1
|
Li W, Dasgupta A, Yang K, Wang S, Hemandhar-Kumar N, Chepyala SR, Yarbro JM, Hu Z, Salovska B, Fornasiero EF, Peng J, Liu Y. Turnover atlas of proteome and phosphoproteome across mouse tissues and brain regions. Cell 2025; 188:2267-2287.e21. [PMID: 40118046 PMCID: PMC12033170 DOI: 10.1016/j.cell.2025.02.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Revised: 01/27/2025] [Accepted: 02/21/2025] [Indexed: 03/23/2025]
Abstract
Understanding how proteins in different mammalian tissues are regulated is central to biology. Protein abundance, turnover, and post-translational modifications such as phosphorylation are key factors that determine tissue-specific proteome properties. However, these properties are challenging to study across tissues and remain poorly understood. Here, we present Turnover-PPT, a comprehensive resource mapping the abundance and lifetime of 11,000 proteins and 40,000 phosphosites in eight mouse tissues and various brain regions using advanced proteomics and stable isotope labeling. We reveal tissue-specific short- and long-lived proteins, strong correlations between interacting protein lifetimes, and distinct impacts of phosphorylation on protein turnover. Notably, we discover a remarkable pattern of turnover changes for peroxisome proteins in specific tissues and that phosphorylation regulates the stability of neurodegeneration-related proteins, such as Tau and α-synuclein. Thus, Turnover-PPT provides fundamental insights into protein stability, tissue dynamic proteotypes, and functional protein phosphorylation and is accessible via an interactive web-based portal at https://yslproteomics.shinyapps.io/tissuePPT.
Collapse
Affiliation(s)
- Wenxue Li
- Department of Pharmacology, Yale University School of Medicine, New Haven, CT 06520, USA; Cancer Biology Institute, Yale University School of Medicine, West Haven, CT 06516, USA
| | - Abhijit Dasgupta
- Departments of Structural Biology and Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Ka Yang
- Departments of Structural Biology and Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Shisheng Wang
- Department of General Surgery and Liver Transplant Center, Proteomics-Metabolomics Analysis Platform, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Nisha Hemandhar-Kumar
- Department of Neuro- and Sensory Physiology, University Medical Center Göttingen, 37073 Göttingen, Germany
| | - Surendhar R Chepyala
- Departments of Structural Biology and Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Jay M Yarbro
- Departments of Structural Biology and Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Zhenyi Hu
- Cancer Biology Institute, Yale University School of Medicine, West Haven, CT 06516, USA
| | - Barbora Salovska
- Department of Pharmacology, Yale University School of Medicine, New Haven, CT 06520, USA; Cancer Biology Institute, Yale University School of Medicine, West Haven, CT 06516, USA
| | - Eugenio F Fornasiero
- Department of Neuro- and Sensory Physiology, University Medical Center Göttingen, 37073 Göttingen, Germany; Department of Life Sciences, University of Trieste, 34127 Trieste, Italy.
| | - Junmin Peng
- Departments of Structural Biology and Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA.
| | - Yansheng Liu
- Department of Pharmacology, Yale University School of Medicine, New Haven, CT 06520, USA; Cancer Biology Institute, Yale University School of Medicine, West Haven, CT 06516, USA; Department of Biomedical Informatics & Data Science, Yale University School of Medicine, New Haven, CT 06510, USA.
| |
Collapse
|
2
|
Yao H, Kelley S, Zhou D, VanSickle S, Wang SP, Piesvaux J, Zhou H, Chen H, McKenney D, McLaren DG, Ballard JE, Previs SF. Quantifying protein kinetics in vivo: influence of precursor dynamics on product labeling. Am J Physiol Endocrinol Metab 2025; 328:E173-E185. [PMID: 39540778 DOI: 10.1152/ajpendo.00323.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Revised: 09/19/2024] [Accepted: 10/09/2024] [Indexed: 11/16/2024]
Abstract
Protein kinetics can be quantified by coupling stable isotope tracer methods with mass spectrometry readouts; however, interconnected decision points in the experimental design affect the complexity of the workflow and impact data interpretations. For example, choosing between a single bolus (pulse-chase) or a continuous exposure protocol influences subsequent decisions regarding when to measure and how to model the temporal labeling of a target protein. Herein, we examine the merits of in vivo tracer protocols, and we direct attention toward stable isotope tracer experiments that rely on administering a single bolus since these are generally more practical to use as compared with continuous administration protocols. We demonstrate how the interplay between precursor and product kinetics impacts downstream analytics and calculations by contrasting fast versus slow turnover precursors (e.g., 13C-leucine vs. 2H-water, respectively). Although the data collected here underscore certain advantages of using longer-lived precursors (e.g., 2H- or 18O-water), the results also highlight the influence of tracer recycling on measures of protein turnover. We discuss the impact of tracer recycling and consider how the sampling interval is critical for interpreting studies. Finally, we demonstrate that tracer recycling does not limit the ability to perform back-to-back studies of protein kinetics. It is possible to run experiments in which subjects are used as their own controls even though the precursor and product remain labeled following an initial tracer dosing.NEW & NOTEWORTHY We demonstrate a simple and robust protocol for measuring protein synthesis, the work considers problems encountered in experimental design. The logic can enable biologists with limited resources and/or can facilitate scenarios where higher throughput experiments are needed.
Collapse
Affiliation(s)
- Huifang Yao
- Discovery, Preclinical, and Translational Medicine, Merck & Co., Inc., Rahway, New Jersey, United States
- Department of Chemistry and Environmental Science, New Jersey Institute of Technology, Newark, New Jersey, United States
| | - Seamus Kelley
- Discovery, Preclinical, and Translational Medicine, Merck & Co., Inc., Rahway, New Jersey, United States
| | - Dan Zhou
- Discovery, Preclinical, and Translational Medicine, Merck & Co., Inc., Rahway, New Jersey, United States
| | - Sophie VanSickle
- Discovery, Preclinical, and Translational Medicine, Merck & Co., Inc., Rahway, New Jersey, United States
| | - Sheng-Ping Wang
- Discovery, Preclinical, and Translational Medicine, Merck & Co., Inc., Rahway, New Jersey, United States
| | - Jennifer Piesvaux
- Discovery, Preclinical, and Translational Medicine, Merck & Co., Inc., Rahway, New Jersey, United States
| | - Haihong Zhou
- Discovery, Preclinical, and Translational Medicine, Merck & Co., Inc., Rahway, New Jersey, United States
| | - Hao Chen
- Department of Chemistry and Environmental Science, New Jersey Institute of Technology, Newark, New Jersey, United States
| | - David McKenney
- Discovery, Preclinical, and Translational Medicine, Merck & Co., Inc., Rahway, New Jersey, United States
| | - David G McLaren
- Discovery, Preclinical, and Translational Medicine, Merck & Co., Inc., Rahway, New Jersey, United States
| | - Jeanine E Ballard
- Discovery, Preclinical, and Translational Medicine, Merck & Co., Inc., Rahway, New Jersey, United States
| | - Stephen F Previs
- Discovery, Preclinical, and Translational Medicine, Merck & Co., Inc., Rahway, New Jersey, United States
| |
Collapse
|
3
|
Chick JA, Abongdia NN, Shey RA, Apinjoh TO. Computational design, expression, and characterization of a Plasmodium falciparum multi-epitope, multi-stage vaccine candidate (PfCTMAG). Heliyon 2025; 11:e42014. [PMID: 39906795 PMCID: PMC11791285 DOI: 10.1016/j.heliyon.2025.e42014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Revised: 01/13/2025] [Accepted: 01/15/2025] [Indexed: 02/06/2025] Open
Abstract
Malaria, a tropical disease, claims the lives of thousands of people annually and the development of resistance to insecticides and antimalarial drugs poses a great challenge to current prevention and control strategies. Current malaria vaccines are limited in efficacy, duration of protection, and safety, due to the high antigenic diversity and complex life cycle of the Plasmodium parasite. This study sought to design and assess a more effective multi-stage, multi-epitope vaccine candidate for the control of malaria. A multi-epitope malaria vaccine candidate was designed in silico using multiple antigens from both the pre-erythrocytic and erythrocytic stages, expressed in bacteria, and its sero-reactivity to antibodies in plasma from malaria-positive (cases) and negative individuals (controls) was assessed using enzyme-linked immunosorbent assay (ELISA). Immunization experiments were equally conducted with BALB/c mice. In-silico analysis revealed that the designed antigen, PfCTMAG (Plasmodium falciparum Circumsporozoite, Thrombospondin-related adhesion protein, Merozoite surface protein 2, Apical asparagine (Asn)-rich protein and Glutamate-Rich Protein), effectively bound to Toll-like receptor 4 (TLR-4) and triggered a strong immune response. In sero-reactivity studies, malaria-positives (cases) had higher anti-PfCTMAG IgG ( p = 0.024) and IgM ( p < 0.001) levels compared to malaria negatives (controls). The mice immunized with PfCTMAG did not show adverse reactions and had higher levels of IgG antibodies (p = 0.002) compared to controls, thereby validating the safety and immunogenicity of PfCTMAG as a promising vaccine candidate.
Collapse
Affiliation(s)
- Joan A. Chick
- Department of Chemical and Biological Engineering, National Higher Polytechnic Institute, The University of Bamenda, Cameroon
| | - Nadege N. Abongdia
- Department of Chemical and Biological Engineering, National Higher Polytechnic Institute, The University of Bamenda, Cameroon
| | - Robert A. Shey
- Department of Biochemistry and Molecular Biology, Faculty of Science, University of Buea, Cameroon
| | - Tobias O. Apinjoh
- Department of Chemical and Biological Engineering, National Higher Polytechnic Institute, The University of Bamenda, Cameroon
- Department of Biochemistry and Molecular Biology, Faculty of Science, University of Buea, Cameroon
| |
Collapse
|
4
|
Chagoyen M, Poyatos JF. Disentangling protein metabolic costs in human cells and tissues. PNAS NEXUS 2025; 4:pgaf008. [PMID: 39867669 PMCID: PMC11759310 DOI: 10.1093/pnasnexus/pgaf008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Accepted: 12/29/2024] [Indexed: 01/28/2025]
Abstract
While more data are becoming available on gene activity at different levels of biological organization, our understanding of the underlying biology remains incomplete. Here, we introduce a metabolic efficiency framework that considers highly expressed proteins (HEPs), their length, and biosynthetic costs in terms of the amino acids (AAs) they contain to address the observed balance of expression costs in cells, tissues, and cancer transformation. Notably, the combined set of HEPs in either cells or tissues shows an abundance of large and costly proteins, yet tissues compensate this with short HEPs comprised of economical AAs, indicating a stronger tendency toward mitigating costs. We additionally observe that short proteins are prevalent HEPs across individual cells and tissues, whereas long ones are more specific. Furthermore, the precise proportion of short, long, economical, or costly HEP classes indicates that particular cell types and tissues align more closely with the metabolic efficiency model, with some tissues displaying behavior akin to their constituent cells. Finally, tumors typically increase the production of short and low-cost HEPs compared with matched normal tissues, while genes that decrease their high expression levels in tumors often tend to be associated with high costs. Overall, the metabolic efficiency framework serves as a useful simplifying model for interpreting genome-wide expression data across scales.
Collapse
Affiliation(s)
- Mónica Chagoyen
- Computational Systems Biology Group (CNB-CSIC), Madrid E-28049, Spain
| | - Juan F Poyatos
- Logic of Genomic Systems Laboratory (CNB-CSIC), Madrid E-28049, Spain
| |
Collapse
|
5
|
Bomba-Warczak EK, Velez KM, Zhou LT, Guillermier C, Edassery S, Steinhauser ML, Savas JN, Duncan FE. Exceptional longevity of mammalian ovarian and oocyte macromolecules throughout the reproductive lifespan. eLife 2024; 13:RP93172. [PMID: 39480006 PMCID: PMC11527430 DOI: 10.7554/elife.93172] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2024] Open
Abstract
The mechanisms contributing to age-related deterioration of the female reproductive system are complex, however aberrant protein homeostasis is a major contributor. We elucidated exceptionally stable proteins, structures, and macromolecules that persist in mammalian ovaries and gametes across the reproductive lifespan. Ovaries exhibit localized structural and cell-type-specific enrichment of stable macromolecules in both the follicular and extrafollicular environments. Moreover, ovaries and oocytes both harbor a panel of exceptionally long-lived proteins, including cytoskeletal, mitochondrial, and oocyte-derived proteins. The exceptional persistence of these long-lived molecules suggest a critical role in lifelong maintenance and age-dependent deterioration of reproductive tissues.
Collapse
Affiliation(s)
- Ewa K Bomba-Warczak
- Department of Neurology, Northwestern University Feinberg School of MedicineChicagoUnited States
| | - Karen M Velez
- Department of Obstetrics and Gynecology, Feinberg School of Medicine, Northwestern UniversityChicagoUnited States
| | - Luhan T Zhou
- Department of Obstetrics and Gynecology, Feinberg School of Medicine, Northwestern UniversityChicagoUnited States
| | - Christelle Guillermier
- Department of Medicine, Aging Institute, University of Pittsburgh School of MedicinePittsburghUnited States
- Department of Medicine, Division of Genetics, Brigham and Women’s HospitalBostonUnited States
| | - Seby Edassery
- Department of Neurology, Northwestern University Feinberg School of MedicineChicagoUnited States
| | - Matthew L Steinhauser
- Department of Medicine, Aging Institute, University of Pittsburgh School of MedicinePittsburghUnited States
- Department of Medicine, Division of Genetics, Brigham and Women’s HospitalBostonUnited States
| | - Jeffrey N Savas
- Department of Neurology, Northwestern University Feinberg School of MedicineChicagoUnited States
| | - Francesca E Duncan
- Department of Obstetrics and Gynecology, Feinberg School of Medicine, Northwestern UniversityChicagoUnited States
| |
Collapse
|
6
|
Li W, Dasgupta A, Yang K, Wang S, Hemandhar-Kumar N, Yarbro JM, Hu Z, Salovska B, Fornasiero EF, Peng J, Liu Y. An Extensive Atlas of Proteome and Phosphoproteome Turnover Across Mouse Tissues and Brain Regions. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.15.618303. [PMID: 39464138 PMCID: PMC11507808 DOI: 10.1101/2024.10.15.618303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 10/29/2024]
Abstract
Understanding how proteins in different mammalian tissues are regulated is central to biology. Protein abundance, turnover, and post-translational modifications like phosphorylation, are key factors that determine tissue-specific proteome properties. However, these properties are challenging to study across tissues and remain poorly understood. Here, we present Turnover-PPT, a comprehensive resource mapping the abundance and lifetime of 11,000 proteins and 40,000 phosphosites across eight mouse tissues and various brain regions, using advanced proteomics and stable isotope labeling. We revealed tissue-specific short- and long-lived proteins, strong correlations between interacting protein lifetimes, and distinct impacts of phosphorylation on protein turnover. Notably, we discovered that peroxisomes are regulated by protein turnover across tissues, and that phosphorylation regulates the stability of neurodegeneration-related proteins, such as Tau and α-synuclein. Thus, Turnover-PPT provides new fundamental insights into protein stability, tissue dynamic proteotypes, and the role of protein phosphorylation, and is accessible via an interactive web-based portal at https://yslproteomics.shinyapps.io/tissuePPT.
Collapse
Affiliation(s)
- Wenxue Li
- Department of Pharmacology, Yale University School of Medicine, New Haven, CT 06520, USA
- Cancer Biology Institute, Yale University School of Medicine, West Haven, CT 06516, USA
| | - Abhijit Dasgupta
- Departments of Structural Biology and Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
- Current address: Department of Computer Science and Engineering, SRM University AP, Neerukonda, Guntur, Andhra Pradesh 522240, India
| | - Ka Yang
- Departments of Structural Biology and Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
- Current address: Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA
| | - Shisheng Wang
- Department of Pulmonary and Critical Care Medicine, and Proteomics-Metabolomics Analysis Platform, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Nisha Hemandhar-Kumar
- Department of Neuro- and Sensory Physiology, University Medical Center Göttingen, 37073 Göttingen, Germany
| | - Jay M. Yarbro
- Departments of Structural Biology and Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Zhenyi Hu
- Cancer Biology Institute, Yale University School of Medicine, West Haven, CT 06516, USA
- Current address: Interdisciplinary Research center on Biology and chemistry, Shanghai institute of Organic chemistry, Chinese Academy of Sciences, Shanghai 201210, China
| | - Barbora Salovska
- Department of Pharmacology, Yale University School of Medicine, New Haven, CT 06520, USA
- Cancer Biology Institute, Yale University School of Medicine, West Haven, CT 06516, USA
| | - Eugenio F. Fornasiero
- Department of Neuro- and Sensory Physiology, University Medical Center Göttingen, 37073 Göttingen, Germany
- Department of Life Sciences, University of Trieste, 34127 Trieste, Italy
| | - Junmin Peng
- Departments of Structural Biology and Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Yansheng Liu
- Department of Pharmacology, Yale University School of Medicine, New Haven, CT 06520, USA
- Cancer Biology Institute, Yale University School of Medicine, West Haven, CT 06516, USA
- Department of Biomedical Informatics & Data Science, Yale University School of Medicine, New Haven, CT 06510, USA
- Lead Contact
| |
Collapse
|
7
|
Deberneh HM, Taylor ME, Borowik AK, Miyagi M, Miller BF, Sadygov RG. Numbers of Exchangeable Hydrogens from LC-MS Data of Heavy Water Metabolically Labeled Samples. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2024; 35:1826-1837. [PMID: 39057601 DOI: 10.1021/jasms.4c00157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/28/2024]
Abstract
Labeling with deuterium oxide (D2O) has emerged as one of the preferred approaches for measuring the synthesis of individual proteins in vivo. In these experiments, the synthesis rates of proteins are determined by modeling mass shifts in peptides during the labeling period. This modeling depends on a theoretical maximum enrichment determined by the number of labeling sites (NEH) of each amino acid in the peptide sequence. Currently, NEH is determined from one set of published values. However, it has been demonstrated that NEH can differ between species and potentially tissues. The goal of this work was to determine the number of NEH for each amino acid within a given experiment to capture the conditions unique to that experiment. We used four methods to compute the NEH values. To test these approaches, we used two publicly available data sets. In a de novo approach, we compute NEH values and the label enrichment from the abundances of three mass isotopomers. The other three methods use the complete isotope profiles and body water enrichment in deuterium as an input parameter. They determine the NEH values by (1) minimizing the residual sum of squares, (2) from the mole percent excess of labeling, and (3) the time course profile of the depletion of the relative isotope abundance of monoisotope. In the test samples, the method using residual sum of squares performed the best. The methods are implemented in a tool for determining the NEH for each amino acid within a given experiment to use in the determination of protein synthesis rates using D2O.
Collapse
Affiliation(s)
- Henock M Deberneh
- Department of Biochemistry and Molecular Biology The University of Texas Medical Branch 301 University of Blvd, Galveston, Texas 77555, United States
| | - Michael E Taylor
- Aging and Metabolism Research Program, Oklahoma Medical Research Foundation 825 NE 13th Street Oklahoma City, Oklahoma 73104, United States
| | - Agnieszka K Borowik
- Aging and Metabolism Research Program, Oklahoma Medical Research Foundation 825 NE 13th Street Oklahoma City, Oklahoma 73104, United States
| | - Masaru Miyagi
- Department of Pharmacology Case Western Reserve University 10900 Euclid Avenue Cleveland, Ohio 44106, United States
| | - Benjamin F Miller
- Aging and Metabolism Research Program, Oklahoma Medical Research Foundation 825 NE 13th Street Oklahoma City, Oklahoma 73104, United States
- Oklahoma City VA, Oklahoma City, Oklahoma 73104, United States
| | - Rovshan G Sadygov
- Department of Biochemistry and Molecular Biology The University of Texas Medical Branch 301 University of Blvd, Galveston, Texas 77555, United States
| |
Collapse
|
8
|
Bomba-Warczak EK, Velez KM, Zhou LT, Guillermier C, Edassery S, Steinhauser ML, Savas JN, Elizabeth Duncan F. Exceptional longevity of mammalian ovarian and oocyte macromolecules throughout the reproductive lifespan. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.10.18.562852. [PMID: 37905022 PMCID: PMC10614913 DOI: 10.1101/2023.10.18.562852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/02/2023]
Abstract
The mechanisms contributing to age-related deterioration of the female reproductive system are complex, but aberrant protein homeostasis is a major contributor. We elucidated the exceptionally stable proteins, structures, and macromolecules that persist in mammalian ovaries and gametes across the reproductive lifespan. Ovaries exhibit localized structural and cell-type specific enrichment of stable macromolecules in both the follicular and extrafollicular environments. Moreover, both ovaries and oocytes harbor a panel of exceptionally long-lived proteins, including cytoskeletal components, mitochondrial, and oocyte-derived proteins. The exceptional persistence of these long-lived molecules might play a critical role in both lifelong maintenance and age-dependent deterioration of reproductive tissues.
Collapse
|
9
|
Liu X, Novak B, Namendorf C, Steigenberger B, Zhang Y, Turck CW. Long-lived proteins and DNA as candidate predictive biomarkers for tissue associated diseases. iScience 2024; 27:109642. [PMID: 38632996 PMCID: PMC11022098 DOI: 10.1016/j.isci.2024.109642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 01/11/2024] [Accepted: 03/26/2024] [Indexed: 04/19/2024] Open
Abstract
Protein turnover is an important mechanism to maintain proteostasis. Long-lived proteins (LLPs) are vulnerable to lose their function due to time-accumulated damages. In this study we employed in vivo stable isotope labeling in mice from birth to postnatal day 89. Quantitative proteomics analysis of ten tissues and plasma identified 2113 LLPs, including widespread and tissue-specific ones. Interestingly, a significant percentage of LLPs was detected in plasma, implying a potential link to age-related cardiovascular diseases. LLPs identified in brains were related to neurodegenerative diseases. In addition, the relative quantification of DNA-derived deoxynucleosides from the same tissues provided information about cellular DNA renewal and showed good correlation with LLPs in the brain. The combined data reveal tissue-specific maps of mouse LLPs that may be involved in pathology due to a low renewal rate and an increased risk of damage. Tissue-derived peripheral LLPs hold promise as biomarkers for aging and age-related diseases.
Collapse
Affiliation(s)
- Xiaosong Liu
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 100 Haike Road, Shanghai 201210, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Bozidar Novak
- Max Planck Institute of Psychiatry, Proteomics and Biomarkers, Kraepelinstr. 2-10, 80804 Munich, Germany
| | - Christian Namendorf
- Max Planck Institute of Psychiatry, Clinical Laboratory, Core Unit Analytics and Mass Spectrometry, Kraepelinstr. 2-10, 80804 Munich, Germany
| | - Barbara Steigenberger
- Mass Spectrometry Core Facility, Max Planck Institute of Biochemistry, D-82152 Martinsried/Munich, Germany
| | - Yaoyang Zhang
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 100 Haike Road, Shanghai 201210, China
| | - Christoph W. Turck
- Max Planck Institute of Psychiatry, Proteomics and Biomarkers, Kraepelinstr. 2-10, 80804 Munich, Germany
- Key Laboratory of Animal Models and Human Disease Mechanisms of Yunnan Province, and KIZ/CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China
- National Resource Center for Non-human Primates, and National Research Facility for Phenotypic & Genetic Analysis of Model Animals (Primate Facility), Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650107, China
| |
Collapse
|
10
|
Rao NR, Upadhyay A, Savas JN. Derailed protein turnover in the aging mammalian brain. Mol Syst Biol 2024; 20:120-139. [PMID: 38182797 PMCID: PMC10897147 DOI: 10.1038/s44320-023-00009-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 12/11/2023] [Accepted: 12/13/2023] [Indexed: 01/07/2024] Open
Abstract
Efficient protein turnover is essential for cellular homeostasis and organ function. Loss of proteostasis is a hallmark of aging culminating in severe dysfunction of protein turnover. To investigate protein turnover dynamics as a function of age, we performed continuous in vivo metabolic stable isotope labeling in mice along the aging continuum. First, we discovered that the brain proteome uniquely undergoes dynamic turnover fluctuations during aging compared to heart and liver tissue. Second, trends in protein turnover in the brain proteome during aging showed sex-specific differences that were tightly tied to cellular compartments. Next, parallel analyses of the insoluble proteome revealed that several cellular compartments experience hampered turnover, in part due to misfolding. Finally, we found that age-associated fluctuations in proteasome activity were associated with the turnover of core proteolytic subunits, which was recapitulated by pharmacological suppression of proteasome activity. Taken together, our study provides a proteome-wide atlas of protein turnover across the aging continuum and reveals a link between the turnover of individual proteasome subunits and the age-associated decline in proteasome activity.
Collapse
Affiliation(s)
- Nalini R Rao
- Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, IL, 60611, USA
| | - Arun Upadhyay
- Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, IL, 60611, USA
| | - Jeffrey N Savas
- Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, IL, 60611, USA.
| |
Collapse
|
11
|
Buda K, Cermakova K, Hodges HC, Fornasiero EF, Sukenik S, Holehouse AS. Using graphs and charts in scientific figures. Trends Biochem Sci 2023; 48:913-916. [PMID: 37837963 DOI: 10.1016/j.tibs.2023.08.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Accepted: 08/28/2023] [Indexed: 10/16/2023]
Affiliation(s)
- Karol Buda
- Michael Smith Laboratories, University of British Columbia, Vancouver, Canada.
| | - Katerina Cermakova
- Department of Molecular and Cell Biology, Center for Precision Environmental Health, Baylor College of Medicine, Houston, TX, USA.
| | - H Courtney Hodges
- Department of Molecular and Cell Biology, Center for Precision Environmental Health, Baylor College of Medicine, Houston, TX, USA.
| | - Eugenio F Fornasiero
- Institute of Neuro- and Sensory Physiology, University Medical Center Göttingen, Göttingen, Germany; Department of Life Sciences, University of Trieste, Trieste, Italy.
| | - Shahar Sukenik
- Department of Chemistry and Biochemistry, University of California Merced, Merced, CA, USA.
| | - Alex S Holehouse
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St Louis, MO, USA; Center for Biomolecular Condensates (CBC), Washington University in St Louis, St Louis, MO, USA.
| |
Collapse
|
12
|
Tsioras K, Smith KC, Edassery SL, Garjani M, Li Y, Williams C, McKenna ED, Guo W, Wilen AP, Hark TJ, Marklund SL, Ostrow LW, Gilthorpe JD, Ichida JK, Kalb RG, Savas JN, Kiskinis E. Analysis of proteome-wide degradation dynamics in ALS SOD1 iPSC-derived patient neurons reveals disrupted VCP homeostasis. Cell Rep 2023; 42:113160. [PMID: 37776851 PMCID: PMC10785776 DOI: 10.1016/j.celrep.2023.113160] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 07/18/2023] [Accepted: 09/06/2023] [Indexed: 10/02/2023] Open
Abstract
Mutations in SOD1 cause amyotrophic lateral sclerosis (ALS) through gain-of-function effects, yet the mechanisms by which misfolded mutant SOD1 (mutSOD1) protein impairs human motor neurons (MNs) remain unclear. Here, we use induced-pluripotent-stem-cell-derived MNs coupled to metabolic stable isotope labeling and mass spectrometry to investigate proteome-wide degradation dynamics. We find several proteins, including the ALS-causal valosin-containing protein (VCP), which predominantly acts in proteasome degradation and autophagy, that degrade slower in mutSOD1 relative to isogenic control MNs. The interactome of VCP is altered in mutSOD1 MNs in vitro, while VCP selectively accumulates in the affected motor cortex of ALS-SOD1 patients. Overexpression of VCP rescues mutSOD1 toxicity in MNs in vitro and in a C. elegans model in vivo, in part due to its ability to modulate the degradation of insoluble mutSOD1. Our results demonstrate that VCP contributes to mutSOD1-dependent degeneration, link two distinct ALS-causal genes, and highlight selective protein degradation impairment in ALS pathophysiology.
Collapse
Affiliation(s)
- Konstantinos Tsioras
- The Ken & Ruth Davee Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Kevin C Smith
- The Ken & Ruth Davee Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Seby L Edassery
- The Ken & Ruth Davee Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Mehraveh Garjani
- The Ken & Ruth Davee Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Yichen Li
- Department of Stem Cell Biology and Regenerative Medicine, Eli and Edythe Broad Center for Regenerative Medicine and Stem Cell Research, Zilkha Neurogenetic Institute, University of Southern California, Keck School of Medicine, Los Angeles, CA 90033, USA
| | - Chloe Williams
- Department of Integrative Medical Biology, Umeå University, 90187 Umeå, Sweden
| | - Elizabeth D McKenna
- The Ken & Ruth Davee Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Wenxuan Guo
- Department of Stem Cell Biology and Regenerative Medicine, Eli and Edythe Broad Center for Regenerative Medicine and Stem Cell Research, Zilkha Neurogenetic Institute, University of Southern California, Keck School of Medicine, Los Angeles, CA 90033, USA
| | - Anika P Wilen
- The Ken & Ruth Davee Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Timothy J Hark
- The Ken & Ruth Davee Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Stefan L Marklund
- Department of Medical Biosciences, Clinical Chemistry, Umeå University, 90187 Umeå, Sweden
| | - Lyle W Ostrow
- Department of Neurology, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, USA
| | | | - Justin K Ichida
- Department of Stem Cell Biology and Regenerative Medicine, Eli and Edythe Broad Center for Regenerative Medicine and Stem Cell Research, Zilkha Neurogenetic Institute, University of Southern California, Keck School of Medicine, Los Angeles, CA 90033, USA
| | - Robert G Kalb
- The Ken & Ruth Davee Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Jeffrey N Savas
- The Ken & Ruth Davee Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Evangelos Kiskinis
- The Ken & Ruth Davee Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA; Simpson Querrey Institute, Northwestern University, Chicago, IL 60611, USA; Department of Neuroscience, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA.
| |
Collapse
|
13
|
Abstract
Orchestration of protein production and degradation and the regulation of protein lifetimes play a central role in many basic biological processes. Nearly all mammalian proteins are replenished by protein turnover in waves of synthesis and degradation. Protein lifetimes in vivo are typically measured in days, but a small number of extremely long-lived proteins (ELLPs) persist for months or even years. ELLPs are rare in all tissues but are enriched in tissues containing terminally differentiated post-mitotic cells and extracellular matrix. Consistently, emerging evidence suggests that the cochlea may be particularly enriched in ELLPs. Damage to ELLPs in specialized cell types, such as crystallin in the lens cells of the eye, causes organ failure such as cataracts. Similarly, damage to cochlear ELLPs is likely to occur with many insults, including acoustic overstimulation, drugs, anoxia, and antibiotics, and may play an underappreciated role in hearing loss. Furthermore, hampered protein degradation may contribute to acquired hearing loss. In this review, I highlight our knowledge of the lifetimes of cochlear proteins with an emphasis on ELLPs and the potential contribution that impaired cochlear protein degradation has on acquired hearing loss and the emerging relevance of ELLPs.
Collapse
Affiliation(s)
- Jeffrey N Savas
- Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA.
| |
Collapse
|
14
|
Wöhnke E, Klupp BG, Blome S, Mettenleiter TC, Karger A. Mass-Spectrometric Evaluation of the African Swine Fever Virus-Induced Host Shutoff Using Dynamic Stable Isotope Labeling with Amino Acids in Cell Culture (SILAC). Viruses 2023; 15:1283. [PMID: 37376583 DOI: 10.3390/v15061283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 05/22/2023] [Accepted: 05/25/2023] [Indexed: 06/29/2023] Open
Abstract
African swine fever is a viral disease of swine caused by the African swine fever virus (ASFV). Currently, ASFV is spreading over the Eurasian continent and threatening global pig husbandry. One viral strategy to undermine an efficient host cell response is to establish a global shutoff of host protein synthesis. This shutoff has been observed in ASFV-infected cultured cells using two-dimensional electrophoresis combined with metabolic radioactive labeling. However, it remained unclear if this shutoff was selective for certain host proteins. Here, we characterized ASFV-induced shutoff in porcine macrophages by measurement of relative protein synthesis rates using a mass spectrometric approach based on stable isotope labeling with amino acids in cell culture (SILAC). The impact of ASFV infection on the synthesis of >2000 individual host proteins showed a high degree of variability, ranging from complete shutoff to a strong induction of proteins that are absent from naïve cells. GO-term enrichment analysis revealed that the most effective shutoff was observed for proteins related to RNA metabolism, while typical representatives of the innate immune system were strongly induced after infection. This experimental setup is suitable to quantify a virion-induced host shutoff (vhs) after infection with different viruses.
Collapse
Affiliation(s)
- Elisabeth Wöhnke
- Institute of Molecular Virology and Cell Biology, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Südufer 10, 17493 Greifswald-Insel Riems, Germany
| | - Barbara G Klupp
- Institute of Molecular Virology and Cell Biology, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Südufer 10, 17493 Greifswald-Insel Riems, Germany
| | - Sandra Blome
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Südufer 10, 17493 Greifswald-Insel Riems, Germany
| | - Thomas C Mettenleiter
- Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Südufer 10, 17493 Greifswald-Insel Riems, Germany
| | - Axel Karger
- Institute of Molecular Virology and Cell Biology, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Südufer 10, 17493 Greifswald-Insel Riems, Germany
| |
Collapse
|
15
|
Deberneh HM, Abdelrahman DR, Verma SK, Linares JJ, Murton AJ, Russell WK, Kuyumcu-Martinez MN, Miller BF, Sadygov RG. Quantifying label enrichment from two mass isotopomers increases proteome coverage for in vivo protein turnover using heavy water metabolic labeling. Commun Chem 2023; 6:72. [PMID: 37069333 PMCID: PMC10110577 DOI: 10.1038/s42004-023-00873-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Accepted: 03/31/2023] [Indexed: 04/19/2023] Open
Abstract
Heavy water metabolic labeling followed by liquid chromatography coupled with mass spectrometry is a powerful high throughput technique for measuring the turnover rates of individual proteins in vivo. The turnover rate is obtained from the exponential decay modeling of the depletion of the monoisotopic relative isotope abundance. We provide theoretical formulas for the time course dynamics of six mass isotopomers and use the formulas to introduce a method that utilizes partial isotope profiles, only two mass isotopomers, to compute protein turnover rate. The use of partial isotope profiles alleviates the interferences from co-eluting contaminants in complex proteome mixtures and improves the accuracy of the estimation of label enrichment. In five different datasets, the technique consistently doubles the number of peptides with high goodness-of-fit characteristics of the turnover rate model. We also introduce a software tool, d2ome+, which automates the protein turnover estimation from partial isotope profiles.
Collapse
Affiliation(s)
- Henock M Deberneh
- Department of Biochemistry and Molecular Biology, The University of Texas Medical Branch, Galveston, TX, USA
| | - Doaa R Abdelrahman
- Department of Surgery, The University of Texas Medical Branch, Galveston, TX, USA
- Sealy Center on Aging, The University of Texas Medical Branch, Galveston, TX, USA
| | - Sunil K Verma
- Department of Biochemistry and Molecular Biology, The University of Texas Medical Branch, Galveston, TX, USA
| | - Jennifer J Linares
- Department of Biochemistry and Molecular Biology, The University of Texas Medical Branch, Galveston, TX, USA
| | - Andrew J Murton
- Department of Surgery, The University of Texas Medical Branch, Galveston, TX, USA
- Sealy Center on Aging, The University of Texas Medical Branch, Galveston, TX, USA
| | - William K Russell
- Department of Biochemistry and Molecular Biology, The University of Texas Medical Branch, Galveston, TX, USA
| | - Muge N Kuyumcu-Martinez
- Department of Biochemistry and Molecular Biology, The University of Texas Medical Branch, Galveston, TX, USA
- Department of Neuroscience, Cell Biology and Anatomy, The University of Texas Medical Branch, Galveston, TX, USA
- Department of Molecular Physiology and Biological Physics, The University of Virginia, Charlottesville, VA, USA
| | - Benjamin F Miller
- Oklahoma Medical Research Foundation, Oklahoma Nathan Shock Center, Oklahoma Center for Geosciences, Harold Hamm Diabetes Center, Oklahoma City, OK, USA
- Oklahoma City Veterans Association, Oklahoma City, OK, USA
| | - Rovshan G Sadygov
- Department of Biochemistry and Molecular Biology, The University of Texas Medical Branch, Galveston, TX, USA.
| |
Collapse
|
16
|
Li W, Salovska B, Fornasiero EF, Liu Y. Toward a hypothesis-free understanding of how phosphorylation dynamically impacts protein turnover. Proteomics 2023; 23:e2100387. [PMID: 36422574 PMCID: PMC10964180 DOI: 10.1002/pmic.202100387] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 11/16/2022] [Accepted: 11/18/2022] [Indexed: 11/25/2022]
Abstract
The turnover measurement of proteins and proteoforms has been largely facilitated by workflows coupling metabolic labeling with mass spectrometry (MS), including dynamic stable isotope labeling by amino acids in cell culture (dynamic SILAC) or pulsed SILAC (pSILAC). Very recent studies including ours have integrated themeasurement of post-translational modifications (PTMs) at the proteome level (i.e., phosphoproteomics) with pSILAC experiments in steady state systems, exploring the link between PTMs and turnover at the proteome-scale. An open question in the field is how to exactly interpret these complex datasets in a biological perspective. Here, we present a novel pSILAC phosphoproteomic dataset which was obtained during a dynamic process of cell starvation using data-independent acquisition MS (DIA-MS). To provide an unbiased "hypothesis-free" analysis framework, we developed a strategy to interrogate how phosphorylation dynamically impacts protein turnover across the time series data. With this strategy, we discovered a complex relationship between phosphorylation and protein turnover that was previously underexplored. Our results further revealed a link between phosphorylation stoichiometry with the turnover of phosphorylated peptidoforms. Moreover, our results suggested that phosphoproteomic turnover diversity cannot directly explain the abundance regulation of phosphorylation during cell starvation, underscoring the importance of future studies addressing PTM site-resolved protein turnover.
Collapse
Affiliation(s)
- Wenxue Li
- Yale Cancer Biology Institute, Yale University, West Haven, CT, USA
| | - Barbora Salovska
- Yale Cancer Biology Institute, Yale University, West Haven, CT, USA
| | - Eugenio F. Fornasiero
- Department of Neuro- and Sensory Physiology, University Medical Center Göttingen, 37073, Göttingen, Germany
| | - Yansheng Liu
- Yale Cancer Biology Institute, Yale University, West Haven, CT, USA
- Department of Pharmacology, Yale University School of Medicine, New Haven, CT, USA
| |
Collapse
|
17
|
Software Tool for Visualization and Validation of Protein Turnover Rates Using Heavy Water Metabolic Labeling and LC-MS. Int J Mol Sci 2022; 23:ijms232314620. [PMID: 36498948 PMCID: PMC9740640 DOI: 10.3390/ijms232314620] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 11/16/2022] [Accepted: 11/18/2022] [Indexed: 11/24/2022] Open
Abstract
Metabolic stable isotope labeling followed by liquid chromatography coupled with mass spectrometry (LC-MS) is a powerful tool for in vivo protein turnover studies of individual proteins on a large scale and with high throughput. Turnover rates of thousands of proteins from dozens of time course experiments are determined by data processing tools, which are essential components of the workflows for automated extraction of turnover rates. The development of sophisticated algorithms for estimating protein turnover has been emphasized. However, the visualization and annotation of the time series data are no less important. The visualization tools help to validate the quality of the model fits, their goodness-of-fit characteristics, mass spectral features of peptides, and consistency of peptide identifications, among others. Here, we describe a graphical user interface (GUI) to visualize the results from the protein turnover analysis tool, d2ome, which determines protein turnover rates from metabolic D2O labeling followed by LC-MS. We emphasize the specific features of the time series data and their visualization in the GUI. The time series data visualized by the GUI can be saved in JPEG format for storage and further dissemination.
Collapse
|