1
|
Gentili S, Miglioli F, Borghesani V, Spagnoli G, Bellotti D, Cavazzini D, Guerrini R, Remelli M, Maestri G, Ottonello S, Bolchi A, Tegoni M. Exploiting SpyTag/SpyCatcher Technology to Design New Artificial Catalytic Copper Proteins. Chembiochem 2025:e2500208. [PMID: 40299771 DOI: 10.1002/cbic.202500208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2025] [Revised: 04/29/2025] [Accepted: 04/29/2025] [Indexed: 05/01/2025]
Abstract
Designing artificial metal binding sites within a protein is challenging since amino acid residues need to be placed in desired positions in the final construct and the use of non-natural amino acids is difficult. The alternative approach of directing the insertion of artificial metal coordination systems presents the difficulty of grafting such site in a single desired position. Spy protein is composed of a protein component (SpyCatcher) which binds spontaneously an oligopeptide (SpyTag) with formation of an isopeptide bond. A SpyTag peptide equipped with an ATCUN (amino terminal copper and nickel) binding site is designed to bind copper(II) with high femtomolar affinity both in the absence of SpyCatcher and in the reconstituted Spy construct. The Cu2+ ATCUN site in the reconstituted Spy protein presents a catalytic activity in reactive oxygen species production, higher than that of the SpyTag peptide alone. This method offers a novel approach for constructing artificial metalloproteins by incorporating functional metal binding sites into a peptide, which can then be clicked onto its protein counterpart. The small size and modularity of this construct make it versatile for integration into other protein systems, eventually moving the complexity from a protein to a peptide and highlighting its potential for protein design.
Collapse
Affiliation(s)
- Silvia Gentili
- Department of Chemistry, Life Sciences, and Environmental Sustainability, University of Parma, Parco Area delle Scienze 11A, 43124, Parma, Italy
| | - Francesca Miglioli
- Department of Chemistry, Life Sciences, and Environmental Sustainability, University of Parma, Parco Area delle Scienze 11A, 43124, Parma, Italy
| | - Valentina Borghesani
- Department of Chemistry, Life Sciences, and Environmental Sustainability, University of Parma, Parco Area delle Scienze 11A, 43124, Parma, Italy
| | - Gloria Spagnoli
- Department of Chemistry, Life Sciences, and Environmental Sustainability, University of Parma, Parco Area delle Scienze 11A, 43124, Parma, Italy
| | - Denise Bellotti
- Department of Chemical, Pharmaceutical and Agricultural Sciences, University of Ferrara, 44100, Ferrara, Italy
| | - Davide Cavazzini
- Department of Chemistry, Life Sciences, and Environmental Sustainability, University of Parma, Parco Area delle Scienze 11A, 43124, Parma, Italy
| | - Remo Guerrini
- Department of Chemical, Pharmaceutical and Agricultural Sciences, University of Ferrara, 44100, Ferrara, Italy
| | - Maurizio Remelli
- Department of Chemical, Pharmaceutical and Agricultural Sciences, University of Ferrara, 44100, Ferrara, Italy
| | - Giovanni Maestri
- Department of Chemistry, Life Sciences, and Environmental Sustainability, University of Parma, Parco Area delle Scienze 11A, 43124, Parma, Italy
| | - Simone Ottonello
- Department of Chemistry, Life Sciences, and Environmental Sustainability, University of Parma, Parco Area delle Scienze 11A, 43124, Parma, Italy
| | - Angelo Bolchi
- Department of Chemistry, Life Sciences, and Environmental Sustainability, University of Parma, Parco Area delle Scienze 11A, 43124, Parma, Italy
| | - Matteo Tegoni
- Department of Chemistry, Life Sciences, and Environmental Sustainability, University of Parma, Parco Area delle Scienze 11A, 43124, Parma, Italy
| |
Collapse
|
2
|
Di Costanzo LF, Sgueglia G, Orlando C, Polentarutti M, Leone L, La Gatta S, De Fenza M, De Gioia L, Lombardi A, Arrigoni F, Chino M. Structural insights into temperature-dependent dynamics of METPsc1, a miniaturized electron-transfer protein. J Inorg Biochem 2025; 264:112810. [PMID: 39689412 DOI: 10.1016/j.jinorgbio.2024.112810] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2024] [Revised: 11/30/2024] [Accepted: 12/07/2024] [Indexed: 12/19/2024]
Abstract
The design of protein-metal complexes is rapidly advancing, with applications spanning catalysis, sensing, and bioremediation. We report a comprehensive investigation of METPsc1, a Miniaturized Electron Transfer Protein, in complex with cadmium. This study elucidates the impact of metal coordination on protein folding and structural dynamics across temperatures from 100 K to 300 K. Our findings reveal that METPsc1, composed of two similar halves stabilized by intramolecular hydrogen bonds, exhibits a unique "clothespin-like" recoil mechanism. This allows it to adapt to metal ions of varying radii, mirroring the flexibility observed in natural rubredoxins. High-resolution crystallography and molecular dynamics simulations unveil concerted backbone motions and subtle temperature-dependent shifts in side-chain conformations, particularly for residues involved in crystal packing. Notably, CdS bond lengths increase with temperature, correlating with anisotropic motions of the sulfur atoms involved in second-shell hydrogen bonding. This suggests a dynamic role of protein matrix upon redox cycling. These insights into METPsc1 highlight its potential for catalysis and contribute to the designing of artificial metalloproteins with functional plasticity.
Collapse
Affiliation(s)
- Luigi F Di Costanzo
- Department of Agricultural Sciences, University of Naples Federico II, Via Università 100, 80055 Portici, NA, Italy.
| | - Gianmattia Sgueglia
- Department of Chemical Sciences, University of Naples Federico II, Via Cintia 21, 80126 Napoli, Italy
| | - Carla Orlando
- Department of Biotechnology and Biosciences, University of Milan-Bicocca, Piazza della Scienza 2, 20126 Milan, Italy
| | | | - Linda Leone
- Department of Chemical Sciences, University of Naples Federico II, Via Cintia 21, 80126 Napoli, Italy
| | - Salvatore La Gatta
- Department of Chemical Sciences, University of Naples Federico II, Via Cintia 21, 80126 Napoli, Italy
| | - Maria De Fenza
- Department of Chemical Sciences, University of Naples Federico II, Via Cintia 21, 80126 Napoli, Italy
| | - Luca De Gioia
- Department of Biotechnology and Biosciences, University of Milan-Bicocca, Piazza della Scienza 2, 20126 Milan, Italy
| | - Angela Lombardi
- Department of Chemical Sciences, University of Naples Federico II, Via Cintia 21, 80126 Napoli, Italy
| | - Federica Arrigoni
- Department of Biotechnology and Biosciences, University of Milan-Bicocca, Piazza della Scienza 2, 20126 Milan, Italy
| | - Marco Chino
- Department of Chemical Sciences, University of Naples Federico II, Via Cintia 21, 80126 Napoli, Italy.
| |
Collapse
|
3
|
Petrenas R, Hawkins OA, Jones JF, Scott DA, Fletcher JM, Obst U, Lombardi L, Pirro F, Leggett GJ, Oliver TA, Woolfson DN. Confinement and Catalysis within De Novo Designed Peptide Barrels. J Am Chem Soc 2025; 147:3796-3803. [PMID: 39813445 PMCID: PMC11783595 DOI: 10.1021/jacs.4c16633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2024] [Revised: 12/27/2024] [Accepted: 12/30/2024] [Indexed: 01/18/2025]
Abstract
De novo protein design has advanced such that many peptide assemblies and protein structures can be generated predictably and quickly. The drive now is to bring functions to these structures, for example, small-molecule binding and catalysis. The formidable challenge of binding and orienting multiple small molecules to direct chemistry is particularly important for paving the way to new functionalities. To address this, here we describe the design, characterization, and application of small-molecule:peptide ternary complexes in aqueous solution. This uses α-helical barrel (αHB) peptide assemblies, which comprise 5 or more α helices arranged around central channels. These channels are solvent accessible, and their internal dimensions and chemistries can be altered predictably. Thus, αHBs are analogous to "molecular flasks" made in supramolecular, polymer, and materials chemistry. Using Förster resonance energy transfer as a readout, we demonstrate that specific αHBs can accept two different organic dyes, 1,6-diphenyl-1,3,5-hexatriene and Nile red, in close proximity. In addition, two anthracene molecules can be accommodated within an αHB to promote anthracene photodimerization. However, not all ternary complexes are productive, either in energy transfer or photodimerization, illustrating the control that can be exerted by judicious choice and design of the αHB.
Collapse
Affiliation(s)
- Rokas Petrenas
- School
of Chemistry, University of Bristol, Cantock’s Close, Bristol BS8 1TS, U.K.
| | - Olivia A. Hawkins
- School
of Chemistry, University of Bristol, Cantock’s Close, Bristol BS8 1TS, U.K.
| | - Jacob F. Jones
- School
of Chemistry, University of Bristol, Cantock’s Close, Bristol BS8 1TS, U.K.
| | - D. Arne Scott
- Rosa
Biotech, Science Creates St Philips, Albert Road, Bristol BS2 0XJ, U.K.
| | - Jordan M. Fletcher
- Rosa
Biotech, Science Creates St Philips, Albert Road, Bristol BS2 0XJ, U.K.
| | - Ulrike Obst
- Rosa
Biotech, Science Creates St Philips, Albert Road, Bristol BS2 0XJ, U.K.
| | - Lucia Lombardi
- School
of Chemistry, University of Bristol, Cantock’s Close, Bristol BS8 1TS, U.K.
- Department
of Chemical Engineering, Imperial College
London, London SW7 2AZ, U.K.
| | - Fabio Pirro
- School
of Chemistry, University of Bristol, Cantock’s Close, Bristol BS8 1TS, U.K.
| | - Graham J. Leggett
- School
of Mathematical and Physical Sciences, University
of Sheffield, Brook Hill, Sheffield S3 7HF, U.K.
| | - Thomas A.A. Oliver
- School
of Chemistry, University of Bristol, Cantock’s Close, Bristol BS8 1TS, U.K.
| | - Derek N. Woolfson
- School
of Chemistry, University of Bristol, Cantock’s Close, Bristol BS8 1TS, U.K.
- Max
Planck-Bristol Centre for Minimal Biology, University of Bristol, Cantock’s Close, Bristol BS8 1TS, U.K.
- Bristol BioDesign
Institute, University of Bristol, Cantock’s Close, Bristol BS8 1TS, U.K.
- School
of Biochemistry, University of Bristol, Medical Sciences Building, Bristol BS8 1TD, U.K.
| |
Collapse
|
4
|
Xu Z, Ma J, Hu H, Liu J, Yang H, Chen J, Xu H, Wang X, Luo H, Chen G. Metal ion-crosslinking multifunctional hydrogel microspheres with inflammatory immune regulation for cartilage regeneration. Front Bioeng Biotechnol 2025; 13:1540592. [PMID: 39935604 PMCID: PMC11810939 DOI: 10.3389/fbioe.2025.1540592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2024] [Accepted: 01/14/2025] [Indexed: 02/13/2025] Open
Abstract
Introduction Osteoarthritis (OA) is a degenerative disease of the joints characterized by cartilage degradation and synovial inflammation. Due to the complex pathogenesis of OA, multifaceted therapies that modulate inflammatory and immune microenvironmental disturbances while promoting cartilage regeneration are key to control the progression of OA. Methods Herein, a multifunctional nanoparticle (DIC/Mg-PDA NPs) was constructed successfully by the metal chelation effect between Mg2+ and catecholamine bond from dopamine, followed by the amidation with diclofenac (DIC), which was then prepared into an injectable hydrogel microsphere (DIC/Mg-PDA@HM) with immune-regulating and cartilage-repairing abilities through microfluidic technology for the treatment of osteoarthritis. Results and discussion The sustained release of Mg2+ from the composite hydrogel microspheres achieved inflammatory immune regulation by converting macrophages from M1 to M2 and promoted cartilage regeneration through the differentiation of BMSCs. Moreover, the enhanced release of DIC and polydopamine (PDA) effectively downregulated inflammatory factors, and finally achieved OA therapy. In addition, in vivo MRI and tissue section staining of OA model proved the significant efficacy of the hydrogel microspheres on OA. In conclusion, these novel hydrogel microspheres demonstrated a promising prospect for multidisciplinary repairing of OA.
Collapse
Affiliation(s)
- Zhuoming Xu
- Jiaxing University Master Degree Cultivation Base, Zhejiang Chinese Medical University, Hangzhou, China
- Department of Orthopaedics, Jiaxing Key Laboratory of Basic Research and Clinical Translation on Orthopedic Biomaterials, The Second Affiliated Hospital of Jiaxing University, Jiaxing, China
| | - Jun Ma
- Department of Orthopaedics, Jiaxing Key Laboratory of Basic Research and Clinical Translation on Orthopedic Biomaterials, The Second Affiliated Hospital of Jiaxing University, Jiaxing, China
| | - Hanyin Hu
- Jiaxing University Master Degree Cultivation Base, Zhejiang Chinese Medical University, Hangzhou, China
- Department of Orthopaedics, Jiaxing Key Laboratory of Basic Research and Clinical Translation on Orthopedic Biomaterials, The Second Affiliated Hospital of Jiaxing University, Jiaxing, China
| | - Jintao Liu
- Jiaxing University Master Degree Cultivation Base, Zhejiang Chinese Medical University, Hangzhou, China
- Department of Orthopaedics, Jiaxing Key Laboratory of Basic Research and Clinical Translation on Orthopedic Biomaterials, The Second Affiliated Hospital of Jiaxing University, Jiaxing, China
| | - Haiyang Yang
- Jiaxing University Master Degree Cultivation Base, Zhejiang Chinese Medical University, Hangzhou, China
- Department of Orthopaedics, Jiaxing Key Laboratory of Basic Research and Clinical Translation on Orthopedic Biomaterials, The Second Affiliated Hospital of Jiaxing University, Jiaxing, China
| | - Jiayi Chen
- Department of Orthopaedics, Jiaxing Key Laboratory of Basic Research and Clinical Translation on Orthopedic Biomaterials, The Second Affiliated Hospital of Jiaxing University, Jiaxing, China
| | - Hongwei Xu
- Department of Orthopaedics, Jiaxing Key Laboratory of Basic Research and Clinical Translation on Orthopedic Biomaterials, The Second Affiliated Hospital of Jiaxing University, Jiaxing, China
| | - Xinyu Wang
- Department of Radiology, The Second Affiliated Hospital of Jiaxing University, Jiaxing, China
| | - Huanhuan Luo
- Department of Orthopaedics, Jiaxing Key Laboratory of Basic Research and Clinical Translation on Orthopedic Biomaterials, The Second Affiliated Hospital of Jiaxing University, Jiaxing, China
| | - Gang Chen
- Department of Orthopaedics, Jiaxing Key Laboratory of Basic Research and Clinical Translation on Orthopedic Biomaterials, The Second Affiliated Hospital of Jiaxing University, Jiaxing, China
| |
Collapse
|
5
|
Nie LS, Liu XC, Yu L, Liu AK, Sun LJ, Gao SQ, Lin YW. Rational Design of an Artificial Metalloenzyme by Constructing a Metal-Binding Site Close to the Heme Cofactor in Myoglobin. Inorg Chem 2024; 63:18531-18535. [PMID: 39311200 DOI: 10.1021/acs.inorgchem.4c03093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/08/2024]
Abstract
In this study, we constructed a metal-binding site close to the heme cofactor in myoglobin (Mb) by covalently attaching a nonnative metal-binding ligand of bipyridine to Cys46 through the F46C mutation in the heme distal site. The X-ray structure of the designed enzyme, termed F46C-mBpy Mb, was solved in the Cu(II)-bound form, which revealed the formation of a heterodinuclear center of Cu-His-H2O-heme. Cu(II)-F46C-mBpy Mb exhibits not only nitrite reductase reactivity but also cascade reaction activity involving both hydrolysis and oxidation. Furthermore, F46C-mBpy Mb displays Mn-peroxidase activity by the oxidation of Mn2+ to Mn3+ using H2O2 as an oxidant. This study shows that the construction of a nonnative metal-binding site close to the heme cofactor is a convenient approach to creating an artificial metalloenzyme with a heterodinuclear center that confers multiple functions.
Collapse
Affiliation(s)
- Lv-Suo Nie
- School of Chemistry and Chemical Engineering, University of South China, Hengyang 421001, China
| | - Xi-Chun Liu
- School of Chemistry and Chemical Engineering, University of South China, Hengyang 421001, China
| | - Lu Yu
- High Magnetic Field Laboratory, Chinese Academy of Sciences, Hefei, Anhui 230031, China
| | - Ao-Kun Liu
- High Magnetic Field Laboratory, Chinese Academy of Sciences, Hefei, Anhui 230031, China
| | - Li-Juan Sun
- Hengyang Medical School, University of South China, Hengyang 421001, China
| | - Shu-Qin Gao
- Hengyang Medical School, University of South China, Hengyang 421001, China
| | - Ying-Wu Lin
- School of Chemistry and Chemical Engineering, University of South China, Hengyang 421001, China
- Hengyang Medical School, University of South China, Hengyang 421001, China
| |
Collapse
|
6
|
Deng Y, Wang JX, Ghosh B, Lu Y. Enzymatic CO 2 reduction catalyzed by natural and artificial Metalloenzymes. J Inorg Biochem 2024; 259:112669. [PMID: 39059175 DOI: 10.1016/j.jinorgbio.2024.112669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 07/04/2024] [Accepted: 07/17/2024] [Indexed: 07/28/2024]
Abstract
The continuously increasing level of atmospheric CO2 in the atmosphere has led to global warming. Converting CO2 into other carbon compounds could mitigate its atmospheric levels and produce valuable products, as CO2 also serves as a plentiful and inexpensive carbon feedstock. However, the inert nature of CO2 poses a major challenge for its reduction. To meet the challenge, nature has evolved metalloenzymes using transition metal ions like Fe, Ni, Mo, and W, as well as electron-transfer partners for their functions. Mimicking these enzymes, artificial metalloenzymes (ArMs) have been designed using alternative protein scaffolds and various metallocofactors like Ni, Co, Re, Rh, and FeS clusters. Both the catalytic efficiency and the scope of CO2-reduction product of these ArMs have been improved over the past decade. This review first focuses on the natural metalloenzymes that directly reduce CO2 by discussing their structures and active sites, as well as the proposed reaction mechanisms. It then introduces the common strategies for electrochemical, photochemical, or photoelectrochemical utilization of these native enzymes for CO2 reduction and highlights the most recent advancements from the past five years. We also summarize principles of protein design for bio-inspired ArMs, comparing them with native enzymatic systems and outlining challenges and opportunities in enzymatic CO2 reduction.
Collapse
Affiliation(s)
- Yunling Deng
- Department of Chemistry, The University of Texas at Austin, Austin, TX 78712, United States of America
| | - Jing-Xiang Wang
- Department of Chemistry, The University of Texas at Austin, Austin, TX 78712, United States of America
| | - Barshali Ghosh
- Department of Chemistry, The University of Texas at Austin, Austin, TX 78712, United States of America
| | - Yi Lu
- Department of Chemistry, The University of Texas at Austin, Austin, TX 78712, United States of America.
| |
Collapse
|
7
|
Leone L, De Fenza M, Esposito A, Maglio O, Nastri F, Lombardi A. Peptides and metal ions: A successful marriage for developing artificial metalloproteins. J Pept Sci 2024; 30:e3606. [PMID: 38719781 DOI: 10.1002/psc.3606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 03/27/2024] [Accepted: 03/28/2024] [Indexed: 10/12/2024]
Abstract
The mutual relationship between peptides and metal ions enables metalloproteins to have crucial roles in biological systems, including structural, sensing, electron transport, and catalytic functions. The effort to reproduce or/and enhance these roles, or even to create unprecedented functions, is the focus of protein design, the first step toward the comprehension of the complex machinery of nature. Nowadays, protein design allows the building of sophisticated scaffolds, with novel functions and exceptional stability. Recent progress in metalloprotein design has led to the building of peptides/proteins capable of orchestrating the desired functions of different metal cofactors. The structural diversity of peptides allows proper selection of first- and second-shell ligands, as well as long-range electrostatic and hydrophobic interactions, which represent precious tools for tuning metal properties. The scope of this review is to discuss the construction of metal sites in de novo designed and miniaturized scaffolds. Selected examples of mono-, di-, and multi-nuclear binding sites, from the last 20 years will be described in an effort to highlight key artificial models of catalytic or electron-transfer metalloproteins. The authors' goal is to make readers feel like guests at the marriage between peptides and metal ions while offering sources of inspiration for future architects of innovative, artificial metalloproteins.
Collapse
Affiliation(s)
- Linda Leone
- Department of Chemical Sciences, University of Naples Federico II, Naples, Italy
| | - Maria De Fenza
- Department of Chemical Sciences, University of Naples Federico II, Naples, Italy
| | - Alessandra Esposito
- Department of Chemical Sciences, University of Naples Federico II, Naples, Italy
| | - Ornella Maglio
- Department of Chemical Sciences, University of Naples Federico II, Naples, Italy
- Institute of Biostructures and Bioimaging, National Research Council, Naples, Italy
| | - Flavia Nastri
- Department of Chemical Sciences, University of Naples Federico II, Naples, Italy
| | - Angela Lombardi
- Department of Chemical Sciences, University of Naples Federico II, Naples, Italy
| |
Collapse
|
8
|
Grieco A, Quereda-Moraleda I, Martin-Garcia JM. Innovative Strategies in X-ray Crystallography for Exploring Structural Dynamics and Reaction Mechanisms in Metabolic Disorders. J Pers Med 2024; 14:909. [PMID: 39338163 PMCID: PMC11432794 DOI: 10.3390/jpm14090909] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 08/15/2024] [Accepted: 08/16/2024] [Indexed: 09/30/2024] Open
Abstract
Enzymes are crucial in metabolic processes, and their dysfunction can lead to severe metabolic disorders. Structural biology, particularly X-ray crystallography, has advanced our understanding of these diseases by providing 3D structures of pathological enzymes. However, traditional X-ray crystallography faces limitations, such as difficulties in obtaining suitable protein crystals and studying protein dynamics. X-ray free-electron lasers (XFELs) have revolutionized this field with their bright and brief X-ray pulses, providing high-resolution structures of radiation-sensitive and hard-to-crystallize proteins. XFELs also enable the study of protein dynamics through room temperature structures and time-resolved serial femtosecond crystallography, offering comprehensive insights into the molecular mechanisms of metabolic diseases. Understanding these dynamics is vital for developing effective therapies. This review highlights the contributions of protein dynamics studies using XFELs and synchrotrons to metabolic disorder research and their application in designing better therapies. It also discusses G protein-coupled receptors (GPCRs), which, though not enzymes, play key roles in regulating physiological systems and are implicated in many metabolic disorders.
Collapse
Affiliation(s)
| | | | - Jose Manuel Martin-Garcia
- Department of Crystallography and Structural Biology, Institute of Physical Chemistry Blas Cabrera, Spanish National Research Council (CSIC), 28006 Madrid, Spain; (A.G.); (I.Q.-M.)
| |
Collapse
|
9
|
Thompson PJ, Boggs DG, Wilson CA, Bruchs AT, Velidandla U, Bridwell-Rabb J, Olshansky L. Structure-driven development of a biomimetic rare earth artificial metalloprotein. Proc Natl Acad Sci U S A 2024; 121:e2405836121. [PMID: 39116128 PMCID: PMC11331073 DOI: 10.1073/pnas.2405836121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Accepted: 07/05/2024] [Indexed: 08/10/2024] Open
Abstract
The 2011 discovery of the first rare earth-dependent enzyme in methylotrophic Methylobacterium extorquens AM1 prompted intensive research toward understanding the unique chemistry at play in these systems. This enzyme, an alcohol dehydrogenase (ADH), features a La3+ ion closely associated with redox-active coenzyme pyrroloquinoline quinone (PQQ) and is structurally homologous to the Ca2+-dependent ADH from the same organism. AM1 also produces a periplasmic PQQ-binding protein, PqqT, which we have now structurally characterized to 1.46-Å resolution by X-ray diffraction. This crystal structure reveals a Lys residue hydrogen-bonded to PQQ at the site analogously occupied by a Lewis acidic cation in ADH. Accordingly, we prepared K142A- and K142D-PqqT variants to assess the relevance of this site toward metal binding. Isothermal titration calorimetry experiments and titrations monitored by UV-Vis absorption and emission spectroscopies support that K142D-PqqT binds tightly (Kd = 0.6 ± 0.2 μM) to La3+ in the presence of bound PQQ and produces spectral signatures consistent with those of ADH enzymes. These spectral signatures are not observed for WT- or K142A-variants or upon addition of Ca2+ to PQQ ⸦ K142D-PqqT. Addition of benzyl alcohol to La3+-bound PQQ ⸦ K142D-PqqT (but not Ca2+-bound PQQ ⸦ K142D-PqqT, or La3+-bound PQQ ⸦ WT-PqqT) produces spectroscopic changes associated with PQQ reduction, and chemical trapping experiments reveal the production of benzaldehyde, supporting ADH activity. By creating a metal binding site that mimics native ADH enzymes, we present a rare earth-dependent artificial metalloenzyme primed for future mechanistic, biocatalytic, and biosensing applications.
Collapse
Affiliation(s)
- Peter J. Thompson
- Center for Biophysics and Quantitative Biology, University of Illinois, Urbana-Champaign, Urbana, IL61801
| | - David G. Boggs
- Department of Chemistry, University of Michigan, Ann Arbor, MI48109
| | - Charles A. Wilson
- Department of Chemistry, Materials Research Laboratory, Beckman Institute for Advanced Science and Technology, University of Illinois Urbana-Champaign, Urbana, IL61801
| | - Austin T. Bruchs
- Department of Chemistry, University of Michigan, Ann Arbor, MI48109
| | - Uditha Velidandla
- Department of Chemistry, Materials Research Laboratory, Beckman Institute for Advanced Science and Technology, University of Illinois Urbana-Champaign, Urbana, IL61801
| | | | - Lisa Olshansky
- Center for Biophysics and Quantitative Biology, University of Illinois, Urbana-Champaign, Urbana, IL61801
- Department of Chemistry, Materials Research Laboratory, Beckman Institute for Advanced Science and Technology, University of Illinois Urbana-Champaign, Urbana, IL61801
| |
Collapse
|
10
|
Lin YW. Functional metalloenzymes based on myoglobin and neuroglobin that exploit covalent interactions. J Inorg Biochem 2024; 257:112595. [PMID: 38759262 DOI: 10.1016/j.jinorgbio.2024.112595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 04/29/2024] [Accepted: 05/05/2024] [Indexed: 05/19/2024]
Abstract
Globins, such as myoglobin (Mb) and neuroglobin (Ngb), are ideal protein scaffolds for the design of functional metalloenzymes. To date, numerous approaches have been developed for enzyme design. This review presents a summary of the progress made in the design of functional metalloenzymes based on Mb and Ngb, with a focus on the exploitation of covalent interactions, including coordination bonds and covalent modifications. These include the construction of a metal-binding site, the incorporation of a non-native metal cofactor, the formation of Cys/Tyr-heme covalent links, and the design of disulfide bonds, as well as other Cys-covalent modifications. As exemplified by recent studies from our group and others, the designed metalloenzymes have potential applications in biocatalysis and bioconversions. Furthermore, we discuss the current trends in the design of functional metalloenzymes and highlight the importance of covalent interactions in the design of functional metalloenzymes.
Collapse
Affiliation(s)
- Ying-Wu Lin
- School of Chemistry and Chemical Engineering, University of South China, Hengyang 421001, China; Key Lab of Protein Structure and Function of Universities in Hunan Province, University of South China, Hengyang 421001, China.
| |
Collapse
|
11
|
Renzi E, Esposito A, Leone L, Chávez M, Pineda T, Lombardi A, Nastri F. Biohybrid materials comprising an artificial peroxidase and differently shaped gold nanoparticles. NANOSCALE ADVANCES 2024; 6:3533-3542. [PMID: 38989515 PMCID: PMC11232542 DOI: 10.1039/d4na00344f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Accepted: 06/01/2024] [Indexed: 07/12/2024]
Abstract
The immobilization of biocatalysts on inorganic supports allows the development of bio-nanohybrid materials with defined functional properties. Gold nanomaterials (AuNMs) are the main players in this field, due to their fascinating shape-dependent properties that account for their versatility. Even though incredible progress has been made in the preparation of AuNMs, few studies have been carried out to analyze the impact of particle morphology on the behavior of immobilized biocatalysts. Herein, the artificial peroxidase Fe(iii)-Mimochrome VI*a (FeMC6*a) was conjugated to two different anisotropic gold nanomaterials, nanorods (AuNRs) and triangular nanoprisms (AuNTs), to investigate how the properties of the nanosupport can affect the functional behavior of FeMC6*a. The conjugation of FeMC6*a to AuNMs was performed by a click-chemistry approach, using FeMC6*a modified with pegylated aza-dibenzocyclooctyne (FeMC6*a-PEG4@DBCO), which was allowed to react with azide-functionalized AuNRs and AuNTs, synthesized from citrate-capped AuNMs. To this end, a literature protocol for depleting CTAB from AuNRs was herein reported for the first time to prepare citrate-AuNTs. The overall results suggest that the nanomaterial shape influences the nanoconjugate functional properties. Besides giving new insights into the effect of the surfaces on the artificial peroxidase properties, these results open up the way for creating novel nanostructures with potential applications in the field of sensing devices.
Collapse
Affiliation(s)
- Emilia Renzi
- Department of Chemical Sciences, University of Naples Federico II, Complesso Universitario Monte S. Angelo via Cintia Naples 80126 Italy
| | - Alessandra Esposito
- Department of Chemical Sciences, University of Naples Federico II, Complesso Universitario Monte S. Angelo via Cintia Naples 80126 Italy
| | - Linda Leone
- Department of Chemical Sciences, University of Naples Federico II, Complesso Universitario Monte S. Angelo via Cintia Naples 80126 Italy
| | - Miriam Chávez
- Department of Physical Chemistry and Applied Thermodynamics, Institute of Chemistry for Energy and Environment, University of Cordoba, Campus Rabanales Ed. Marie Curie Córdoba E-14014 Spain
| | - Teresa Pineda
- Department of Physical Chemistry and Applied Thermodynamics, Institute of Chemistry for Energy and Environment, University of Cordoba, Campus Rabanales Ed. Marie Curie Córdoba E-14014 Spain
| | - Angela Lombardi
- Department of Chemical Sciences, University of Naples Federico II, Complesso Universitario Monte S. Angelo via Cintia Naples 80126 Italy
| | - Flavia Nastri
- Department of Chemical Sciences, University of Naples Federico II, Complesso Universitario Monte S. Angelo via Cintia Naples 80126 Italy
| |
Collapse
|
12
|
Cocola C, Abeni E, Martino V, Piscitelli E, Morara S, Pelucchi P, Mosca E, Chiodi A, Mohamed T, Palizban M, De Petro G, Porta G, Greve B, Noghero A, Magnaghi V, Bellipanni G, Kehler J, Götte M, Bussolino F, Milanesi L, Zucchi I, Reinbold R. Transmembrane protein TMEM230, regulator of metalloproteins and motor proteins in gliomas and gliosis. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2024; 141:255-297. [PMID: 38960477 DOI: 10.1016/bs.apcsb.2024.03.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/05/2024]
Abstract
Glial cells provide physical and chemical support and protection for neurons and for the extracellular compartments of neural tissue through secretion of soluble factors, insoluble scaffolds, and vesicles. Additionally, glial cells have regenerative capacity by remodeling their physical microenvironment and changing physiological properties of diverse cell types in their proximity. Various types of aberrant glial and macrophage cells are associated with human diseases, disorders, and malignancy. We previously demonstrated that transmembrane protein, TMEM230 has tissue revascularization and regenerating capacity by its ability to secrete pro-angiogenic factors and metalloproteinases, inducing endothelial cell sprouting and channel formation. In healthy normal neural tissue, TMEM230 is predominantly expressed in glial and marcophate cells, suggesting a prominent role in neural tissue homeostasis. TMEM230 regulation of the endomembrane system was supported by co-expression with RNASET2 (lysosome, mitochondria, and vesicles) and STEAP family members (Golgi complex). Intracellular trafficking and extracellular secretion of glial cellular components are associated with endocytosis, exocytosis and phagocytosis mediated by motor proteins. Trafficked components include metalloproteins, metalloproteinases, glycans, and glycoconjugate processing and digesting enzymes that function in phagosomes and vesicles to regulate normal neural tissue microenvironment, homeostasis, stress response, and repair following neural tissue injury or degeneration. Aberrantly high sustained levels TMEM230 promotes metalloprotein expression, trafficking and secretion which contribute to tumor associated infiltration and hypervascularization of high tumor grade gliomas. Following injury of the central nervous or peripheral systems, transcient regulated upregulation of TMEM230 promotes tissue wound healing, remodeling and revascularization by activating glial and macrophage generated microchannels/microtubules (referred to as vascular mimicry) and blood vessel sprouting and branching. Our results support that TMEM230 may act as a master regulator of motor protein mediated trafficking and compartmentalization of a large class of metalloproteins in gliomas and gliosis.
Collapse
Affiliation(s)
- Cinzia Cocola
- Institute of Biomedical Technologies, National Research Council, Milan, Italy
| | - Edoardo Abeni
- Institute of Biomedical Technologies, National Research Council, Milan, Italy
| | - Valentina Martino
- Institute of Biomedical Technologies, National Research Council, Milan, Italy
| | - Eleonora Piscitelli
- Institute of Biomedical Technologies, National Research Council, Milan, Italy
| | - Stefano Morara
- Institute of Neuroscience, National Research Council, Vedano al Lambro, Monza Brianza, Italy
| | - Paride Pelucchi
- Institute of Biomedical Technologies, National Research Council, Milan, Italy
| | - Ettore Mosca
- Institute of Biomedical Technologies, National Research Council, Milan, Italy
| | - Alice Chiodi
- Institute of Biomedical Technologies, National Research Council, Milan, Italy
| | - Tasnim Mohamed
- Department of Pharmacological and Biomolecular Sciences, University of Milan, Milan, Italy
| | - Mira Palizban
- Department of Gynecology, and Obstetrics, University Hospital of Münster, Münster, Germany
| | - Giuseppina De Petro
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Giovanni Porta
- Centro di Medicina Genomica, Department of Medicine and Surgery University of Insubria, Varese, Italy
| | - Burkhard Greve
- Department of Radiation Therapy and Radiation Oncology, University Hospital of Münster, Münster, Germany
| | - Alessio Noghero
- Laboratory of Vascular Oncology Candiolo Cancer Institute, IRCCS, Candiolo, Italy; Lovelace Biomedical Research Institute, Albuquerque, NM, United States
| | - Valerio Magnaghi
- Department of Pharmacological and Biomolecular Sciences, University of Milan, Milan, Italy
| | - Gianfranco Bellipanni
- Department of Biology, Center for Biotechnology, Sbarro Institute for Cancer Research and Molecular Medicine, Temple University, Philadelphia, PA, United States; Center for Biotechnology, Sbarro Institute for Research and Molecular Medicine and Department of Biology, Temple University, Philadelphia, PA, United State
| | - James Kehler
- National Institutes of Health, NIDDK, Laboratory of Cell and Molecular Biology, Bethesda, MD, United States
| | - Martin Götte
- Department of Gynecology, and Obstetrics, University Hospital of Münster, Münster, Germany
| | - Federico Bussolino
- Lovelace Biomedical Research Institute, Albuquerque, NM, United States; Department of Oncology, University of Turin, Orbassano, Italy
| | - Luciano Milanesi
- Institute of Biomedical Technologies, National Research Council, Milan, Italy
| | - Ileana Zucchi
- Institute of Biomedical Technologies, National Research Council, Milan, Italy; Associazione Fondazione Renato Dulbecco, Milano, Italy.
| | - Rolland Reinbold
- Institute of Biomedical Technologies, National Research Council, Milan, Italy; Associazione Fondazione Renato Dulbecco, Milano, Italy.
| |
Collapse
|
13
|
Dali A, Sebastiani F, Gabler T, Frattini G, Moreno DM, Estrin DA, Becucci M, Hofbauer S, Smulevich G. Proximal ligand tunes active site structure and reactivity in bacterial L. monocytogenes coproheme ferrochelatase. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2024; 313:124120. [PMID: 38479228 DOI: 10.1016/j.saa.2024.124120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 02/21/2024] [Accepted: 03/03/2024] [Indexed: 04/02/2024]
Abstract
Ferrochelatases catalyze the insertion of ferrous iron into the porphyrin during the heme b biosynthesis pathway, which is fundamental for both prokaryotes and eukaryotes. Interestingly, in the active site of ferrochelatases, the proximal ligand coordinating the porphyrin iron of the product is not conserved, and its catalytic role is still unclear. Here we compare the L. monocytogenes bacterial coproporphyrin ferrochelatase native enzyme together with selected variants, where the proximal Tyr residue was replaced by a His (i.e. the most common ligand in heme proteins), a Met or a Phe (as in human and actinobacterial ferrochelatases, respectively), in their Fe(III), Fe(II) and Fe(II)-CO adduct forms. The study of the active site structure and the activity of the proteins in solution has been performed by UV-vis electronic absorption and resonance Raman spectroscopies, biochemical characterization, and classical MD simulations. All the mutations alter the H-bond interactions between the iron porphyrin propionate groups and the protein, and induce effects on the activity, depending on the polarity of the proximal ligand. The overall results confirm that the weak or non-existing coordination of the porphyrin iron by the proximal residue is essential for the binding of the substrate and the release of the final product.
Collapse
Affiliation(s)
- Andrea Dali
- Dipartimento di Chimica "Ugo Schiff" (DICUS), Università di Firenze, Via della Lastruccia 3-13, I-50019 Sesto Fiorentino (FI), Italy
| | - Federico Sebastiani
- Dipartimento di Chimica "Ugo Schiff" (DICUS), Università di Firenze, Via della Lastruccia 3-13, I-50019 Sesto Fiorentino (FI), Italy
| | - Thomas Gabler
- University of Natural Resources and Life Sciences, Department of Chemistry, Institute of Biochemistry, Muthgasse 18, A-1190 Vienna, Austria
| | - Gianfranco Frattini
- Instituto de Química Rosario (IQUIR, CONICET-UNR) and Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Rosario, Santa Fe, Argentina
| | - Diego M Moreno
- Instituto de Química Rosario (IQUIR, CONICET-UNR) and Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Rosario, Santa Fe, Argentina
| | - Darío A Estrin
- Facultad de Ciencias Exactas y Naturales, Departamento de Química Inorgánica, Analítica y Química Física, Universidad de Buenos Aires, Intendente Güiraldes, 2160 Buenos Aires, Argentina; CONICET - Universidad de Buenos Aires, Instituto de Química-Física de los Materiales, Medio Ambiente y Energía (INQUIMAE), Ciudad Universitaria, Pabellón 2, Buenos Aires, Argentina
| | - Maurizio Becucci
- Dipartimento di Chimica "Ugo Schiff" (DICUS), Università di Firenze, Via della Lastruccia 3-13, I-50019 Sesto Fiorentino (FI), Italy.
| | - Stefan Hofbauer
- University of Natural Resources and Life Sciences, Department of Chemistry, Institute of Biochemistry, Muthgasse 18, A-1190 Vienna, Austria.
| | - Giulietta Smulevich
- Dipartimento di Chimica "Ugo Schiff" (DICUS), Università di Firenze, Via della Lastruccia 3-13, I-50019 Sesto Fiorentino (FI), Italy; INSTM Research Unit of Firenze, via della Lastruccia 3, I-50019 Sesto Fiorentino, Italy.
| |
Collapse
|
14
|
Decembrino D, Cannella D. The thin line between monooxygenases and peroxygenases. P450s, UPOs, MMOs, and LPMOs: A brick to bridge fields of expertise. Biotechnol Adv 2024; 72:108321. [PMID: 38336187 DOI: 10.1016/j.biotechadv.2024.108321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 02/04/2024] [Accepted: 02/06/2024] [Indexed: 02/12/2024]
Abstract
Many scientific fields, although driven by similar purposes and dealing with similar technologies, often appear so isolated and far from each other that even the vocabularies to describe the very same phenomenon might differ. Concerning the vast field of biocatalysis, a special role is played by those redox enzymes that employ oxygen-based chemistry to unlock transformations otherwise possible only with metal-based catalysts. As such, greener chemical synthesis methods and environmentally-driven biotechnological approaches were enabled over the last decades by the use of several enzymes and ultimately resulted in the first industrial applications. Among what can be called today the environmental biorefinery sector, biomass transformation, greenhouse gas reduction, bio-gas/fuels production, bioremediation, as well as bulk or fine chemicals and even pharmaceuticals manufacturing are all examples of fields in which successful prototypes have been demonstrated employing redox enzymes. In this review we decided to focus on the most prominent enzymes (MMOs, LPMO, P450 and UPO) capable of overcoming the ∼100 kcal mol-1 barrier of inactivated CH bonds for the oxyfunctionalization of organic compounds. Harnessing the enormous potential that lies within these enzymes is of extreme value to develop sustainable industrial schemes and it is still deeply coveted by many within the aforementioned fields of application. Hence, the ambitious scope of this account is to bridge the current cutting-edge knowledge gathered upon each enzyme. By creating a broad comparison, scientists belonging to the different fields may find inspiration and might overcome obstacles already solved by the others. This work is organised in three major parts: a first section will be serving as an introduction to each one of the enzymes regarding their structural and activity diversity, whereas a second one will be encompassing the mechanistic aspects of their catalysis. In this regard, the machineries that lead to analogous catalytic outcomes are depicted, highlighting the major differences and similarities. Finally, a third section will be focusing on the elements that allow the oxyfunctionalization chemistry to occur by delivering redox equivalents to the enzyme by the action of diverse redox partners. Redox partners are often overlooked in comparison to the catalytic counterparts, yet they represent fundamental elements to better understand and further develop practical applications based on mono- and peroxygenases.
Collapse
Affiliation(s)
- Davide Decembrino
- Photobiocatalysis Unit - Crop Production and Biostimulation Lab (CPBL), and Biomass Transformation Lab (BTL), École Interfacultaire de Bioingénieurs, Université Libre de Bruxelles, Belgium.
| | - David Cannella
- Photobiocatalysis Unit - Crop Production and Biostimulation Lab (CPBL), and Biomass Transformation Lab (BTL), École Interfacultaire de Bioingénieurs, Université Libre de Bruxelles, Belgium.
| |
Collapse
|
15
|
Borghesani V, Zastrow ML, Tolbert AE, Deb A, Penner-Hahn JE, Pecoraro VL. Co(II) Substitution Enhances the Esterase Activity of a de Novo Designed Zn(II) Carbonic Anhydrase. Chemistry 2024; 30:e202304367. [PMID: 38377169 PMCID: PMC11045307 DOI: 10.1002/chem.202304367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 02/16/2024] [Accepted: 02/20/2024] [Indexed: 02/22/2024]
Abstract
Carbonic Anhydrases (CAs) have been a target for de novo protein designers due to the simplicity of the active site and rapid rate of the reaction. The first reported mimic contained a Zn(II) bound to three histidine imidazole nitrogens and an exogenous water molecule, hence closely mimicking the native enzymes' first coordination sphere. Co(II) has served as an alternative metal to interrogate CAs due to its d7 electronic configuration for more detailed solution characterization. We present here the Co(II) substituted [Co(II)(H2O/OH-)]N(TRIL2WL23H)3 n+ that behaves similarly to native Co(II) substituted human-CAs. Like the Zn(II) analogue, the cobalt-derivative at slightly basic pH is incapable of hydrolyzing p-nitrophenylacetate (pNPA); however, as the pH is increased a significant activity develops, which at pH values above 10 eventually yields a catalytic efficiency that exceeds that of the [Zn(II)(OH-)]N(TRIL2WL23H)3 + peptide complex. X-ray absorption analysis is consistent with an octahedral species at pH 7.5 that converts to a 5-coordinate species by pH 11. UV-vis spectroscopy can monitor this transition, giving a pKa for the conversion of 10.3. We assign this conversion to the formation of a 5-coordinate Co(II)(Nimid)3(OH)(H2O) species. The pH dependent kinetic analysis indicates the maximal rate (kcat), and thus the catalytic efficiency (kcat/Km), follow the same pH profile as the spectroscopic conversion to the pentacoordinate species. This correlation suggests that the chemically irreversible ester hydrolysis corresponds to the rate determining process.
Collapse
Affiliation(s)
- Valentina Borghesani
- Department of Chemistry and Biophysics, University of Michigan, Ann Arbor, MI-48109-1055, United States
- Department of Chemistry, Life Sciences, and Environmental Sustainability, University of Parma, Parco Area delle, Scienze 11A, 43124, Parma, Italy
| | - Melissa L Zastrow
- Department of Chemistry and Biophysics, University of Michigan, Ann Arbor, MI-48109-1055, United States
- Department of Chemistry, University of Houston, 3585 Cullen Blvd, Houston, TX-77204, United States
| | - Audrey E Tolbert
- Department of Chemistry and Biophysics, University of Michigan, Ann Arbor, MI-48109-1055, United States
| | - Aniruddha Deb
- Department of Chemistry and Biophysics, University of Michigan, Ann Arbor, MI-48109-1055, United States
| | - James E Penner-Hahn
- Department of Chemistry and Biophysics, University of Michigan, Ann Arbor, MI-48109-1055, United States
| | - Vincent L Pecoraro
- Department of Chemistry and Biophysics, University of Michigan, Ann Arbor, MI-48109-1055, United States
| |
Collapse
|
16
|
Sgueglia G, Vrettas MD, Chino M, De Simone A, Lombardi A. MetalHawk: Enhanced Classification of Metal Coordination Geometries by Artificial Neural Networks. J Chem Inf Model 2024; 64:2356-2367. [PMID: 37956388 PMCID: PMC11005052 DOI: 10.1021/acs.jcim.3c00873] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 09/29/2023] [Accepted: 10/26/2023] [Indexed: 11/15/2023]
Abstract
The chemical properties of metal complexes are strongly dependent on the number and geometrical arrangement of ligands coordinated to the metal center. Existing methods for determining either coordination number or geometry rely on a trade-off between accuracy and computational costs, which hinders their application to the study of large structure data sets. Here, we propose MetalHawk (https://github.com/vrettasm/MetalHawk), a machine learning-based approach to perform simultaneous classification of metal site coordination number and geometry through artificial neural networks (ANNs), which were trained using the Cambridge Structural Database (CSD) and Metal Protein Data Bank (MetalPDB). We demonstrate that the CSD-trained model can be used to classify sites belonging to the most common coordination numbers and geometry classes with balanced accuracy equal to 96.51% for CSD-deposited metal sites. The CSD-trained model was also found to be capable of classifying bioinorganic metal sites from the MetalPDB database, with balanced accuracy equal to 84.29% on the whole PDB data set and to 91.66% on manually reviewed sites in the PDB validation set. Moreover, we report evidence that the output vectors of the CSD-trained model can be considered as a proxy indicator of metal-site distortions, showing that these can be interpreted as a low-dimensional representation of subtle geometrical features present in metal site structures.
Collapse
Affiliation(s)
- Gianmattia Sgueglia
- Department
of Chemical Sciences, University of Naples
Federico II, Via Cintia 21, 80126 Napoli, Italy
| | - Michail D. Vrettas
- Department
of Pharmacy, University of Naples Federico
II, Via Domenico Montesano
49, 80131 Napoli, Italy
| | - Marco Chino
- Department
of Chemical Sciences, University of Naples
Federico II, Via Cintia 21, 80126 Napoli, Italy
| | - Alfonso De Simone
- Department
of Pharmacy, University of Naples Federico
II, Via Domenico Montesano
49, 80131 Napoli, Italy
| | - Angela Lombardi
- Department
of Chemical Sciences, University of Naples
Federico II, Via Cintia 21, 80126 Napoli, Italy
| |
Collapse
|
17
|
Luther P, Boyle AL. Differences in heavy metal binding to cysteine-containing coiled-coil peptides. J Pept Sci 2024; 30:e3549. [PMID: 37828738 DOI: 10.1002/psc.3549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 09/21/2023] [Accepted: 09/24/2023] [Indexed: 10/14/2023]
Abstract
One third of all structurally characterised proteins contain a metal; however, the interplay between metal-binding and peptide/protein folding has yet to be fully elucidated. To better understand how metal binding affects peptide folding, a range of metals should be studied within a specific scaffold. To this end, we modified a histidine-containing coiled-coil peptide to create a cysteine-containing scaffold, named CX3C, which was designed to bind heavy metal ions. In addition, we generated a peptide named CX2C, which contains a binding site more commonly found in natural proteins. Using a combination of analytical techniques including circular dichroism (CD) spectroscopy, UV-Vis spectroscopy and size-exclusion chromatography coupled to multi-angle light scattering (SEC-MALS), we examined the differences in the metal-binding properties of the two peptides. Both peptides are largely unfolded in the apo state due to the disruption of the hydrophobic core by inclusion of the polar cysteine residues. However, this unfolding is overcome by the addition of Cd(II), Pb(II) and Hg(II), and helical assemblies are formed. Both peptides have differing affinities for these metal ions, a fact likely attributed to the differing sizes of the ions. We also show that the oligomerisation state of the peptide complexes and the coordination geometries of the metal ions differ between the two peptide scaffolds. These findings highlight that subtle changes in the primary structure of a peptide can have considerable implications for metal binding.
Collapse
Affiliation(s)
- Prianka Luther
- Macromolecular Biochemistry Group, Leiden Institute of Chemistry, Leiden University, Leiden, Netherlands
| | - Aimee L Boyle
- Macromolecular Biochemistry Group, Leiden Institute of Chemistry, Leiden University, Leiden, Netherlands
| |
Collapse
|
18
|
Chen ZY, Yuan H, Wang H, Sun LJ, Yu L, Gao SQ, Tan X, Lin YW. Regulating the Heme Active Site by Covalent Modifications: Two Case Studies of Myoglobin. Chembiochem 2024; 25:e202300678. [PMID: 38015421 DOI: 10.1002/cbic.202300678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 11/12/2023] [Accepted: 11/28/2023] [Indexed: 11/29/2023]
Abstract
Using myoglobin (Mb) as a model protein, we herein developed a facial approach to modifying the heme active site. A cavity was first generated in the heme distal site by F46 C mutation, and the thiol group of Cys46 was then used for covalently linked to exogenous ligands, 1H-1,2,4-triazole-3-thiol and 1-(4-hydroxyphenyl)-1H-pyrrole-2,5-dione. The engineered proteins, termed F46C-triazole Mb and F46C-phenol Mb, respectively, were characterized by X-ray crystallography, spectroscopic and stopped-flow kinetic studies. The results showed that both the heme coordination state and the protein function such as H2 O2 activation and peroxidase activity could be efficiently regulated, which suggests that this approach might be generally applied to the design of functional heme proteins.
Collapse
Affiliation(s)
- Ze-Yuan Chen
- School of Chemistry and Chemical Engineering, University of South China, Hengyang, 421001, China
| | - Hong Yuan
- Department of Chemistry & Institute of Biomedical Science, Fudan University, Shanghai, 200433, China
| | - Huamin Wang
- School of Chemistry and Chemical Engineering, University of South China, Hengyang, 421001, China
| | - Li-Juan Sun
- Hengyang Medical School, University of South China, Hengyang, 421001, China
| | - Lu Yu
- High Magnetic Field Laboratory, Chinese Academy of Sciences, Hefei, Anhui, 230031, China
| | - Shu-Qin Gao
- Hengyang Medical School, University of South China, Hengyang, 421001, China
| | - Xiangshi Tan
- Department of Chemistry & Institute of Biomedical Science, Fudan University, Shanghai, 200433, China
| | - Ying-Wu Lin
- School of Chemistry and Chemical Engineering, University of South China, Hengyang, 421001, China
- Hengyang Medical School, University of South China, Hengyang, 421001, China
| |
Collapse
|
19
|
Tang S, Sun LJ, Pan AQ, Huang J, Wang H, Lin YW. Application of engineered myoglobins for biosynthesis of clofazimine by integration with chemical synthesis. Org Biomol Chem 2023; 21:9603-9609. [PMID: 38014756 DOI: 10.1039/d3ob01687k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2023]
Abstract
Significant efforts have been made in the design of artificial metalloenzymes. Myoglobin (Mb), an O2 carrier, has been engineered to exhibit different functions. Herein, we applied a series of engineered Mb mutants with peroxidase activity for biosynthesis of clofazimine (CFZ), a potential drug with a broad-spectrum antiviral activity, by integration with chemical synthesis. Two of those mutants, F43Y Mb and F43Y/T67R Mb, have been shown to efficiently catalyze the oxidative coupling of 2-N-(4-chlorophenyl) benzene-1,2-diamine (N-4-CPBDA) in the presence of H2O2, with 97% yields. The overall catalytic efficiency (kcat/Km) is 46-fold and 82-fold higher than that of WT Mb, respectively. By further combination of this reaction with chemical synthesis, the production of CFZ was accomplished with an isolated yield of 72%. These results showed that engineered Mbs containing the Tyr-heme cross-link (F43Y Mb and F43Y/T67R Mb) exhibit enhanced activity in the oxidative coupling reaction. This study also indicates that the combination of biocatalysis and chemical synthesis avoids the need for the separation of intermediate products, which offers a convenient approach for the total synthesis of the biological compound CFZ.
Collapse
Affiliation(s)
- Shuai Tang
- School of Chemistry and Chemical Engineering, University of South China, Hengyang 421001, China.
| | - Li-Juan Sun
- Hengyang Medical College, University of South China, Hengyang 421001, China
| | - Ai-Qun Pan
- School of Chemistry and Chemical Engineering, University of South China, Hengyang 421001, China.
| | - Jun Huang
- School of Chemistry and Chemical Engineering, University of South China, Hengyang 421001, China.
| | - Huamin Wang
- School of Chemistry and Chemical Engineering, University of South China, Hengyang 421001, China.
| | - Ying-Wu Lin
- School of Chemistry and Chemical Engineering, University of South China, Hengyang 421001, China.
- Hengyang Medical College, University of South China, Hengyang 421001, China
- Key Lab of Protein Structure and Function of Universities in Hunan Province, University of South China, Hengyang 421001, China
| |
Collapse
|
20
|
Renzi E, Piper A, Nastri F, Merkoçi A, Lombardi A. An Artificial Miniaturized Peroxidase for Signal Amplification in Lateral Flow Immunoassays. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2207949. [PMID: 36942720 DOI: 10.1002/smll.202207949] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 02/21/2023] [Indexed: 06/18/2023]
Abstract
Signal amplification strategies are widely used for improving the sensitivity of lateral flow immunoassays (LFiAs). Herein, the artificial miniaturized peroxidase Fe(III)-MimochromeVI*a (FeMC6*a), immobilized on gold nanoparticles (AuNPs), is used as a strategy to obtain catalytic signal amplification in sandwich immunoassays on lateral flow strips. The assay scheme uses AuNPs decorated with the mini-peroxidase FeMC6*a and anti-human-IgG as a detection antibody (dAb), for the detection of human-IgG, as a model analyte. Recognition of the analyte by the capture and detection antibodies is first evidenced by the appearance of a red color in the test line (TL), due to the accumulation of AuNPs. Subsequent addition of 3,3',5,5'-tetramethylbenzidine (TMB) induces an increase of the test line color, due to the TMB being converted into an insoluble colored product, catalyzed by FeMC6*a. This work shows that FeMC6*a acts as an efficient catalyst in paper, increasing the sensitivity of an LFiA up to four times with respect to a conventional LFiA. Furthermore, FeMC6*a achieves lower limits of detection that are found in control experiments where it is replaced with horseradish peroxidase (HRP), its natural counterpart. This study represents a significant proof-of-concept for the development of more sensitive LFiAs, for different analytes, based on properly designed artificial metalloenzymes.
Collapse
Affiliation(s)
- Emilia Renzi
- Department of Chemical Sciences, University of Napoli Federico II, Via Cintia, 21, Napoli, 80126, Italy
- Nanobioelectronics & Biosensors Group, Institut Català de Nanociència I Nanotecnologia (ICN2), CSIC and The Barcelona Institute of Science and Technology (BIST), Campus UAB, Bellaterra, Barcelona, 08193, Spain
| | - Andrew Piper
- Nanobioelectronics & Biosensors Group, Institut Català de Nanociència I Nanotecnologia (ICN2), CSIC and The Barcelona Institute of Science and Technology (BIST), Campus UAB, Bellaterra, Barcelona, 08193, Spain
| | - Flavia Nastri
- Department of Chemical Sciences, University of Napoli Federico II, Via Cintia, 21, Napoli, 80126, Italy
| | - Arben Merkoçi
- Nanobioelectronics & Biosensors Group, Institut Català de Nanociència I Nanotecnologia (ICN2), CSIC and The Barcelona Institute of Science and Technology (BIST), Campus UAB, Bellaterra, Barcelona, 08193, Spain
- Catalan Institution for Research and Advanced Studies (ICREA), Pg. Lluís Companys 23, Barcelona, 08010, Spain
| | - Angela Lombardi
- Department of Chemical Sciences, University of Napoli Federico II, Via Cintia, 21, Napoli, 80126, Italy
| |
Collapse
|
21
|
Chaturvedi SS, Bím D, Christov CZ, Alexandrova AN. From random to rational: improving enzyme design through electric fields, second coordination sphere interactions, and conformational dynamics. Chem Sci 2023; 14:10997-11011. [PMID: 37860658 PMCID: PMC10583697 DOI: 10.1039/d3sc02982d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2023] [Accepted: 09/11/2023] [Indexed: 10/21/2023] Open
Abstract
Enzymes are versatile and efficient biological catalysts that drive numerous cellular processes, motivating the development of enzyme design approaches to tailor catalysts for diverse applications. In this perspective, we investigate the unique properties of natural, evolved, and designed enzymes, recognizing their strengths and shortcomings. We highlight the challenges and limitations of current enzyme design protocols, with a particular focus on their limited consideration of long-range electrostatic and dynamic effects. We then delve deeper into the impact of the protein environment on enzyme catalysis and explore the roles of preorganized electric fields, second coordination sphere interactions, and protein dynamics for enzyme function. Furthermore, we present several case studies illustrating successful enzyme-design efforts incorporating enzyme strategies mentioned above to achieve improved catalytic properties. Finally, we envision the future of enzyme design research, spotlighting the challenges yet to be overcome and the synergy of intrinsic electric fields, second coordination sphere interactions, and conformational dynamics to push the state-of-the-art boundaries.
Collapse
Affiliation(s)
- Shobhit S Chaturvedi
- Department of Chemistry and Biochemistry, University of California, Los Angeles California 90095 USA
| | - Daniel Bím
- Department of Chemistry and Biochemistry, University of California, Los Angeles California 90095 USA
| | - Christo Z Christov
- Department of Chemistry, Michigan Technological University Houghton Michigan 49931 USA
| | - Anastassia N Alexandrova
- Department of Chemistry and Biochemistry, University of California, Los Angeles California 90095 USA
| |
Collapse
|
22
|
Sun LJ, Wang H, Xu JK, Gao SQ, Wen GB, Lin YW. Exploiting and Engineering Neuroglobin for Catalyzing Carbene N-H Insertions and the Formation of Quinoxalinones. Inorg Chem 2023; 62:16294-16298. [PMID: 37772803 DOI: 10.1021/acs.inorgchem.3c02855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/30/2023]
Abstract
It is desired to design and construct more efficient enzymes with better performance to catalyze carbene N-H insertions for the synthesis of bioactive molecules. To this end, we exploited and designed a series of human neuroglobin (Ngb) mutants. As shown in this study, a double mutant, A15C/H64G Ngb, with an additional disulfide bond and a modified heme active site, exhibited yields up to >99% and total turnover numbers up to 33000 in catalyzing the carbene N-H insertions for aromatic amine derivatives, including those with a large size such as 1-aminopyrene. Moreover, for o-phenylenediamine derivatives, they underwent two cycles of N-H insertions, followed by cyclization to form quinoxalinones, as confirmed by the X-ray crystal structures. This study suggests that Ngb can be designed into a functional carbene transferase for efficiently catalyzing carbene N-H insertion reactions with a range of substrates. It also represents the first example of the formation of quinoxalinones catalyzed by an engineered heme enzyme.
Collapse
Affiliation(s)
- Li-Juan Sun
- Hengyang Medical School, University of South China, Hengyang 421001, China
| | - Huamin Wang
- School of Chemistry and Chemical Engineering, University of South China, Hengyang 421001, China
| | - Jia-Kun Xu
- Key Laboratory of Sustainable Development of Polar Fisheries, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China
| | - Shu-Qin Gao
- Hengyang Medical School, University of South China, Hengyang 421001, China
| | - Ge-Bo Wen
- Hengyang Medical School, University of South China, Hengyang 421001, China
| | - Ying-Wu Lin
- Hengyang Medical School, University of South China, Hengyang 421001, China
- School of Chemistry and Chemical Engineering, University of South China, Hengyang 421001, China
| |
Collapse
|
23
|
Hassan N, Krieg T, Zinser M, Schröder K, Kröger N. An Overview of Scaffolds and Biomaterials for Skin Expansion and Soft Tissue Regeneration: Insights on Zinc and Magnesium as New Potential Key Elements. Polymers (Basel) 2023; 15:3854. [PMID: 37835903 PMCID: PMC10575381 DOI: 10.3390/polym15193854] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 09/13/2023] [Accepted: 09/18/2023] [Indexed: 10/15/2023] Open
Abstract
The utilization of materials in medical implants, serving as substitutes for non-functional biological structures, supporting damaged tissues, or reinforcing active organs, holds significant importance in modern healthcare, positively impacting the quality of life for millions of individuals worldwide. However, certain implants may only be required temporarily to aid in the healing process of diseased or injured tissues and tissue expansion. Biodegradable metals, including zinc (Zn), magnesium (Mg), iron, and others, present a new paradigm in the realm of implant materials. Ongoing research focuses on developing optimized materials that meet medical standards, encompassing controllable corrosion rates, sustained mechanical stability, and favorable biocompatibility. Achieving these objectives involves refining alloy compositions and tailoring processing techniques to carefully control microstructures and mechanical properties. Among the materials under investigation, Mg- and Zn-based biodegradable materials and their alloys demonstrate the ability to provide necessary support during tissue regeneration while gradually degrading over time. Furthermore, as essential elements in the human body, Mg and Zn offer additional benefits, including promoting wound healing, facilitating cell growth, and participating in gene generation while interacting with various vital biological functions. This review provides an overview of the physiological function and significance for human health of Mg and Zn and their usage as implants in tissue regeneration using tissue scaffolds. The scaffold qualities, such as biodegradation, mechanical characteristics, and biocompatibility, are also discussed.
Collapse
Affiliation(s)
- Nourhan Hassan
- Department of Plastic, Reconstructive and Aesthetic Surgery, Faculty of Medicine, University Hospital Cologne, Kerpener Str. 62, 50937 Cologne, Germany
- Biotechnology Department, Faculty of Science, Cairo University, Giza 12613, Egypt
| | - Thomas Krieg
- Translational Matrix Biology, Medical Faculty, University of Cologne, 50923 Cologne, Germany
- Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, 50923 Cologne, Germany
- Center for Molecular Medicine (CMMC), University of Cologne, 50923 Cologne, Germany
| | - Max Zinser
- Department of Plastic, Reconstructive and Aesthetic Surgery, Faculty of Medicine, University Hospital Cologne, Kerpener Str. 62, 50937 Cologne, Germany
- Department for Oral and Craniomaxillofacial and Plastic Surgery, University of Cologne, Kerpener Strasse 62, 50931 Cologne, Germany
| | - Kai Schröder
- Department of Plastic, Reconstructive and Aesthetic Surgery, Faculty of Medicine, University Hospital Cologne, Kerpener Str. 62, 50937 Cologne, Germany
| | - Nadja Kröger
- Department of Plastic, Reconstructive and Aesthetic Surgery, Faculty of Medicine, University Hospital Cologne, Kerpener Str. 62, 50937 Cologne, Germany
| |
Collapse
|
24
|
Wijker S, Palmans ARA. Protein-Inspired Control over Synthetic Polymer Folding for Structured Functional Nanoparticles in Water. Chempluschem 2023; 88:e202300260. [PMID: 37417828 DOI: 10.1002/cplu.202300260] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 07/06/2023] [Accepted: 07/06/2023] [Indexed: 07/08/2023]
Abstract
The folding of proteins into functional nanoparticles with defined 3D structures has inspired chemists to create simple synthetic systems mimicking protein properties. The folding of polymers into nanoparticles in water proceeds via different strategies, resulting in the global compaction of the polymer chain. Herein, we review the different methods available to control the conformation of synthetic polymers and collapse/fold them into structured, functional nanoparticles, such as hydrophobic collapse, supramolecular self-assembly, and covalent cross-linking. A comparison is made between the design principles of protein folding to synthetic polymer folding and the formation of structured nanocompartments in water, highlighting similarities and differences in design and function. We also focus on the importance of structure for functional stability and diverse applications in complex media and cellular environments.
Collapse
Affiliation(s)
- Stefan Wijker
- Institute for Complex Molecular Systems, Laboratory of Macromolecular and Organic Chemistry, Eindhoven University of Technology, 5600 MB, Eindhoven, The Netherlands
| | - Anja R A Palmans
- Institute for Complex Molecular Systems, Laboratory of Macromolecular and Organic Chemistry, Eindhoven University of Technology, 5600 MB, Eindhoven, The Netherlands
| |
Collapse
|
25
|
Leone L, Muñoz-García AB, D'Alonzo D, Pavone V, Nastri F, Lombardi A. Peptide-based metalloporphyrin catalysts: unveiling the role of the metal ion in indole oxidation. J Inorg Biochem 2023; 246:112298. [PMID: 37379767 DOI: 10.1016/j.jinorgbio.2023.112298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Revised: 06/06/2023] [Accepted: 06/16/2023] [Indexed: 06/30/2023]
Abstract
Over the last decades, much effort has been devoted to the construction of protein and peptide-based metalloporphyrin catalysts capable of promoting difficult transformations with high selectivity. In this context, mechanistic studies are fundamental to elucidate all the factors that contribute to catalytic performances and product selectivity. In our previous work, we selected the synthetic peptide-porphyrin conjugate MnMC6*a as a proficient catalyst for indole oxidation, promoting the formation of a 3-oxindole derivative with unprecedented selectivity. In this work, we have evaluated the role of the metal ion in affecting reaction outcome, by replacing manganese with iron in the MC6*a scaffold. Even though product selectivity is not altered upon metal substitution, FeMC6*a shows a lower substrate conversion and prolonged reaction times with respect to its manganese analogue. Experimental and theoretical studies have enabled us to delineate the reaction free energy profiles for both catalysts, indicating different thermodynamic limiting steps, depending on the nature of the metal ion.
Collapse
Affiliation(s)
- Linda Leone
- Department of Chemical Sciences, University of Naples Federico II, Complesso Universitario Monte S. Angelo, via Cintia, 80126 Naples, Italy
| | - Ana Belén Muñoz-García
- Department of Physics "Ettore Pancini", University of Naples Federico II, Complesso Universitario Monte S. Angelo, via Cintia, 80126 Naples, Italy
| | - Daniele D'Alonzo
- Department of Chemical Sciences, University of Naples Federico II, Complesso Universitario Monte S. Angelo, via Cintia, 80126 Naples, Italy
| | - Vincenzo Pavone
- Department of Chemical Sciences, University of Naples Federico II, Complesso Universitario Monte S. Angelo, via Cintia, 80126 Naples, Italy
| | - Flavia Nastri
- Department of Chemical Sciences, University of Naples Federico II, Complesso Universitario Monte S. Angelo, via Cintia, 80126 Naples, Italy.
| | - Angela Lombardi
- Department of Chemical Sciences, University of Naples Federico II, Complesso Universitario Monte S. Angelo, via Cintia, 80126 Naples, Italy.
| |
Collapse
|
26
|
D'Alonzo D, De Fenza M, Pavone V, Lombardi A, Nastri F. Selective Oxidation of Halophenols Catalyzed by an Artificial Miniaturized Peroxidase. Int J Mol Sci 2023; 24:ijms24098058. [PMID: 37175773 PMCID: PMC10178546 DOI: 10.3390/ijms24098058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 04/24/2023] [Accepted: 04/25/2023] [Indexed: 05/15/2023] Open
Abstract
The development of artificial enzymes for application in sustainable technologies, such as the transformation of environmental pollutants or biomass, is one of the most challenging goals in metalloenzyme design. In this work, we describe the oxidation of mono-, di-, tri- and penta-halogenated phenols catalyzed by the artificial metalloenzyme Fe-MC6*a. It promoted the dehalogenation of 4-fluorophenol into the corresponding 1,4-benzoquinone, while under the same experimental conditions, 4-chloro, 4-bromo and 4-iodophenol were selectively converted into higher molecular weight compounds. Analysis of the 4-chlorophenol oxidation products clarified that oligomers based on C-O bonds were exclusively formed in this case. All results show that Fe-MC6*a holds intriguing enzymatic properties, as it catalyzes halophenol oxidation with substrate-dependent chemoselectivity.
Collapse
Affiliation(s)
- Daniele D'Alonzo
- Department of Chemical Sciences, University of Napoli Federico II, Via Cintia, 80126 Napoli, Italy
| | - Maria De Fenza
- Department of Chemical Sciences, University of Napoli Federico II, Via Cintia, 80126 Napoli, Italy
| | - Vincenzo Pavone
- Department of Chemical Sciences, University of Napoli Federico II, Via Cintia, 80126 Napoli, Italy
| | - Angela Lombardi
- Department of Chemical Sciences, University of Napoli Federico II, Via Cintia, 80126 Napoli, Italy
| | - Flavia Nastri
- Department of Chemical Sciences, University of Napoli Federico II, Via Cintia, 80126 Napoli, Italy
| |
Collapse
|
27
|
Sun LJ, Yuan H, Xu JK, Luo J, Lang JJ, Wen GB, Tan X, Lin YW. Phenoxazinone Synthase-like Activity of Rationally Designed Heme Enzymes Based on Myoglobin. Biochemistry 2023; 62:369-377. [PMID: 34665595 DOI: 10.1021/acs.biochem.1c00554] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
The design of functional metalloenzymes is attractive for the biosynthesis of biologically important compounds, such as phenoxazinones and phenazines catalyzed by native phenoxazinone synthase (PHS). To design functional heme enzymes, we used myoglobin (Mb) as a model protein and introduced an artificial CXXC motif into the heme distal pocket by F46C and L49C mutations, which forms a de novo disulfide bond, as confirmed by the X-ray crystal structure. We further introduced a catalytic Tyr43 into the heme distal pocket and found that the F43Y/F46C/L49C Mb triple mutant and the previously designed F43Y/F46S Mb exhibit PHS-like activity (80-98% yields in 5-15 min), with the catalytic efficiency exceeding those of natural metalloenzymes, including o-aminophenol oxidase, laccase, and dye-decolorizing peroxidase. Moreover, we showed that the oxidative coupling product of 1,6-disulfonic-2,7-diaminophenazine is a potential pH indicator, with the orange-magenta color change at pH 4-5 (pKa = 4.40). Therefore, this study indicates that functional heme enzymes can be rationally designed by structural modifications of Mb, exhibiting the functionality of the native PHS for green biosynthesis.
Collapse
Affiliation(s)
- Li-Juan Sun
- Hengyang Medical School, University of South China, Hengyang 421001, China
| | - Hong Yuan
- Department of Chemistry and Institute of Biomedical Science, Fudan University, Shanghai 200433, China
| | - Jia-Kun Xu
- Key Lab of Sustainable Development of Polar Fisheries, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China
| | - Jie Luo
- Lab of Protein Structure and Function, University of South China, Hengyang 421001, China
| | - Jia-Jia Lang
- Hengyang Medical School, University of South China, Hengyang 421001, China
| | - Ge-Bo Wen
- Hengyang Medical School, University of South China, Hengyang 421001, China
| | - Xiangshi Tan
- Department of Chemistry and Institute of Biomedical Science, Fudan University, Shanghai 200433, China
| | - Ying-Wu Lin
- Hengyang Medical School, University of South China, Hengyang 421001, China.,Lab of Protein Structure and Function, University of South China, Hengyang 421001, China
| |
Collapse
|
28
|
Pirro F, La Gatta S, Arrigoni F, Famulari A, Maglio O, Del Vecchio P, Chiesa M, De Gioia L, Bertini L, Chino M, Nastri F, Lombardi A. A De Novo-Designed Type 3 Copper Protein Tunes Catechol Substrate Recognition and Reactivity. Angew Chem Int Ed Engl 2023; 62:e202211552. [PMID: 36334012 DOI: 10.1002/anie.202211552] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Indexed: 11/07/2022]
Abstract
De novo metalloprotein design is a remarkable approach to shape protein scaffolds toward specific functions. Here, we report the design and characterization of Due Rame 1 (DR1), a de novo designed protein housing a di-copper site and mimicking the Type 3 (T3) copper-containing polyphenol oxidases (PPOs). To achieve this goal, we hierarchically designed the first and the second di-metal coordination spheres to engineer the di-copper site into a simple four-helix bundle scaffold. Spectroscopic, thermodynamic, and functional characterization revealed that DR1 recapitulates the T3 copper site, supporting different copper redox states, and being active in the O2 -dependent oxidation of catechols to o-quinones. Careful design of the residues lining the substrate access site endows DR1 with substrate recognition, as revealed by Hammet analysis and computational studies on substituted catechols. This study represents a premier example in the construction of a functional T3 copper site into a designed four-helix bundle protein.
Collapse
Affiliation(s)
- Fabio Pirro
- Department of Chemical Sciences, University of Naples Federico II, Via Cintia, 80126, Naples, Italy
| | - Salvatore La Gatta
- Department of Chemical Sciences, University of Naples Federico II, Via Cintia, 80126, Naples, Italy
| | - Federica Arrigoni
- Department of Biotechnology and Biosciences, University of Milan-Bicocca, Piazza della Scienza 2, 20126, Milan, Italy
| | - Antonino Famulari
- Department of Chemistry, University of Torino, Via Giuria 9, 10125, Torino, Italy.,Department of Condensed Matter Physics, University of of Zaragoza, Calle Pedro Cerbuna 12, 50009, Zaragoza, Spain
| | - Ornella Maglio
- Department of Chemical Sciences, University of Naples Federico II, Via Cintia, 80126, Naples, Italy.,Institute of Biostructures and Bioimaging (IBB), National Research Council (CNR), Via Pietro Castellino 111, 80131, Napoli, Italy
| | - Pompea Del Vecchio
- Department of Chemical Sciences, University of Naples Federico II, Via Cintia, 80126, Naples, Italy
| | - Mario Chiesa
- Department of Chemistry, University of Torino, Via Giuria 9, 10125, Torino, Italy
| | - Luca De Gioia
- Department of Biotechnology and Biosciences, University of Milan-Bicocca, Piazza della Scienza 2, 20126, Milan, Italy
| | - Luca Bertini
- Department of Biotechnology and Biosciences, University of Milan-Bicocca, Piazza della Scienza 2, 20126, Milan, Italy
| | - Marco Chino
- Department of Chemical Sciences, University of Naples Federico II, Via Cintia, 80126, Naples, Italy
| | - Flavia Nastri
- Department of Chemical Sciences, University of Naples Federico II, Via Cintia, 80126, Naples, Italy
| | - Angela Lombardi
- Department of Chemical Sciences, University of Naples Federico II, Via Cintia, 80126, Naples, Italy
| |
Collapse
|
29
|
Fatima S, Boggs DG, Ali N, Thompson PJ, Thielges MC, Bridwell-Rabb J, Olshansky L. Engineering a Conformationally Switchable Artificial Metalloprotein. J Am Chem Soc 2022; 144:21606-21616. [DOI: 10.1021/jacs.2c08885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Affiliation(s)
- Saman Fatima
- Department of Chemistry, University of Illinois Urbana−Champaign, 600 S. Mathews Avenue, Urbana, Illinois61801, United States
| | - David G. Boggs
- Department of Chemistry, University of Michigan, 930 N. University Avenue, Ann Arbor, Michigan48109, United States
| | - Noor Ali
- Department of Chemistry, Indiana University, 800 E. Kirkwood Avenue, Bloomington, Indiana47405, United States
| | - Peter J. Thompson
- Center for Biophysics and Quantitative Biology, University of Illinois Urbana−Champaign, 600 S. Mathews Avenue, Urbana, Illinois61801, United States
| | - Megan C. Thielges
- Department of Chemistry, Indiana University, 800 E. Kirkwood Avenue, Bloomington, Indiana47405, United States
| | - Jennifer Bridwell-Rabb
- Department of Chemistry, University of Michigan, 930 N. University Avenue, Ann Arbor, Michigan48109, United States
| | - Lisa Olshansky
- Department of Chemistry, University of Illinois Urbana−Champaign, 600 S. Mathews Avenue, Urbana, Illinois61801, United States
- Center for Biophysics and Quantitative Biology, University of Illinois Urbana−Champaign, 600 S. Mathews Avenue, Urbana, Illinois61801, United States
| |
Collapse
|
30
|
Solomon LA, Witten J, Kodali G, Moser CC, Dutton PL. Tailorable Tetrahelical Bundles as a Toolkit for Redox Studies. J Phys Chem B 2022; 126:8177-8187. [PMID: 36219580 PMCID: PMC9589594 DOI: 10.1021/acs.jpcb.2c05119] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Oxidoreductases have evolved over millions of years to perform a variety of metabolic tasks crucial for life. Understanding how these tasks are engineered relies on delivering external electron donors or acceptors to initiate electron transfer reactions. This is a challenge. Small-molecule redox reagents can act indiscriminately, poisoning the cell. Natural redox proteins are more selective, but finding the right partner can be difficult due to the limited number of redox potentials and difficulty tuning them. De novo proteins offer an alternative path. They are robust and can withstand mutations that allow for tailorable changes. They are also devoid of evolutionary artifacts and readily bind redox cofactors. However, no reliable set of engineering principles have been developed that allow for these proteins to be fine-tuned so their redox midpoint potential (Em) can form donor/acceptor pairs with any natural oxidoreductase. This work dissects protein-cofactor interactions that can be tuned to modulate redox potentials of acceptors and donors using a mutable de novo designed tetrahelical protein platform with iron tetrapyrrole cofactors as a test case. We show a series of engineered heme b-binding de novo proteins and quantify their resulting effect on Em. By focusing on the surface charge and buried charges, as well as cofactor placement, chemical modification, and ligation of cofactors, we are able to achieve a broad range of Em values spanning a range of 330 mV. We anticipate this work will guide the design of proteinaceous tools that can interface with natural oxidoreductases inside and outside the cell while shedding light on how natural proteins modulate Em values of bound cofactors.
Collapse
Affiliation(s)
- Lee A. Solomon
- Department
of Chemistry and Biochemistry, George Mason
University, Fairfax, Virginia22030, United States,
| | - Joshua Witten
- Department
of Biology, George Mason University, Fairfax, Virginia22030, United States
| | - Goutham Kodali
- Department
of Biochemistry and Biophysics, University
of Pennsylvania, Philadelphia, Pennsylvania19104, United States
| | - Christopher C. Moser
- Department
of Biochemistry and Biophysics, University
of Pennsylvania, Philadelphia, Pennsylvania19104, United States
| | - P. Leslie Dutton
- Department
of Biochemistry and Biophysics, University
of Pennsylvania, Philadelphia, Pennsylvania19104, United States
| |
Collapse
|
31
|
Lukas J, Družeta I, Kühl T. Comparative studies of soluble and immobilized Fe(III) heme-peptide complexes as alternative heterogeneous biocatalysts. Biol Chem 2022; 403:1099-1105. [PMID: 36257922 DOI: 10.1515/hsz-2022-0199] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Accepted: 10/06/2022] [Indexed: 11/15/2022]
Abstract
Fe(III) heme is known to possess low catalytic activity when exposed to hydrogen peroxide and a reducing substrate. Efficient non-covalently linked Fe(III) heme-peptide complexes may represent suitable alternatives as a new group of green catalysts. Here, we evaluated a set of heme-peptide complexes by determination of their peroxidase-like activity and the kinetics of the catalytic conversion in both, the soluble and the immobilized state. We show the impact of peptide length on binding of the peptides to Fe(III) heme and the catalytic activity. Immobilization of the peptide onto a polymer support maintains the catalytic performance of the Fe(III) heme-peptide complex. This study thus opens up a new perspective with regard to the development of heterogeneous biocatalysts with a peroxidase-like activity.
Collapse
Affiliation(s)
- Joey Lukas
- Pharmaceutical Biochemistry and Bioanalytics, Pharmaceutical Institute, University of Bonn, An der Immenburg 4, D-53121, Bonn, Germany
| | - Ivona Družeta
- Pharmaceutical Biochemistry and Bioanalytics, Pharmaceutical Institute, University of Bonn, An der Immenburg 4, D-53121, Bonn, Germany
| | - Toni Kühl
- Pharmaceutical Biochemistry and Bioanalytics, Pharmaceutical Institute, University of Bonn, An der Immenburg 4, D-53121, Bonn, Germany
| |
Collapse
|
32
|
Guo C, Chadwick RJ, Foulis A, Bedendi G, Lubskyy A, Rodriguez KJ, Pellizzoni MM, Milton RD, Beveridge R, Bruns N. Peroxidase Activity of Myoglobin Variants Reconstituted with Artificial Cofactors. Chembiochem 2022; 23:e202200197. [PMID: 35816250 PMCID: PMC9545363 DOI: 10.1002/cbic.202200197] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 07/08/2022] [Indexed: 02/02/2023]
Abstract
Myoglobin (Mb) can react with hydrogen peroxide (H2 O2 ) to form a highly active intermediate compound and catalyse oxidation reactions. To enhance this activity, known as pseudo-peroxidase activity, previous studies have focused on the modification of key amino acid residues of Mb or the heme cofactor. In this work, the Mb scaffold (apo-Mb) was systematically reconstituted with a set of cofactors based on six metal ions and two ligands. These Mb variants were fully characterised by UV-Vis spectroscopy, circular dichroism (CD) spectroscopy, inductively coupled plasma mass spectrometry (ICP-MS) and native mass spectrometry (nMS). The steady-state kinetics of guaiacol oxidation and 2,4,6-trichlorophenol (TCP) dehalogenation catalysed by Mb variants were determined. Mb variants with iron chlorin e6 (Fe-Ce6) and manganese chlorin e6 (Mn-Ce6) cofactors were found to have improved catalytic efficiency for both guaiacol and TCP substrates in comparison with wild-type Mb, i. e. Fe-protoporphyrin IX-Mb. Furthermore, the selected cofactors were incorporated into the scaffold of a Mb mutant, swMb H64D. Enhanced peroxidase activity for both substrates were found via the reconstitution of Fe-Ce6 into the mutant scaffold.
Collapse
Affiliation(s)
- Chao Guo
- Department of Pure and Applied ChemistryUniversity of Strathclyde295 Cathedral StreetG1 1XLGlasgowUK
| | - Robert J. Chadwick
- Department of Pure and Applied ChemistryUniversity of Strathclyde295 Cathedral StreetG1 1XLGlasgowUK
| | - Adam Foulis
- Department of Pure and Applied ChemistryUniversity of Strathclyde295 Cathedral StreetG1 1XLGlasgowUK
| | - Giada Bedendi
- Department of Inorganic and Analytical ChemistryUniversity of Geneva1211Geneva 4Switzerland
| | - Andriy Lubskyy
- Adolphe Merkle InstituteUniversity of FribourgChemin des Verdiers 41700FribourgSwitzerland
| | - Kyle J. Rodriguez
- Adolphe Merkle InstituteUniversity of FribourgChemin des Verdiers 41700FribourgSwitzerland
| | - Michela M. Pellizzoni
- Adolphe Merkle InstituteUniversity of FribourgChemin des Verdiers 41700FribourgSwitzerland
| | - Ross D. Milton
- Department of Inorganic and Analytical ChemistryUniversity of Geneva1211Geneva 4Switzerland
| | - Rebecca Beveridge
- Department of Pure and Applied ChemistryUniversity of Strathclyde295 Cathedral StreetG1 1XLGlasgowUK
| | - Nico Bruns
- Department of Pure and Applied ChemistryUniversity of Strathclyde295 Cathedral StreetG1 1XLGlasgowUK,Department of ChemistryTechnical University of DarmstadtAlarich-Weiss-Str. 464287DarmstadtGermany
| |
Collapse
|
33
|
Koebke KJ, Pinter TBJ, Pitts WC, Pecoraro VL. Catalysis and Electron Transfer in De Novo Designed Metalloproteins. Chem Rev 2022; 122:12046-12109. [PMID: 35763791 PMCID: PMC10735231 DOI: 10.1021/acs.chemrev.1c01025] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
One of the hallmark advances in our understanding of metalloprotein function is showcased in our ability to design new, non-native, catalytically active protein scaffolds. This review highlights progress and milestone achievements in the field of de novo metalloprotein design focused on reports from the past decade with special emphasis on de novo designs couched within common subfields of bioinorganic study: heme binding proteins, monometal- and dimetal-containing catalytic sites, and metal-containing electron transfer sites. Within each subfield, we highlight several of what we have identified as significant and important contributions to either our understanding of that subfield or de novo metalloprotein design as a discipline. These reports are placed in context both historically and scientifically. General suggestions for future directions that we feel will be important to advance our understanding or accelerate discovery are discussed.
Collapse
Affiliation(s)
- Karl J. Koebke
- Department of Chemistry, University of Michigan Ann Arbor, MI 48109 USA
| | | | - Winston C. Pitts
- Department of Chemistry, University of Michigan Ann Arbor, MI 48109 USA
| | | |
Collapse
|
34
|
Van Stappen C, Deng Y, Liu Y, Heidari H, Wang JX, Zhou Y, Ledray AP, Lu Y. Designing Artificial Metalloenzymes by Tuning of the Environment beyond the Primary Coordination Sphere. Chem Rev 2022; 122:11974-12045. [PMID: 35816578 DOI: 10.1021/acs.chemrev.2c00106] [Citation(s) in RCA: 72] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Metalloenzymes catalyze a variety of reactions using a limited number of natural amino acids and metallocofactors. Therefore, the environment beyond the primary coordination sphere must play an important role in both conferring and tuning their phenomenal catalytic properties, enabling active sites with otherwise similar primary coordination environments to perform a diverse array of biological functions. However, since the interactions beyond the primary coordination sphere are numerous and weak, it has been difficult to pinpoint structural features responsible for the tuning of activities of native enzymes. Designing artificial metalloenzymes (ArMs) offers an excellent basis to elucidate the roles of these interactions and to further develop practical biological catalysts. In this review, we highlight how the secondary coordination spheres of ArMs influence metal binding and catalysis, with particular focus on the use of native protein scaffolds as templates for the design of ArMs by either rational design aided by computational modeling, directed evolution, or a combination of both approaches. In describing successes in designing heme, nonheme Fe, and Cu metalloenzymes, heteronuclear metalloenzymes containing heme, and those ArMs containing other metal centers (including those with non-native metal ions and metallocofactors), we have summarized insights gained on how careful controls of the interactions in the secondary coordination sphere, including hydrophobic and hydrogen bonding interactions, allow the generation and tuning of these respective systems to approach, rival, and, in a few cases, exceed those of native enzymes. We have also provided an outlook on the remaining challenges in the field and future directions that will allow for a deeper understanding of the secondary coordination sphere a deeper understanding of the secondary coordintion sphere to be gained, and in turn to guide the design of a broader and more efficient variety of ArMs.
Collapse
Affiliation(s)
- Casey Van Stappen
- Department of Chemistry, University of Texas at Austin, 105 East 24th Street, Austin, Texas 78712, United States
| | - Yunling Deng
- Department of Chemistry, University of Texas at Austin, 105 East 24th Street, Austin, Texas 78712, United States
| | - Yiwei Liu
- Department of Chemistry, University of Illinois, Urbana-Champaign, 505 South Mathews Avenue, Urbana, Illinois 61801, United States
| | - Hirbod Heidari
- Department of Chemistry, University of Texas at Austin, 105 East 24th Street, Austin, Texas 78712, United States
| | - Jing-Xiang Wang
- Department of Chemistry, University of Texas at Austin, 105 East 24th Street, Austin, Texas 78712, United States
| | - Yu Zhou
- Department of Chemistry, University of Texas at Austin, 105 East 24th Street, Austin, Texas 78712, United States
| | - Aaron P Ledray
- Department of Chemistry, University of Texas at Austin, 105 East 24th Street, Austin, Texas 78712, United States
| | - Yi Lu
- Department of Chemistry, University of Texas at Austin, 105 East 24th Street, Austin, Texas 78712, United States.,Department of Chemistry, University of Illinois, Urbana-Champaign, 505 South Mathews Avenue, Urbana, Illinois 61801, United States
| |
Collapse
|
35
|
Kerns S, Biswas A, Minnetian NM, Borovik AS. Artificial Metalloproteins: At the Interface between Biology and Chemistry. JACS AU 2022; 2:1252-1265. [PMID: 35783165 PMCID: PMC9241007 DOI: 10.1021/jacsau.2c00102] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 04/13/2022] [Accepted: 04/15/2022] [Indexed: 05/22/2023]
Abstract
Artificial metalloproteins (ArMs) have recently gained significant interest due to their potential to address issues in a broad scope of applications, including biocatalysis, biotechnology, protein assembly, and model chemistry. ArMs are assembled by the incorporation of a non-native metallocofactor into a protein scaffold. This can be achieved by a number of methods that apply tools of chemical biology, computational de novo design, and synthetic chemistry. In this Perspective, we highlight select systems in the hope of demonstrating the breadth of ArM design strategies and applications and emphasize how these systems address problems that are otherwise difficult to do so with strictly biochemical or synthetic approaches.
Collapse
Affiliation(s)
- Spencer
A. Kerns
- Department of Chemistry, University of California, 1102 Natural
Science II, Irvine, California 92797, United States
| | - Ankita Biswas
- Department of Chemistry, University of California, 1102 Natural
Science II, Irvine, California 92797, United States
| | - Natalie M. Minnetian
- Department of Chemistry, University of California, 1102 Natural
Science II, Irvine, California 92797, United States
| | - A. S. Borovik
- Department of Chemistry, University of California, 1102 Natural
Science II, Irvine, California 92797, United States
| |
Collapse
|
36
|
Zubi YS, Seki K, Li Y, Hunt AC, Liu B, Roux B, Jewett MC, Lewis JC. Metal-responsive regulation of enzyme catalysis using genetically encoded chemical switches. Nat Commun 2022; 13:1864. [PMID: 35387988 PMCID: PMC8987029 DOI: 10.1038/s41467-022-29239-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Accepted: 03/03/2022] [Indexed: 11/09/2022] Open
Abstract
Dynamic control over protein function is a central challenge in synthetic biology. To address this challenge, we describe the development of an integrated computational and experimental workflow to incorporate a metal-responsive chemical switch into proteins. Pairs of bipyridinylalanine (BpyAla) residues are genetically encoded into two structurally distinct enzymes, a serine protease and firefly luciferase, so that metal coordination biases the conformations of these enzymes, leading to reversible control of activity. Computational analysis and molecular dynamics simulations are used to rationally guide BpyAla placement, significantly reducing experimental workload, and cell-free protein synthesis coupled with high-throughput experimentation enable rapid prototyping of variants. Ultimately, this strategy yields enzymes with a robust 20-fold dynamic range in response to divalent metal salts over 24 on/off switches, demonstrating the potential of this approach. We envision that this strategy of genetically encoding chemical switches into enzymes will complement other protein engineering and synthetic biology efforts, enabling new opportunities for applications where precise regulation of protein function is critical.
Collapse
Affiliation(s)
- Yasmine S Zubi
- Department of Chemistry, Indiana University, Bloomington, Indiana, USA
| | - Kosuke Seki
- Department of Chemical and Biological Engineering and Center for Synthetic Biology, Northwestern University, Evanston, IL, USA
| | - Ying Li
- Department of Biochemistry and Molecular Biology, University of Chicago, Chicago, IL, USA
| | - Andrew C Hunt
- Department of Chemical and Biological Engineering and Center for Synthetic Biology, Northwestern University, Evanston, IL, USA
| | - Bingqing Liu
- Department of Chemistry, Indiana University, Bloomington, Indiana, USA
| | - Benoît Roux
- Department of Biochemistry and Molecular Biology, University of Chicago, Chicago, IL, USA.
| | - Michael C Jewett
- Department of Chemical and Biological Engineering and Center for Synthetic Biology, Northwestern University, Evanston, IL, USA.
| | - Jared C Lewis
- Department of Chemistry, Indiana University, Bloomington, Indiana, USA.
| |
Collapse
|
37
|
Karges J, Stokes RW, Cohen SM. Computational Prediction of the Binding Pose of Metal-Binding Pharmacophores. ACS Med Chem Lett 2022; 13:428-435. [PMID: 35300086 PMCID: PMC8919381 DOI: 10.1021/acsmedchemlett.1c00584] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2021] [Accepted: 02/14/2022] [Indexed: 01/22/2023] Open
Abstract
Computational modeling of inhibitors for metalloenzymes in virtual drug development campaigns has proven challenging. To overcome this limitation, a technique for predicting the binding pose of metal-binding pharmacophores (MBPs) is presented. Using a combination of density functional theory (DFT) calculations and docking using a genetic algorithm, inhibitor binding was evaluated in silico and compared with inhibitor-enzyme cocrystal structures. The predicted binding poses were found to be consistent with the cocrystal structures. The computational strategy presented represents a useful tool for predicting metalloenzyme-MBP interactions.
Collapse
Affiliation(s)
- Johannes Karges
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, California 92093, United States
| | - Ryjul W Stokes
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, California 92093, United States
| | - Seth M Cohen
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, California 92093, United States
| |
Collapse
|
38
|
Functional Conversion of Acetyl-Coenzyme a Synthase to a Nickel Superoxide Dismutase via Rational Design of Coordination Microenvironment for the Ni d-Site. Int J Mol Sci 2022; 23:ijms23052652. [PMID: 35269794 PMCID: PMC8910529 DOI: 10.3390/ijms23052652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 02/19/2022] [Accepted: 02/21/2022] [Indexed: 02/01/2023] Open
Abstract
The Nid site coordination microenvironment of a truncated acetyl-coenzyme A synthase has been designed systematically for functional conversion to a Ni-SOD-like enzyme. To this end, the first strategy is to introduce an axial histidine ligand, using mutations F598H, S594H and S594H-GP individually. The resulting three mutants obtained Ni-SOD-like activity successfully, although the catalytic activity was about 10-fold lower than in native Ni-SOD. The second strategy is to mimic the H-bond network in the second sphere coordination microenvironment of the native Ni-SOD. Two mutations based on F598H (EFG-F598H and YGP-F598H) were designed. The successful EFG-F598H exhibited ~3-fold Ni-SOD-like activity of F598H. These designed Ni-SOD-like metalloproteins were characterized by UV/Vis, EPR and Cyclic voltammetry while F598H was also characterized by X-ray protein crystallography. The pH titrations were performed to reveal the source of the two protons required for forming H2O2 in the SOD catalytic reaction. Based on all of the results, a proposed catalytic mechanism for the Ni-SOD-like metalloproteins is presented.
Collapse
|
39
|
Ayipo YO, Osunniran WA, Babamale HF, Ayinde MO, Mordi MN. Metalloenzyme mimicry and modulation strategies to conquer antimicrobial resistance: Metal-ligand coordination perspectives. Coord Chem Rev 2022. [DOI: 10.1016/j.ccr.2021.214317] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
40
|
Zambrano G, Sekretareva A, D'Alonzo D, Leone L, Pavone V, Lombardi A, Nastri F. Oxidative dehalogenation of trichlorophenol catalyzed by a promiscuous artificial heme-enzyme. RSC Adv 2022; 12:12947-12956. [PMID: 35527726 PMCID: PMC9067433 DOI: 10.1039/d2ra00811d] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Accepted: 04/13/2022] [Indexed: 01/21/2023] Open
Abstract
The miniaturized metalloenzyme Fe(iii)-mimochrome VI*a (Fe(iii)-MC6*a) acts as an excellent biocatalyst in the H2O2-mediated oxidative dehalogenation of the well-known pesticide and biocide 2,4,6-trichlorophenol (TCP). The artificial enzyme can oxidize TCP with a catalytic efficiency (kcat/KTCPm = 150 000 mM−1 s−1) up to 1500-fold higher than the most active natural metalloenzyme horseradish peroxidase (HRP). UV-visible and EPR spectroscopies were used to provide indications of the catalytic mechanism. One equivalent of H2O2 fully converts Fe(iii)-MC6*a into the oxoferryl-porphyrin radical cation intermediate [(Fe(iv)
Created by potrace 1.16, written by Peter Selinger 2001-2019
]]>
O)por˙+], similarly to peroxidase compound I (Cpd I). Addition of TCP to Cpd I rapidly leads to the formation of the corresponding quinone, while Cpd I decays back to the ferric resting state in the absence of substrate. EPR data suggest a catalytic mechanism involving two consecutive one-electron reactions. All results highlight the value of the miniaturization strategy for the development of chemically stable, highly efficient artificial metalloenzymes as powerful catalysts for the oxidative degradation of toxic pollutants. The artificial metalloenzyme FeMC6*a is able to perform the H2O2-mediated dechlorination of 2,4,6-trichlorophenol with unrivalled catalytic efficiency, highlighting its potential application for the removal of toxic pollutants.![]()
Collapse
Affiliation(s)
- Gerardo Zambrano
- Department of Chemical Sciences, University of Napoli Federico II, Via Cintia, 80126 Napoli, Italy
| | - Alina Sekretareva
- Department of Chemistry – Ångström, Uppsala University, Lägerhyddsvägen 1, 75120 Uppsala, Sweden
| | - Daniele D'Alonzo
- Department of Chemical Sciences, University of Napoli Federico II, Via Cintia, 80126 Napoli, Italy
| | - Linda Leone
- Department of Chemical Sciences, University of Napoli Federico II, Via Cintia, 80126 Napoli, Italy
| | - Vincenzo Pavone
- Department of Chemical Sciences, University of Napoli Federico II, Via Cintia, 80126 Napoli, Italy
| | - Angela Lombardi
- Department of Chemical Sciences, University of Napoli Federico II, Via Cintia, 80126 Napoli, Italy
| | - Flavia Nastri
- Department of Chemical Sciences, University of Napoli Federico II, Via Cintia, 80126 Napoli, Italy
| |
Collapse
|
41
|
Guo J, Wei T, Huang Q, Li M, Yang C, Mou J, Shi L, Gao T, Li G. Direct acupuncture of nitric oxide by an electrochemical microsensor with high time-space resolution. Biosens Bioelectron 2022; 195:113667. [PMID: 34598107 DOI: 10.1016/j.bios.2021.113667] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Revised: 09/16/2021] [Accepted: 09/21/2021] [Indexed: 11/28/2022]
Abstract
Measurement of signal molecule is critically important for understanding living systems. Nitric oxide (NO) is a key redox signal molecule that shows diverse roles in virtually all life forms. However, probing into NO's activities is challenging as NO has restricted lifetime (<10 s) and limited diffusion distance (usually <200 μm). So, for the direct acupuncture of NO within the time-space resolution, an electrochemical microsensor has been designed and fabricated in this work. Fabrication of the microsensor is achieved by (1) selective assembly of an electrocatalytic transducer, (2) attaching the transducer on carbon fiber electrode, and (3) covered it with a screen layer to reduce signal interference. The fabricated microsensor exhibits high sensitivity (LOD, 13.5 pM), wide detection range (100 pM-5 μM), and good selectivity. Moreover, studies have revealed that the availability of the sensor for efficient detection of NO is due to the formation of a specific DNA/porphyrin hybrid structure that has synergetic effects on NO electrocatalysis. Therefore, NO release by cells and tissues can be directly and precisely traced, in which we have obtained the release pattern of NO by different cancer cell lines, and have known its dynamics in tumor microenvironment. The fabricated electrocatalytic microsensor may provide a unique and useful tool for the direct assay of NO with high time-space resolution, which promisingly gives a technical solution for the bioassay of NO in living systems.
Collapse
Affiliation(s)
- Jiarong Guo
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, 210023, China
| | - Tianxiang Wei
- School of Environment, Nanjing Normal University, Nanjing, 210023, China
| | - Qiongbo Huang
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, 210023, China
| | - Mingyue Li
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, 210023, China
| | - Cui Yang
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, 210023, China
| | - Junhui Mou
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, 210023, China
| | - Liu Shi
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, 210023, China
| | - Tao Gao
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, 210023, China.
| | - Genxi Li
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, 210023, China; Center for Molecular Recognition and Biosensing, School of Life Sciences, Shanghai University, Shanghai, 200444, China.
| |
Collapse
|
42
|
Guo WJ, Xu JK, Wu ST, Gao SQ, Wen GB, Tan X, Lin YW. Design and Engineering of an Efficient Peroxidase Using Myoglobin for Dye Decolorization and Lignin Bioconversion. Int J Mol Sci 2021; 23:ijms23010413. [PMID: 35008837 PMCID: PMC8745427 DOI: 10.3390/ijms23010413] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2021] [Revised: 12/26/2021] [Accepted: 12/30/2021] [Indexed: 12/25/2022] Open
Abstract
The treatment of environmental pollutants such as synthetic dyes and lignin has received much attention, especially for biotechnological treatments using both native and artificial metalloenzymes. In this study, we designed and engineered an efficient peroxidase using the O2 carrier myoglobin (Mb) as a protein scaffold by four mutations (F43Y/T67R/P88W/F138W), which combines the key structural features of natural peroxidases such as the presence of a conserved His-Arg pair and Tyr/Trp residues close to the heme active center. Kinetic studies revealed that the quadruple mutant exhibits considerably enhanced peroxidase activity, with the catalytic efficiency (kcat/Km) comparable to that of the most efficient natural enzyme, horseradish peroxidase (HRP). Moreover, the designed enzyme can effectively decolorize a variety of synthetic organic dyes and catalyze the bioconversion of lignin, such as Kraft lignin and a model compound, guaiacylglycerol-β-guaiacyl ether (GGE). As analyzed by HPLC and ESI-MS, we identified several bioconversion products of GGE, as produced via bond cleavage followed by dimerization or trimerization, which illustrates the mechanism for lignin bioconversion. This study indicates that the designed enzyme could be exploited for the decolorization of textile wastewater contaminated with various dyes, as well as for the bioconversion of lignin to produce more value-added products.
Collapse
Affiliation(s)
- Wen-Jie Guo
- School of Chemistry and Chemical Engineering, University of South China, Hengyang 421001, China; (W.-J.G.); (S.-T.W.)
| | - Jia-Kun Xu
- Key Laboratory of Sustainable Development of Polar Fisheries, Ministry of Agriculture and Rural Affairs, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Laboratory for Marine Drugs and Byproducts of Pilot National Laboratory for Marine Science and Technology, Qingdao 266071, China;
| | - Sheng-Tao Wu
- School of Chemistry and Chemical Engineering, University of South China, Hengyang 421001, China; (W.-J.G.); (S.-T.W.)
| | - Shu-Qin Gao
- Key Laboratory of Protein Structure and Function of Universities in Hunan Province, University of South China, Hengyang 421001, China; (S.-Q.G.); (G.-B.W.)
| | - Ge-Bo Wen
- Key Laboratory of Protein Structure and Function of Universities in Hunan Province, University of South China, Hengyang 421001, China; (S.-Q.G.); (G.-B.W.)
| | - Xiangshi Tan
- Department of Chemistry & Institute of Biomedical Science, Fudan University, Shanghai 200433, China;
| | - Ying-Wu Lin
- School of Chemistry and Chemical Engineering, University of South China, Hengyang 421001, China; (W.-J.G.); (S.-T.W.)
- Key Laboratory of Protein Structure and Function of Universities in Hunan Province, University of South China, Hengyang 421001, China; (S.-Q.G.); (G.-B.W.)
- Correspondence: ; Tel.: +86-734-8282375
| |
Collapse
|
43
|
Pachisia S, Gupta R. Supramolecular catalysis: the role of H-bonding interactions in substrate orientation and activation. Dalton Trans 2021; 50:14951-14966. [PMID: 34617524 DOI: 10.1039/d1dt02131a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Hydrogen bonding plays significant roles in various biological processes during substrate orientation and binding and therefore assists in assorted organic transformations. However, replicating the intricate selection of hydrogen bonds, as observed in nature, in synthetic complexes has met with only limited success. Despite this fact, recent times have seen the emergence of several notable examples where hydrogen bonds have been introduced in synthetic complexes. A few such examples have also illustrated the substantial role played by the hydrogen bonds in influencing and often controlling the catalytic outcome. This perspective presents selected examples illustrating the significance of hydrogen bonds offered by the coordination and the organometallic complexes that aid in providing the desired orientation to a substrate adjacent to a catalytic metal center and remarkably assisting in the catalysis.
Collapse
Affiliation(s)
- Sanya Pachisia
- Department of Chemistry, University of Delhi, Delhi - 110007, India.
| | - Rajeev Gupta
- Department of Chemistry, University of Delhi, Delhi - 110007, India.
| |
Collapse
|
44
|
Schröder GC, Meilleur F. Metalloprotein catalysis: structural and mechanistic insights into oxidoreductases from neutron protein crystallography. Acta Crystallogr D Struct Biol 2021; 77:1251-1269. [PMID: 34605429 PMCID: PMC8489226 DOI: 10.1107/s2059798321009025] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2021] [Accepted: 08/31/2021] [Indexed: 11/11/2022] Open
Abstract
Metalloproteins catalyze a range of reactions, with enhanced chemical functionality due to their metal cofactor. The reaction mechanisms of metalloproteins have been experimentally characterized by spectroscopy, macromolecular crystallography and cryo-electron microscopy. An important caveat in structural studies of metalloproteins remains the artefacts that can be introduced by radiation damage. Photoreduction, radiolysis and ionization deriving from the electromagnetic beam used to probe the structure complicate structural and mechanistic interpretation. Neutron protein diffraction remains the only structural probe that leaves protein samples devoid of radiation damage, even when data are collected at room temperature. Additionally, neutron protein crystallography provides information on the positions of light atoms such as hydrogen and deuterium, allowing the characterization of protonation states and hydrogen-bonding networks. Neutron protein crystallography has further been used in conjunction with experimental and computational techniques to gain insight into the structures and reaction mechanisms of several transition-state metal oxidoreductases with iron, copper and manganese cofactors. Here, the contribution of neutron protein crystallography towards elucidating the reaction mechanism of metalloproteins is reviewed.
Collapse
Affiliation(s)
- Gabriela C. Schröder
- Department of Molecular and Structural Biochemistry, North Carolina State University, Raleigh, NC 27695, USA
- Neutron Scattering Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
| | - Flora Meilleur
- Department of Molecular and Structural Biochemistry, North Carolina State University, Raleigh, NC 27695, USA
- Neutron Scattering Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
| |
Collapse
|
45
|
Unravelling the Structure of the Tetrahedral Metal-Binding Site in METP3 through an Experimental and Computational Approach. Molecules 2021; 26:molecules26175221. [PMID: 34500655 PMCID: PMC8434281 DOI: 10.3390/molecules26175221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 08/25/2021] [Accepted: 08/26/2021] [Indexed: 11/17/2022] Open
Abstract
Understanding the structural determinants for metal ion coordination in metalloproteins is a fundamental issue for designing metal binding sites with predetermined geometry and activity. In order to achieve this, we report in this paper the design, synthesis and metal binding properties of METP3, a homodimer made up of a small peptide, which self assembles in the presence of tetrahedrally coordinating metal ions. METP3 was obtained through a redesign approach, starting from the previously developed METP molecule. The undecapeptide sequence of METP, which dimerizes to house a Cys4 tetrahedral binding site, was redesigned in order to accommodate a Cys2His2 site. The binding properties of METP3 were determined toward different metal ions. Successful assembly of METP3 with Co(II), Zn(II) and Cd(II), in the expected 2:1 stoichiometry and tetrahedral geometry was proven by UV-visible spectroscopy. CD measurements on both the free and metal-bound forms revealed that the metal coordination drives the peptide chain to fold into a turned conformation. Finally, NMR data of the Zn(II)-METP3 complex, together with a retrostructural analysis of the Cys-X-X-His motif in metalloproteins, allowed us to define the model structure. All the results establish the suitability of the short METP sequence for accommodating tetrahedral metal binding sites, regardless of the first coordination ligands.
Collapse
|
46
|
Jung SM, Lee J, Song WJ. Design of artificial metalloenzymes with multiple inorganic elements: The more the merrier. J Inorg Biochem 2021; 223:111552. [PMID: 34332336 DOI: 10.1016/j.jinorgbio.2021.111552] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2021] [Revised: 06/21/2021] [Accepted: 07/15/2021] [Indexed: 11/27/2022]
Abstract
A large fraction of metalloenzymes harbors multiple metal-centers that are electronically and/or functionally arranged within their proteinaceous environments. To explore the orchestration of inorganic and biochemical components and to develop bioinorganic catalysts and materials, we have described selected examples of artificial metalloproteins having multiple metallocofactors that were grouped depending on their initial protein scaffolds, the nature of introduced inorganic moieties, and the method used to propagate the number of metal ions within a protein. They demonstrated that diverse inorganic moieties can be selectively grafted and modulated in protein environments, providing a retrosynthetic bottom-up approach in the design of versatile and proficient biocatalysts and biomimetic model systems to explore fundamental questions in bioinorganic chemistry.
Collapse
Affiliation(s)
- Se-Min Jung
- Department of Chemistry, College of Natural Sciences, Seoul National University, Seoul 08826, Republic of Korea
| | - Jaehee Lee
- Department of Chemistry, College of Natural Sciences, Seoul National University, Seoul 08826, Republic of Korea
| | - Woon Ju Song
- Department of Chemistry, College of Natural Sciences, Seoul National University, Seoul 08826, Republic of Korea.
| |
Collapse
|
47
|
Woolfson DN. A Brief History of De Novo Protein Design: Minimal, Rational, and Computational. J Mol Biol 2021; 433:167160. [PMID: 34298061 DOI: 10.1016/j.jmb.2021.167160] [Citation(s) in RCA: 92] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2021] [Revised: 07/07/2021] [Accepted: 07/12/2021] [Indexed: 12/26/2022]
Abstract
Protein design has come of age, but how will it mature? In the 1980s and the 1990s, the primary motivation for de novo protein design was to test our understanding of the informational aspect of the protein-folding problem; i.e., how does protein sequence determine protein structure and function? This necessitated minimal and rational design approaches whereby the placement of each residue in a design was reasoned using chemical principles and/or biochemical knowledge. At that time, though with some notable exceptions, the use of computers to aid design was not widespread. Over the past two decades, the tables have turned and computational protein design is firmly established. Here, I illustrate this progress through a timeline of de novo protein structures that have been solved to atomic resolution and deposited in the Protein Data Bank. From this, it is clear that the impact of rational and computational design has been considerable: More-complex and more-sophisticated designs are being targeted with many being resolved to atomic resolution. Furthermore, our ability to generate and manipulate synthetic proteins has advanced to a point where they are providing realistic alternatives to natural protein functions for applications both in vitro and in cells. Also, and increasingly, computational protein design is becoming accessible to non-specialists. This all begs the questions: Is there still a place for minimal and rational design approaches? And, what challenges lie ahead for the burgeoning field of de novo protein design as a whole?
Collapse
Affiliation(s)
- Derek N Woolfson
- School of Chemistry, University of Bristol, Cantock's Close, Bristol BS8 1TS, UK; School of Biochemistry, University of Bristol, Biomedical Sciences Building, University Walk, Bristol BS8 1TD, UK; Bristol BioDesign Institute, University of Bristol, Life Sciences Building, Tyndall Avenue, Bristol BS8 1TQ, UK.
| |
Collapse
|
48
|
Leone L, D’Alonzo D, Maglio O, Pavone V, Nastri F, Lombardi A. Highly Selective Indole Oxidation Catalyzed by a Mn-Containing Artificial Mini-Enzyme. ACS Catal 2021. [DOI: 10.1021/acscatal.1c01985] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Linda Leone
- Department of Chemical Sciences, University of Napoli Federico II, Via Cintia 21, Napoli 80126, Italy
| | - Daniele D’Alonzo
- Department of Chemical Sciences, University of Napoli Federico II, Via Cintia 21, Napoli 80126, Italy
| | - Ornella Maglio
- Department of Chemical Sciences, University of Napoli Federico II, Via Cintia 21, Napoli 80126, Italy
- Institute of Biostructures and Bioimages—National Research Council, Via Mezzocannone 16, Napoli 80134, Italy
| | - Vincenzo Pavone
- Department of Chemical Sciences, University of Napoli Federico II, Via Cintia 21, Napoli 80126, Italy
| | - Flavia Nastri
- Department of Chemical Sciences, University of Napoli Federico II, Via Cintia 21, Napoli 80126, Italy
| | - Angela Lombardi
- Department of Chemical Sciences, University of Napoli Federico II, Via Cintia 21, Napoli 80126, Italy
| |
Collapse
|
49
|
Fu R, Rooney MT, Zhang R, Cotten ML. Coordination of Redox Ions within a Membrane-Binding Peptide: A Tale of Aromatic Rings. J Phys Chem Lett 2021; 12:4392-4399. [PMID: 33939920 DOI: 10.1021/acs.jpclett.1c00636] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
The amino-terminal-copper-and-nickel-binding (ATCUN) motif, a tripeptide sequence ending with a histidine, confers important functions to proteins and peptides. Few high-resolution studies have been performed on the ATCUN motifs of membrane-associated proteins and peptides, limiting our understanding of how they stabilize Cu2+/Ni2+ in membranes. Here, we leverage solid-state NMR to investigate metal-binding to piscidin-1 (P1), a host-defense peptide featuring F1F2H3 as its ATCUN motif. Bound to redox ions, P1 chemically and physically damages pathogenic cell membranes. We design 13C/15N correlation experiments to detect and assign the deprotonated nitrogens produced and/or shifted by Ni2+-binding. Occupying multiple chemical states in P1-apo, H3 and the neighboring H4 respond to metalation by populating only the τ-tautomer. H3, as a proximal histidine, directly coordinates the metal, compared to the distal H4. Density functional theory calculations reflect this noncanonical arrangement and point toward cation-π interactions between the F1/F2/H4 aromatic rings and metal. These structural findings, which are relevant to other ATCUN-containing membrane peptides, could help design new therapeutics and materials for use in the areas of drug-resistant bacteria, neurological disorders, and biomedical imaging.
Collapse
Affiliation(s)
- Riqiang Fu
- National High Magnetic Field Laboratory, 1800 East Paul Dirac Drive, Tallahassee, Florida 32310, United States
| | - Mary T Rooney
- Department of Applied Science, William & Mary, Williamsburg, Virginia 23185, United States
| | - Rongfu Zhang
- National High Magnetic Field Laboratory, 1800 East Paul Dirac Drive, Tallahassee, Florida 32310, United States
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee, Florida 32306, United States
| | - Myriam L Cotten
- Department of Applied Science, William & Mary, Williamsburg, Virginia 23185, United States
| |
Collapse
|
50
|
Lin YW. Biodegradation of aromatic pollutants by metalloenzymes: A structural-functional-environmental perspective. Coord Chem Rev 2021. [DOI: 10.1016/j.ccr.2021.213774] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|