1
|
Alphonse S, Djemil I, Piserchio A, Ghose R. Structural basis for the recognition of the bacterial tyrosine kinase Wzc by its cognate tyrosine phosphatase Wzb. Proc Natl Acad Sci U S A 2022; 119:e2201800119. [PMID: 35737836 PMCID: PMC9245664 DOI: 10.1073/pnas.2201800119] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Accepted: 05/07/2022] [Indexed: 12/25/2022] Open
Abstract
Bacterial tyrosine kinases (BY-kinases) comprise a family of protein tyrosine kinases that are structurally distinct from their functional counterparts in eukaryotes and are highly conserved across the bacterial kingdom. BY-kinases act in concert with their counteracting phosphatases to regulate a variety of cellular processes, most notably the synthesis and export of polysaccharides involved in biofilm and capsule biogenesis. Biochemical data suggest that BY-kinase function involves the cyclic assembly and disassembly of oligomeric states coupled to the overall phosphorylation levels of a C-terminal tyrosine cluster. This process is driven by the opposing effects of intermolecular autophosphorylation, and dephosphorylation catalyzed by tyrosine phosphatases. In the absence of structural insight into the interactions between a BY-kinase and its phosphatase partner in atomic detail, the precise mechanism of this regulatory process has remained poorly defined. To address this gap in knowledge, we have determined the structure of the transiently assembled complex between the catalytic core of the Escherichia coli (K-12) BY-kinase Wzc and its counteracting low-molecular weight protein tyrosine phosphatase (LMW-PTP) Wzb using solution NMR techniques. Unambiguous distance restraints from paramagnetic relaxation effects were supplemented with ambiguous interaction restraints from static spectral perturbations and transient chemical shift changes inferred from relaxation dispersion measurements and used in a computational docking protocol for structure determination. This structurepresents an atomic picture of the mode of interaction between an LMW-PTP and its BY-kinase substrate, and provides mechanistic insight into the phosphorylation-coupled assembly/disassembly process proposed to drive BY-kinase function.
Collapse
Affiliation(s)
- Sébastien Alphonse
- Department of Chemistry and Biochemistry, The City College of New York, New York, NY 10031
| | - Imane Djemil
- PhD Program in Biochemistry, The Graduate Center of The City University of New York (CUNY), New York, NY 10016
| | - Andrea Piserchio
- Department of Chemistry and Biochemistry, The City College of New York, New York, NY 10031
| | - Ranajeet Ghose
- Department of Chemistry and Biochemistry, The City College of New York, New York, NY 10031
- PhD Program in Biochemistry, The Graduate Center of The City University of New York (CUNY), New York, NY 10016
- PhD Program in Chemistry, The Graduate Center of CUNY, New York, NY 10016
- PhD Program in Physics, The Graduate Center of CUNY, New York, NY 10016
| |
Collapse
|
2
|
Hajredini F, Ghose R. A Conserved Structural Role for the Walker-A Lysine in P-Loop Containing Kinases. Front Mol Biosci 2021; 8:747206. [PMID: 34660698 PMCID: PMC8517177 DOI: 10.3389/fmolb.2021.747206] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2021] [Accepted: 09/20/2021] [Indexed: 12/01/2022] Open
Abstract
Bacterial tyrosine kinases (BY-kinases) and shikimate kinases (SKs) comprise two structurally divergent P-loop containing enzyme families that share similar catalytic site geometries, most notably with respect to their Walker-A, Walker-B, and DxD motifs. We had previously demonstrated that in BY-kinases, a specific interaction between the Walker-A and Walker-B motifs, driven by the conserved “catalytic” lysine housed on the former, leads to a conformation that is unable to efficiently coordinate Mg2+•ATP and is therefore incapable of chemistry. Here, using enhanced sampling molecular dynamics simulations, we demonstrate that structurally similar interactions between the Walker-A and Walker-B motifs, also mediated by the catalytic lysine, stabilize a state in SKs that deviates significantly from one that is necessary for the optimal coordination of Mg2+•ATP. This structural role of the Walker-A lysine is a general feature in SKs and is found to be present in members that encode a Walker-B sequence characteristic of the family (Coxiella burnetii SK), and in those that do not (Mycobacterium tuberculosis SK). Thus, the structural role of the Walker-A lysine in stabilizing an inactive state, distinct from its catalytic function, is conserved between two distantly related P-loop containing kinase families, the SKs and the BY-kinases. The universal conservation of this element, and of the key characteristics of its associated interaction partners within the Walker motifs of P-loop containing enzymes, suggests that this structural role of the Walker-A lysine is perhaps a widely deployed regulatory mechanism within this ancient family.
Collapse
Affiliation(s)
- Fatlum Hajredini
- Department of Chemistry and Biochemistry, The City College of New York, New York, NY, United States.,PhD Program in Biochemistry, The Graduate Center of CUNY, New York, NY, United States
| | - Ranajeet Ghose
- Department of Chemistry and Biochemistry, The City College of New York, New York, NY, United States.,PhD Program in Biochemistry, The Graduate Center of CUNY, New York, NY, United States.,PhD Program in Chemistry, The Graduate Center of CUNY, New York, NY, United States.,PhD Program in Physics, The Graduate Center of CUNY, New York, NY, United States
| |
Collapse
|
3
|
Coordination of capsule assembly and cell wall biosynthesis in Staphylococcus aureus. Nat Commun 2019; 10:1404. [PMID: 30926919 PMCID: PMC6441080 DOI: 10.1038/s41467-019-09356-x] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2016] [Accepted: 02/28/2019] [Indexed: 11/08/2022] Open
Abstract
The Gram-positive cell wall consists of peptidoglycan functionalized with anionic glycopolymers, such as wall teichoic acid and capsular polysaccharide (CP). How the different cell wall polymers are assembled in a coordinated fashion is not fully understood. Here, we reconstitute Staphylococcus aureus CP biosynthesis and elucidate its interplay with the cell wall biosynthetic machinery. We show that the CapAB tyrosine kinase complex controls multiple enzymatic checkpoints through reversible phosphorylation to modulate the consumption of essential precursors that are also used in peptidoglycan biosynthesis. In addition, the CapA1 activator protein interacts with and cleaves lipid-linked CP precursors, releasing the essential lipid carrier undecaprenyl-phosphate. We further provide biochemical evidence that the subsequent attachment of CP is achieved by LcpC, a member of the LytR-CpsA-Psr protein family, using the peptidoglycan precursor native lipid II as acceptor substrate. The Ser/Thr kinase PknB, which can sense cellular lipid II levels, negatively controls CP synthesis. Our work sheds light on the integration of CP biosynthesis into the multi-component Gram-positive cell wall.
Collapse
|
4
|
Mijakovic I, Grangeasse C, Turgay K. Exploring the diversity of protein modifications: special bacterial phosphorylation systems. FEMS Microbiol Rev 2016; 40:398-417. [PMID: 26926353 DOI: 10.1093/femsre/fuw003] [Citation(s) in RCA: 81] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2015] [Accepted: 02/02/2016] [Indexed: 12/31/2022] Open
Abstract
Protein modifications not only affect protein homeostasis but can also establish new cellular protein functions and are important components of complex cellular signal sensing and transduction networks. Among these post-translational modifications, protein phosphorylation represents the one that has been most thoroughly investigated. Unlike in eukarya, a large diversity of enzyme families has been shown to phosphorylate and dephosphorylate proteins on various amino acids with different chemical properties in bacteria. In this review, after a brief overview of the known bacterial phosphorylation systems, we focus on more recently discovered and less widely known kinases and phosphatases. Namely, we describe in detail tyrosine- and arginine-phosphorylation together with some examples of unusual serine-phosphorylation systems and discuss their potential role and function in bacterial physiology, and regulatory networks. Investigating these unusual bacterial kinase and phosphatases is not only important to understand their role in bacterial physiology but will help to generally understand the full potential and evolution of protein phosphorylation for signal transduction, protein modification and homeostasis in all cellular life.
Collapse
Affiliation(s)
- Ivan Mijakovic
- Systems and Synthetic Biology Division, Department of Biology and Biological Engineering, Chalmers University of Technology, Gothenburg 41296, Sweden Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, 2970 Hørsholm, Denmark
| | - Christophe Grangeasse
- Unité Microbiologie Moléculaire et Biochimie Structurale, UMR 5086-CNRS/ Université Lyon 1, Lyon 69367, France
| | - Kürşad Turgay
- Institut für Mikrobiologie, Leibniz Universität Hannover, D-30419 Hannover, Germany
| |
Collapse
|
5
|
Weidenmaier C, Lee JC. Structure and Function of Surface Polysaccharides of Staphylococcus aureus. Curr Top Microbiol Immunol 2015; 409:57-93. [PMID: 26728067 DOI: 10.1007/82_2015_5018] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The major surface polysaccharides of Staphylococcus aureus include the capsular polysaccharide (CP), cell wall teichoic acid (WTA), and polysaccharide intercellular adhesin/poly-β(1-6)-N-acetylglucosamine (PIA/PNAG). These glycopolymers are important components of the staphylococcal cell envelope, but none of them is essential to S. aureus viability and growth in vitro. The overall biosynthetic pathways of CP, WTA, and PIA/PNAG have been elucidated, and the functions of most of the biosynthetic enzymes have been demonstrated. Because S. aureus CP and WTA (but not PIA/PNAG) utilize a common cell membrane lipid carrier (undecaprenyl-phosphate) that is shared by the peptidoglycan biosynthesis pathway, there is evidence that these processes are highly integrated and temporally regulated. Regulatory elements that control glycopolymer biosynthesis have been described, but the cross talk that orchestrates the biosynthetic pathways of these three polysaccharides remains largely elusive. CP, WTA, and PIA/PNAG each play distinct roles in S. aureus colonization and the pathogenesis of staphylococcal infection. However, they each promote bacterial evasion of the host immune defences, and WTA is being explored as a target for antimicrobial therapeutics. All the three glycopolymers are viable targets for immunotherapy, and each (conjugated to a carrier protein) is under evaluation for inclusion in a multivalent S. aureus vaccine. Future research findings that increase our understanding of these surface polysaccharides, how the bacterial cell regulates their expression, and their biological functions will likely reveal new approaches to controlling this important bacterial pathogen.
Collapse
Affiliation(s)
- Christopher Weidenmaier
- Interfaculty Institute for Microbiology and Infection Medicine Tübingen, University of Tübingen and German Center for Infection Research, Tübingen, Germany
| | - Jean C Lee
- Division of Infectious Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02115, USA.
| |
Collapse
|
6
|
Helicobacter pylori CagA and gastric cancer: a paradigm for hit-and-run carcinogenesis. Cell Host Microbe 2014; 15:306-16. [PMID: 24629337 DOI: 10.1016/j.chom.2014.02.008] [Citation(s) in RCA: 384] [Impact Index Per Article: 34.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Helicobacter pylori is a gastric bacterial pathogen that is etiologically linked to human gastric cancer. The cytotoxin-associated gene A (CagA) protein of H. pylori, which is delivered into gastric epithelial cells via bacterial type IV secretion, is an oncoprotein that can induce malignant neoplasms in mammals. Upon delivery, CagA perturbs multiple host signaling pathways by acting as an extrinsic scaffold or hub protein. On one hand, signals aberrantly raised by CagA are integrated into a direct oncogenic insult, whereas on the other hand, they engender genetic instability. Despite its decisive role in the development of gastric cancer, CagA is not required for the maintenance of a neoplastic phenotype in established cancer cells. Therefore, CagA-conducted gastric carcinogenesis progresses through a hit-and-run mechanism in which pro-oncogenic actions of CagA are successively taken over by a series of genetic and/or epigenetic alterations compiled in cancer-predisposing cells during long-standing infection with cagA-positive H. pylori.
Collapse
|
7
|
Mycobacterium tuberculosis supports protein tyrosine phosphorylation. Proc Natl Acad Sci U S A 2014; 111:9265-70. [PMID: 24927537 DOI: 10.1073/pnas.1323894111] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Reversible protein phosphorylation determines growth and adaptive decisions in Mycobacterium tuberculosis (Mtb). At least 11 two-component systems and 11 Ser/Thr protein kinases (STPKs) mediate phosphorylation on Asp, His, Ser, and Thr. In contrast, protein phosphorylation on Tyr has not been described previously in Mtb. Here, using a combination of phospho-enrichment and highly sensitive mass spectrometry, we show extensive protein Tyr phosphorylation of diverse Mtb proteins, including STPKs. Several STPKs function as dual-specificity kinases that phosphorylate Tyr in cis and in trans, suggesting that dual-specificity kinases have a major role in bacterial phospho-signaling. Mutation of a phosphotyrosine site of the essential STPK PknB reduces its activity in vitro and in live Mtb, indicating that Tyr phosphorylation has a functional role in bacterial growth. These data identify a previously unrecognized phosphorylation system in a human pathogen that claims ∼ 1.4 million lives every year.
Collapse
|
8
|
Abstract
Microbial ester kinases identified in the past 3 decades came as a surprise, as protein phosphorylation on Ser, Thr, and Tyr amino acids was thought to be unique to eukaryotes. Current analysis of available microbial genomes reveals that "eukaryote-like" protein kinases are prevalent in prokaryotes and can converge in the same signaling pathway with the classical microbial "two-component" systems. Most microbial tyrosine kinases lack the "eukaryotic" Hanks domain signature and are designated tyrosine kinases based upon their biochemical activity. These include the tyrosine kinases termed bacterial tyrosine kinases (BY-kinases), which are responsible for the majority of known bacterial tyrosine phosphorylation events. Although termed generally as bacterial tyrosine kinases, BY-kinases can be considered as one family belonging to the superfamily of prokaryotic protein-tyrosine kinases in bacteria. Other members of this superfamily include atypical "odd" tyrosine kinases with diverse mechanisms of protein phosphorylation and the "eukaryote-like" Hanks-type tyrosine kinases. Here, we discuss the distribution, phylogeny, and function of the various prokaryotic protein-tyrosine kinases, focusing on the recently discovered Mycobacterium tuberculosis PtkA and its relationship with other members of this diverse family of proteins.
Collapse
Affiliation(s)
- Joseph D Chao
- From the Department of Microbiology and Immunology and
| | | | | |
Collapse
|
9
|
Kinsey WH. SRC-family tyrosine kinases in oogenesis, oocyte maturation and fertilization: an evolutionary perspective. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2014; 759:33-56. [PMID: 25030759 DOI: 10.1007/978-1-4939-0817-2_3] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The oocyte is a highly specialized cell poised to respond to fertilization with a unique set of actions needed to recognize and incorporate a single sperm, complete meiosis, reprogram maternal and paternal genomes and assemble them into a unique zygotic genome, and finally initiate the mitotic cell cycle. Oocytes accomplish this diverse series of events through an array of signal transduction pathway components that include a characteristic collection of protein tyrosine kinases. The src-family protein kinases (SFKs) figure importantly in this signaling array and oocytes characteristically express certain SFKs at high levels to provide for the unique actions that the oocyte must perform. The SFKs typically exhibit a distinct pattern of subcellular localization in oocytes and perform critical functions in different subcellular compartments at different steps during oocyte maturation and fertilization. While many aspects of SFK signaling are conserved among oocytes from different species, significant differences exist in the extent to which src-family-mediated pathways are used by oocytes from species that fertilize externally vs those which are fertilized internally. The observation that several oocyte functions which require SFK signaling appear to represent common points of failure during assisted reproductive techniques in humans, highlights the importance of these signaling pathways for human reproductive health.
Collapse
Affiliation(s)
- William H Kinsey
- Department of Anatomy and Cell Biology, University of Kansas Medical Center, 3901 Rainbow Blvd., Kansas City, KS, 66160, USA,
| |
Collapse
|
10
|
Wright CJ, Burns LH, Jack AA, Back CR, Dutton LC, Nobbs AH, Lamont RJ, Jenkinson HF. Microbial interactions in building of communities. Mol Oral Microbiol 2013; 28:83-101. [PMID: 23253299 PMCID: PMC3600090 DOI: 10.1111/omi.12012] [Citation(s) in RCA: 130] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/31/2012] [Indexed: 12/31/2022]
Abstract
Establishment of a community is considered to be essential for microbial growth and survival in the human oral cavity. Biofilm communities have increased resilience to physical forces, antimicrobial agents and nutritional variations. Specific cell-to-cell adherence processes, mediated by adhesin-receptor pairings on respective microbial surfaces, are able to direct community development. These interactions co-localize species in mutually beneficial relationships, such as streptococci, veillonellae, Porphyromonas gingivalis and Candida albicans. In transition from the planktonic mode of growth to a biofilm community, microorganisms undergo major transcriptional and proteomic changes. These occur in response to sensing of diffusible signals, such as autoinducer molecules, and to contact with host tissues or other microbial cells. Underpinning many of these processes are intracellular phosphorylation events that regulate a large number of microbial interactions relevant to community formation and development.
Collapse
Affiliation(s)
- Christopher J. Wright
- Department of Oral Health and Systemic Disease, University of Louisville, 570 South Preston Street, Louisville, Kentucky, 40202, USA
| | - Logan H. Burns
- Department of Oral Health and Systemic Disease, University of Louisville, 570 South Preston Street, Louisville, Kentucky, 40202, USA
| | - Alison A. Jack
- School of Oral and Dental Sciences, University of Bristol, Lower Maudlin Street, Bristol BS12LY, UK
| | - Catherine R. Back
- School of Oral and Dental Sciences, University of Bristol, Lower Maudlin Street, Bristol BS12LY, UK
| | - Lindsay C. Dutton
- School of Oral and Dental Sciences, University of Bristol, Lower Maudlin Street, Bristol BS12LY, UK
| | - Angela H. Nobbs
- School of Oral and Dental Sciences, University of Bristol, Lower Maudlin Street, Bristol BS12LY, UK
| | - Richard J. Lamont
- Department of Oral Health and Systemic Disease, University of Louisville, 570 South Preston Street, Louisville, Kentucky, 40202, USA
| | - Howard F. Jenkinson
- School of Oral and Dental Sciences, University of Bristol, Lower Maudlin Street, Bristol BS12LY, UK
| |
Collapse
|
11
|
Li F, Shi P, Li J, Yang F, Wang T, Zhang W, Gao F, Ding W, Li D, Li J, Xiong Y, Sun J, Gong W, Tian C, Wang J. A Genetically Encoded19F NMR Probe for Tyrosine Phosphorylation. Angew Chem Int Ed Engl 2013; 52:3958-62. [DOI: 10.1002/anie.201300463] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2013] [Indexed: 11/09/2022]
|
12
|
Li F, Shi P, Li J, Yang F, Wang T, Zhang W, Gao F, Ding W, Li D, Li J, Xiong Y, Sun J, Gong W, Tian C, Wang J. A Genetically Encoded19F NMR Probe for Tyrosine Phosphorylation. Angew Chem Int Ed Engl 2013. [DOI: 10.1002/ange.201300463] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
13
|
Comparative transcriptomic analysis of the Burkholderia cepacia tyrosine kinase bceF mutant reveals a role in tolerance to stress, biofilm formation, and virulence. Appl Environ Microbiol 2013; 79:3009-20. [PMID: 23435894 DOI: 10.1128/aem.00222-13] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
The bacterial tyrosine-kinase (BY-kinase) family comprises the major group of bacterial enzymes endowed with tyrosine kinase activity. We previously showed that the BceF protein from Burkholderia cepacia IST408 belongs to this BY-kinase family and is involved in the biosynthesis of the exopolysaccharide cepacian. However, little is known about the extent of regulation of this protein kinase activity. In order to examine this regulation, we performed a comparative transcriptome profile between the bceF mutant and wild-type B. cepacia IST408. The analyses led to identification of 630 genes whose expression was significantly changed. Genes with decreased expression in the bceF mutant were related to stress response, motility, cell adhesion, and carbon and energy metabolism. Genes with increased expression were related to intracellular signaling and lipid metabolism. Mutation of bceF led to reduced survival under heat shock and UV light exposure, reduced swimming motility, and alteration in biofilm architecture when grown in vitro. Consistent with some of these phenotypes, the bceF mutant demonstrated elevated levels of cyclic-di-GMP. Furthermore, BceF contributed to the virulence of B. cepacia for larvae of the Greater wax moth, Galleria mellonella. Taken together, BceF appears to play a considerable role in many cellular processes, including biofilm formation and virulence. As homologues of BceF occur in a number of pathogenic and plant-associated Burkholderia strains, the modulation of bacterial behavior through tyrosine kinase activity is most likely a widely occurring phenomenon.
Collapse
|
14
|
Grangeasse C, Nessler S, Mijakovic I. Bacterial tyrosine kinases: evolution, biological function and structural insights. Philos Trans R Soc Lond B Biol Sci 2012; 367:2640-55. [PMID: 22889913 DOI: 10.1098/rstb.2011.0424] [Citation(s) in RCA: 107] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Reversible protein phosphorylation is a major mechanism in the regulation of fundamental signalling events in all living organisms. Bacteria have been shown to possess a versatile repertoire of protein kinases, including histidine and aspartic acid kinases, serine/threonine kinases, and more recently tyrosine and arginine kinases. Tyrosine phosphorylation is today recognized as a key regulatory device of bacterial physiology, linked to exopolysaccharide production, virulence, stress response and DNA metabolism. However, bacteria have evolved tyrosine kinases that share no resemblance with their eukaryotic counterparts and are unique in exploiting the ATP/GTP-binding Walker motif to catalyse autophosphorylation and substrate phosphorylation on tyrosine. These enzymes, named BY-kinases (for Bacterial tYrosine kinases), have been identified in a majority of sequenced bacterial genomes, and to date no orthologues have been found in Eukarya. The aim of this review was to present the most recent knowledge about BY-kinases by focusing primarily on their evolutionary origin, structural and functional aspects, and emerging regulatory potential based on recent bacterial phosphoproteomic studies.
Collapse
Affiliation(s)
- Christophe Grangeasse
- Bases Moléculaires et Structurales des Systèmes Infectieux, IBCP, CNRS, Université de Lyon, UMR 5086, 7 passage du Vercors, 69367 Lyon, France.
| | | | | |
Collapse
|
15
|
Arora G, Sajid A, Arulanandh MD, Singhal A, Mattoo AR, Pomerantsev AP, Leppla SH, Maiti S, Singh Y. Unveiling the novel dual specificity protein kinases in Bacillus anthracis: identification of the first prokaryotic dual specificity tyrosine phosphorylation-regulated kinase (DYRK)-like kinase. J Biol Chem 2012; 287:26749-63. [PMID: 22711536 PMCID: PMC3411013 DOI: 10.1074/jbc.m112.351304] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2012] [Revised: 06/14/2012] [Indexed: 12/23/2022] Open
Abstract
Dual specificity protein kinases (DSPKs) are unique enzymes that can execute multiple functions in the cell, which are otherwise performed exclusively by serine/threonine and tyrosine protein kinases. In this study, we have characterized the protein kinases Bas2152 (PrkD) and Bas2037 (PrkG) from Bacillus anthracis. Transcriptional analyses of these kinases showed that they are expressed in all phases of growth. In a serendipitous discovery, both kinases were found to be DSPKs. PrkD was found to be similar to the eukaryotic dual specificity Tyr phosphorylation-regulated kinase class of dual specificity kinases, which autophosphorylates on Ser, Thr, and Tyr residues and phosphorylates Ser and Thr residues on substrates. PrkG was found to be a bona fide dual specificity protein kinase that mediates autophosphorylation and substrate phosphorylation on Ser, Thr, and Tyr residues. The sites of phosphorylation in both of the kinases were identified through mass spectrometry. Phosphorylation on Tyr residues regulates the kinase activity of PrkD and PrkG. PrpC, the only known Ser/Thr protein phosphatase, was also found to possess dual specificity. Genistein, a known Tyr kinase inhibitor, was found to inhibit the activities of PrkD and PrkG and affect the growth of B. anthracis cells, indicating a possible role of these kinases in cell growth and development. In addition, the glycolytic enzyme pyruvate kinase was found to be phosphorylated by PrkD on Ser and Thr residues but not by PrkG. Thus, this study provides the first evidence of DSPKs in B. anthracis that belong to different classes and have different modes of regulation.
Collapse
Affiliation(s)
- Gunjan Arora
- From the Council of Scientific and Industrial Research-Institute of Genomics and Integrative Biology, Mall Road, Delhi 110007, India and
| | - Andaleeb Sajid
- From the Council of Scientific and Industrial Research-Institute of Genomics and Integrative Biology, Mall Road, Delhi 110007, India and
| | - Mary Diana Arulanandh
- From the Council of Scientific and Industrial Research-Institute of Genomics and Integrative Biology, Mall Road, Delhi 110007, India and
| | - Anshika Singhal
- From the Council of Scientific and Industrial Research-Institute of Genomics and Integrative Biology, Mall Road, Delhi 110007, India and
| | - Abid R. Mattoo
- From the Council of Scientific and Industrial Research-Institute of Genomics and Integrative Biology, Mall Road, Delhi 110007, India and
| | - Andrei P. Pomerantsev
- the Laboratory of Parasitic Diseases, NIAID, National Institutes of Health, Bethesda, Maryland 20892-3202
| | - Stephen H. Leppla
- the Laboratory of Parasitic Diseases, NIAID, National Institutes of Health, Bethesda, Maryland 20892-3202
| | - Souvik Maiti
- From the Council of Scientific and Industrial Research-Institute of Genomics and Integrative Biology, Mall Road, Delhi 110007, India and
| | - Yogendra Singh
- From the Council of Scientific and Industrial Research-Institute of Genomics and Integrative Biology, Mall Road, Delhi 110007, India and
| |
Collapse
|
16
|
Corcionivoschi N, Alvarez LA, Sharp TH, Strengert M, Alemka A, Mantell J, Verkade P, Knaus UG, Bourke B. Mucosal reactive oxygen species decrease virulence by disrupting Campylobacter jejuni phosphotyrosine signaling. Cell Host Microbe 2012; 12:47-59. [PMID: 22817987 PMCID: PMC3749511 DOI: 10.1016/j.chom.2012.05.018] [Citation(s) in RCA: 103] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2012] [Revised: 03/16/2012] [Accepted: 05/21/2012] [Indexed: 12/22/2022]
Abstract
Reactive oxygen species (ROS) play key roles in mucosal defense, yet how they are induced and the consequences for pathogens are unclear. We report that ROS generated by epithelial NADPH oxidases (Nox1/Duox2) during Campylobacter jejuni infection impair bacterial capsule formation and virulence by altering bacterial signal transduction. Upon C. jejuni invasion, ROS released from the intestinal mucosa inhibit the bacterial phosphotyrosine network that is regulated by the outer-membrane tyrosine kinase Cjtk (Cj1170/OMP50). ROS-mediated Cjtk inactivation results in an overall decrease in the phosphorylation of C. jejuni outer-membrane/periplasmic proteins, including UDP-GlcNAc/Glc 4-epimerase (Gne), an enzyme required for N-glycosylation and capsule formation. Cjtk positively regulates Gne by phosphorylating an active site tyrosine, while loss of Cjtk or ROS treatment inhibits Gne activity, causing altered polysaccharide synthesis. Thus, epithelial NADPH oxidases are an early antibacterial defense system in the intestinal mucosa that modifies virulence by disrupting bacterial signaling.
Collapse
Affiliation(s)
- Nicolae Corcionivoschi
- National Children’s Research Centre, Our Lady’s Children’s Hospital Crumlin, Dublin 12, Ireland
| | - Luis A. Alvarez
- Conway Institute, School of Medicine and Medical Science, University College Dublin, Dublin 4, Ireland
| | | | - Monika Strengert
- Conway Institute, School of Medicine and Medical Science, University College Dublin, Dublin 4, Ireland
| | - Abofu Alemka
- National Children’s Research Centre, Our Lady’s Children’s Hospital Crumlin, Dublin 12, Ireland
| | - Judith Mantell
- School of Biochemistry
- Wolfson Bioimaging Facility, University of Bristol, Bristol, England
| | - Paul Verkade
- School of Biochemistry
- Wolfson Bioimaging Facility, University of Bristol, Bristol, England
| | - Ulla G. Knaus
- Conway Institute, School of Medicine and Medical Science, University College Dublin, Dublin 4, Ireland
| | - Billy Bourke
- Conway Institute, School of Medicine and Medical Science, University College Dublin, Dublin 4, Ireland
- National Children’s Research Centre, Our Lady’s Children’s Hospital Crumlin, Dublin 12, Ireland
| |
Collapse
|
17
|
Miller WT. Tyrosine kinase signaling and the emergence of multicellularity. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2012; 1823:1053-7. [PMID: 22480439 DOI: 10.1016/j.bbamcr.2012.03.009] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2012] [Revised: 03/19/2012] [Accepted: 03/20/2012] [Indexed: 11/30/2022]
Abstract
Tyrosine phosphorylation is an essential element of signal transduction in multicellular animals. Although tyrosine kinases were originally regarded as specific to the metazoan lineage, it is now clear that they evolved prior to the split between unicellular and multicellular eukaryotes (≈600million years ago). Genome analyses of choanoflagellates and other protists show an abundance of tyrosine kinases that rivals the most complex animals. Some of these kinases are orthologs of metazoan enzymes (e.g., Src), but others display unique domain compositions not seen in any metazoan. Biochemical experiments have highlighted similarities and differences between the unicellular and multicellular tyrosine kinases. In particular, it appears that the complex systems of kinase autoregulation may have evolved later in the metazoan lineage.
Collapse
Affiliation(s)
- W Todd Miller
- Department of Physiology and Biophysics, School of Medcine, Stony Brook University, Stony Brook, NY 11794-8661, USA.
| |
Collapse
|
18
|
An essential tyrosine phosphatase homolog regulates cell separation, outer membrane integrity, and morphology in Caulobacter crescentus. J Bacteriol 2011; 193:4361-70. [PMID: 21705597 DOI: 10.1128/jb.00185-11] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Although reversible phosphorylation on tyrosine residues regulates the activity of many eukaryotic proteins, there are few examples of this type of regulation in bacteria. We have identified the first essential tyrosine phosphatase homolog in a bacterium, Caulobacter crescentus CtpA. ctpA mutants with altered active-site residues are nonviable, and depletion of CtpA yields chains of cells with blebbed outer membranes, linked by unresolved peptidoglycan. CtpA overexpression reduces cell curvature in a manner similar to deleting the intermediate filament protein crescentin, but it does not disrupt crescentin localization or membrane attachment. Although it has no obvious signal sequence or transmembrane-spanning domains, CtpA associates with the Caulobacter inner membrane. Immunolocalization experiments suggest that CtpA accumulates at the division site during the last quarter of the cell cycle. We propose that CtpA dephosphorylates one or more proteins involved in peptidoglycan biosynthesis or remodeling, which in turn affect cell separation, cell envelope integrity, and vibrioid morphology.
Collapse
|
19
|
Bechet E, Gruszczyk J, Terreux R, Gueguen-Chaignon V, Vigouroux A, Obadia B, Cozzone AJ, Nessler S, Grangeasse C. Identification of structural and molecular determinants of the tyrosine-kinase Wzc and implications in capsular polysaccharide export. Mol Microbiol 2011; 77:1315-25. [PMID: 20633230 DOI: 10.1111/j.1365-2958.2010.07291.x] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Capsular polysaccharides are well-established virulence factors of pathogenic bacteria. Their biosynthesis and export are regulated within the transmembrane polysaccharide assembly machinery by the autophosphorylation of atypical tyrosine-kinases, named BY-kinases. However, the accurate functioning of these tyrosine-kinases remains unknown. Here, we report the crystal structure of the non-phosphorylated cytoplasmic domain of the tyrosine-kinase Wzc from Escherichia coli in complex with ADP showing that it forms a ring-shaped octamer. Mutational analysis demonstrates that a conserved EX(2) RX(2) R motif involved in subunit interactions is essential for polysaccharide export. We also elucidate the role of a putative internal regulatory tyrosine and we show that BY-kinases from proteobacteria autophosphorylate on their C-terminal tyrosine cluster via a single-step intermolecular mechanism. This structure-function analysis also allows us to demonstrate that two different parts of a conserved basic region called the RK-cluster are essential for polysaccharide export and for kinase activity respectively. Based on these data, we revisit the dichotomy made between BY-kinases from proteobacteria and firmicutes and we propose a unique process of oligomerization and phosphorylation. We also reassess the function of BY-kinases in the capsular polysaccharide assembly machinery.
Collapse
Affiliation(s)
- Emmanuelle Bechet
- Institut de Biologie et Chimie des Protéines, CNRS, Université Lyon 1, Université de Lyon, 69367 Lyon, France
| | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Kiley TB, Stanley-Wall NR. Post-translational control of Bacillus subtilis biofilm formation mediated by tyrosine phosphorylation. Mol Microbiol 2010; 78:947-63. [DOI: 10.1111/j.1365-2958.2010.07382.x] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
21
|
Abstract
Tyrosine phosphorylation controls many cellular functions. Yet the three-part toolkit that regulates phosphotyrosine signaling-tyrosine kinases, phosphotyrosine phosphatases, and Src Homology 2 (SH2) domains-is a relatively new innovation. Genomic analyses reveal how this revolutionary signaling system may have originated and why it rapidly became critical to metazoans.
Collapse
Affiliation(s)
- Wendell A Lim
- Howard Hughes Medical Institute, University of California, San Francisco, San Francisco, CA 94158, USA.
| | | |
Collapse
|
22
|
Stülke J. More than just activity control: phosphorylation may control all aspects of a protein's properties. Mol Microbiol 2010; 77:273-5. [PMID: 20497498 DOI: 10.1111/j.1365-2958.2010.07228.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Protein phosphorylation is a major post-translational modification of proteins. Due to the introduction of a very large, strongly charged group, phosphorylation often has a dramatic effect on the characteristics of the protein, including alterations in activity or interaction properties. In this issue of Molecular Microbiology, Jers et al. have addressed the effect of protein tyrosine phosphorylation in Bacillus subtilis. They demonstrate that tyrosine phosphorylation stimulates the activity of several but not all targets. In addition, the subcellular localization of several proteins was shown to depend on tyrosine phosphorylation that is catalysed by the BY kinase PtkA. This is the first report showing that phosphorylation controls protein localization in bacteria and adds another important function to this post-translational modification.
Collapse
Affiliation(s)
- Jörg Stülke
- Department of General Microbiology, Georg-August - University Göttingen, Grisebachstr. 8, Göttingen, Germany
| |
Collapse
|
23
|
Cozzone AJ. Bacterial tyrosine kinases: novel targets for antibacterial therapy? Trends Microbiol 2009; 17:536-43. [PMID: 19853456 DOI: 10.1016/j.tim.2009.09.005] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2009] [Revised: 09/24/2009] [Accepted: 09/30/2009] [Indexed: 12/30/2022]
Abstract
The resistance of pathogenic bacteria to current antibiotics has become a crucial public health problem. To combat this resistance, there is a constant need for antibacterial drugs with new modes of action on therapeutic targets. Recent data have shown that a variety of cellular processes essential for bacterial survival and virulence are regulated by the phosphorylation of certain endogenous proteins catalyzed by specific tyrosine kinases. In this article, I highlight a selection of recent findings that confirm the central role of protein tyrosine phosphorylation in the control of bacterial physiology. Based on this knowledge, potential applications in the discovery of novel antibiotics are proposed.
Collapse
Affiliation(s)
- Alain J Cozzone
- Institute of Biology and Chemistry of Proteins, University of Lyon, 7 passage du Vercors, 69007 Lyon, France.
| |
Collapse
|