1
|
Močibob M, Obranić S, Kifer D, Rokov-Plavec J, Maravić-Vlahoviček G. Methylation of immature small ribosomal subunits by methyltransferases conferring aminoglycoside resistance. Arch Biochem Biophys 2025; 769:110422. [PMID: 40221015 DOI: 10.1016/j.abb.2025.110422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2025] [Revised: 04/09/2025] [Accepted: 04/10/2025] [Indexed: 04/14/2025]
Abstract
Aminoglycosides are broad-spectrum antibiotics critical to clinical treatment, but the emergence of bacterial resistance, particularly through 16S rRNA methyltransferases, has compromised their efficacy. These enzymes, originally discovered in natural aminoglycoside producers, confer resistance by methylating nucleotides G1405 and A1408 in 16S rRNA, blocking antibiotic binding to the ribosome. This study investigated the binding affinities and methylation activities of 16S rRNA methyltransferases KamB, NpmA, RmtA, RmtC, and Sgm with immature 30S ribosomal subunits from E. coli strains lacking RimM and YjeQ ribosomal assembly factors. Binding affinities to mature 30S ribosomal subunits and immature 30S assembly forms isolated from ΔyjeQ and ΔrimM strains were determined by microscale thermophoresis and interactions were further validated with in vitro pull-down assays. Methylation of immature 30S subunits was examined with primer extension on 16S rRNA extracted from methylation assays in vitro and from cells with immature 30S subunits expressing 16S rRNA methyltransferases in vivo, showing successful methylation of target nucleotides in both experimental systems. The results reveal that aminoglycoside resistance methyltransferases are capable to bind and modify late-stage immature 30S ribosomal subunits pointing to possibility that the resistance to aminoglycoside antibiotics is installed and established before the full maturation of ribosomal 30S subunit.
Collapse
Affiliation(s)
- Marko Močibob
- University of Zagreb, Faculty of Pharmacy and Biochemistry, Department of Biochemistry and Molecular Biology, A. Kovačića 1, 10000, Zagreb, Croatia; University of Zagreb, Faculty of Science, Department of Chemistry, Horvatovac 102a, 10000, Zagreb, Croatia
| | - Sonja Obranić
- University of Zagreb, Faculty of Pharmacy and Biochemistry, Department of Biochemistry and Molecular Biology, A. Kovačića 1, 10000, Zagreb, Croatia; University North, University Centre Varaždin, 104. brigade 1, 42000, Varaždin, Croatia
| | - Domagoj Kifer
- University of Zagreb, Faculty of Pharmacy and Biochemistry, Department of Biochemistry and Molecular Biology, A. Kovačića 1, 10000, Zagreb, Croatia; University of Zagreb, Faculty of Pharmacy and Biochemistry, Department of Biophysics, A. Kovačića 1, 10000, Zagreb, Croatia
| | - Jasmina Rokov-Plavec
- University of Zagreb, Faculty of Science, Department of Chemistry, Horvatovac 102a, 10000, Zagreb, Croatia
| | - Gordana Maravić-Vlahoviček
- University of Zagreb, Faculty of Pharmacy and Biochemistry, Department of Biochemistry and Molecular Biology, A. Kovačića 1, 10000, Zagreb, Croatia.
| |
Collapse
|
2
|
Mrnjavac N, Martin WF. GTP before ATP: The energy currency at the origin of genes. BIOCHIMICA ET BIOPHYSICA ACTA. BIOENERGETICS 2025; 1866:149514. [PMID: 39326542 PMCID: PMC7616719 DOI: 10.1016/j.bbabio.2024.149514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 07/08/2024] [Accepted: 09/23/2024] [Indexed: 09/28/2024]
Abstract
Life is an exergonic chemical reaction. Many individual reactions in metabolism entail slightly endergonic steps that are coupled to free energy release, typically as ATP hydrolysis, in order to go forward. ATP is almost always supplied by the rotor-stator ATP synthase, which harnesses chemiosmotic ion gradients. Because the ATP synthase is a protein, it arose after the ribosome did. What was the energy currency of metabolism before the origin of the ATP synthase and how (and why) did ATP come to be the universal energy currency? About 27 % of a cell's energy budget is consumed as GTP during translation. The universality of GTP-dependence in ribosome function indicates that GTP was the ancestral energy currency of protein synthesis. The use of GTP in translation and ATP in small molecule synthesis are conserved across all lineages, representing energetic compartments that arose in the last universal common ancestor, LUCA. And what came before GTP? Recent findings indicate that the energy supporting the origin of LUCA's metabolism stemmed from H2-dependent CO2 reduction along routes that strongly resemble the reactions and transition metal catalysts of the acetyl-CoA pathway.
Collapse
Affiliation(s)
- Natalia Mrnjavac
- Institute of Molecular Evolution, Faculty of Mathematics and Natural Sciences, Heinrich Heine University Düsseldorf, 40225 Düsseldorf, Germany
| | - William F Martin
- Institute of Molecular Evolution, Faculty of Mathematics and Natural Sciences, Heinrich Heine University Düsseldorf, 40225 Düsseldorf, Germany.
| |
Collapse
|
3
|
Phatinuwat K, Atichartpongkul S, Jumpathong W, Mongkolsuk S, Fuangthong M. 16S rRNA methyltransferase KsgA contributes to oxidative stress and antibiotic resistance in Pseudomonas aeruginosa. Sci Rep 2024; 14:26484. [PMID: 39489773 PMCID: PMC11532479 DOI: 10.1038/s41598-024-78296-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Accepted: 10/29/2024] [Indexed: 11/05/2024] Open
Abstract
Ribosomal RNA (rRNA) modifications are involved in multiple biological processes. KsgA is a 16S rRNA adenine dimethyltransferase that methylates at the adenines 1518 and 1519 (A1518/1519) positions, which are located near the ribosome decoding center. These methylations are conserved and important for ribosome biogenesis and protein translation. In this study, we demonstrated the absence of A1518/1519 methylation in the 16S rRNA of a Pseudomonas aeruginosa ksgA mutant. Biolog phenotypic microarrays were used to screen the phenotypes of the ksgA mutant against various antimicrobial agents. The loss of ksgA led to increased sensitivity to menadione, a superoxide generator, which was, at least in part, attributed to decreased in a superoxide dismutase (SOD) activity. Interestingly, the decrease in SOD activity in the ksgA mutant was linked to a decrease in the SodM protein levels, but not the sodM mRNA levels. Furthermore, the ksgA mutant strain exhibited sensitivity to hygromycin B and tylosin antibiotics. The tylosin-sensitive phenotype was correlated with decreased transcriptional levels of tufA, tufB, and tsf, which encode elongation factors. Additionally, the ksgA mutant showed resistance to kasugamycin. Collectively, these findings highlight the role of KsgA in oxidative stress responses and antibiotic sensitivity in P. aeruginosa.
Collapse
Affiliation(s)
- Kamonwan Phatinuwat
- Program in Applied Biological Sciences, Chulabhorn Graduate Institute, Bangkok, Thailand
| | | | | | - Skorn Mongkolsuk
- Laboratory of Biotechnology, Chulabhorn Research Institute, Bangkok, Thailand
- Center of Excellence on Environmental Health and Toxicology (EHT), OPS, MHESI, Bangkok, Thailand
| | - Mayuree Fuangthong
- Program in Applied Biological Sciences, Chulabhorn Graduate Institute, Bangkok, Thailand.
- Laboratory of Biotechnology, Chulabhorn Research Institute, Bangkok, Thailand.
- Center of Excellence on Environmental Health and Toxicology (EHT), OPS, MHESI, Bangkok, Thailand.
| |
Collapse
|
4
|
Li JR, Wu SL, Hu LL, Liao BY, Sun SC. HT-2 toxin impairs porcine oocyte in vitro maturation through disruption of endomembrane system. Theriogenology 2024; 226:286-293. [PMID: 38954997 DOI: 10.1016/j.theriogenology.2024.06.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Revised: 06/17/2024] [Accepted: 06/23/2024] [Indexed: 07/04/2024]
Abstract
HT-2 toxin is a type of mycotoxin which is shown to affect gastric and intestinal lesions, hematopoietic and immunosuppressive effects, anorexia, lethargy, nausea. Recently, emerging evidences indicate that HT-2 also disturbs the reproductive system. In this study, we investigated the impact of HT-2 toxin exposure on the organelles of porcine oocytes. Our results found that the abnormal distribution of endoplasmic reticulum increased after HT-2 treatment, with the perturbation of ribosome protein RPS3 and GRP78 expression; Golgi apparatus showed diffused localization pattern and GM130 localization was also impaired, thereby affecting the Rab10-based vesicular transport; Due to the impairment of ribosomes, ER, and Golgi apparatus, the protein supply to lysosomes was hindered, resulting in lysosomal damage, which further disrupted the LC3-based autophagy. Moreover, the results indicated that the function and distribution of mitochondria were also affected by HT-2 toxin, showing with fragments of mitochondria, decreased TMRE and ATP level. Taken together, our study suggested that HT-2 toxin exposure induces damage to the organelles for endomembrane system, which further inhibited the meiotic maturation of porcine oocytes.
Collapse
Affiliation(s)
- Jia-Rui Li
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China
| | - Si-Le Wu
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China
| | - Lin-Lin Hu
- Key Laboratory of Research on Clinical Molecular Diagnosis for High Incidence Diseases in Western Guangxi, Reproductive Medicine, Guangxi Medical and Health Key Discipline Construction Project, Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, China
| | - Bi-Yun Liao
- Key Laboratory of Research on Clinical Molecular Diagnosis for High Incidence Diseases in Western Guangxi, Reproductive Medicine, Guangxi Medical and Health Key Discipline Construction Project, Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, China.
| | - Shao-Chen Sun
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China.
| |
Collapse
|
5
|
Wang C, Xing A, Li Y, Wang X, Wang X, Xu X, An G, Hu Z. Dominant-negative chaperonin mutation ptCPN60α1 S57F uncovers redundancy in chloroplast rRNA processing. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024; 119:2937-2950. [PMID: 39115043 DOI: 10.1111/tpj.16963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Accepted: 07/13/2024] [Indexed: 11/15/2024]
Abstract
The biogenesis of functional forms of chloroplast ribosomal RNAs (rRNAs) is crucial for the translation of chloroplast mRNAs into polypeptides. However, the molecular mechanisms underlying the proper processing and maturation of chloroplast rRNA species are poorly understood. Through a genetic approach, we isolated and characterized an Arabidopsis mutant, α1-4, harboring a missense mutation in the plastid chaperonin-60α1 gene. Using allelism tests and transgenic manipulation, we determined functional redundancy among ptCPN60 subunits. The ptCPN60α1S57F mutation caused specific defects in the formation of chloroplast rRNA species, including 23S, 5S, and 4.5S rRNAs, but not 16S rRNAs. Allelism tests suggested that the dysfunctional ptCPN60α1S57F competes with other members of the ptCPN60 family. Indeed, overexpression of the ptCPN60α1S57F protein in wild-type plants mimicked the phenotypes observed in the α1-4 mutant, while increasing the endogenous transcriptional levels of ptCPN60α2, β1, β2, and β3 in the α1-4 mutant partially mitigated the abnormal fragmentation processing of chloroplast 23S, 5S, and 4.5S rRNAs. Furthermore, we demonstrated functional redundancy between ptCPN60β1 and ptCPN60β2 in chloroplast rRNA processing through double-mutant analysis. Collectively, our data reveal a novel physiological role of ptCPN60 subunits in generating the functional rRNA species of the large 50S ribosomal subunit in Arabidopsis chloroplasts.
Collapse
Affiliation(s)
- Chunfei Wang
- The Zhongzhou Laboratory for Integrative Biology, State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng, 475004, China
| | - Aiming Xing
- The Zhongzhou Laboratory for Integrative Biology, State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng, 475004, China
- College of Life Sciences, Nanjing Agricultural University, Nanjing, 210095, China
| | - Yan Li
- The Zhongzhou Laboratory for Integrative Biology, State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng, 475004, China
| | - Xingsong Wang
- The Zhongzhou Laboratory for Integrative Biology, State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng, 475004, China
| | - Xiaoqing Wang
- The Zhongzhou Laboratory for Integrative Biology, State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng, 475004, China
| | - Xiumei Xu
- The Zhongzhou Laboratory for Integrative Biology, State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng, 475004, China
- Sanya Institute, Henan University, Sanya, 572025, China
| | - Guoyong An
- The Zhongzhou Laboratory for Integrative Biology, State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng, 475004, China
- Sanya Institute, Henan University, Sanya, 572025, China
| | - Zhubing Hu
- The Zhongzhou Laboratory for Integrative Biology, State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng, 475004, China
- Sanya Institute, Henan University, Sanya, 572025, China
| |
Collapse
|
6
|
Garaeva N, Fatkhullin B, Murzakhanov F, Gafurov M, Golubev A, Bikmullin A, Glazyrin M, Kieffer B, Jenner L, Klochkov V, Aganov A, Rogachev A, Ivankov O, Validov S, Yusupov M, Usachev K. Structural aspects of RimP binding on small ribosomal subunit from Staphylococcus aureus. Structure 2024; 32:74-82.e5. [PMID: 38000368 DOI: 10.1016/j.str.2023.10.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 09/18/2023] [Accepted: 10/30/2023] [Indexed: 11/26/2023]
Abstract
Ribosome biogenesis is an energy-intense multistep process where even minimal defects can cause severe phenotypes up to cell death. Ribosome assembly is facilitated by biogenesis factors such as ribosome assembly factors. These proteins facilitate the interaction of ribosomal proteins with rRNA and correct rRNA folding. One of these maturation factors is RimP which is required for efficient 16S rRNA processing and 30S ribosomal subunit assembly. Here, we describe the binding mode of Staphylococcus aureus RimP to the small ribosomal subunit and present a 4.2 Å resolution cryo-EM reconstruction of the 30S-RimP complex. Together with the solution structure of RimP solved by NMR spectroscopy and RimP-uS12 complex analysis by EPR, DEER, and SAXS approaches, we show the specificity of RimP binding to the 30S subunit from S. aureus. We believe the results presented in this work will contribute to the understanding of the RimP role in the ribosome assembly mechanism.
Collapse
Affiliation(s)
- Nataliia Garaeva
- Laboratory for Structural Analysis of Biomacromolecules, Federal Research Center «Kazan Scientific Center of Russian Academy of Sciences», Kazan 420111, Russian Federation; Laboratory of Structural Biology, Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan 420008, Russian Federation
| | - Bulat Fatkhullin
- Department of Integrated Structural Biology, Institut de Génétique et de Biologie Moléculaire et Cellulaire, CNRS UMR7104, INSERM U964, Université de Strasbourg, 67400 Illkirch, France; Institute of Protein Research RAS, 4 Institutskaya, Pushchino 142290, Russian Federation
| | - Fadis Murzakhanov
- Institute of Physics, Kazan Federal University, Kazan 420008, Russian Federation
| | - Marat Gafurov
- Institute of Physics, Kazan Federal University, Kazan 420008, Russian Federation
| | - Alexander Golubev
- Laboratory for Structural Analysis of Biomacromolecules, Federal Research Center «Kazan Scientific Center of Russian Academy of Sciences», Kazan 420111, Russian Federation
| | - Aydar Bikmullin
- Laboratory of Structural Biology, Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan 420008, Russian Federation
| | - Maxim Glazyrin
- Laboratory for Structural Analysis of Biomacromolecules, Federal Research Center «Kazan Scientific Center of Russian Academy of Sciences», Kazan 420111, Russian Federation
| | - Bruno Kieffer
- Department of Integrated Structural Biology, Institut de Génétique et de Biologie Moléculaire et Cellulaire, CNRS UMR7104, INSERM U964, Université de Strasbourg, 67400 Illkirch, France
| | - Lasse Jenner
- Department of Integrated Structural Biology, Institut de Génétique et de Biologie Moléculaire et Cellulaire, CNRS UMR7104, INSERM U964, Université de Strasbourg, 67400 Illkirch, France
| | - Vladimir Klochkov
- NMR Laboratory, Medical Physics Department, Institute of Physics, Kazan Federal University, Kazan 420008, Russian Federation
| | - Albert Aganov
- NMR Laboratory, Medical Physics Department, Institute of Physics, Kazan Federal University, Kazan 420008, Russian Federation
| | - Andrey Rogachev
- Moscow Institute of Physics and Technology, Dolgoprudny 141701, Russian Federation; Joint Institute for Nuclear Research, Dubna 141980, Russian Federation
| | - Oleksandr Ivankov
- Joint Institute for Nuclear Research, Dubna 141980, Russian Federation
| | - Shamil Validov
- Laboratory for Structural Analysis of Biomacromolecules, Federal Research Center «Kazan Scientific Center of Russian Academy of Sciences», Kazan 420111, Russian Federation; Laboratory of Structural Biology, Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan 420008, Russian Federation
| | - Marat Yusupov
- Laboratory for Structural Analysis of Biomacromolecules, Federal Research Center «Kazan Scientific Center of Russian Academy of Sciences», Kazan 420111, Russian Federation; Department of Integrated Structural Biology, Institut de Génétique et de Biologie Moléculaire et Cellulaire, CNRS UMR7104, INSERM U964, Université de Strasbourg, 67400 Illkirch, France.
| | - Konstantin Usachev
- Laboratory for Structural Analysis of Biomacromolecules, Federal Research Center «Kazan Scientific Center of Russian Academy of Sciences», Kazan 420111, Russian Federation; Laboratory of Structural Biology, Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan 420008, Russian Federation.
| |
Collapse
|
7
|
De Capitani J, Mutschler H. The Long Road to a Synthetic Self-Replicating Central Dogma. Biochemistry 2023; 62:1221-1232. [PMID: 36944355 PMCID: PMC10077596 DOI: 10.1021/acs.biochem.3c00023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 02/24/2023] [Indexed: 03/23/2023]
Abstract
The construction of a biochemical system capable of self-replication is a key objective in bottom-up synthetic biology. Throughout the past two decades, a rapid progression in the design of in vitro cell-free systems has provided valuable insight into the requirements for the development of a minimal system capable of self-replication. The main limitations of current systems can be attributed to their macromolecular composition and how the individual macromolecules use the small molecules necessary to drive RNA and protein synthesis. In this Perspective, we discuss the recent steps that have been taken to generate a minimal cell-free system capable of regenerating its own macromolecular components and maintaining the homeostatic balance between macromolecular biogenesis and consumption of primary building blocks. By following the flow of biological information through the central dogma, we compare the current versions of these systems to date and propose potential alterations aimed at designing a model system for self-replicative synthetic cells.
Collapse
Affiliation(s)
- Jacopo De Capitani
- Department of Chemistry and Chemical
Biology, TU Dortmund University, Otto-Hahn-Strasse 4a, 44227 Dortmund, Germany
| | - Hannes Mutschler
- Department of Chemistry and Chemical
Biology, TU Dortmund University, Otto-Hahn-Strasse 4a, 44227 Dortmund, Germany
| |
Collapse
|
8
|
Lahry K, Gopal A, Kumar Sahu A, Nora Marbaniang C, Ahmad Shah R, Mehta A, Varshney U. An alternative role of RluD in the fidelity of translation initiation in Escherichia coli. J Mol Biol 2022; 434:167588. [DOI: 10.1016/j.jmb.2022.167588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Revised: 03/21/2022] [Accepted: 04/10/2022] [Indexed: 10/18/2022]
|
9
|
Maksimova E, Kravchenko O, Korepanov A, Stolboushkina E. Protein Assistants of Small Ribosomal Subunit Biogenesis in Bacteria. Microorganisms 2022; 10:microorganisms10040747. [PMID: 35456798 PMCID: PMC9032327 DOI: 10.3390/microorganisms10040747] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 03/16/2022] [Accepted: 03/26/2022] [Indexed: 01/27/2023] Open
Abstract
Ribosome biogenesis is a fundamental and multistage process. The basic steps of ribosome assembly are the transcription, processing, folding, and modification of rRNA; the translation, folding, and modification of r-proteins; and consecutive binding of ribosomal proteins to rRNAs. Ribosome maturation is facilitated by biogenesis factors that include a broad spectrum of proteins: GTPases, RNA helicases, endonucleases, modification enzymes, molecular chaperones, etc. The ribosome assembly factors assist proper rRNA folding and protein–RNA interactions and may sense the checkpoints during the assembly to ensure correct order of this process. Inactivation of these factors is accompanied by severe growth phenotypes and accumulation of immature ribosomal subunits containing unprocessed rRNA, which reduces overall translation efficiency and causes translational errors. In this review, we focus on the structural and biochemical analysis of the 30S ribosomal subunit assembly factors RbfA, YjeQ (RsgA), Era, KsgA (RsmA), RimJ, RimM, RimP, and Hfq, which take part in the decoding-center folding.
Collapse
Affiliation(s)
| | | | - Alexey Korepanov
- Correspondence: (A.K.); (E.S.); Tel.: +7-925-7180670 (A.K.); +7-915-4791359 (E.S.)
| | - Elena Stolboushkina
- Correspondence: (A.K.); (E.S.); Tel.: +7-925-7180670 (A.K.); +7-915-4791359 (E.S.)
| |
Collapse
|
10
|
Leroux M, Soubry N, Reyes-Lamothe R. Dynamics of Proteins and Macromolecular Machines in Escherichia coli. EcoSal Plus 2021; 9:eESP00112020. [PMID: 34060908 PMCID: PMC11163846 DOI: 10.1128/ecosalplus.esp-0011-2020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Accepted: 03/16/2021] [Indexed: 11/20/2022]
Abstract
Proteins are major contributors to the composition and the functions in the cell. They often assemble into larger structures, macromolecular machines, to carry out intricate essential functions. Although huge progress in understanding how macromolecular machines function has been made by reconstituting them in vitro, the role of the intracellular environment is still emerging. The development of fluorescence microscopy techniques in the last 2 decades has allowed us to obtain an increased understanding of proteins and macromolecular machines in cells. Here, we describe how proteins move by diffusion, how they search for their targets, and how they are affected by the intracellular environment. We also describe how proteins assemble into macromolecular machines and provide examples of how frequent subunit turnover is used for them to function and to respond to changes in the intracellular conditions. This review emphasizes the constant movement of molecules in cells, the stochastic nature of reactions, and the dynamic nature of macromolecular machines.
Collapse
Affiliation(s)
- Maxime Leroux
- Department of Biology, McGill University, Montreal, QC, Canada
| | - Nicolas Soubry
- Department of Biology, McGill University, Montreal, QC, Canada
| | | |
Collapse
|
11
|
Choi E, Jeon H, Oh C, Hwang J. Elucidation of a Novel Role of YebC in Surface Polysaccharides Regulation of Escherichia coli bipA-Deletion. Front Microbiol 2020; 11:597515. [PMID: 33240252 PMCID: PMC7682190 DOI: 10.3389/fmicb.2020.597515] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Accepted: 10/23/2020] [Indexed: 12/19/2022] Open
Abstract
The BipA (BPI-inducible protein A) protein is ubiquitously conserved in various bacterial species and belongs to the translational GTPase family. Interestingly, the function of Escherichia coli BipA is not essential for cell growth under normal growth conditions. However, cultivation of bipA-deleted cells at 20°C leads to cold-sensitive growth defect and several phenotypic changes in ribosome assembly, capsule production, and motility, suggesting its global regulatory roles. Previously, our genomic library screening revealed that the overexpressed ribosomal protein (r-protein) L20 partially suppressed cold-sensitive growth defect by resolving the ribosomal abnormality in bipA-deleted cells at low temperature. Here, we explored another genomic library clone containing yebC, which encodes a predicted transcriptional factor that is not directly associated with ribosome biogenesis. Interestingly, overexpression of yebC in bipA-deleted cells diminished capsule synthesis and partially restored lipopolysaccharide (LPS) core maturation at a low temperature without resolving defects in ribosome assembly or motility, indicating that YebC may be specifically involved in the regulation of exopolysaccharide and LPS core synthesis. In this study, we collectively investigated the impacts of bipA-deletion on E. coli capsule, LPS, biofilm formation, and motility and revealed novel roles of YebC in extracellular polysaccharide production and LPS core synthesis at low temperature using this mutant strain. Furthermore, our findings suggest that ribosomal defects as well as increased capsule synthesis, and changes in LPS composition may contribute independently to the cold-sensitivity of bipA-deleted cells, implying multiple regulatory roles of BipA.
Collapse
Affiliation(s)
- Eunsil Choi
- Microbiological Resource Research Institute, Pusan National University, Busan, South Korea.,Department of Microbiology, Pusan National University, Busan, South Korea
| | - Hyerin Jeon
- Microbiological Resource Research Institute, Pusan National University, Busan, South Korea
| | - Changmin Oh
- Microbiological Resource Research Institute, Pusan National University, Busan, South Korea
| | - Jihwan Hwang
- Microbiological Resource Research Institute, Pusan National University, Busan, South Korea.,Department of Microbiology, Pusan National University, Busan, South Korea
| |
Collapse
|
12
|
Summer S, Smirnova A, Gabriele A, Toth U, Fasemore AM, Förstner KU, Kuhn L, Chicher J, Hammann P, Mitulović G, Entelis N, Tarassov I, Rossmanith W, Smirnov A. YBEY is an essential biogenesis factor for mitochondrial ribosomes. Nucleic Acids Res 2020; 48:9762-9786. [PMID: 32182356 PMCID: PMC7515705 DOI: 10.1093/nar/gkaa148] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Revised: 02/24/2020] [Accepted: 02/26/2020] [Indexed: 12/11/2022] Open
Abstract
Ribosome biogenesis requires numerous trans-acting factors, some of which are deeply conserved. In Bacteria, the endoribonuclease YbeY is believed to be involved in 16S rRNA 3′-end processing and its loss was associated with ribosomal abnormalities. In Eukarya, YBEY appears to generally localize to mitochondria (or chloroplasts). Here we show that the deletion of human YBEY results in a severe respiratory deficiency and morphologically abnormal mitochondria as an apparent consequence of impaired mitochondrial translation. Reduced stability of 12S rRNA and the deficiency of several proteins of the small ribosomal subunit in YBEY knockout cells pointed towards a defect in mitochondrial ribosome biogenesis. The specific interaction of mitoribosomal protein uS11m with YBEY suggests that the latter helps to properly incorporate uS11m into the nascent small subunit in its late assembly stage. This scenario shows similarities with final stages of cytosolic ribosome biogenesis, and may represent a late checkpoint before the mitoribosome engages in translation.
Collapse
Affiliation(s)
- Sabrina Summer
- Center for Anatomy & Cell Biology, Medical University of Vienna, Vienna A-1090, Austria
| | - Anna Smirnova
- UMR7156 - Molecular Genetics, Genomics, Microbiology, University of Strasbourg, CNRS, Strasbourg F-67000, France
| | - Alessandro Gabriele
- UMR7156 - Molecular Genetics, Genomics, Microbiology, University of Strasbourg, CNRS, Strasbourg F-67000, France
| | - Ursula Toth
- Center for Anatomy & Cell Biology, Medical University of Vienna, Vienna A-1090, Austria
| | | | - Konrad U Förstner
- Institute for Molecular Infection Biology, University of Würzburg, Würzburg 97080, Germany.,TH Köln - University of Applied Sciences, Faculty of Information Science and Communication Studies, Institute of Information Science, Cologne D-50678, Germany.,ZB MED - Information Centre for Life Sciences, Cologne D-50931, Germany
| | - Lauriane Kuhn
- Proteomics Platform Strasbourg-Esplanade, FRC1589, IBMC, CNRS, Strasbourg F-67000, France
| | - Johana Chicher
- Proteomics Platform Strasbourg-Esplanade, FRC1589, IBMC, CNRS, Strasbourg F-67000, France
| | - Philippe Hammann
- Proteomics Platform Strasbourg-Esplanade, FRC1589, IBMC, CNRS, Strasbourg F-67000, France
| | - Goran Mitulović
- Proteomics Core Facility, Clinical Department for Laboratory Medicine, Medical University of Vienna, Vienna A-1090, Austria
| | - Nina Entelis
- UMR7156 - Molecular Genetics, Genomics, Microbiology, University of Strasbourg, CNRS, Strasbourg F-67000, France
| | - Ivan Tarassov
- UMR7156 - Molecular Genetics, Genomics, Microbiology, University of Strasbourg, CNRS, Strasbourg F-67000, France
| | - Walter Rossmanith
- Center for Anatomy & Cell Biology, Medical University of Vienna, Vienna A-1090, Austria
| | - Alexandre Smirnov
- UMR7156 - Molecular Genetics, Genomics, Microbiology, University of Strasbourg, CNRS, Strasbourg F-67000, France
| |
Collapse
|
13
|
Jayalath K, Frisbie S, To M, Abeysirigunawardena S. Pseudouridine Synthase RsuA Captures an Assembly Intermediate that Is Stabilized by Ribosomal Protein S17. Biomolecules 2020; 10:biom10060841. [PMID: 32486254 PMCID: PMC7356742 DOI: 10.3390/biom10060841] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Revised: 05/28/2020] [Accepted: 05/28/2020] [Indexed: 01/03/2023] Open
Abstract
The ribosome is a large ribonucleoprotein complex that synthesizes protein in all living organisms. Ribosome biogenesis is a complex process that requires synchronization of various cellular events, including ribosomal RNA (rRNA) transcription, ribosome assembly, and processing and post-transcriptional modification of rRNA. Ribosome biogenesis is fine-tuned with various assembly factors, possibly including nucleotide modification enzymes. Ribosomal small subunit pseudouridine synthase A (RsuA) pseudouridylates U516 of 16S helix 18. Protein RsuA is a multi-domain protein that contains the N-terminal peripheral domain, which is structurally similar to the ribosomal protein S4. Our study shows RsuA preferably binds and pseudouridylates an assembly intermediate that is stabilized by ribosomal protein S17 over the native-like complex. In addition, the N-terminal domain truncated RsuA showed that the presence of the S4-like domain is important for RsuA substrate recognition.
Collapse
|
14
|
Gc K, Gyawali P, Balci H, Abeysirigunawardena S. Ribosomal RNA Methyltransferase RsmC Moonlights as an RNA Chaperone. Chembiochem 2020; 21:1885-1892. [PMID: 31972066 DOI: 10.1002/cbic.201900708] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Revised: 01/14/2020] [Indexed: 01/31/2023]
Abstract
Ribosomes are ribonucleoprotein particles that are essential for protein biosynthesis in all forms of life. During ribosome biogenesis, transcription, folding, modification, and processing of rRNA are coupled to the assembly of proteins. Various assembly factors are required to synchronize all different processes that occur during ribosome biogenesis. Herein, the RNA chaperone and RNA strand annealing activity of rRNA modification enzyme ribosome small subunit methyltransferase C (RsmC), which modifies guanine to 2-methylguanosine (m2 G) at position 1207 of 16S rRNA (Escherichia coli nucleotide numbering) located at helix 34 (h34), are reported. A 25-fold increase in the h34 RNA strand annealing rates is observed in the presence of RsmC. Single-molecule FRET experiments confirmed the ability of protein RsmC to denature a non-native structure formed by one of the two h34 strands and to form a native-like duplex. This observed RNA chaperone activity of protein RsmC might play a vital role in the rapid generation of functional ribosomes.
Collapse
Affiliation(s)
- Keshav Gc
- Department of Chemistry and Biochemistry, Kent State University, 1175 Risman Drive, Kent, OH, 44242, USA
| | - Prabesh Gyawali
- Department of Physics, Kent State University, 103 Smith Hall, Kent, OH, 44242, USA
| | - Hamza Balci
- Department of Physics, Kent State University, 103 Smith Hall, Kent, OH, 44242, USA
| | | |
Collapse
|
15
|
Dos Santos RF, Bárria C, Arraiano CM, Andrade JM. Isolation and Analysis of Bacterial Ribosomes Through Sucrose Gradient Ultracentrifugation. Methods Mol Biol 2020; 2106:299-310. [PMID: 31889266 DOI: 10.1007/978-1-0716-0231-7_19] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Ribosomes are large macromolecular complexes responsible for the translation process. During the course of ribosome biogenesis and protein synthesis, extra-ribosomal factors interact with the ribosome or its subunits to assist in these vital processes. Here we describe a method to isolate and analyze not only bacterial ribosomes but also their associated factors, providing insights into translation regulation. This detailed protocol allows the separation and monitoring of the ribosomal species and their interacting partners along a sucrose density gradient. Simultaneously, fractionation of the gradient allows for the recovery of 70S ribosomes and its subunits enabling a wide range of downstream applications. This protocol can be easily adapted to ribosome-related studies in other species or for separating other macromolecular complexes.
Collapse
Affiliation(s)
- Ricardo F Dos Santos
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Oeiras, Portugal
| | - Cátia Bárria
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Oeiras, Portugal
| | - Cecília M Arraiano
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Oeiras, Portugal.
| | - José M Andrade
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Oeiras, Portugal.
| |
Collapse
|
16
|
Le Vay K, Weise LI, Libicher K, Mascarenhas J, Mutschler H. Templated Self‐Replication in Biomimetic Systems. ACTA ACUST UNITED AC 2019; 3:e1800313. [DOI: 10.1002/adbi.201800313] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2018] [Revised: 02/06/2019] [Indexed: 12/27/2022]
Affiliation(s)
- Kristian Le Vay
- Biomimetic SystemsMax Planck Institute of Biochemistry Martinsried Germany
| | - Laura Isabel Weise
- Biomimetic SystemsMax Planck Institute of Biochemistry Martinsried Germany
| | - Kai Libicher
- Biomimetic SystemsMax Planck Institute of Biochemistry Martinsried Germany
| | - Judita Mascarenhas
- Department of Systems and Synthetic MicrobiologyMax Planck Institute for Terrestrial Microbiology Marburg Germany
| | - Hannes Mutschler
- Biomimetic SystemsMax Planck Institute of Biochemistry Martinsried Germany
| |
Collapse
|
17
|
Elevated Levels of Era GTPase Improve Growth, 16S rRNA Processing, and 70S Ribosome Assembly of Escherichia coli Lacking Highly Conserved Multifunctional YbeY Endoribonuclease. J Bacteriol 2018; 200:JB.00278-18. [PMID: 29914987 DOI: 10.1128/jb.00278-18] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2018] [Accepted: 06/04/2018] [Indexed: 01/09/2023] Open
Abstract
YbeY is a highly conserved, multifunctional endoribonuclease that plays a significant role in ribosome biogenesis and has several additional roles. Here we show that overexpression of the conserved GTPase Era in Escherichia coli partially suppresses the growth defect of a ΔybeY strain while improving 16S rRNA processing and 70S ribosome assembly. This suppression requires both the ability of Era to hydrolyze GTP and the function of three exoribonucleases, RNase II, RNase R, and RNase PH, suggesting a model for the action of Era. Overexpression of Vibrio cholerae Era similarly partially suppresses the defects of an E. coli ΔybeY strain, indicating that this property of Era is conserved in bacteria other than E. coliIMPORTANCE This work provides insight into the critical, but still incompletely understood, mechanism of processing of the E. coli 16S rRNA 3' terminus. The highly conserved GTPase Era is known to bind to the precursor of the 16S rRNA near its 3' end. Both the endoribonuclease YbeY, which binds to Era, and four exoribonucleases have been implicated in this 3'-end processing. The results reported here offer additional insights into the role of Era in 16S rRNA 3'-end maturation and into the relationship between the action of the endoribonuclease YbeY and that of the four exoribonucleases. This study also hints at why YbeY is essential only in some bacteria and suggests that YbeY could be a target for a new class of antibiotics in these bacteria.
Collapse
|
18
|
Andrade JM, Dos Santos RF, Chelysheva I, Ignatova Z, Arraiano CM. The RNA-binding protein Hfq is important for ribosome biogenesis and affects translation fidelity. EMBO J 2018; 37:embj.201797631. [PMID: 29669858 DOI: 10.15252/embj.201797631] [Citation(s) in RCA: 69] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2017] [Revised: 02/28/2018] [Accepted: 03/13/2018] [Indexed: 11/09/2022] Open
Abstract
Ribosome biogenesis is a complex process involving multiple factors. Here, we show that the widely conserved RNA chaperone Hfq, which can regulate sRNA-mRNA basepairing, plays a critical role in rRNA processing and ribosome assembly in Escherichia coli Hfq binds the 17S rRNA precursor and facilitates its correct processing and folding to mature 16S rRNA Hfq assists ribosome assembly and associates with pre-30S particles but not with mature 30S subunits. Inactivation of Hfq strikingly decreases the pool of mature 70S ribosomes. The reduction in ribosome levels depends on residues located in the distal face of Hfq but not on residues found in the proximal and rim surfaces which govern interactions with the sRNAs. Our results indicate that Hfq-mediated regulation of ribosomes is independent of its function as sRNA-regulator. Furthermore, we observed that inactivation of Hfq compromises translation efficiency and fidelity, both features of aberrantly assembled ribosomes. Our work expands the functions of the Sm-like protein Hfq beyond its function in small RNA-mediated regulation and unveils a novel role of Hfq as crucial in ribosome biogenesis and translation.
Collapse
Affiliation(s)
- José M Andrade
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Oeiras, Portugal
| | - Ricardo F Dos Santos
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Oeiras, Portugal
| | - Irina Chelysheva
- Institute of Biochemistry and Molecular Biology, University of Hamburg, Hamburg, Germany
| | - Zoya Ignatova
- Institute of Biochemistry and Molecular Biology, University of Hamburg, Hamburg, Germany
| | - Cecília M Arraiano
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Oeiras, Portugal
| |
Collapse
|
19
|
Smith BA, Gupta N, Denny K, Culver GM. Characterization of 16S rRNA Processing with Pre-30S Subunit Assembly Intermediates from E. coli. J Mol Biol 2018; 430:1745-1759. [PMID: 29660326 DOI: 10.1016/j.jmb.2018.04.009] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2017] [Revised: 04/05/2018] [Accepted: 04/06/2018] [Indexed: 01/02/2023]
Abstract
Ribosomal RNA (rRNA) is a major component of ribosomes and is fundamental to the process of translation. In bacteria, 16S rRNA is a component of the small ribosomal subunit and plays a critical role in mRNA decoding. rRNA maturation entails the removal of intervening spacer sequences contained within the pre-rRNA transcript by nucleolytic enzymes. Enzymatic activities involved in maturation of the 5'-end of 16S rRNA have been identified, but those involved in 3'-end maturation of 16S rRNA are more enigmatic. Here, we investigate molecular details of 16S rRNA maturation using purified in vivo-formed small subunit (SSU) assembly intermediates (pre-SSUs) from wild-type Escherichia coli that contain precursor 16S rRNA (17S rRNA). Upon incubation of pre-SSUs with E. coli S100 cell extracts or purified enzymes implicated in 16S rRNA processing, the 17S rRNA is processed into additional intermediates and mature 16S rRNA. These results illustrate that exonucleases RNase R, RNase II, PNPase, and RNase PH can process the 3'-end of pre-SSUs in vitro. However, the endonuclease YbeY did not exhibit nucleolytic activity with pre-SSUs under these conditions. Furthermore, these data demonstrate that multiple pathways facilitate 16S rRNA maturation with pre-SSUs in vitro, with the dominant pathways entailing complete processing of the 5'-end of 17S rRNA prior to 3'-end maturation or partial processing of the 5'-end with concomitant processing of the 3'-end. These results reveal the multifaceted nature of SSU biogenesis and suggest that E. coli may be able to escape inactivation of any one enzyme by using an existing complementary pathway.
Collapse
Affiliation(s)
- Brian A Smith
- Department of Biology, University of Rochester, Rochester, NY 14627, USA
| | - Neha Gupta
- Department of Biology, University of Rochester, Rochester, NY 14627, USA; Laboratory on the Mechanism and Regulation of Protein Synthesis, Eunice Kennedy Shriver National Institute of Child Health and Development, National Institutes of Health, Bethesda, MD 20892, USA
| | - Kevin Denny
- Department of Biology, University of Rochester, Rochester, NY 14627, USA; Chemistry and Biochemistry Department, Nazareth College, Pittsford, NY 14618, USA
| | - Gloria M Culver
- Department of Biology, University of Rochester, Rochester, NY 14627, USA; Laboratory on the Mechanism and Regulation of Protein Synthesis, Eunice Kennedy Shriver National Institute of Child Health and Development, National Institutes of Health, Bethesda, MD 20892, USA; Center for RNA Biology: from Genome to Therapeutics, University of Rochester Medical Center, Rochester, NY 14627, USA.
| |
Collapse
|
20
|
Davis JH, Williamson JR. Structure and dynamics of bacterial ribosome biogenesis. Philos Trans R Soc Lond B Biol Sci 2017; 372:rstb.2016.0181. [PMID: 28138067 DOI: 10.1098/rstb.2016.0181] [Citation(s) in RCA: 95] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/16/2016] [Indexed: 01/28/2023] Open
Abstract
Bacterial ribosome biogenesis has been an active area of research for more than 30 years and has served as a test-bed for the development of new biochemical, biophysical and structural techniques to understand macromolecular assembly generally. Recent work inspecting the process in vivo has advanced our understanding of the role of ribosome biogenesis factors, the co-transcriptional nature of assembly, the kinetics of the process under sub-optimal conditions, and the rRNA folding and ribosome protein binding pathways. Additionally, new structural work enabled by single-particle electron microscopy has helped to connect in vitro ribosomal protein binding maps to the underlying RNA. This review summarizes the state of these in vivo studies, provides a kinetic model for ribosome assembly under sub-optimal conditions, and describes a framework to compare newly emerging assembly intermediate structures.This article is part of the themed issue 'Perspectives on the ribosome'.
Collapse
Affiliation(s)
- Joseph H Davis
- Department of Integrative Structural and Computational Biology, The Skaggs Institute for Chemical Biology, The Scripps Research Institute, La Jolla, CA 92037, USA.,Department of Chemistry, The Skaggs Institute for Chemical Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - James R Williamson
- Department of Integrative Structural and Computational Biology, The Skaggs Institute for Chemical Biology, The Scripps Research Institute, La Jolla, CA 92037, USA .,Department of Chemistry, The Skaggs Institute for Chemical Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| |
Collapse
|
21
|
Ikeda Y, Okada Y, Sato A, Kanai T, Tomita M, Atomi H, Kanai A. An archaeal RNA binding protein, FAU-1, is a novel ribonuclease related to rRNA stability in Pyrococcus and Thermococcus. Sci Rep 2017; 7:12674. [PMID: 28978920 PMCID: PMC5627344 DOI: 10.1038/s41598-017-13062-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2017] [Accepted: 09/12/2017] [Indexed: 12/28/2022] Open
Abstract
Ribosome biogenesis and turnover are processes necessary for cell viability and proliferation, and many kinds of proteins are known to regulate these processes. However, many questions still remain, especially in the Archaea. Generally, several ribonucleases are required to process precursor rRNAs to their mature forms, and to degrade rRNAs for quality control. Here, we found that FAU-1, which is known to be an RNA binding protein, possesses an RNase activity against precursor 5S rRNA derived from P. furiosus and T. kodakarensis in the order Thermococcales in vitro. An in vitro analysis revealed that UA sequences in the upstream of 5S rRNA were preferentially degraded by addition of FAU-1. Moreover, a fau-1 gene deletion mutant of T. kodakarensis showed a delay of exponential phase, reduction of maximum cell number and significant changes in the nucleotide sequence lengths of its 5S, 16S, and 23S rRNAs in early exponential phase. Our results suggest that FAU-1 is a potential RNase involved in rRNA stability through maturation and/or degradation processes.
Collapse
Affiliation(s)
- Yoshiki Ikeda
- Institute for Advanced Biosciences, Keio University, Tsuruoka, 997-0017, Japan.
| | - Yasuhiro Okada
- Graduate School of Engineering, Kyoto University, Kyoto, 615-8510, Japan
| | - Asako Sato
- Institute for Advanced Biosciences, Keio University, Tsuruoka, 997-0017, Japan
| | - Tamotsu Kanai
- Graduate School of Engineering, Kyoto University, Kyoto, 615-8510, Japan
| | - Masaru Tomita
- Institute for Advanced Biosciences, Keio University, Tsuruoka, 997-0017, Japan
| | - Haruyuki Atomi
- Graduate School of Engineering, Kyoto University, Kyoto, 615-8510, Japan
| | - Akio Kanai
- Institute for Advanced Biosciences, Keio University, Tsuruoka, 997-0017, Japan
| |
Collapse
|
22
|
Razi A, Britton RA, Ortega J. The impact of recent improvements in cryo-electron microscopy technology on the understanding of bacterial ribosome assembly. Nucleic Acids Res 2017; 45:1027-1040. [PMID: 28180306 PMCID: PMC5388408 DOI: 10.1093/nar/gkw1231] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2016] [Revised: 11/20/2016] [Accepted: 11/25/2016] [Indexed: 01/14/2023] Open
Abstract
Cryo-electron microscopy (cryo-EM) had played a central role in the study of ribosome structure and the process of translation in bacteria since the development of this technique in the mid 1980s. Until recently cryo-EM structures were limited to ∼10 Å in the best cases. However, the recent advent of direct electron detectors has greatly improved the resolution of cryo-EM structures to the point where atomic resolution is now achievable. This improved resolution will allow cryo-EM to make groundbreaking contributions in essential aspects of ribosome biology, including the assembly process. In this review, we summarize important insights that cryo-EM, in combination with chemical and genetic approaches, has already brought to our current understanding of the ribosomal assembly process in bacteria using previous detector technology. More importantly, we discuss how the higher resolution structures now attainable with direct electron detectors can be leveraged to propose precise testable models regarding this process. These structures will provide an effective platform to develop new antibiotics that target this fundamental cellular process.
Collapse
Affiliation(s)
- Aida Razi
- Department of Biochemistry and Biomedical Sciences and M. G. DeGroote Institute for Infectious Diseases Research, McMaster University, Hamilton, Ontario, Canada
| | - Robert A Britton
- Department of Molecular Virology and Microbiology and Center for Metagenomics and Microbiome Research, Baylor College of Medicine, Houston, TX, USA
| | - Joaquin Ortega
- Department of Biochemistry and Biomedical Sciences and M. G. DeGroote Institute for Infectious Diseases Research, McMaster University, Hamilton, Ontario, Canada
| |
Collapse
|
23
|
Li J, Haas W, Jackson K, Kuru E, Jewett MC, Fan ZH, Gygi S, Church GM. Cogenerating Synthetic Parts toward a Self-Replicating System. ACS Synth Biol 2017; 6:1327-1336. [PMID: 28330337 DOI: 10.1021/acssynbio.6b00342] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
To build replicating systems with new functions, the engineering of existing biological machineries requires a sensible strategy. Protein synthesis Using Recombinant Elements (PURE) system consists of the desired components for transcription, translation, aminoacylation and energy regeneration. PURE might be the basis for a radically alterable, lifelike system after optimization. Here, we regenerated 54 E. coli ribosomal (r-) proteins individually from DNA templates in the PURE system. We show that using stable isotope labeling with amino acids, mass spectrometry based quantitative proteomics could detect 26 of the 33 50S and 20 of the 21 30S subunit r-proteins when coexpressed in batch format PURE system. By optimizing DNA template concentrations and adapting a miniaturized Fluid Array Device with optimized feeding solution, we were able to cogenerate and detect at least 29 of the 33 50S and all of the 21 30S subunit r-proteins in one pot. The boost on yield of a single r-protein in coexpression pool varied from ∼1.5 to 5-fold compared to the batch mode, with up to ∼2.4 μM yield for a single r-protein. Reconstituted ribosomes under physiological condition from PURE system synthesized 30S r-proteins and native 16S rRNA showed ∼13% activity of native 70S ribosomes, which increased to 21% when supplemented with GroEL/ES. This work also points to what is still needed to obtain self-replicating synthetic ribosomes in situ in the PURE system.
Collapse
Affiliation(s)
- Jun Li
- Department of Genetics, Harvard Medical School, 77 Avenue Louis Pasteur, Boston, Massachusetts 02115, United States
- Wyss Harvard Institute of Biologically Inspired Engineering, 3 Blackfan Circle, Boston, Massachusetts 02115, United States
| | - Wilhelm Haas
- Massachusetts General Hospital Cancer Center;
Department of Medicine, Harvard Medical School, Boston, Massachusetts 02115, United States
- Department of Cell Biology, Harvard Medical School, Boston, Massachusetts 02115, United States
| | - Kirsten Jackson
- J. Crayton
Pruitt Family Department of Biomedical Engineering, University of Florida, P.O. Box 116131, Gainesville, Florida 32611, United States
| | - Erkin Kuru
- Department of Genetics, Harvard Medical School, 77 Avenue Louis Pasteur, Boston, Massachusetts 02115, United States
- Wyss Harvard Institute of Biologically Inspired Engineering, 3 Blackfan Circle, Boston, Massachusetts 02115, United States
| | - Michael C. Jewett
- Department of Chemical and Biological Engineering, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Z. Hugh Fan
- J. Crayton
Pruitt Family Department of Biomedical Engineering, University of Florida, P.O. Box 116131, Gainesville, Florida 32611, United States
- Department of Mechanical and Aerospace
Engineering, University of Florida, P.O. Box 116250, Gainesville, Florida 32611, United States
| | - Steven Gygi
- Department of Cell Biology, Harvard Medical School, Boston, Massachusetts 02115, United States
| | - George M. Church
- Department of Genetics, Harvard Medical School, 77 Avenue Louis Pasteur, Boston, Massachusetts 02115, United States
- Wyss Harvard Institute of Biologically Inspired Engineering, 3 Blackfan Circle, Boston, Massachusetts 02115, United States
| |
Collapse
|
24
|
The cryo-EM structure of YjeQ bound to the 30S subunit suggests a fidelity checkpoint function for this protein in ribosome assembly. Proc Natl Acad Sci U S A 2017; 114:E3396-E3403. [PMID: 28396444 DOI: 10.1073/pnas.1618016114] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Recent work suggests that bacterial YjeQ (RsgA) participates in the late stages of assembly of the 30S subunit and aids the assembly of the decoding center but also binds the mature 30S subunit with high affinity. To determine the function and mechanisms of YjeQ in the context of the mature subunit, we determined the cryo-EM structure of the fully assembled 30S subunit in complex with YjeQ at 5.8-Å resolution. We found that binding of YjeQ stabilizes helix 44 into a conformation similar to that adopted by the subunit during proofreading. This finding indicates that, along with acting as an assembly factor, YjeQ has a role as a checkpoint protein, consisting of testing the proofreading ability of the 30S subunit. The structure also informs the mechanism by which YjeQ implements the release from the 30S subunit of a second assembly factor, called RbfA. Finally, it reveals how the 30S subunit stimulates YjeQ GTPase activity and leads to release of the protein. Checkpoint functions have been described for eukaryotic ribosome assembly factors; however, this work describes an example of a bacterial assembly factor that tests a specific translation mechanism of the 30S subunit.
Collapse
|
25
|
Abstract
Many proteins have been implicated genetically and biochemically in the assembly of eukaryotic ribosomes. Now, Kornprobst et al. show us how they are put together with a cryoEM structure of the 90S processome that initiates ribosome assembly, revealing the arrangement of U3 RNA and the several UTP complexes that form a chaperone-like structure around and within the developing 40S ribosomal subunit.
Collapse
Affiliation(s)
- Jonathan R Warner
- Department of Cell Biology, Albert Einstein College of Medicine, Bronx, NY 10461, USA.
| |
Collapse
|
26
|
Sharma H, Anand B. Fluorescence bimolecular complementation enables facile detection of ribosome assembly defects in Escherichia coli. RNA Biol 2016; 13:872-82. [PMID: 27388791 DOI: 10.1080/15476286.2016.1207037] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
Assembly factors promote the otherwise non-spontaneous maturation of ribosome under physiological conditions inside the cell. Systematic identification and characterization of candidate assembly factors are fraught with bottlenecks due to lack of facile assay system to capture assembly defects. Here, we show that bimolecular fluorescence complementation (BiFC) allows detection of assembly defects that are induced by the loss of assembly factors. The fusion of N and C-terminal fragments of Venus fluorescent protein to the ribosomal proteins uS13 and uL5, respectively, in Escherichia coli facilitated the incorporation of the tagged uS13 and uL5 onto the respective ribosomal subunits. When the ribosomal subunits associated to form the 70S particle, the complementary fragments of Venus were brought into proximity and rendered the Venus fluorescent. Assembly defects that inhibit the subunits association were provoked by either the loss of the known assembly factors such as RsgA and SrmB or the presence of small molecule inhibitors of ribosome maturation such as Lamotrigine and several ribosome-targeting antibiotics and these showed abrogation of the fluorescence complementation. This suggests that BiFC can be employed as a surrogate measure to detect ribosome assembly defects proficiently by circumventing the otherwise cumbersome procedures. BiFC thus offers a facile platform not only for systematic screening to validate potential assembly factors but also to discover novel small molecule inhibitors of ribosome assembly toward mapping the complex assembly landscape of ribosome.
Collapse
Affiliation(s)
- Himanshu Sharma
- a Department of Biosciences and Bioengineering , Indian Institute of Technology Guwahati , Assam , India
| | - Baskaran Anand
- a Department of Biosciences and Bioengineering , Indian Institute of Technology Guwahati , Assam , India
| |
Collapse
|
27
|
Gentry RC, Childs JJ, Gevorkyan J, Gerasimova YV, Koculi E. Time course of large ribosomal subunit assembly in E. coli cells overexpressing a helicase inactive DbpA protein. RNA (NEW YORK, N.Y.) 2016; 22:1055-1064. [PMID: 27194011 PMCID: PMC4911913 DOI: 10.1261/rna.055137.115] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/03/2015] [Accepted: 04/15/2016] [Indexed: 06/05/2023]
Abstract
DbpA is a DEAD-box RNA helicase implicated in Escherichia coli large ribosomal subunit assembly. Previous studies have shown that when the ATPase and helicase inactive DbpA construct, R331A, is expressed in E. coli cells, a large ribosomal subunit intermediate accumulates. The large subunit intermediate migrates as a 45S particle in a sucrose gradient. Here, using a number of structural and fluorescent assays, we investigate the ribosome profiles of cells lacking wild-type DbpA and overexpressing the R331A DbpA construct. Our data show that in addition to the 45S particle previously described, 27S and 35S particles are also present in the ribosome profiles of cells overexpressing R331A DbpA. The 27S, 35S, and 45S independently convert to the 50S subunit, suggesting that ribosome assembly in the presence of R331A and the absence of wild-type DbpA occurs via multiple pathways.
Collapse
Affiliation(s)
- Riley C Gentry
- Department of Chemistry, University of Central Florida, Orlando, Florida 32816, USA
| | - Jared J Childs
- Department of Chemistry, University of Central Florida, Orlando, Florida 32816, USA
| | | | - Yulia V Gerasimova
- Department of Chemistry, University of Central Florida, Orlando, Florida 32816, USA
| | - Eda Koculi
- Department of Chemistry, University of Central Florida, Orlando, Florida 32816, USA
| |
Collapse
|
28
|
Wang M, Yu Y, Liang C, Lu A, Zhang G. Recent Advances in Developing Small Molecules Targeting Nucleic Acid. Int J Mol Sci 2016; 17:ijms17060779. [PMID: 27248995 PMCID: PMC4926330 DOI: 10.3390/ijms17060779] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2016] [Revised: 05/01/2016] [Accepted: 05/09/2016] [Indexed: 12/19/2022] Open
Abstract
Nucleic acids participate in a large number of biological processes. However, current approaches for small molecules targeting protein are incompatible with nucleic acids. On the other hand, the lack of crystallization of nucleic acid is the limiting factor for nucleic acid drug design. Because of the improvements in crystallization in recent years, a great many structures of nucleic acids have been reported, providing basic information for nucleic acid drug discovery. This review focuses on the discovery and development of small molecules targeting nucleic acids.
Collapse
Affiliation(s)
- Maolin Wang
- Institute of Integrated Bioinfomedicine and Translational Science (IBTS), School of Chinese Medicine, Hong Kong Baptist University, Hong Kong 999077, China.
- Shenzhen Lab of Combinatorial Compounds and Targeted Drug Delivery, HKBU Institute of Research and Continuing Education, Shenzhen 518000, China.
- Institute for Advancing Translational Medicine in Bone and Joint Diseases, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong 999077, China.
| | - Yuanyuan Yu
- Institute of Integrated Bioinfomedicine and Translational Science (IBTS), School of Chinese Medicine, Hong Kong Baptist University, Hong Kong 999077, China.
- Shenzhen Lab of Combinatorial Compounds and Targeted Drug Delivery, HKBU Institute of Research and Continuing Education, Shenzhen 518000, China.
- Institute for Advancing Translational Medicine in Bone and Joint Diseases, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong 999077, China.
| | - Chao Liang
- Institute of Integrated Bioinfomedicine and Translational Science (IBTS), School of Chinese Medicine, Hong Kong Baptist University, Hong Kong 999077, China.
- Shenzhen Lab of Combinatorial Compounds and Targeted Drug Delivery, HKBU Institute of Research and Continuing Education, Shenzhen 518000, China.
- Institute for Advancing Translational Medicine in Bone and Joint Diseases, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong 999077, China.
| | - Aiping Lu
- Institute of Integrated Bioinfomedicine and Translational Science (IBTS), School of Chinese Medicine, Hong Kong Baptist University, Hong Kong 999077, China.
- Shenzhen Lab of Combinatorial Compounds and Targeted Drug Delivery, HKBU Institute of Research and Continuing Education, Shenzhen 518000, China.
- Institute for Advancing Translational Medicine in Bone and Joint Diseases, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong 999077, China.
| | - Ge Zhang
- Institute of Integrated Bioinfomedicine and Translational Science (IBTS), School of Chinese Medicine, Hong Kong Baptist University, Hong Kong 999077, China.
- Shenzhen Lab of Combinatorial Compounds and Targeted Drug Delivery, HKBU Institute of Research and Continuing Education, Shenzhen 518000, China.
- Institute for Advancing Translational Medicine in Bone and Joint Diseases, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong 999077, China.
| |
Collapse
|
29
|
Nord S, Bhatt MJ, Tükenmez H, Farabaugh PJ, Wikström PM. Mutations of ribosomal protein S5 suppress a defect in late-30S ribosomal subunit biogenesis caused by lack of the RbfA biogenesis factor. RNA (NEW YORK, N.Y.) 2015; 21:1454-1468. [PMID: 26089326 PMCID: PMC4509935 DOI: 10.1261/rna.051383.115] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/12/2015] [Accepted: 05/04/2015] [Indexed: 06/04/2023]
Abstract
The in vivo assembly of ribosomal subunits requires assistance by maturation proteins that are not part of mature ribosomes. One such protein, RbfA, associates with the 30S ribosomal subunits. Loss of RbfA causes cold sensitivity and defects of the 30S subunit biogenesis and its overexpression partially suppresses the dominant cold sensitivity caused by a C23U mutation in the central pseudoknot of 16S rRNA, a structure essential for ribosome function. We have isolated suppressor mutations that restore partially the growth of an RbfA-lacking strain. Most of the strongest suppressor mutations alter one out of three distinct positions in the carboxy-terminal domain of ribosomal protein S5 (S5) in direct contact with helix 1 and helix 2 of the central pseudoknot. Their effect is to increase the translational capacity of the RbfA-lacking strain as evidenced by an increase in polysomes in the suppressed strains. Overexpression of RimP, a protein factor that along with RbfA regulates formation of the ribosome's central pseudoknot, was lethal to the RbfA-lacking strain but not to a wild-type strain and this lethality was suppressed by the alterations in S5. The S5 mutants alter translational fidelity but these changes do not explain consistently their effect on the RbfA-lacking strain. Our genetic results support a role for the region of S5 modified in the suppressors in the formation of the central pseudoknot in 16S rRNA.
Collapse
Affiliation(s)
- Stefan Nord
- Department of Molecular Biology, Umeå University, SE-901 87 Umeå, Sweden
| | - Monika J Bhatt
- Department of Biological Sciences, University of Maryland Baltimore County, Baltimore, Maryland 21228, USA
| | - Hasan Tükenmez
- Department of Molecular Biology, Umeå University, SE-901 87 Umeå, Sweden
| | - Philip J Farabaugh
- Department of Biological Sciences, University of Maryland Baltimore County, Baltimore, Maryland 21228, USA
| | - P Mikael Wikström
- Department of Molecular Biology, Umeå University, SE-901 87 Umeå, Sweden
| |
Collapse
|
30
|
Prisic S, Hwang H, Dow A, Barnaby O, Pan TS, Lonzanida JA, Chazin WJ, Steen H, Husson RN. Zinc regulates a switch between primary and alternative S18 ribosomal proteins in Mycobacterium tuberculosis. Mol Microbiol 2015; 97:263-80. [PMID: 25858183 DOI: 10.1111/mmi.13022] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/02/2015] [Indexed: 12/21/2022]
Abstract
The Mycobacterium tuberculosis genome encodes five putative 'alternative' ribosomal proteins whose expression is repressed at high Zn(2+) concentration. Each alternative protein has a primary homologue that is predicted to bind Zn(2+). We hypothesized that zinc triggers a switch between these paired homologous proteins and therefore chose one of these pairs, S18-1/S18-2, to study mechanisms of the predicted competition for their incorporation into ribosomes. Our data show that Zn(2+)-depletion causes accumulation of both S18-2 mRNA and protein. In contrast, S18-1 mRNA levels are unchanged to slightly elevated under Zn(2+)-limited conditions. However, the amount of S18-1 protein is markedly decreased. We further demonstrate that both S18 proteins interact with ribosomal protein S6, a committed step in ribosome biogenesis. Zn(2+) is absolutely required for the S18-1/S6 interaction while it is dispensable for S18-2/S6 dimer formation. These data suggest a model in which S18-1 is the dominant ribosome constituent in high zinc conditions, e.g. inside of phagosomes, but that it can be replaced by S18-2 when zinc is deficient, e.g. in the extracellular milieu. Consequently, Zn(2+)-depletion may serve as a signal for building alternative ribosomes when M. tuberculosis is released from macrophages, to allow survival in the extracellular environment.
Collapse
Affiliation(s)
- Sladjana Prisic
- Division of Infectious Diseases, Boston Children's Hospital/Harvard Medical School, Boston, MA.,Department of Microbiology, University of Hawaii at Manoa, Honolulu, HI
| | - Hyonson Hwang
- Department of Pathology, Boston Children's Hospital/Harvard Medical School, Boston, MA
| | - Allexa Dow
- Department of Microbiology, University of Hawaii at Manoa, Honolulu, HI
| | - Omar Barnaby
- Department of Pathology, Boston Children's Hospital/Harvard Medical School, Boston, MA
| | - Tenny S Pan
- Department of Microbiology, University of Hawaii at Manoa, Honolulu, HI
| | | | - Walter J Chazin
- Center for Structural Biology, Vanderbilt University, Nashville, TN, USA
| | - Hanno Steen
- Department of Pathology, Boston Children's Hospital/Harvard Medical School, Boston, MA
| | - Robert N Husson
- Division of Infectious Diseases, Boston Children's Hospital/Harvard Medical School, Boston, MA
| |
Collapse
|
31
|
Balakrishnan R, Oman K, Shoji S, Bundschuh R, Fredrick K. The conserved GTPase LepA contributes mainly to translation initiation in Escherichia coli. Nucleic Acids Res 2014; 42:13370-83. [PMID: 25378333 PMCID: PMC4245954 DOI: 10.1093/nar/gku1098] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Abstract
LepA is a paralog of EF-G found in all bacteria. Deletion of lepA confers no obvious growth defect in Escherichia coli, and the physiological role of LepA remains unknown. Here, we identify nine strains (ΔdksA, ΔmolR1, ΔrsgA, ΔtatB, ΔtonB, ΔtolR, ΔubiF, ΔubiG or ΔubiH) in which ΔlepA confers a synthetic growth phenotype. These strains are compromised for gene regulation, ribosome assembly, transport and/or respiration, indicating that LepA contributes to these functions in some way. We also use ribosome profiling to deduce the effects of LepA on translation. We find that loss of LepA alters the average ribosome density (ARD) for hundreds of mRNA coding regions in the cell, substantially reducing ARD in many cases. By contrast, only subtle and codon-specific changes in ribosome distribution along mRNA are seen. These data suggest that LepA contributes mainly to the initiation phase of translation. Consistent with this interpretation, the effect of LepA on ARD is related to the sequence of the Shine–Dalgarno region. Global perturbation of gene expression in the ΔlepA mutant likely explains most of its phenotypes.
Collapse
Affiliation(s)
- Rohan Balakrishnan
- Ohio State Biochemistry Program, The Ohio State University, Columbus, OH 43210, USA Center for RNA Biology, The Ohio State University, Columbus, OH 43210, USA
| | - Kenji Oman
- Center for RNA Biology, The Ohio State University, Columbus, OH 43210, USA Department of Physics, The Ohio State University, Columbus, OH 43210, USA
| | - Shinichiro Shoji
- Center for RNA Biology, The Ohio State University, Columbus, OH 43210, USA
| | - Ralf Bundschuh
- Center for RNA Biology, The Ohio State University, Columbus, OH 43210, USA Department of Physics, The Ohio State University, Columbus, OH 43210, USA
| | - Kurt Fredrick
- Ohio State Biochemistry Program, The Ohio State University, Columbus, OH 43210, USA Center for RNA Biology, The Ohio State University, Columbus, OH 43210, USA
| |
Collapse
|
32
|
Gulati M, Jain N, Davis JH, Williamson JR, Britton RA. Functional interaction between ribosomal protein L6 and RbgA during ribosome assembly. PLoS Genet 2014; 10:e1004694. [PMID: 25330043 PMCID: PMC4199504 DOI: 10.1371/journal.pgen.1004694] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2013] [Accepted: 08/21/2014] [Indexed: 01/06/2023] Open
Abstract
RbgA is an essential GTPase that participates in the assembly of the large ribosomal subunit in Bacillus subtilis and its homologs are implicated in mitochondrial and eukaryotic large subunit assembly. How RbgA functions in this process is still poorly understood. To gain insight into the function of RbgA we isolated suppressor mutations that partially restored the growth of an RbgA mutation (RbgA-F6A) that caused a severe growth defect. Analysis of these suppressors identified mutations in rplF, encoding ribosomal protein L6. The suppressor strains all accumulated a novel ribosome intermediate that migrates at 44S in sucrose gradients. All of the mutations cluster in a region of L6 that is in close contact with helix 97 of the 23S rRNA. In vitro maturation assays indicate that the L6 substitutions allow the defective RbgA-F6A protein to function more effectively in ribosome maturation. Our results suggest that RbgA functions to properly position L6 on the ribosome, prior to the incorporation of L16 and other late assembly proteins. Ribosomes are complex macromolecular machines that carry out the essential function of protein synthesis in the cell. The assembly of ribosomal subunits is a multistep process that involves the accurate and timely assembly of 3 rRNA molecules and>50 ribosomal-proteins. In recent years many ribosome assembly factors have been identified in bacterial and eukaryotic cells; however, their precise functions in ribosome biogenesis are poorly understood. We have previously shown that the GTPase RbgA, a protein conserved from bacteria to humans, is essential for ribosome assembly in Bacillus subtilis. Here, we show that growth defect caused by a mutation in RbgA is partially suppressed by mutations in ribosomal protein L6. The suppressor strains accumulate novel ribosomal intermediates that appear to suppress the RbgA defect by weakening the interaction of L6 for the ribosome and facilitating RbgA dependent assembly. Our work provides evidence for a functional interaction between ribosome assembly factor RbgA and ribosomal protein L6 during assembly, a function that is likely important for mitochondrial, chloroplast, and eukaryotic ribosome assembly as well.
Collapse
Affiliation(s)
- Megha Gulati
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, Michigan, United States of America
| | - Nikhil Jain
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, Michigan, United States of America
| | - Joseph H. Davis
- Department of Integrative Structural and Computational Biology, Department of Chemistry and The Skaggs Institute for Chemical Biology, The Scripps Research Institute, La Jolla, California, United States of America
| | - James R. Williamson
- Department of Integrative Structural and Computational Biology, Department of Chemistry and The Skaggs Institute for Chemical Biology, The Scripps Research Institute, La Jolla, California, United States of America
| | - Robert A. Britton
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, Michigan, United States of America
- * E-mail: .
| |
Collapse
|
33
|
Development, antibiotic production, and ribosome assembly in Streptomyces venezuelae are impacted by RNase J and RNase III deletion. J Bacteriol 2014; 196:4253-67. [PMID: 25266378 DOI: 10.1128/jb.02205-14] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
RNA metabolism is a critical but frequently overlooked control element affecting virtually every cellular process in bacteria. RNA processing and degradation is mediated by a suite of ribonucleases having distinct cleavage and substrate specificity. Here, we probe the role of two ribonucleases (RNase III and RNase J) in the emerging model system Streptomyces venezuelae. We show that each enzyme makes a unique contribution to the growth and development of S. venezuelae and further affects the secondary metabolism and antibiotic production of this bacterium. We demonstrate a connection between the action of these ribonucleases and translation, with both enzymes being required for the formation of functional ribosomes. RNase III mutants in particular fail to properly process 23S rRNA, form fewer 70S ribosomes, and show reduced translational processivity. The loss of either RNase III or RNase J additionally led to the appearance of a new ribosomal species (the 100S ribosome dimer) during exponential growth and dramatically sensitized these mutants to a range of antibiotics.
Collapse
|
34
|
Gupta N, Culver GM. Multiple in vivo pathways for Escherichia coli small ribosomal subunit assembly occur on one pre-rRNA. Nat Struct Mol Biol 2014; 21:937-43. [PMID: 25195050 PMCID: PMC4355579 DOI: 10.1038/nsmb.2887] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2014] [Accepted: 08/07/2014] [Indexed: 01/01/2023]
Abstract
Processing of transcribed precursor ribosomal RNA (pre-rRNA) to a mature state is a conserved aspect of ribosome biogenesis in vivo. We developed an affinity-purification system to isolate and analyze in vivo-formed pre-rRNA-containing ribonucleoprotein (RNP) particles (rRNPs) from wild-type E. coli. We observed that the first processing intermediate of pre-small subunit (pre-SSU) rRNA is a platform for biogenesis. These pre-SSU-containing RNPs have differing ribosomal-protein and auxiliary factor association and rRNA folding. Each RNP lacks the proper architecture in functional regions, thus suggesting that checkpoints preclude immature subunits from entering the translational cycle. This work offers in vivo snapshots of SSU biogenesis and reveals that multiple pathways exist for the entire SSU biogenesis process in wild-type E. coli. These findings have implications for understanding SSU biogenesis in vivo and offer a general strategy for analysis of RNP biogenesis.
Collapse
Affiliation(s)
- Neha Gupta
- Department of Biology, University of Rochester, Rochester, New York, USA
| | - Gloria M Culver
- 1] Department of Biology, University of Rochester, Rochester, New York, USA. [2] Center for RNA Biology, University of Rochester, Rochester, New York, USA
| |
Collapse
|
35
|
Metodiev MD, Spåhr H, Loguercio Polosa P, Meharg C, Becker C, Altmueller J, Habermann B, Larsson NG, Ruzzenente B. NSUN4 is a dual function mitochondrial protein required for both methylation of 12S rRNA and coordination of mitoribosomal assembly. PLoS Genet 2014; 10:e1004110. [PMID: 24516400 PMCID: PMC3916286 DOI: 10.1371/journal.pgen.1004110] [Citation(s) in RCA: 221] [Impact Index Per Article: 20.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2013] [Accepted: 12/02/2013] [Indexed: 01/14/2023] Open
Abstract
Biogenesis of mammalian mitochondrial ribosomes requires a concerted maturation of both the small (SSU) and large subunit (LSU). We demonstrate here that the m5C methyltransferase NSUN4, which forms a complex with MTERF4, is essential in mitochondrial ribosomal biogenesis as mitochondrial translation is abolished in conditional Nsun4 mouse knockouts. Deep sequencing of bisulfite-treated RNA shows that NSUN4 methylates cytosine 911 in 12S rRNA (m5C911) of the SSU. Surprisingly, NSUN4 does not need MTERF4 to generate this modification. Instead, the NSUN4/MTERF4 complex is required to assemble the SSU and LSU to form a monosome. NSUN4 is thus a dual function protein, which on the one hand is needed for 12S rRNA methylation and, on the other hand interacts with MTERF4 to facilitate monosome assembly. The presented data suggest that NSUN4 has a key role in controlling a final step in ribosome biogenesis to ensure that only the mature SSU and LSU are assembled. Mitochondria perform a number of essential functions in the cell, including synthesis of ATP via the oxidative phosphorylation (OXPHOS) system. Normal mitochondrial function requires coordinated expression of two genomes: mitochondria's own genome (mtDNA), which encodes 13 respiratory chain subunits with essential structural and functional roles for the OXPHOS system, and the nuclear genome encoding the remaining ∼80 subunits. The mtDNA-encoded polypeptides are synthesized on mitochondrial ribosomes (mitoribosomes) located in the mitochondrial matrix. Biogenesis, maintenance and regulation of the complex mitochondrial translation apparatus are poorly understood despite its fundamental importance for cellular energy homeostasis. Here, we show that inactivation of the Nsun4 gene, encoding a mitochondrial m5C-methyltransferase, causes embryonic lethality, whereas tissue-specific disruption of Nsun4 in the heart causes cardiomyopathy with mitochondrial dysfunction. By performing sequencing of bisulfite-treated RNA we report that NSUN4 methylates C911 in 12S rRNA of the small ribosomal subunit. Surprisingly, NSUN4 can on its own perform this rRNA modification, whereas interaction with its partner protein MTERF4 is required for assembly of functional ribosomes. NSUN4 thus has dual roles in ribosome maturation and performs an important final quality control step to ensure that only mature mitoribosomal subunits are assembled into functional ribosomes.
Collapse
Affiliation(s)
| | - Henrik Spåhr
- Max Planck Institute for Biology of Ageing, Cologne, Germany
| | - Paola Loguercio Polosa
- Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari Aldo Moro, Bari, Italy
| | - Caroline Meharg
- Institute for Global Food Security, David Keir Building, Queen's University, Belfast, Northern Ireland
| | - Christian Becker
- Cologne Center for Genomics, University of Cologne, Cologne, Germany
| | - Janine Altmueller
- Cologne Center for Genomics, University of Cologne, Cologne, Germany
| | | | - Nils-Göran Larsson
- Max Planck Institute for Biology of Ageing, Cologne, Germany
- Department of Laboratory Medicine, Karolinska Institutet, Stockholm, Sweden
- * E-mail: (NGL); (BR)
| | - Benedetta Ruzzenente
- Max Planck Institute for Biology of Ageing, Cologne, Germany
- * E-mail: (NGL); (BR)
| |
Collapse
|
36
|
Fristedt R, Scharff LB, Clarke CA, Wang Q, Lin C, Merchant SS, Bock R. RBF1, a plant homolog of the bacterial ribosome-binding factor RbfA, acts in processing of the chloroplast 16S ribosomal RNA. PLANT PHYSIOLOGY 2014; 164:201-15. [PMID: 24214533 PMCID: PMC3875801 DOI: 10.1104/pp.113.228338] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2013] [Accepted: 11/07/2013] [Indexed: 05/20/2023]
Abstract
Plastids (chloroplasts) possess 70S ribosomes that are very similar in structure and function to the ribosomes of their bacterial ancestors. While most components of the bacterial ribosome (ribosomal RNAs [rRNAs] and ribosomal proteins) are well conserved in the plastid ribosome, little is known about the factors mediating the biogenesis of plastid ribosomes. Here, we have investigated a putative homolog of the bacterial RbfA (for ribosome-binding factor A) protein that was identified as a cold-shock protein and an auxiliary factor acting in the 5' maturation of the 16S rRNA. The unicellular green alga Chlamydomonas reinhardtii and the vascular plant Arabidopsis (Arabidopsis thaliana) both encode a single RbfA-like protein in their nuclear genomes. By generating specific antibodies against this protein, we show that the plant RbfA-like protein functions exclusively in the plastid, where it is associated with thylakoid membranes. Analysis of mutants for the corresponding gene (termed RBF1) reveals that the gene function is essential for photoautotrophic growth. Weak mutant alleles display reduced levels of plastid ribosomes, a specific depletion in 30S ribosomal subunits, and reduced activity of plastid protein biosynthesis. Our data suggest that, while the function in ribosome maturation and 16S rRNA 5' end processing is conserved, the RBF1 protein has assumed an additional role in 3' end processing. Together with the apparent absence of a homologous protein from plant mitochondria, our findings illustrate that the assembly process of the 70S ribosome is not strictly conserved and has undergone some modifications during organelle evolution.
Collapse
|
37
|
Culver GM, Rife JP. Involvement of Ribosome Biogenesis in Antibiotic Function, Acquired Resistance, and Future Opportunities in Drug Discovery. Antibiotics (Basel) 2013. [DOI: 10.1002/9783527659685.ch15] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
|
38
|
Lai J, Chen K, Luthey-Schulten Z. Structural intermediates and folding events in the early assembly of the ribosomal small subunit. J Phys Chem B 2013; 117:13335-45. [PMID: 23972210 DOI: 10.1021/jp404106r] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Using all-atom explicit solvent molecular dynamics (MD) simulations, we investigated the early structural intermediates of the 5' domain of the 16S rRNA in Escherichia coli upon the removal of the primary binding r-proteins S4, S17, and S20 and the secondary binding r-protein S16. Removal of each r-protein corresponded to the disappearance of subdomains with correlated dynamics. Correlation-based network analysis of the MD trajectories of the naked rRNA showed that the different subdomains are connected via multiple pathways with high betweenness. These pathways cross at the internal loop of helix 17 (h17) in the five-way junction (5WJ). The structure of the internal loop is disrupted by the binding of S17 and rescued by the addition of S16, suggesting an important function of the secondary binding protein in biasing the rRNA folding landscape toward the native basin. Using structure-based Gō simulations, we investigated the folding barriers of the lower four-way junction (4WJ) with h6, which is the primary binding site of S20 and the first to be transcribed. The folding of the 4WJ is consistent with the protection patterns observed in hydroxyl radical footprinting. Results from the all-atom simulations show that the fluctuations in the 5WJ are independent of the fluctuations in the 4WJ, suggesting that the subdomains fold independently and are stabilized by primary r-proteins.
Collapse
Affiliation(s)
- Jonathan Lai
- Department of Chemistry, University of Illinois at Urbana-Champaign , 600 S. Mathews Avenue, Urbana, Illinois 61801, United States
| | | | | |
Collapse
|
39
|
Bauer JW, Brandl C, Haubenreisser O, Wimmer B, Weber M, Karl T, Klausegger A, Breitenbach M, Hintner H, von der Haar T, Tuite MF, Breitenbach-Koller L. Specialized yeast ribosomes: a customized tool for selective mRNA translation. PLoS One 2013; 8:e67609. [PMID: 23861776 PMCID: PMC3704640 DOI: 10.1371/journal.pone.0067609] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2012] [Accepted: 05/25/2013] [Indexed: 11/23/2022] Open
Abstract
Evidence is now accumulating that sub-populations of ribosomes - so-called specialized ribosomes - can favour the translation of subsets of mRNAs. Here we use a large collection of diploid yeast strains, each deficient in one or other copy of the set of ribosomal protein (RP) genes, to generate eukaryotic cells carrying distinct populations of altered ‘specialized’ ribosomes. We show by comparative protein synthesis assays that different heterologous mRNA reporters based on luciferase are preferentially translated by distinct populations of specialized ribosomes. These mRNAs include reporters carrying premature termination codons (PTC) thus allowing us to identify specialized ribosomes that alter the efficiency of translation termination leading to enhanced synthesis of the wild-type protein. This finding suggests that these strains can be used to identify novel therapeutic targets in the ribosome. To explore this further we examined the translation of the mRNA encoding the extracellular matrix protein laminin β3 (LAMB3) since a LAMB3-PTC mutant is implicated in the blistering skin disease Epidermolysis bullosa (EB). This screen identified specialized ribosomes with reduced levels of RP L35B as showing enhanced synthesis of full-length LAMB3 in cells expressing the LAMB3-PTC mutant. Importantly, the RP L35B sub-population of specialized ribosomes leave both translation of a reporter luciferase carrying a different PTC and bulk mRNA translation largely unaltered.
Collapse
Affiliation(s)
- Johann W. Bauer
- Department of Cell Biology, University of Salzburg, Salzburg, Austria
- Department of Dermatology, General Hospital Salzburg/PMU, Salzburg, Austria
| | - Clemens Brandl
- Department of Cell Biology, University of Salzburg, Salzburg, Austria
| | | | - Bjoern Wimmer
- Department of Cell Biology, University of Salzburg, Salzburg, Austria
| | - Manuela Weber
- Department of Cell Biology, University of Salzburg, Salzburg, Austria
| | - Thomas Karl
- Department of Cell Biology, University of Salzburg, Salzburg, Austria
| | - Alfred Klausegger
- Department of Dermatology, General Hospital Salzburg/PMU, Salzburg, Austria
| | | | - Helmut Hintner
- Department of Cell Biology, University of Salzburg, Salzburg, Austria
- Department of Dermatology, General Hospital Salzburg/PMU, Salzburg, Austria
| | - Tobias von der Haar
- Kent Fungal Group, School of Biosciences, University of Kent, Canterbury, Kent, United Kingdom
| | - Mick F. Tuite
- Kent Fungal Group, School of Biosciences, University of Kent, Canterbury, Kent, United Kingdom
- * E-mail: (MFT); (LB-K)
| | - Lore Breitenbach-Koller
- Department of Cell Biology, University of Salzburg, Salzburg, Austria
- * E-mail: (MFT); (LB-K)
| |
Collapse
|
40
|
Leong V, Kent M, Jomaa A, Ortega J. Escherichia coli rimM and yjeQ null strains accumulate immature 30S subunits of similar structure and protein complement. RNA (NEW YORK, N.Y.) 2013; 19:789-802. [PMID: 23611982 PMCID: PMC3683913 DOI: 10.1261/rna.037523.112] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
Assembly of the Escherichia coli 30S ribosomal subunits proceeds through multiple parallel pathways. The protein factors RimM, YjeQ, RbfA, and Era work in conjunction to assist at the late stages of the maturation process of the small subunit. However, it is unclear how the functional interplay between these factors occurs in the context of multiple parallel pathways. To understand how these factors work together, we have characterized the immature 30S subunits that accumulate in ΔrimM cells and compared them with immature 30S subunits from a ΔyjeQ strain. The cryo-EM maps obtained from these particles showed that the densities representing helices 44 and 45 in the rRNA were partially missing, suggesting mobility of these motifs. These 30S subunits were also partially depleted in all tertiary ribosomal proteins, particularly those binding in the head domain. Using image classification, we identified four subpopulations of ΔrimM immature 30S subunits differing in the amount of missing density for helices 44 and 45, as well as the amount of density existing in these maps for the underrepresented proteins. The structural defects found in these immature subunits resembled those of the 30S subunits that accumulate in the ΔyjeQ strain. These findings are consistent with an "early convergency model" in which multiple parallel assembly pathways of the 30S subunit converge into a late assembly intermediate, as opposed to the mature state. Functionally related factors will bind to this intermediate to catalyze the last steps of maturation leading to the mature 30S subunit.
Collapse
MESH Headings
- Binding Sites
- Cryoelectron Microscopy
- Escherichia coli/genetics
- Escherichia coli/growth & development
- Escherichia coli/metabolism
- Escherichia coli Proteins/genetics
- Escherichia coli Proteins/metabolism
- GTP Phosphohydrolases/genetics
- GTP Phosphohydrolases/metabolism
- GTP-Binding Proteins/genetics
- GTP-Binding Proteins/metabolism
- Gene Deletion
- Genes, Bacterial
- Models, Molecular
- Nucleic Acid Conformation
- Phenotype
- RNA, Bacterial/genetics
- RNA, Bacterial/metabolism
- RNA, Ribosomal, 16S/genetics
- RNA, Ribosomal, 16S/metabolism
- RNA-Binding Proteins/genetics
- RNA-Binding Proteins/metabolism
- Ribosomal Proteins/genetics
- Ribosomal Proteins/metabolism
- Ribosome Subunits, Small, Bacterial/genetics
- Ribosome Subunits, Small, Bacterial/metabolism
- Species Specificity
Collapse
|
41
|
Role for cytoplasmic nucleotide hydrolysis in hepatic function and protein synthesis. Proc Natl Acad Sci U S A 2013; 110:5040-5. [PMID: 23479625 DOI: 10.1073/pnas.1205001110] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Nucleotide hydrolysis is essential for many aspects of cellular function. In the case of 3',5'-bisphosphorylated nucleotides, mammals possess two related 3'-nucleotidases, Golgi-resident 3'-phosphoadenosine 5'-phosphate (PAP) phosphatase (gPAPP) and Bisphosphate 3'-nucleotidase 1 (Bpnt1). gPAPP and Bpnt1 localize to distinct subcellular compartments and are members of a conserved family of metal-dependent lithium-sensitive enzymes. Although recent studies have demonstrated the importance of gPAPP for proper skeletal development in mice and humans, the role of Bpnt1 in mammals remains largely unknown. Here we report that mice deficient for Bpnt1 do not exhibit skeletal defects but instead develop severe liver pathologies, including hypoproteinemia, hepatocellular damage, and in severe cases, frank whole-body edema and death. Accompanying these phenotypes, we observed tissue-specific elevations of the substrate PAP, up to 50-fold in liver, repressed translation, and aberrant nucleolar architecture. Remarkably, the phenotypes of the Bpnt1 knockout are rescued by generating a double mutant mouse deficient for both PAP synthesis and hydrolysis, consistent with a mechanism in which PAP accumulation is toxic to tissue function independent of sulfation. Overall, our study defines a role for Bpnt1 in mammalian physiology and provides mechanistic insights into the importance of sulfur assimilation and cytoplasmic PAP hydrolysis to normal liver function.
Collapse
|
42
|
Connolly K, Culver G. Overexpression of RbfA in the absence of the KsgA checkpoint results in impaired translation initiation. Mol Microbiol 2013; 87:968-81. [PMID: 23387871 DOI: 10.1111/mmi.12145] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/21/2012] [Indexed: 01/05/2023]
Abstract
KsgA, a universally conserved small ribosomal subunit (SSU) rRNA methyltransferase, has recently been shown to facilitate a checkpoint within the ribosome maturation pathway. Under standard growth conditions removal of the KsgA checkpoint has a subtle impact on cell growth; yet, upon overexpresssion of RbfA, a ribosome maturation factor, KsgA becomes essential. Our results demonstrate the requirement of KsgA, in the presence of excess RbfA, both for the incorporation of ribosomal protein S21 to the developing SSU, and for final maturation of SSU rRNA. Also, when SSU biogenesis is perturbed by an imbalance in KsgA and RbfA, a population of 70S-like particles accumulates that is compositionally, functionally and structurally distinct from mature 70S ribosomes. Thus, our work suggests that KsgA and RbfA function together and are required for SSU maturation, and that additional checkpoints likely act to modulate malfunctional 70S particle formation in vivo.
Collapse
Affiliation(s)
- Keith Connolly
- Departments of Biology and of Biochemistry and Biophysics, University of Rochester, Rochester, NY 14627, USA
| | | |
Collapse
|
43
|
Karbstein K. Quality control mechanisms during ribosome maturation. Trends Cell Biol 2013; 23:242-50. [PMID: 23375955 DOI: 10.1016/j.tcb.2013.01.004] [Citation(s) in RCA: 89] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2012] [Revised: 01/08/2013] [Accepted: 01/08/2013] [Indexed: 12/01/2022]
Abstract
Protein synthesis on ribosomes is carefully quality-controlled to ensure the faithful transmission of genetic information from mRNA to protein. Many of these mechanisms rely on communication between distant sites on the ribosomes, and thus on the integrity of the ribosome structure. Furthermore, haploinsufficiency of ribosomal proteins, which increases the chances of forming incompletely assembled ribosomes, can predispose to cancer. Finally, release of inactive ribosomes into the translating pool will lead to their degradation together with the degradation of the bound mRNA. Together, these findings suggest that quality control mechanisms must be in place to survey nascent ribosomes and ensure their functionality. This review gives an account of these mechanisms as currently known.
Collapse
Affiliation(s)
- Katrin Karbstein
- Department of Cancer Biology, The Scripps Research Institute, 130 Scripps Way #2C2, Jupiter, FL 33458, USA.
| |
Collapse
|
44
|
Burman LG, Mauro VP. Analysis of rRNA processing and translation in mammalian cells using a synthetic 18S rRNA expression system. Nucleic Acids Res 2012; 40:8085-98. [PMID: 22718970 PMCID: PMC3439915 DOI: 10.1093/nar/gks530] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2011] [Revised: 03/12/2012] [Accepted: 05/10/2012] [Indexed: 11/13/2022] Open
Abstract
Analysis of processing, assembly, and function of higher eukaryotic ribosomal RNA (rRNA) has been hindered by the lack of an expression system that enables rRNA to be modified and then examined functionally. Given the potential usefulness of such a system, we have developed one for mammalian 18S rRNA. We inserted a sequence tag into expansion segment 3 of mouse 18S rRNA to monitor expression and cleavage by hybridization. Mutations were identified that confer resistance to pactamycin, allowing functional analysis of 40S ribosomal subunits containing synthetic 18S rRNAs by selectively blocking translation from endogenous (pactamycin-sensitive) subunits. rRNA constructs were suitably expressed in transfected cells, shown to process correctly, incorporate into ≈ 15% of 40S subunits, and function normally based on various criteria. After rigorous analysis, the system was used to investigate the importance of sequences that flank 18S rRNA in precursor transcripts. Although deletion analysis supported the requirement of binding sites for the U3 snoRNA, it showed that a large segment of the 5' external transcribed spacer and the entire first internal transcribed spacer, both of which flank 18S rRNA, are not required. The success of this approach opens the possibility of functional analyses of ribosomes, with applications in basic research and synthetic biology.
Collapse
MESH Headings
- Animals
- Cell Line
- DNA, Ribosomal Spacer/chemistry
- Mice
- Molecular Sequence Data
- Mutation
- Pactamycin/pharmacology
- Protein Biosynthesis
- Protein Synthesis Inhibitors/pharmacology
- RNA Precursors/chemistry
- RNA Precursors/metabolism
- RNA Processing, Post-Transcriptional
- RNA, Ribosomal, 18S/chemistry
- RNA, Ribosomal, 18S/genetics
- RNA, Ribosomal, 18S/metabolism
- Ribosome Subunits, Small, Eukaryotic/metabolism
- Sequence Deletion
Collapse
Affiliation(s)
| | - Vincent P. Mauro
- Department of Neurobiology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA
| |
Collapse
|
45
|
Kim BH, Malec P, Waloszek A, von Arnim AG. Arabidopsis BPG2: a phytochrome-regulated gene whose protein product binds to plastid ribosomal RNAs. PLANTA 2012; 236:677-90. [PMID: 22526496 DOI: 10.1007/s00425-012-1638-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2012] [Accepted: 03/22/2012] [Indexed: 05/08/2023]
Abstract
BPG2 (Brz-insensitive pale green 2) is a dark-repressible and light-inducible gene that is required for the greening process in Arabidopsis. Light pulse experiments suggested that light-regulated gene expression of BPG2 is mediated by phytochrome. The T-DNA insertion mutant bpg2-2 exhibited a reduced level of chlorophyll and carotenoid pigmentation in the plastids. Measurements of time resolved chlorophyll fluorescence and of fluorescence emission at 77 K indicated defective photosystem II and altered photosystem I functions in bpg2 mutants. Kinetic analysis of chlorophyll fluorescence induction suggested that the reduction of the primary acceptor (QA) is impaired in bpg2. The observed alterations resulted in reduced photosynthetic efficiency as measured by the electron transfer rate. BPG2 protein is localized in the plastid stroma fraction. Co-immunoprecipitation of a formaldehyde cross-linked RNA-protein complex indicated that BPG2 protein binds with specificity to chloroplast 16S and 23S ribosomal RNAs. The direct physical interaction with the plastid rRNAs supports an emerging model whereby BPG2 provides light-regulated ribosomal RNA processing functions, which are rate limiting for development of the plastid and its photosynthetic apparatus.
Collapse
Affiliation(s)
- Byung-Hoon Kim
- Department of Natural Sciences, Albany State University, 504 College Drive, Albany, GA 31705, USA.
| | | | | | | |
Collapse
|
46
|
Paul MF, Alushin GM, Barros MH, Rak M, Tzagoloff A. The putative GTPase encoded by MTG3 functions in a novel pathway for regulating assembly of the small subunit of yeast mitochondrial ribosomes. J Biol Chem 2012; 287:24346-55. [PMID: 22621929 PMCID: PMC3397861 DOI: 10.1074/jbc.m112.363309] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2012] [Revised: 05/22/2012] [Indexed: 11/06/2022] Open
Abstract
Very little is known about biogenesis of mitochondrial ribosomes. The GTPases encoded by the nuclear MTG1 and MTG2 genes of Saccharomyces cerevisiae have been reported to play a role in assembly of the ribosomal 54 S subunit. In the present study biochemical screens of a collection of respiratory deficient yeast mutants have enabled us to identify a third gene essential for expression of mitochondrial ribosomes. This gene codes for a member of the YqeH family of GTPases, which we have named MTG3 in keeping with the earlier convention. Mutations in MTG3 cause the accumulation of the 15 S rRNA precursor, previously shown to have an 80-nucleotide 5' extension. Sucrose gradient sedimentation of mitochondrial ribosomes from temperature-sensitive mtg3 mutants grown at the permissive and restrictive temperatures, combined with immunobloting with subunit-specific antibodies, indicate that Mtg3p is required for assembly of the 30 S but not 54 S ribosomal subunit. The respiratory deficient growth phenotype of an mtg3 null mutant is partially rescued by overexpression of the Mrpl4p constituent located at the peptide exit site of the 54 S subunit. The rescue is accompanied by an increase in processed 15 S rRNA. This suggests that Mtg3p and Mrpl4p jointly regulate assembly of the small subunit by modulating processing of the 15 S rRNA precursor.
Collapse
Affiliation(s)
- Marie-Françoise Paul
- From the Department of Biological Sciences, Columbia University, New York, New York 10027
| | - Gregory M. Alushin
- From the Department of Biological Sciences, Columbia University, New York, New York 10027
| | - Mario H. Barros
- From the Department of Biological Sciences, Columbia University, New York, New York 10027
| | - Malgorzata Rak
- From the Department of Biological Sciences, Columbia University, New York, New York 10027
| | - Alexander Tzagoloff
- From the Department of Biological Sciences, Columbia University, New York, New York 10027
| |
Collapse
|
47
|
Saccharomyces cerevisiae ribosomal protein L26 is not essential for ribosome assembly and function. Mol Cell Biol 2012; 32:3228-41. [PMID: 22688513 DOI: 10.1128/mcb.00539-12] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Ribosomal proteins play important roles in ribosome biogenesis and function. Here, we study the evolutionarily conserved L26 in Saccharomyces cerevisiae, which assembles into pre-60S ribosomal particles in the nucle(ol)us. Yeast L26 is one of the many ribosomal proteins encoded by two functional genes. We have disrupted both genes; surprisingly, the growth of the resulting rpl26 null mutant is apparently identical to that of the isogenic wild-type strain. The absence of L26 minimally alters 60S ribosomal subunit biogenesis. Polysome analysis revealed the appearance of half-mers. Analysis of pre-rRNA processing indicated that L26 is mainly required to optimize 27S pre-rRNA maturation, without which the release of pre-60S particles from the nucle(ol)us is partially impaired. Ribosomes lacking L26 exhibit differential reactivity to dimethylsulfate in domain I of 25S/5.8S rRNAs but apparently are able to support translation in vivo with wild-type accuracy. The bacterial homologue of yeast L26, L24, is a primary rRNA binding protein required for 50S ribosomal subunit assembly in vitro and in vivo. Our results underscore potential differences between prokaryotic and eukaryotic ribosome assembly. We discuss the reasons why yeast L26 plays such an apparently nonessential role in the cell.
Collapse
|
48
|
Klinge S, Voigts-Hoffmann F, Leibundgut M, Ban N. Atomic structures of the eukaryotic ribosome. Trends Biochem Sci 2012; 37:189-98. [DOI: 10.1016/j.tibs.2012.02.007] [Citation(s) in RCA: 130] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2011] [Revised: 02/10/2012] [Accepted: 02/16/2012] [Indexed: 12/20/2022]
|
49
|
Veith T, Wurm JP, Duchardt-Ferner E, Weis B, Martin R, Safferthal C, Bohnsack MT, Schleiff E, Wöhnert J. Backbone and side chain NMR resonance assignments for an archaeal homolog of the endonuclease Nob1 involved in ribosome biogenesis. BIOMOLECULAR NMR ASSIGNMENTS 2012; 6:47-50. [PMID: 21732055 DOI: 10.1007/s12104-011-9323-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2011] [Accepted: 06/27/2011] [Indexed: 05/31/2023]
Abstract
Eukaryotic ribosome biogenesis requires the concerted action of ~200 auxiliary protein factors on the nascent ribosome. For many of these factors structural and functional information is still lacking. The endonuclease Nob1 has been recently identified in yeast as the enzyme responsible for the final cytoplasmatic trimming step of the pre-18S rRNA during the biogenesis of the small ribosomal subunit. Here we report the NMR resonance assignments for a Nob1 homolog from the thermophilic archeon Pyrococcus horikoshii as a prerequisite for further structural studies of this class of proteins.
Collapse
Affiliation(s)
- Thomas Veith
- Institut für Molekulare Biowissenschaften, Johann-Wolfgang-Goethe-Universität Frankfurt/M, Max-von-Laue-Str. 9, 60438 Frankfurt, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Veith T, Martin R, Wurm JP, Weis BL, Duchardt-Ferner E, Safferthal C, Hennig R, Mirus O, Bohnsack MT, Wöhnert J, Schleiff E. Structural and functional analysis of the archaeal endonuclease Nob1. Nucleic Acids Res 2012; 40:3259-74. [PMID: 22156373 PMCID: PMC3326319 DOI: 10.1093/nar/gkr1186] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2011] [Revised: 11/11/2011] [Accepted: 11/14/2011] [Indexed: 01/01/2023] Open
Abstract
Eukaryotic ribosome biogenesis requires the concerted action of numerous ribosome assembly factors, for most of which structural and functional information is currently lacking. Nob1, which can be identified in eukaryotes and archaea, is required for the final maturation of the small subunit ribosomal RNA in yeast by catalyzing cleavage at site D after export of the preribosomal subunit into the cytoplasm. Here, we show that this also holds true for Nob1 from the archaeon Pyrococcus horikoshii, which efficiently cleaves RNA-substrates containing the D-site of the preribosomal RNA in a manganese-dependent manner. The structure of PhNob1 solved by nuclear magnetic resonance spectroscopy revealed a PIN domain common with many nucleases and a zinc ribbon domain, which are structurally connected by a flexible linker. We show that amino acid residues required for substrate binding reside in the PIN domain whereas the zinc ribbon domain alone is sufficient to bind helix 40 of the small subunit rRNA. This suggests that the zinc ribbon domain acts as an anchor point for the protein on the nascent subunit positioning it in the proximity of the cleavage site.
Collapse
Affiliation(s)
- Thomas Veith
- Institute for Molecular Biosciences, Center of Biomolecular Magnetic Resonance (BMRZ), Cluster of Excellence Frankfurt: Macromolecular Complexes and Centre of Membrane Proteomics, Johann-Wolfgang-Goethe University, Max-von-Laue Str. 9, 60438 Frankfurt, Germany
| | - Roman Martin
- Institute for Molecular Biosciences, Center of Biomolecular Magnetic Resonance (BMRZ), Cluster of Excellence Frankfurt: Macromolecular Complexes and Centre of Membrane Proteomics, Johann-Wolfgang-Goethe University, Max-von-Laue Str. 9, 60438 Frankfurt, Germany
| | - Jan P. Wurm
- Institute for Molecular Biosciences, Center of Biomolecular Magnetic Resonance (BMRZ), Cluster of Excellence Frankfurt: Macromolecular Complexes and Centre of Membrane Proteomics, Johann-Wolfgang-Goethe University, Max-von-Laue Str. 9, 60438 Frankfurt, Germany
| | - Benjamin L. Weis
- Institute for Molecular Biosciences, Center of Biomolecular Magnetic Resonance (BMRZ), Cluster of Excellence Frankfurt: Macromolecular Complexes and Centre of Membrane Proteomics, Johann-Wolfgang-Goethe University, Max-von-Laue Str. 9, 60438 Frankfurt, Germany
| | - Elke Duchardt-Ferner
- Institute for Molecular Biosciences, Center of Biomolecular Magnetic Resonance (BMRZ), Cluster of Excellence Frankfurt: Macromolecular Complexes and Centre of Membrane Proteomics, Johann-Wolfgang-Goethe University, Max-von-Laue Str. 9, 60438 Frankfurt, Germany
| | - Charlotta Safferthal
- Institute for Molecular Biosciences, Center of Biomolecular Magnetic Resonance (BMRZ), Cluster of Excellence Frankfurt: Macromolecular Complexes and Centre of Membrane Proteomics, Johann-Wolfgang-Goethe University, Max-von-Laue Str. 9, 60438 Frankfurt, Germany
| | - Raoul Hennig
- Institute for Molecular Biosciences, Center of Biomolecular Magnetic Resonance (BMRZ), Cluster of Excellence Frankfurt: Macromolecular Complexes and Centre of Membrane Proteomics, Johann-Wolfgang-Goethe University, Max-von-Laue Str. 9, 60438 Frankfurt, Germany
| | - Oliver Mirus
- Institute for Molecular Biosciences, Center of Biomolecular Magnetic Resonance (BMRZ), Cluster of Excellence Frankfurt: Macromolecular Complexes and Centre of Membrane Proteomics, Johann-Wolfgang-Goethe University, Max-von-Laue Str. 9, 60438 Frankfurt, Germany
| | - Markus T. Bohnsack
- Institute for Molecular Biosciences, Center of Biomolecular Magnetic Resonance (BMRZ), Cluster of Excellence Frankfurt: Macromolecular Complexes and Centre of Membrane Proteomics, Johann-Wolfgang-Goethe University, Max-von-Laue Str. 9, 60438 Frankfurt, Germany
| | - Jens Wöhnert
- Institute for Molecular Biosciences, Center of Biomolecular Magnetic Resonance (BMRZ), Cluster of Excellence Frankfurt: Macromolecular Complexes and Centre of Membrane Proteomics, Johann-Wolfgang-Goethe University, Max-von-Laue Str. 9, 60438 Frankfurt, Germany
| | - Enrico Schleiff
- Institute for Molecular Biosciences, Center of Biomolecular Magnetic Resonance (BMRZ), Cluster of Excellence Frankfurt: Macromolecular Complexes and Centre of Membrane Proteomics, Johann-Wolfgang-Goethe University, Max-von-Laue Str. 9, 60438 Frankfurt, Germany
| |
Collapse
|