features of single-component and two-component flavin-dependent phenolic hydroxylases. The reaction mechanisms of selected enzymes, including 3-hydroxy-benzoate 4-hydroxylase (PHBH) and 3-hydroxy-benzoate 6-hydroxylase as representatives of single-component enzymes and 3-hydroxyphenylacetate 4-hydroxylase (HPAH) as a representative of two-component enzymes, are discussed in detail. This chapter comprises the following four main parts: general reaction, structures, reaction mechanisms, and enzyme engineering for biocatalytic applications. Enzymes belonging to the same group catalyze similar reactions but have different unique structural features to control their reactivity to substrates and the formation and stabilization of C4a-hydroperoxyflavin. Protein engineering has been employed to improve the ability to use these enzymes to synthesize valuable compounds. A thorough understanding of the structural and mechanistic features controlling enzyme reactivity is useful for enzyme redesign and enzyme engineering for future biocatalytic applications.
Collapse
Affiliation(s)
- Pirom Chenprakhon
- Institute for Innovative Learning, Mahidol University, Nakhon Pathom, Thailand.
| | - Panu Pimviriyakul
- Department of Biochemistry, Faculty of Science, Kasetsart University, Chatuchak, Bangkok, Thailand; Department of Biotechnology, Faculty of Engineering and Industrial Technology, Silpakorn University, Nakhon Pathom, Thailand
| | - Chanakan Tongsook
- Department of Chemistry, Faculty of Science, Silpakorn University, Nakhon Pathom, Thailand
| | - Pimchai Chaiyen
- School of Biomolecular Science and Engineering, Vidyasirimedhi Institute of Science and Technology (VISTEC), Wangchan Valley, Rayong, Thailand
| |
Collapse
|
41
|
Ortega P, Zanchet A, Sanz-Sanz C, Gómez-Carrasco S, González-Sánchez L, Jambrina PG. DpgC-Catalyzed Peroxidation of 3,5-Dihydroxyphenylacetyl-CoA (DPA-CoA): Insights into the Spin-Forbidden Transition and Charge Transfer Mechanisms*. Chemistry 2020; 27:1700-1712. [PMID: 32975323 DOI: 10.1002/chem.202002993] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Indexed: 11/06/2022]
Abstract
Despite being a very strong oxidizing agent, most organic molecules are not oxidized in the presence of O2 at room temperature because O2 is a diradical whereas most organic molecules are closed-shell. Oxidation then requires a change in the spin state of the system, which is forbidden according to non-relativistic quantum theory. To overcome this limitation, oxygenases usually rely on metal or redox cofactors to catalyze the incorporation of, at least, one oxygen atom into an organic substrate. However, some oxygenases do not require any cofactor, and the detailed mechanism followed by these enzymes remains elusive. To fill this gap, here the mechanism for the enzymatic cofactor-independent oxidation of 3,5-dihydroxyphenylacetyl-CoA (DPA-CoA) is studied by combining multireference calculations on a model system with QM/MM calculations. Our results reveal that intersystem crossing takes place without requiring the previous protonation of molecular oxygen. The characterization of the electronic states reveals that electron transfer is concomitant with the triplet-singlet transition. The enzyme plays a passive role in promoting the intersystem crossing, although spontaneous reorganization of the water wire connecting the active site with the bulk presets the substrate for subsequent chemical transformations. The results show that the stabilization of the singlet radical-pair between dioxygen and enolate is enough to promote spin-forbidden reaction without the need for neither metal cofactors nor basic residues in the active site.
Collapse
Affiliation(s)
- Pablo Ortega
- Departamento de Química Física, University of Salamanca, Salamanca, 37008, Spain
| | - Alexandre Zanchet
- Departamento de Química Física, University of Salamanca, Salamanca, 37008, Spain.,Instituto de Física Fundamental (CSIC), Madrid, 28006, Spain
| | - Cristina Sanz-Sanz
- Departamento de Química Física Aplicada, University Autónoma de Madrid, Madrid, 28049, Spain
| | | | | | - Pablo G Jambrina
- Departamento de Química Física, University of Salamanca, Salamanca, 37008, Spain
| |
Collapse
|
42
|
Bathellier C, Yu LJ, Farquhar GD, Coote ML, Lorimer GH, Tcherkez G. Ribulose 1,5-bisphosphate carboxylase/oxygenase activates O 2 by electron transfer. Proc Natl Acad Sci U S A 2020; 117:24234-24242. [PMID: 32934141 PMCID: PMC7533879 DOI: 10.1073/pnas.2008824117] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Ribulose 1,5-bisphosphate carboxylase/oxygenase (Rubisco) is the cornerstone of atmospheric CO2 fixation by the biosphere. It catalyzes the addition of CO2 onto enolized ribulose 1,5-bisphosphate (RuBP), producing 3-phosphoglycerate which is then converted to sugars. The major problem of this reaction is competitive O2 addition, which forms a phosphorylated product (2-phosphoglycolate) that must be recycled by a series of biochemical reactions (photorespiratory metabolism). However, the way the enzyme activates O2 is still unknown. Here, we used isotope effects (with 2H, 25Mg, and 18O) to monitor O2 activation and assess the influence of outer sphere atoms, in two Rubisco forms of contrasted O2/CO2 selectivity. Neither the Rubisco form nor the use of solvent D2O and deuterated RuBP changed the 16O/18O isotope effect of O2 addition, in clear contrast with the 12C/13C isotope effect of CO2 addition. Furthermore, substitution of light magnesium (24Mg) by heavy, nuclear magnetic 25Mg had no effect on O2 addition. Therefore, outer sphere protons have no influence on the reaction and direct radical chemistry (intersystem crossing with triplet O2) does not seem to be involved in O2 activation. Computations indicate that the reduction potential of enolized RuBP (near 0.49 V) is compatible with superoxide (O2•-) production, must be insensitive to deuteration, and yields a predicted 16O/18O isotope effect and energy barrier close to observed values. Overall, O2 undergoes single electron transfer to form short-lived superoxide, which then recombines to form a peroxide intermediate.
Collapse
Affiliation(s)
- Camille Bathellier
- Elementar France, Spectrométrie de Masse Isotopique, 69428 Lyon Cedex 3, France
- Research School of Biology, ANU Joint College of Sciences, Australian National University, 2601 Canberra ACT, Australia
| | - Li-Juan Yu
- Australian Research Council Centre of Excellence for Electromaterials Science, Research School of Chemistry, ANU Joint College of Sciences, Australian National University, 2601 Canberra ACT, Australia
| | - Graham D Farquhar
- Research School of Biology, ANU Joint College of Sciences, Australian National University, 2601 Canberra ACT, Australia;
| | - Michelle L Coote
- Australian Research Council Centre of Excellence for Electromaterials Science, Research School of Chemistry, ANU Joint College of Sciences, Australian National University, 2601 Canberra ACT, Australia
| | - George H Lorimer
- Department of Chemistry and Biochemistry, University of Maryland, College Park, MD 20742
| | - Guillaume Tcherkez
- Research School of Biology, ANU Joint College of Sciences, Australian National University, 2601 Canberra ACT, Australia;
- Institut de Recherche en Horticulture et Semences, Institut National de Recherche pour l'Agriculture, l'Alimentation et l'Environnement (INRAe), Université d'Angers, 49070 Beaucouzé, France
| |
Collapse
|
43
|
Tong Y, Trajkovic M, Savino S, van Berkel WJH, Fraaije MW. Substrate binding tunes the reactivity of hispidin 3-hydroxylase, a flavoprotein monooxygenase involved in fungal bioluminescence. J Biol Chem 2020; 295:16013-16022. [PMID: 32917724 DOI: 10.1074/jbc.ra120.014996] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Revised: 09/10/2020] [Indexed: 11/06/2022] Open
Abstract
Fungal bioluminescence was recently shown to depend on a unique oxygen-dependent system of several enzymes. However, the identities of the enzymes did not reveal the full biochemical details of this process, as the enzymes do not bear resemblance to those of other luminescence systems, and thus the properties of the enzymes involved in this fascinating process are still unknown. Here, we describe the characterization of the penultimate enzyme in the pathway, hispidin 3-hydroxylase, from the luminescent fungus Mycena chlorophos (McH3H), which catalyzes the conversion of hispidin to 3-hydroxyhispidin. 3-Hydroxyhispidin acts as a luciferin substrate in luminescent fungi. McH3H was heterologously expressed in Escherichia coli and purified by affinity chromatography with a yield of 100 mg/liter. McH3H was found to be a single component monomeric NAD(P)H-dependent FAD-containing monooxygenase having a preference for NADPH. Through site-directed mutagenesis, based on a modeled structure, mutant enzymes were created that are more efficient with NADH. Except for identifying the residues that tune cofactor specificity, these engineered variants may also help in developing new hispidin-based bioluminescence applications. We confirmed that addition of hispidin to McH3H led to the formation of 3-hydroxyhispidin as sole aromatic product. Rapid kinetic analysis revealed that reduction of the flavin cofactor by NADPH is boosted by hispidin binding by nearly 100-fold. Similar to other class A flavoprotein hydroxylases, McH3H did not form a stable hydroperoxyflavin intermediate. These data suggest a mechanism by which the hydroxylase is tuned for converting hispidin into the fungal luciferin.
Collapse
Affiliation(s)
- Yapei Tong
- Molecular Enzymology Group, University of Groningen, Groningen, The Netherlands
| | - Milos Trajkovic
- Molecular Enzymology Group, University of Groningen, Groningen, The Netherlands
| | - Simone Savino
- Molecular Enzymology Group, University of Groningen, Groningen, The Netherlands
| | - Willem J H van Berkel
- Laboratory of Food Chemistry, Wageningen University & Research, Wageningen, The Netherlands
| | - Marco W Fraaije
- Molecular Enzymology Group, University of Groningen, Groningen, The Netherlands.
| |
Collapse
|
44
|
Oxygen reactivity with pyridoxal 5'-phosphate enzymes: biochemical implications and functional relevance. Amino Acids 2020; 52:1089-1105. [PMID: 32844248 PMCID: PMC7497351 DOI: 10.1007/s00726-020-02885-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Accepted: 08/18/2020] [Indexed: 12/29/2022]
Abstract
The versatility of reactions catalyzed by pyridoxal 5'-phosphate (PLP) enzymes is largely due to the chemistry of their extraordinary catalyst. PLP is necessary for many reactions involving amino acids. Reaction specificity is controlled by the orientation of the external aldimine intermediate that is formed upon addition of the amino acidic substrate to the coenzyme. The breakage of a specific bond of the external aldimine gives rise to a carbanionic intermediate. From this point, the different reaction pathways diverge leading to multiple activities: transamination, decarboxylation, racemization, elimination, and synthesis. A significant novelty appeared approximately 30 years ago when it was reported that some PLP-dependent decarboxylases are able to consume molecular oxygen transforming an amino acid into a carbonyl compound. These side paracatalytic reactions could be particularly relevant for human health, also considering that some of these enzymes are responsible for the synthesis of important neurotransmitters such as γ-aminobutyric acid, dopamine, and serotonin, whose dysregulation under oxidative conditions could have important implications in neurodegenerative states. However, the reactivity of PLP enzymes with dioxygen is not confined to mammals/animals. In fact, some plant PLP decarboxylases have been reported to catalyze oxidative reactions producing carbonyl compounds. Moreover, other recent reports revealed the existence of new oxidase activities catalyzed by new PLP enzymes, MppP, RohP, Ind4, CcbF, PvdN, Cap15, and CuaB. These PLP enzymes belong to the bacterial and fungal kingdoms and are present in organisms synthesizing bioactive compounds. These new PLP activities are not paracatalytic and could only scratch the surface on a wider and unexpected catalytic capability of PLP enzymes.
Collapse
|
45
|
Abstract
Flavin-dependent enzymes catalyze a wide variety of biological reactions that are important for all types of living organisms. Knowledge gained from studying the chemistry and biological functions of flavins and flavin-dependent enzymes has continuously made significant contributions to the development of the fields of enzymology and metabolism from the 1970s until now. The enzymes have been applied in various applications such as use as biocatalysts in synthetic processes for the chemical and pharmaceutical industries or in the biodetoxification and bioremediation of toxic or unwanted compounds, and as biosensors or biodetection tools for quantifying various agents of interest. Many flavin-dependent enzymes are also prime targets for drug development. Based on their reaction mechanisms, they can be classified into five categories: oxidase, dehydrogenase, monooxygenase, reductase, and redox neutral flavin-dependent enzymes. In this chapter, the general properties of flavin-dependent enzymes and the nature of their chemical reactions are discussed, along with their practical applications.
Collapse
|
46
|
Abstract
This chapter represents a journey through flavoprotein oxidases. The purpose is to excite the reader curiosity regarding this class of enzymes by showing their diverse applications. We start with a brief overview on oxidases to then introduce flavoprotein oxidases and elaborate on the flavin cofactors, their redox and spectroscopic characteristics, and their role in the catalytic mechanism. The six major flavoprotein oxidase families will be described, giving examples of their importance in biology and their biotechnological uses. Specific attention will be given to a few selected flavoprotein oxidases that are not extensively discussed in other chapters of this book. Glucose oxidase, cholesterol oxidase, 5-(hydroxymethyl)furfural (HMF) oxidase and methanol oxidase are four examples of oxidases belonging to the GMC-like flavoprotein oxidase family and that have been shown to be valuable biocatalysts. Their structural and mechanistic features and recent enzyme engineering will be discussed in details. Finally we give a look at the current trend in research and conclude with a future outlook.
Collapse
Affiliation(s)
- Caterina Martin
- Molecular Enzymology Group, University of Groningen, Groningen, The Netherlands
| | - Claudia Binda
- Department of Biology and Biotechnology, University of Pavia, Pavia, Italy
| | - Marco W Fraaije
- Molecular Enzymology Group, University of Groningen, Groningen, The Netherlands.
| | - Andrea Mattevi
- Department of Biology and Biotechnology, University of Pavia, Pavia, Italy
| |
Collapse
|
47
|
Sriwaiyaphram K, Punthong P, Sucharitakul J, Wongnate T. Structure and function relationships of sugar oxidases and their potential use in biocatalysis. Enzymes 2020; 47:193-230. [PMID: 32951824 DOI: 10.1016/bs.enz.2020.05.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Several sugar oxidases that catalyze the oxidation of sugars have been isolated and characterized. These enzymes can be classified as flavoenzyme due to the presence of flavin adenine dinucleotide (FAD) as a cofactor. Sugar oxidases have been proposed to be the key biocatalyst in biotransformation of carbohydrates which can potentially convert sugars to provide a pool of intermediates for synthesis of rare sugars, fine chemicals and drugs. Moreover, sugar oxidases have been applied in biosensing of various biomolecules in food industries, diagnosis of diseases and environmental pollutant detection. This review provides the discussions on general properties, current mechanistic understanding, structural determination, biocatalytic application, and biosensor integration of representative sugar oxidase enzymes, namely pyranose 2-oxidase (P2O), glucose oxidase (GO), hexose oxidase (HO), and oligosaccharide oxidase. The information regarding the relationship between structure and function of these sugar oxidases points out the key properties of this particular group of enzymes that can be modified by engineering, which had resulted in a remarkable economic importance.
Collapse
Affiliation(s)
- Kanokkan Sriwaiyaphram
- School of Biomolecular Science and Engineering, Vidyasirimedhi Institute of Science and Technology (VISTEC), Rayong, Thailand
| | - Pangrum Punthong
- School of Biomolecular Science and Engineering, Vidyasirimedhi Institute of Science and Technology (VISTEC), Rayong, Thailand
| | - Jeerus Sucharitakul
- Department of Biochemistry, Faculty of Dentistry, Chulalongkorn University, Bangkok, Thailand
| | - Thanyaporn Wongnate
- School of Biomolecular Science and Engineering, Vidyasirimedhi Institute of Science and Technology (VISTEC), Rayong, Thailand.
| |
Collapse
|
48
|
Lin KH, Lyu SY, Yeh HW, Li YS, Hsu NS, Huang CM, Wang YL, Shih HW, Wang ZC, Wu CJ, Li TL. Structural and chemical trapping of flavin-oxide intermediates reveals substrate-directed reaction multiplicity. Protein Sci 2020; 29:1655-1666. [PMID: 32362037 PMCID: PMC7314388 DOI: 10.1002/pro.3879] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2020] [Revised: 04/02/2020] [Accepted: 04/28/2020] [Indexed: 11/29/2022]
Abstract
Though reactive flavin‐N5/C4α‐oxide intermediates can be spectroscopically profiled for some flavin‐assisted enzymatic reactions, their exact chemical configurations are hardly visualized. Structural systems biology and stable isotopic labelling techniques were exploited to correct this stereotypical view. Three transition‐like complexes, the α‐ketoacid…N5‐FMNox complex (I), the FMNox‐N5‐aloxyl‐C′α−‐C4α+ zwitterion (II), and the FMN‐N5‐ethenol‐N5‐C4α‐epoxide (III), were determined from mandelate oxidase (Hmo) or its mutant Y128F (monooxygenase) crystals soaked with monofluoropyruvate (a product mimic), establishing that N5 of FMNox an alternative reaction center can polarize to an ylide‐like mesomer in the active site. In contrast, four distinct flavin‐C4α‐oxide adducts (IV–VII) from Y128F crystals soaked with selected substrates materialize C4α of FMN an intrinsic reaction center, witnessing oxidation, Baeyer–Villiger/peroxide‐assisted decarboxylation, and epoxidation reactions. In conjunction with stopped‐flow kinetics, the multifaceted flavin‐dependent reaction continuum is physically dissected at molecular level for the first time. PDB Code(s): 5ZZT, 6A24, 6A1W, 6A01, 6A1N, 6A1B, 6A0B, 6A36, 6A4H, 6A4G, 6A3D, and 7BSR
Collapse
Affiliation(s)
- Kuan-Hung Lin
- Genomics Research Center, Academia Sinica, Taipei, Taiwan.,The Institute of Biochemistry and Molecular Biology, National Yang-Ming University, Taipei, Taiwan
| | - Syue-Yi Lyu
- Genomics Research Center, Academia Sinica, Taipei, Taiwan
| | - Hsien-Wei Yeh
- Genomics Research Center, Academia Sinica, Taipei, Taiwan
| | - Yi-Shan Li
- Genomics Research Center, Academia Sinica, Taipei, Taiwan
| | - Ning-Shian Hsu
- Genomics Research Center, Academia Sinica, Taipei, Taiwan
| | - Chun-Man Huang
- Genomics Research Center, Academia Sinica, Taipei, Taiwan
| | - Yung-Lin Wang
- Genomics Research Center, Academia Sinica, Taipei, Taiwan
| | - Hao-Wei Shih
- Genomics Research Center, Academia Sinica, Taipei, Taiwan
| | - Zhe-Chong Wang
- Genomics Research Center, Academia Sinica, Taipei, Taiwan
| | - Chang-Jer Wu
- Department of Food Science, National Taiwan Ocean University, Keelung, Taiwan
| | - Tsung-Lin Li
- Genomics Research Center, Academia Sinica, Taipei, Taiwan.,Department of Food Science, National Taiwan Ocean University, Keelung, Taiwan.,Biotechnology Center, National Chung Hsing University, Taichung City, Taiwan
| |
Collapse
|
49
|
Szabo E, Wilk P, Nagy B, Zambo Z, Bui D, Weichsel A, Arjunan P, Torocsik B, Hubert A, Furey W, Montfort WR, Jordan F, Weiss MS, Adam-Vizi V, Ambrus A. Underlying molecular alterations in human dihydrolipoamide dehydrogenase deficiency revealed by structural analyses of disease-causing enzyme variants. Hum Mol Genet 2020; 28:3339-3354. [PMID: 31334547 DOI: 10.1093/hmg/ddz177] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Revised: 07/10/2019] [Accepted: 07/11/2019] [Indexed: 12/13/2022] Open
Abstract
Human dihydrolipoamide dehydrogenase (hLADH, hE3) deficiency (OMIM# 246900) is an often prematurely lethal genetic disease usually caused by inactive or partially inactive hE3 variants. Here we report the crystal structure of wild-type hE3 at an unprecedented high resolution of 1.75 Å and the structures of six disease-causing hE3 variants at resolutions ranging from 1.44 to 2.34 Å. P453L proved to be the most deleterious substitution in structure as aberrations extensively compromised the active site. The most prevalent G194C-hE3 variant primarily exhibited structural alterations close to the substitution site, whereas the nearby cofactor-binding residues were left unperturbed. The G426E substitution mainly interfered with the local charge distribution introducing dynamics to the substitution site in the dimer interface; G194C and G426E both led to minor structural changes. The R460G, R447G and I445M substitutions all perturbed a solvent accessible channel, the so-called H+/H2O channel, leading to the active site. Molecular pathomechanisms of enhanced reactive oxygen species (ROS) generation and impaired binding to multienzyme complexes were also addressed according to the structural data for the relevant mutations. In summary, we present here for the first time a comprehensive study that links three-dimensional structures of disease-causing hE3 variants to residual hLADH activities, altered capacities for ROS generation, compromised affinities for multienzyme complexes and eventually clinical symptoms. Our results may serve as useful starting points for future therapeutic intervention approaches.
Collapse
Affiliation(s)
- Eszter Szabo
- Department of Medical Biochemistry, MTA-SE Laboratory for Neurobiochemistry, Semmelweis University, Budapest, 1094, Hungary
| | - Piotr Wilk
- Macromolecular Crystallography, Helmholtz-Zentrum Berlin, 12489, Berlin, Germany
| | - Balint Nagy
- Department of Medical Biochemistry, MTA-SE Laboratory for Neurobiochemistry, Semmelweis University, Budapest, 1094, Hungary
| | - Zsofia Zambo
- Department of Medical Biochemistry, MTA-SE Laboratory for Neurobiochemistry, Semmelweis University, Budapest, 1094, Hungary
| | - David Bui
- Department of Medical Biochemistry, MTA-SE Laboratory for Neurobiochemistry, Semmelweis University, Budapest, 1094, Hungary
| | - Andrzej Weichsel
- Department of Chemistry and Biochemistry, University of Arizona, Tucson, AZ, 85721, USA
| | - Palaniappa Arjunan
- Department of Pharmacology and Chemical Biology, University of Pittsburgh, School of Medicine, Pittsburgh, PA, 15261, USA.,Biocrystallography Laboratory, Veterans Affairs Medical Center, Pittsburgh, PA, 15240, USA
| | - Beata Torocsik
- Department of Medical Biochemistry, MTA-SE Laboratory for Neurobiochemistry, Semmelweis University, Budapest, 1094, Hungary
| | - Agnes Hubert
- Department of Medical Biochemistry, MTA-SE Laboratory for Neurobiochemistry, Semmelweis University, Budapest, 1094, Hungary
| | - William Furey
- Department of Pharmacology and Chemical Biology, University of Pittsburgh, School of Medicine, Pittsburgh, PA, 15261, USA.,Biocrystallography Laboratory, Veterans Affairs Medical Center, Pittsburgh, PA, 15240, USA
| | - William R Montfort
- Department of Chemistry and Biochemistry, University of Arizona, Tucson, AZ, 85721, USA
| | - Frank Jordan
- Department of Chemistry, Rutgers, The State University of New Jersey, Newark, NJ, 07102, USA
| | - Manfred S Weiss
- Macromolecular Crystallography, Helmholtz-Zentrum Berlin, 12489, Berlin, Germany
| | - Vera Adam-Vizi
- Department of Medical Biochemistry, MTA-SE Laboratory for Neurobiochemistry, Semmelweis University, Budapest, 1094, Hungary
| | - Attila Ambrus
- Department of Medical Biochemistry, MTA-SE Laboratory for Neurobiochemistry, Semmelweis University, Budapest, 1094, Hungary
| |
Collapse
|
50
|
Hoffarth ER, Rothchild KW, Ryan KS. Emergence of oxygen- and pyridoxal phosphate-dependent reactions. FEBS J 2020; 287:1403-1428. [PMID: 32142210 DOI: 10.1111/febs.15277] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Revised: 11/29/2019] [Accepted: 03/03/2020] [Indexed: 12/21/2022]
Abstract
Pyridoxal 5'-phosphate (PLP) is an organic cofactor employed by ~ 4% of enzymes. The structure of the PLP cofactor allows for the stabilization of carbanions through resonance. A small number of PLP-dependent enzymes employ molecular oxygen as a cosubstrate. Here, we review the biological roles and possible mechanisms of these enzymes, and we observe that these enzymes are found in multiple protein families, suggesting that reaction with oxygen might have emerged de novo in several protein families and thus could be directed to emerge again through laboratory evolution experiments.
Collapse
Affiliation(s)
- Elesha R Hoffarth
- Department of Chemistry, University of British Columbia, Vancouver, BC, Canada
| | | | - Katherine S Ryan
- Department of Chemistry, University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|