1
|
Kujirai T, Kato J, Yamamoto K, Hirai S, Fujii T, Maehara K, Harada A, Negishi L, Ogasawara M, Yamaguchi Y, Ohkawa Y, Takizawa Y, Kurumizaka H. Multiple structures of RNA polymerase II isolated from human nuclei by ChIP-CryoEM analysis. Nat Commun 2025; 16:4724. [PMID: 40436841 PMCID: PMC12119854 DOI: 10.1038/s41467-025-59580-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Accepted: 04/28/2025] [Indexed: 06/01/2025] Open
Abstract
RNA polymerase II (RNAPII) is a central transcription enzyme that exists as multiple forms with or without accessory factors, and transcribes the genomic DNA packaged in chromatin. To understand how RNAPII functions in the human genome, we isolate transcribing RNAPII complexes from human nuclei by chromatin immunopurification, and determine the cryo-electron microscopy structures of RNAPII elongation complexes (ECs) associated with genomic DNA in distinct forms, without or with the elongation factors SPT4/5, ELOF1, and SPT6. This ChIP-cryoEM method also reveals the two EC-nucleosome complexes corresponding nucleosome disassembly/reassembly processes. In the structure of EC-downstream nucleosome, EC paused at superhelical location (SHL) -5 in the nucleosome, suggesting that SHL(-5) pausing occurs in a sequence-independent manner during nucleosome disassembly. In the structure of the EC-upstream nucleosome, EC directly contacts the nucleosome through the nucleosomal DNA-RPB4/7 stalk and the H2A-H2B dimer-RPB2 wall interactions, suggesting that EC may be paused during nucleosome reassembly. These representative EC structures transcribing the human genome provide mechanistic insights into understanding RNAPII transcription on chromatin.
Collapse
Affiliation(s)
- Tomoya Kujirai
- Laboratory of Chromatin Structure and Function, Institute for Quantitative Biosciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo, Japan
- Laboratory for Transcription Structural Biology, RIKEN Center for Biosystems Dynamics Research, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Japan
| | - Junko Kato
- Laboratory of Chromatin Structure and Function, Institute for Quantitative Biosciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo, Japan
| | - Kyoka Yamamoto
- Laboratory of Chromatin Structure and Function, Institute for Quantitative Biosciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo, Japan
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo, Japan
| | - Seiya Hirai
- Laboratory of Chromatin Structure and Function, Institute for Quantitative Biosciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo, Japan
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo, Japan
| | - Takeru Fujii
- Division of Transcriptomics, Medical Institute of Bioregulation, Kyushu University, 3-1-1 Maidashi, Higashi, Fukuoka, Japan
| | - Kazumitsu Maehara
- Division of Transcriptomics, Medical Institute of Bioregulation, Kyushu University, 3-1-1 Maidashi, Higashi, Fukuoka, Japan
- Department of Multi-Omics, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, Japan
| | - Akihito Harada
- Division of Transcriptomics, Medical Institute of Bioregulation, Kyushu University, 3-1-1 Maidashi, Higashi, Fukuoka, Japan
- Department of Multi-Omics, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, Japan
| | - Lumi Negishi
- Laboratory of Chromatin Structure and Function, Institute for Quantitative Biosciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo, Japan
| | - Mitsuo Ogasawara
- Laboratory of Chromatin Structure and Function, Institute for Quantitative Biosciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo, Japan
| | - Yuki Yamaguchi
- School of Life Science and Technology, Institute of Science Tokyo, 4259 Nagatsuta, Yokohama, Japan
| | - Yasuyuki Ohkawa
- Division of Transcriptomics, Medical Institute of Bioregulation, Kyushu University, 3-1-1 Maidashi, Higashi, Fukuoka, Japan
| | - Yoshimasa Takizawa
- Laboratory of Chromatin Structure and Function, Institute for Quantitative Biosciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo, Japan
| | - Hitoshi Kurumizaka
- Laboratory of Chromatin Structure and Function, Institute for Quantitative Biosciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo, Japan.
- Laboratory for Transcription Structural Biology, RIKEN Center for Biosystems Dynamics Research, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Japan.
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo, Japan.
| |
Collapse
|
2
|
Chen B, Dronamraju R, Smith-Kinnaman WR, Peck Justice SA, Hepperla AJ, MacAlpine HK, Simon JM, Mosley AL, MacAlpine DM, Strahl BD. Spt6-Spn1 interaction is required for RNA polymerase II association and precise nucleosome positioning along transcribed genes. J Biol Chem 2025; 301:108436. [PMID: 40127868 PMCID: PMC12053661 DOI: 10.1016/j.jbc.2025.108436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2025] [Revised: 03/06/2025] [Accepted: 03/19/2025] [Indexed: 03/26/2025] Open
Abstract
Spt6-Spn1 is an essential histone chaperone complex that associates with RNA Polymerase II (RNAPII) and reassembles nucleosomes during gene transcription. While the interaction between Spt6 and Spn1 is important for its histone deposition and transcription functions, a precise mechanistic understanding is still limited. Here, using temperature-sensitive alleles of spt6 and spn1 that disrupt their interaction in yeast, we show that the Spt6-Spn1 association is important for its stable interaction with the elongating RNAPII complex and nucleosomes. Using micrococcal nuclease (MNase)-based chromatin occupancy profiling, we further find that Spt6-Spn1 interaction is required to maintain a preferred nucleosome positioning at actively transcribed genes; in the absence of Spt6-Spn1 interaction, we observe a return to replication-dependent phasing. In addition to positioning defects, Spt6-Spn1 disrupting mutants also resulted in an overall shift of nucleosomes toward the 5' end of genes that were correlated with decreased RNAPII levels. As loss of Spt6-Spn1 association results in cryptic transcription at a subset of genes, we examined these genes for their nucleosome profiles. These findings revealed that the chromatin organization at these loci is similar to other active genes, thus underscoring the critical role of DNA sequence in mediating cryptic transcription when nucleosome positioning is altered. Taken together, these findings reveal that Spt6-Spn1 interaction is key to its association with elongating RNAPII and to its ability to precisely organize nucleosomes across transcription units.
Collapse
Affiliation(s)
- Boning Chen
- Department of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, North Carolina, USA
| | - Raghuvar Dronamraju
- Department of Biochemistry and Biophysics, University of North Carolina, Chapel Hill, North Carolina, USA
| | - Whitney R Smith-Kinnaman
- Indiana University School of Medicine, Department of Biochemistry and Molecular Biology, Indianapolis, Indiana, USA
| | | | - Austin J Hepperla
- Department of Genetics, University of North Carolina, Chapel Hill, North Carolina, USA; Bioinformatics and Analytics Research Collaborative (BARC), University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Heather K MacAlpine
- Department of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, North Carolina, USA
| | - Jeremy M Simon
- Department of Data Science, Dana-Farber Cancer Institute, Boston, Massachusetts, USA; Department of Biostatistics, Harvard T.H. Chan School of Public Health, Cambridge, Massachusetts, USA
| | - Amber L Mosley
- Indiana University School of Medicine, Department of Biochemistry and Molecular Biology, Indianapolis, Indiana, USA
| | - David M MacAlpine
- Department of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, North Carolina, USA.
| | - Brian D Strahl
- Department of Biochemistry and Biophysics, University of North Carolina, Chapel Hill, North Carolina, USA.
| |
Collapse
|
3
|
Little J, Meyer GH, Grover A, Francette AM, Partha R, Arndt KM, Smith M, Clark N, Chikina M. ERC 2.0 - evolutionary rate covariation update improves inference of functional interactions across large phylogenies. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.02.24.639970. [PMID: 40060623 PMCID: PMC11888306 DOI: 10.1101/2025.02.24.639970] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 03/21/2025]
Abstract
Evolutionary Rate Covariation (ERC) is an established comparative genomics method that identifies sets of genes sharing patterns of sequence evolution, which suggests shared function. Whereas many functional predictions of ERC have been empirically validated, its predictive power has hitherto been limited by its inability to tackle the large numbers of species in contemporary comparative genomics datasets. This study introduces ERC2.0, an enhanced methodology for studying ERC across phylogenies with hundreds of species and tens of thousands of genes. ERC2.0 improves upon previous iterations of ERC in algorithm speed, normalizing for heteroskedasticity, and normalizing correlations via Fisher transformations. These improvements have resulted in greater statistical power to predict biological function. In exemplar yeast and mammalian datasets, we demonstrate that the predictive power of ERC2.0 is improved relative to the previous method, ERC1.0, and that further improvements are obtained by using larger yeast and mammalian phylogenies. We attribute the improvements to both the larger datasets and improved rate normalization. We demonstrate that ERC2.0 has high predictive accuracy for known annotations and can predict the functions of genes in non-model systems. Our findings underscore the potential for ERC2.0 to be used as a single-pass computational tool in candidate gene screening and functional predictions.
Collapse
Affiliation(s)
| | | | - Aakash Grover
- Department of Biological Sciences, University of Pittsburgh
| | - Alex Michael Francette
- Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, MO
| | | | - Karen M Arndt
- Department of Biological Sciences, University of Pittsburgh
| | - Martin Smith
- Department of Earth Sciences, University of Durham
| | - Nathan Clark
- Department of Biological Sciences, University of Pittsburgh
| | - Maria Chikina
- Department of Computational and Systems Biology, University of Pittsburgh
| |
Collapse
|
4
|
Azeroglu B, Khurana S, Wang SC, Tricola GM, Sharma S, Jubelin C, Cortolezzis Y, Pegoraro G, Miller KM, Stracker TH, Lazzerini Denchi E. Identification of modulators of the ALT pathway through a native FISH-based optical screen. Cell Rep 2025; 44:115114. [PMID: 39729394 PMCID: PMC11844024 DOI: 10.1016/j.celrep.2024.115114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 11/05/2024] [Accepted: 12/04/2024] [Indexed: 12/29/2024] Open
Abstract
A significant portion of human cancers utilize a recombination-based pathway, alternative lengthening of telomeres (ALT), to extend telomeres. To gain further insights into this pathway, we developed a high-throughput imaging-based screen named TAILS (telomeric ALT in situ localization screen) to identify genes that either promote or inhibit ALT activity. Screening over 1,000 genes implicated in DNA transactions, TAILS reveals both well-established and putative ALT modulators. Here, we present the validation of factors that promote ALT, such as the nucleosome-remodeling factor CHD4 and the chromatin reader SGF29, as well as factors that suppress ALT, including the RNA helicases DExD-box helicase 39A/B (DDX39A/B), the replication factor TIMELESS, and components of the chromatin assembly factor CAF1. Our data indicate that defects in histone deposition significantly contribute to ALT-associated phenotypes. Based on these findings, we demonstrate that pharmacological treatments can be employed to either exacerbate or suppress ALT-associated phenotypes.
Collapse
Affiliation(s)
- Benura Azeroglu
- Laboratory of Genome Integrity, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Simran Khurana
- Radiation Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Shih-Chun Wang
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX 78712, USA
| | - Gianna M Tricola
- Laboratory of Genome Integrity, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Shalu Sharma
- Radiation Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Camille Jubelin
- Laboratory of Genome Integrity, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Ylenia Cortolezzis
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX 78712, USA; Department of Medicine, Università degli Studi di Udine, 33100 Udine, Italy
| | - Gianluca Pegoraro
- High-Throughput Imaging Facility, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Kyle M Miller
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX 78712, USA
| | - Travis H Stracker
- Radiation Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA.
| | - Eros Lazzerini Denchi
- Laboratory of Genome Integrity, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA.
| |
Collapse
|
5
|
Wen Z, Fang R, Zhang R, Yu X, Zhou F, Long H. Nucleosome wrapping states encode principles of 3D genome organization. Nat Commun 2025; 16:352. [PMID: 39753536 PMCID: PMC11699143 DOI: 10.1038/s41467-024-54735-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Accepted: 11/20/2024] [Indexed: 01/06/2025] Open
Abstract
Nucleosome is the basic structural unit of the genome. During processes like DNA replication and gene transcription, the conformation of nucleosomes undergoes dynamic changes, including DNA unwrapping and rewrapping, as well as histone disassembly and assembly. However, the wrapping characteristics of nucleosomes across the entire genome, including region-specificity and their correlation with higher-order chromatin organization, remains to be studied. In this study, we investigate the wrapping length of DNA on nucleosomes across the whole genome using wrapping-seq. We discover that the chromatin of mouse ES cells forms Nucleosome Wrapping Domains (NRDs), which can also be observed in yeast and fly genomes. We find that the degree of nucleosome wrapping decreases after DNA replication and is promoted by transcription. Furthermore, we observe that nucleosome wrapping domains delineate Hi-C compartments and replication timing domains. In conclusion, we have unveiled a previously unrecognized domainization principle of the chromatin, encoded by nucleosome wrapping states.
Collapse
Affiliation(s)
- Zengqi Wen
- School of Medicine, Shenzhen Campus of Sun Yat-Sen University, Sun Yat-Sen University, Shenzhen, Guangdong, 518107, China.
| | - Ruixin Fang
- Institute of Molecular Physiology, Shenzhen Bay Laboratory, Shenzhen, 518132, China
| | - Ruxin Zhang
- Institute of Molecular Physiology, Shenzhen Bay Laboratory, Shenzhen, 518132, China
| | - Xinqian Yu
- Institute of Molecular Physiology, Shenzhen Bay Laboratory, Shenzhen, 518132, China
| | - Fanli Zhou
- School of Medicine, Shenzhen Campus of Sun Yat-Sen University, Sun Yat-Sen University, Shenzhen, Guangdong, 518107, China
| | - Haizhen Long
- Institute of Molecular Physiology, Shenzhen Bay Laboratory, Shenzhen, 518132, China.
| |
Collapse
|
6
|
Brown MT, McMurray MA. Stepwise order in protein complex assembly: approaches and emerging themes. Open Biol 2025; 15:240283. [PMID: 39809320 PMCID: PMC11732423 DOI: 10.1098/rsob.240283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2024] [Revised: 11/22/2024] [Accepted: 11/26/2024] [Indexed: 01/16/2025] Open
Abstract
Protein-based nanomachines drive every cellular process. An explosion of high-resolution structures of multiprotein complexes has improved our understanding of what these machines look like and how they work, but we still know relatively little about how they assemble in living cells. For example, it has only recently been appreciated that many complexes assemble co-translationally, with at least one subunit still undergoing active translation while already interacting with other subunits. One aspect that is particularly understudied is assembly order, the idea that there is a stepwise order to the subunit-subunit associations that underlies the efficient assembly of the quaternary structure. Here, we integrate a review of the methodological approaches commonly used to query assembly order within a discussion of studies of the 20S proteasome core particle, septin protein complexes, and the histone octamer. We highlight shared and distinct properties of these complexes that illustrate general themes applicable to most other multisubunit assemblies.
Collapse
Affiliation(s)
- Michael T. Brown
- Department of Cell and Developmental Biology, University of Colorado Anschutz Medical Campus School of Medicine, Aurora, CO80045, USA
| | - Michael A. McMurray
- Department of Cell and Developmental Biology, University of Colorado Anschutz Medical Campus School of Medicine, Aurora, CO80045, USA
| |
Collapse
|
7
|
Warner JL, Lux V, Veverka V, Winston F. The histone chaperone Spt6 controls chromatin structure through its conserved N-terminal domain. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.11.25.625227. [PMID: 39651134 PMCID: PMC11623573 DOI: 10.1101/2024.11.25.625227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2024]
Abstract
The disassembly and reassembly of nucleosomes by histone chaperones is an essential activity during eukaryotic transcription elongation. This highly conserved process maintains chromatin integrity by transiently removing nucleosomes as barriers and then restoring them in the wake of transcription. While transcription elongation requires multiple histone chaperones, there is little understanding of how most of them function and why so many are required. Here, we show that the histone chaperone Spt6 acts through its acidic, intrinsically disordered N-terminal domain (NTD) to bind histones and control chromatin structure. The Spt6 NTD is essential for viability and its histone binding activity is conserved between yeast and humans. The essential nature of the Spt6 NTD can be bypassed by changes in another histone chaperone, FACT, revealing a close functional connection between the two. Our results have led to a mechanistic model for dynamic cooperation between multiple histone chaperones during transcription elongation.
Collapse
|
8
|
Azeroglu B, Khurana S, Wang SC, Tricola GM, Sharma S, Jubelin C, Cortolezzis Y, Pegoraro G, Miller KM, Stracker TH, Denchi EL. Identification of Novel Modulators of the ALT Pathway Through a Native FISH-Based Optical Screen. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.11.15.623791. [PMID: 39605432 PMCID: PMC11601530 DOI: 10.1101/2024.11.15.623791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2024]
Abstract
A significant portion of human cancers utilize a recombination-based pathway, Alternative Lengthening of Telomeres (ALT), to extend telomeres. To gain further insights into this pathway, we developed a high-throughput imaging-based screen named TAILS (Telomeric ALT In situ Localization Screen), to identify genes that either promote or inhibit ALT activity. Screening over 1000 genes implicated in DNA transactions, TAILS revealed both well-established and novel ALT modulators. We have identified new factors that promote ALT, such as the nucleosome-remodeling factor CHD4 and the chromatin reader SGF29, as well as factors that suppress ALT, including the RNA helicases DDX39A/B, the replication factor TIMELESS, and components of the chromatin assembly factor CAF1. Our data indicate that defects in histone deposition significantly contribute to ALT-associated phenotypes. Based on these findings, we demonstrate that pharmacological treatments can be employed to either exacerbate or suppress ALT-associated phenotypes.
Collapse
Affiliation(s)
- Benura Azeroglu
- Laboratory of Genome Integrity, National Cancer Institute, National Institutes of Health, Bethesda, MD, United States
| | - Simran Khurana
- Radiation Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Shih-Chun Wang
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX, USA
| | - Gianna M. Tricola
- Laboratory of Genome Integrity, National Cancer Institute, National Institutes of Health, Bethesda, MD, United States
| | - Shalu Sharma
- Radiation Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Camille Jubelin
- Laboratory of Genome Integrity, National Cancer Institute, National Institutes of Health, Bethesda, MD, United States
| | - Ylenia Cortolezzis
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX, USA
- Department of Medicine, Università degli Studi di Udine, Udine, Italy
| | - Gianluca Pegoraro
- High-Throughput Imaging Facility, National Cancer Institute, National Institutes of Health, Bethesda, MD, United States
| | - Kyle M. Miller
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX, USA
| | - Travis H. Stracker
- Radiation Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Eros Lazzerini Denchi
- Laboratory of Genome Integrity, National Cancer Institute, National Institutes of Health, Bethesda, MD, United States
| |
Collapse
|
9
|
Pratx L, Crawford T, Bäurle I. Mechanisms of heat stress-induced transcriptional memory. CURRENT OPINION IN PLANT BIOLOGY 2024; 81:102590. [PMID: 38968911 DOI: 10.1016/j.pbi.2024.102590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 05/29/2024] [Accepted: 06/07/2024] [Indexed: 07/07/2024]
Abstract
Transcriptional memory allows organisms to store information about transcriptional reprogramming in response to a stimulus. In plants, this often involves the response to an abiotic stress, which in nature may be cyclical or recurring. Such transcriptional memory confers sustained induction or enhanced re-activation in response to a recurrent stimulus, which may increase chances of survival and fitness. Heat stress (HS) has emerged as an excellent model system to study transcriptional memory in plants, and much progress has been made in elucidating the molecular mechanisms underlying this phenomenon. Here, we review how histone turnover and transcriptional co-regulator complexes contribute to reprogramming of transcriptional responses.
Collapse
Affiliation(s)
- Loris Pratx
- University of Potsdam, Institute for Biochemistry and Biology, Karl-Liebknecht-Str. 24-25, D-14476 Potsdam, Germany
| | - Tim Crawford
- University of Potsdam, Institute for Biochemistry and Biology, Karl-Liebknecht-Str. 24-25, D-14476 Potsdam, Germany
| | - Isabel Bäurle
- University of Potsdam, Institute for Biochemistry and Biology, Karl-Liebknecht-Str. 24-25, D-14476 Potsdam, Germany.
| |
Collapse
|
10
|
Engeholm M, Roske JJ, Oberbeckmann E, Dienemann C, Lidschreiber M, Cramer P, Farnung L. Resolution of transcription-induced hexasome-nucleosome complexes by Chd1 and FACT. Mol Cell 2024; 84:3423-3437.e8. [PMID: 39270644 PMCID: PMC11441371 DOI: 10.1016/j.molcel.2024.08.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 06/07/2024] [Accepted: 08/20/2024] [Indexed: 09/15/2024]
Abstract
To maintain the nucleosome organization of transcribed genes, ATP-dependent chromatin remodelers collaborate with histone chaperones. Here, we show that at the 5' ends of yeast genes, RNA polymerase II (RNAPII) generates hexasomes that occur directly adjacent to nucleosomes. The resulting hexasome-nucleosome complexes are then resolved by Chd1. We present two cryoelectron microscopy (cryo-EM) structures of Chd1 bound to a hexasome-nucleosome complex before and after restoration of the missing inner H2A/H2B dimer by FACT. Chd1 uniquely interacts with the complex, positioning its ATPase domain to shift the hexasome away from the nucleosome. In the absence of the inner H2A/H2B dimer, its DNA-binding domain (DBD) packs against the ATPase domain, suggesting an inhibited state. Restoration of the dimer by FACT triggers a rearrangement that displaces the DBD and stimulates Chd1 remodeling. Our results demonstrate how chromatin remodelers interact with a complex nucleosome assembly and suggest how Chd1 and FACT jointly support transcription by RNAPII.
Collapse
Affiliation(s)
- Maik Engeholm
- Max Planck Institute for Multidisciplinary Sciences, Am Fassberg 11, Göttingen 37077, Germany.
| | - Johann J Roske
- Max Planck Institute for Multidisciplinary Sciences, Am Fassberg 11, Göttingen 37077, Germany; MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, UK
| | - Elisa Oberbeckmann
- Max Planck Institute for Multidisciplinary Sciences, Am Fassberg 11, Göttingen 37077, Germany
| | - Christian Dienemann
- Max Planck Institute for Multidisciplinary Sciences, Am Fassberg 11, Göttingen 37077, Germany
| | - Michael Lidschreiber
- Max Planck Institute for Multidisciplinary Sciences, Am Fassberg 11, Göttingen 37077, Germany
| | - Patrick Cramer
- Max Planck Institute for Multidisciplinary Sciences, Am Fassberg 11, Göttingen 37077, Germany.
| | - Lucas Farnung
- Max Planck Institute for Multidisciplinary Sciences, Am Fassberg 11, Göttingen 37077, Germany; Harvard Medical School, Blavatnik Institute, Department of Cell Biology, 240 Longwood Avenue, Boston, MA 02115, USA.
| |
Collapse
|
11
|
van Breugel ME, Gerber A, van Leeuwen F. The choreography of chromatin in RNA polymerase III regulation. Biochem Soc Trans 2024; 52:1173-1189. [PMID: 38666598 PMCID: PMC11346459 DOI: 10.1042/bst20230770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 04/17/2024] [Accepted: 04/18/2024] [Indexed: 06/27/2024]
Abstract
Regulation of eukaryotic gene expression involves a dynamic interplay between the core transcriptional machinery, transcription factors, and chromatin organization and modification. While this applies to transcription by all RNA polymerase complexes, RNA polymerase III (RNAPIII) seems to be atypical with respect to its mechanisms of regulation. One distinctive feature of most RNAPIII transcribed genes is that they are devoid of nucleosomes, which relates to the high levels of transcription. Moreover, most of the regulatory sequences are not outside but within the transcribed open chromatin regions. Yet, several lines of evidence suggest that chromatin factors affect RNAPIII dynamics and activity and that gene sequence alone does not explain the observed regulation of RNAPIII. Here we discuss the role of chromatin modification and organization of RNAPIII transcribed genes and how they interact with the core transcriptional RNAPIII machinery and regulatory DNA elements in and around the transcribed genes.
Collapse
Affiliation(s)
- Maria Elize van Breugel
- Division of Gene Regulation, Netherlands Cancer Institute, Amsterdam 1066 CX, The Netherlands
| | - Alan Gerber
- Department of Neurosurgery, Amsterdam UMC Location Vrije Universiteit Amsterdam, Amsterdam 1081HV, The Netherlands
- Cancer Center Amsterdam, Cancer Biology, Amsterdam 1081HV, The Netherlands
| | - Fred van Leeuwen
- Division of Gene Regulation, Netherlands Cancer Institute, Amsterdam 1066 CX, The Netherlands
- Department of Medical Biology, Amsterdam UMC, University of Amsterdam, Amsterdam 1105 AZ, The Netherlands
| |
Collapse
|
12
|
Fetian T, Grover A, Arndt KM. Histone H2B ubiquitylation: Connections to transcription and effects on chromatin structure. BIOCHIMICA ET BIOPHYSICA ACTA. GENE REGULATORY MECHANISMS 2024; 1867:195018. [PMID: 38331024 PMCID: PMC11098702 DOI: 10.1016/j.bbagrm.2024.195018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 01/30/2024] [Accepted: 02/05/2024] [Indexed: 02/10/2024]
Abstract
Nucleosomes are major determinants of eukaryotic genome organization and regulation. Many studies, incorporating a diversity of experimental approaches, have been focused on identifying and discerning the contributions of histone post-translational modifications to DNA-centered processes. Among these, monoubiquitylation of H2B (H2Bub) on K120 in humans or K123 in budding yeast is a critical histone modification that has been implicated in a wide array of DNA transactions. H2B is co-transcriptionally ubiquitylated and deubiquitylated via the concerted action of an extensive network of proteins. In addition to altering the chemical and physical properties of the nucleosome, H2Bub is important for the proper control of gene expression and for the deposition of other histone modifications. In this review, we discuss the molecular mechanisms underlying the ubiquitylation cycle of H2B and how it connects to the regulation of transcription and chromatin structure.
Collapse
Affiliation(s)
- Tasniem Fetian
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA 15260, United States of America
| | - Aakash Grover
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA 15260, United States of America
| | - Karen M Arndt
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA 15260, United States of America.
| |
Collapse
|
13
|
Geisberg JV, Moqtaderi Z, Struhl K. Chromatin regulates alternative polyadenylation via the RNA polymerase II elongation rate. Proc Natl Acad Sci U S A 2024; 121:e2405827121. [PMID: 38748572 PMCID: PMC11127049 DOI: 10.1073/pnas.2405827121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Accepted: 04/15/2024] [Indexed: 05/22/2024] Open
Abstract
The RNA polymerase II (Pol II) elongation rate influences poly(A) site selection, with slow and fast Pol II derivatives causing upstream and downstream shifts, respectively, in poly(A) site utilization. In yeast, depletion of either of the histone chaperones FACT or Spt6 causes an upstream shift of poly(A) site use that strongly resembles the poly(A) profiles of slow Pol II mutant strains. Like slow Pol II mutant strains, FACT- and Spt6-depleted cells exhibit Pol II processivity defects, indicating that both Spt6 and FACT stimulate the Pol II elongation rate. Poly(A) profiles of some genes show atypical downstream shifts; this subset of genes overlaps well for FACT- or Spt6-depleted strains but is different from the atypical genes in Pol II speed mutant strains. In contrast, depletion of histone H3 or H4 causes a downstream shift of poly(A) sites for most genes, indicating that nucleosomes inhibit the Pol II elongation rate in vivo. Thus, chromatin-based control of the Pol II elongation rate is a potential mechanism, distinct from direct effects on the cleavage/polyadenylation machinery, to regulate alternative polyadenylation in response to genetic or environmental changes.
Collapse
Affiliation(s)
- Joseph V. Geisberg
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA02115
| | - Zarmik Moqtaderi
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA02115
| | - Kevin Struhl
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA02115
| |
Collapse
|
14
|
Gao J, Shi W, Wang J, Guan C, Dong Q, Sheng J, Zou X, Xu Z, Ge Y, Yang C, Li J, Bao H, Zhong X, Cui Y. Research progress and applications of epigenetic biomarkers in cancer. Front Pharmacol 2024; 15:1308309. [PMID: 38681199 PMCID: PMC11048075 DOI: 10.3389/fphar.2024.1308309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Accepted: 03/25/2024] [Indexed: 05/01/2024] Open
Abstract
Epigenetic changes are heritable changes in gene expression without changes in the nucleotide sequence of genes. Epigenetic changes play an important role in the development of cancer and in the process of malignancy metastasis. Previous studies have shown that abnormal epigenetic changes can be used as biomarkers for disease status and disease prediction. The reversibility and controllability of epigenetic modification changes also provide new strategies for early disease prevention and treatment. In addition, corresponding drug development has also reached the clinical stage. In this paper, we will discuss the recent progress and application status of tumor epigenetic biomarkers from three perspectives: DNA methylation, non-coding RNA, and histone modification, in order to provide new opportunities for additional tumor research and applications.
Collapse
Affiliation(s)
- Jianjun Gao
- Department of Hepatopancreatobiliary Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Wujiang Shi
- Department of Hepatopancreatobiliary Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Jiangang Wang
- Department of General Surgery, Tangdu Hospital, Air Force Medical University, Xi’an, China
| | - Canghai Guan
- Department of Hepatopancreatobiliary Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Qingfu Dong
- Department of Hepatopancreatobiliary Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Jialin Sheng
- Department of Hepatopancreatobiliary Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Xinlei Zou
- Department of Hepatopancreatobiliary Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Zhaoqiang Xu
- Department of Hepatopancreatobiliary Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Yifei Ge
- Department of Hepatopancreatobiliary Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Chengru Yang
- Department of Hepatopancreatobiliary Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Jiehan Li
- Department of Hepatopancreatobiliary Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Haolin Bao
- Department of Hepatopancreatobiliary Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Xiangyu Zhong
- Department of Hepatopancreatobiliary Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Yunfu Cui
- Department of Hepatopancreatobiliary Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| |
Collapse
|
15
|
Li K, Li Y, Nakamura F. Identification and partial characterization of new cell density-dependent nucleocytoplasmic shuttling proteins and open chromatin. Sci Rep 2023; 13:21723. [PMID: 38066085 PMCID: PMC10709462 DOI: 10.1038/s41598-023-49100-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Accepted: 12/04/2023] [Indexed: 12/18/2023] Open
Abstract
The contact inhibition of proliferation (CIP) denotes the cell density-dependent inhibition of growth, and the loss of CIP represents a hallmark of cancer. However, the mechanism by which CIP regulates gene expression remains poorly understood. Chromatin is a highly complex structure consisting of DNA, histones, and trans-acting factors (TAFs). The binding of TAF proteins to specific chromosomal loci regulates gene expression. Therefore, profiling chromatin is crucial for gaining insight into the gene expression mechanism of CIP. In this study, using modified proteomics of TAFs bound to DNA, we identified a protein that shuttles between the nucleus and cytosol in a cell density-dependent manner. We identified TIPARP, PTGES3, CBFB, and SMAD4 as cell density-dependent nucleocytoplasmic shuttling proteins. In low-density cells, these proteins predominantly reside in the nucleus; however, upon reaching high density, they relocate to the cytosol. Given their established roles in gene regulation, our findings propose their involvement as CIP-dependent TAFs. We also identified and characterized potential open chromatin regions sensitive to changes in cell density. These findings provide insights into the modulation of chromatin structure by CIP.
Collapse
Affiliation(s)
- Kangjing Li
- School of Pharmaceutical Science and Technology, Tianjin University, Nankai District, 92 Weijin Road, Tianjin, 300072, China
| | - Yaxin Li
- School of Pharmaceutical Science and Technology, Tianjin University, Nankai District, 92 Weijin Road, Tianjin, 300072, China
| | - Fumihiko Nakamura
- School of Pharmaceutical Science and Technology, Tianjin University, Nankai District, 92 Weijin Road, Tianjin, 300072, China.
| |
Collapse
|