1
|
Fang Y, Shen B, Dai Q, Xie Q, Li X, Wu W, Wang M. Composition and diversity analysis of the TCR CDR3 repertoire in patients with idiopathic orbital inflammation using high-throughput sequencing. BMC Ophthalmol 2023; 23:491. [PMID: 38044453 PMCID: PMC10694961 DOI: 10.1186/s12886-023-03248-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Accepted: 11/28/2023] [Indexed: 12/05/2023] Open
Abstract
BACKGROUND Idiopathic orbital inflammation (IOI) is a nonspecific orbital inflammatory disease with the third highest prevalence among orbital diseases, and its pathogenesis is associated with T-cell-mediated immune responses. This study aimed to investigate the differences in T-cell receptor (TCR) expression between IOI patients and healthy subjects by high-throughput sequencing and to characterize TCR expression in patients with IOI and with respect to glucocorticoid response. METHODS A total of 19 subjects were enrolled in this study and were divided into the idiopathic orbital inflammation group (IOI group, n = 13) and the healthy control group (HC group, n = 6), and within the IOI group were further divided into the glucocorticoid therapy sensitive group (IOI(EF) group, n = 6) and the glucocorticoid therapy ineffective group (IOI(IN) group, n = 7) based on the degree of effectiveness to glucocorticoid therapy. High-throughput TCR sequencing was performed on peripheral blood mononuclear cells of IOI patients and healthy control individuals using 5' RACE technology combined with Unique Identifier (UID) digital tag correction technology. The TCR CDR3 region diversity, sharing patterns, and differential sequences between the IOI and HC groups, and between the IOI(EF) and IOI(IN) groups were analyzed. RESULTS It was found that the diversity of TCR CDR3 in the IOI group was significantly lower than that in the HC group, and the frequency of V gene use was significantly different between groups. The diversity of TCR CDR3 in patients in the IOI(EF) group was significantly lower than that in patients in the IOI(IN) group, and the frequency of V and J gene use was significantly different between the IOI(EF) group and the IOI(IN) group. Additionally, we found 133 nucleotide sequences shared in all IOI samples and screened two sequences with higher expression from them. CONCLUSIONS Our results suggested that abnormal clonal expansion of specific T-cells exists in IOI patients and that TCR diversity may had an impact on the prognosis of glucocorticoid-treated IOI. This study may contribute to a better understanding of the immune status of IOI and provide new insights for T-cell -associated IOI pathogenesis, diagnosis and treatment prediction.
Collapse
Affiliation(s)
- Yenan Fang
- National Clinical Research Center for Ocular Diseases, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China
- Department of Ophthalmology, Children's Hospital of Fudan University, National Children's Medical Center, No. 399 Wanyuan Road, Shanghai, 201102, China
| | - Bingyan Shen
- National Clinical Research Center for Ocular Diseases, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China
| | - Qin Dai
- National Clinical Research Center for Ocular Diseases, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China
| | - Qiqi Xie
- National Clinical Research Center for Ocular Diseases, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China
| | - Xinyu Li
- National Clinical Research Center for Ocular Diseases, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China
| | - Wencan Wu
- National Clinical Research Center for Ocular Diseases, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China.
- State Key Laboratory of Ophthalmology, Optometry and Visual Science, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China.
| | - Min Wang
- National Clinical Research Center for Ocular Diseases, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China.
- State Key Laboratory of Ophthalmology, Optometry and Visual Science, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China.
| |
Collapse
|
2
|
High-throughput sequencing reveals the diversity of TCR β chain CDR3 repertoire in patients with severe acne. Mol Immunol 2020; 120:23-31. [PMID: 32045771 DOI: 10.1016/j.molimm.2020.01.024] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Revised: 01/16/2020] [Accepted: 01/31/2020] [Indexed: 02/08/2023]
Abstract
Acne is a common chronic inflammatory skin disease, and the inflammation immune response runs through all stages of acne lesions. In this study, we use a combination of multiplex-PCR and high-throughput sequencing technologies to analyze T cell receptor β chain CDR3 (complementarity-determining region 3) in peripheral blood isolated from severe acne patients. Once compared with healthy controls, we propose to identify acne-relevant CDR3 peptides. Our results reveal that the diversity of T cell receptor β chain (TRB) CDR3 sequences in the peripheral blood of the severe acne vulgaris (SA) group differed from that of the control group. In addition, we find 10 TRB CDR3 sequences, amino acid sequences and V-J combinations with significantly different expressions between the SA group and the non-acne (NA) group (P < 0.0001). These findings may contribute to a better understanding of the role of immunity in the pathogenesis of acne and may serve as biomarkers for evaluating risk or prognosis of severe acne disease in future.
Collapse
|
3
|
Packer AN, Muraro PA. Optimized clonotypic analysis of T-cell receptor repertoire in immune reconstitution. Exp Hematol 2007; 35:516-21. [PMID: 17309832 DOI: 10.1016/j.exphem.2006.11.007] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2006] [Revised: 10/13/2006] [Accepted: 11/17/2006] [Indexed: 10/23/2022]
Abstract
OBJECTIVE In recent years, T-cell receptor (TCR) sequencing analysis has proven an effective technique for the identification of T-cell populations of interest in cancer and autoimmunity, as well as for the characterization of peripheral immune repertoire reconstitution after hematopoietic stem cell transplantation (HSCT). However, despite its increased utilization, to our knowledge no group has investigated the minimum number of sequences necessary to accurately and efficiently describe the composition of TCR repertoire. The primary aim of this study was to optimize a procedure for clonotypic analysis of the TCR repertoire in patients undergoing autologous HSCT. MATERIALS AND METHODS TCR beta-chain diversity was analyzed by DNA sequencing and CDR3 spectratyping CD8(+) T cells isolated from three patients with multiple sclerosis undergoing autologous HSCT. Samples were collected at baseline and 1 or 2 years post-HSCT. RESULTS Using DNA cloning and high throughput sequencing, we analyzed over 1500 in-frame TCR sequences, allowing us to evaluate how our measures of TCR repertoire diversity change with increasing numbers of sequences included in the analysis. Our findings show that by analyzing 75 to 100 in-frame sequences, we are able to estimate TCR diversity within 5.0% to 7.4% of the values obtained at endpoint analysis (213-312 sequences per sample). CONCLUSIONS This study confirms the use of TCR sequencing as an effective technique for the characterization of immune renewal after autologous HSCT. In addition, we demonstrate for the first time convincing evidence to support the use of moderate sample sizes to accurately and efficiently evaluate TCR repertoire diversity.
Collapse
Affiliation(s)
- Amy N Packer
- Neuroimmunology Branch, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
| | | |
Collapse
|