1
|
Destro F, Braatz RD. Efficient Simulation of Viral Transduction and Propagation for Biomanufacturing. ACS Synth Biol 2024; 13:3173-3187. [PMID: 39315883 DOI: 10.1021/acssynbio.4c00227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/25/2024]
Abstract
The design of biomanufacturing platforms based on viral transduction and/or propagation poses significant challenges at the intersection between synthetic biology and process engineering. This paper introduces vitraPro, a software toolkit composed of a multiscale model and an efficient numeric technique that can be leveraged for determining genetic and process designs that optimize transduction-based biomanufacturing platforms and viral amplification processes. Viral infection and propagation for up to two viruses simultaneously can be simulated through the model, considering viruses in either the lytic or lysogenic stage, during batch, perfusion, or continuous operation. The model estimates the distribution of the viral genome(s) copy number in the cell population, which is an indicator of transduction efficiency and viral genome stability. The infection age distribution of the infected cells is also calculated, indicating how many cells are in an infection stage compatible with recombinant product expression or viral amplification. The model can also consider the presence of defective interfering particles in the system, which can severely compromise the productivity of biomanufacturing processes. Model benchmarking and validation are demonstrated for case studies of the baculovirus expression vector system and influenza A propagation in suspension cultures.
Collapse
Affiliation(s)
- Francesco Destro
- Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Richard D Braatz
- Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| |
Collapse
|
2
|
Hashizume T, Ying BW. Challenges in developing cell culture media using machine learning. Biotechnol Adv 2024; 70:108293. [PMID: 37984683 DOI: 10.1016/j.biotechadv.2023.108293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Revised: 10/17/2023] [Accepted: 11/14/2023] [Indexed: 11/22/2023]
Abstract
Microbial and mammalian cells are widely used in the food, pharmaceutical, and medical industries. Developing or optimizing culture media is essential to improve cell culture performance as a critical technology in cell culture engineering. Methodologies for media optimization have been developed to a great extent, such as the approaches of one-factor-at-a-time (OFAT) and response surface methodology (RSM). The present review introduces the emerging machine learning (ML) technology in cell culture engineering by combining high-throughput experimental technologies to develop highly efficient and effective culture media. The commonly used ML algorithms and the successful applications of employing ML in medium optimization are summarized. This review highlights the benefits of ML-assisted medium development and guides the selection of the media optimization method appropriate for various cell culture purposes.
Collapse
Affiliation(s)
- Takamasa Hashizume
- School of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, 305-8572 Ibaraki, Japan
| | - Bei-Wen Ying
- School of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, 305-8572 Ibaraki, Japan.
| |
Collapse
|
3
|
Vaz TA, Rodrigues AF, Coroadinha AS. Exploring nutrient supplementation and bioprocess optimization to improve the production of lentiviral vectors in serum-free medium suspension cultures. Biotechnol J 2024; 19:e2300212. [PMID: 37903159 DOI: 10.1002/biot.202300212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 10/20/2023] [Accepted: 10/25/2023] [Indexed: 11/01/2023]
Abstract
The use of lentiviral vectors (LV) in gene therapy has been growing in recent years. To meet the increasing clinical demand, LV production platforms will benefit from improved productivity and scalability to enable cost-effective manufacture of LV-based therapies. Here we report the adaptation of 293T cells to serum-free suspension cultures and the improvement of LV yields through transfection parameters optimization, process intensification and medium supplementation with nutrient boosters. Cells were sequentially adapted to different serum-free culture media, transfection parameters were optimized and the two best-performing conditions were selected to explore process intensification by increasing cell density at the time of transfection. LV production at higher cell densities increased volumetric titers up to 12-fold and lipid supplementation was the most efficient metabolic optimization strategy further enhancing LV productivity by 3-fold. Furthermore, cell concentration was identified and validated as an important source of transfection variability impairing cellular uptake of DNA polyplexes, impacting transfection efficiency and reducing LV titers down to 6-fold. This work contributes to improving LV-based gene therapy by establishing new scalable manufacturing platforms and providing key metabolic insights, unveiling important bioreaction parameters to improve vector yields.
Collapse
Affiliation(s)
- Tiago A Vaz
- iBET, Instituto de Biologia Experimental e Tecnológica, Oeiras, Portugal
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Oeiras, Portugal
| | - Ana F Rodrigues
- iBET, Instituto de Biologia Experimental e Tecnológica, Oeiras, Portugal
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Oeiras, Portugal
- LASIGE, Faculdade de Ciências da Universidade de Lisboa, Lisboa, Portugal
| | - Ana S Coroadinha
- iBET, Instituto de Biologia Experimental e Tecnológica, Oeiras, Portugal
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Oeiras, Portugal
| |
Collapse
|
4
|
Fu Q, Polanco A, Lee YS, Yoon S. Critical challenges and advances in recombinant adeno-associated virus (rAAV) biomanufacturing. Biotechnol Bioeng 2023; 120:2601-2621. [PMID: 37126355 DOI: 10.1002/bit.28412] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 03/27/2023] [Accepted: 04/19/2023] [Indexed: 05/02/2023]
Abstract
Gene therapy is a promising therapeutic approach for genetic and acquired diseases nowadays. Among DNA delivery vectors, recombinant adeno-associated virus (rAAV) is one of the most effective and safest vectors used in commercial drugs and clinical trials. However, the current yield of rAAV biomanufacturing lags behind the necessary dosages for clinical and commercial use, which embodies a concentrated reflection of low productivity of rAAV from host cells, difficult scalability of the rAAV-producing bioprocess, and high levels of impurities materialized during production. Those issues directly impact the price of gene therapy medicine in the market, limiting most patients' access to gene therapy. In this context, the current practices and several critical challenges associated with rAAV gene therapy bioprocesses are reviewed, followed by a discussion of recent advances in rAAV-mediated gene therapy and other therapeutic biological fields that could improve biomanufacturing if these advances are integrated effectively into the current systems. This review aims to provide the current state-of-the-art technology and perspectives to enhance the productivity of rAAV while reducing impurities during production of rAAV.
Collapse
Affiliation(s)
- Qiang Fu
- Department of Biomedical Engineering and Biotechnology, The University of Massachusetts Lowell, Lowell, Massachusetts, USA
| | - Ashli Polanco
- Department of Chemical Engineering, The University of Massachusetts Lowell, Lowell, Massachusetts, USA
| | - Yong Suk Lee
- Department of Pharmaceutical Sciences, The University of Massachusetts Lowell, Lowell, Massachusetts, USA
| | - Seongkyu Yoon
- Department of Chemical Engineering, The University of Massachusetts Lowell, Lowell, Massachusetts, USA
| |
Collapse
|
5
|
Wang S, Wei J. Distinguishing the Pros and Cons of Metabolic Reprogramming in Oncolytic Virus Immunotherapy. Int J Cancer 2022; 151:1654-1662. [PMID: 35633046 DOI: 10.1002/ijc.34139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 05/11/2022] [Accepted: 05/16/2022] [Indexed: 11/12/2022]
Abstract
Oncolytic viruses (OVs) represent a class of cancer immunotherapies that rely on hijacking the host cell factory for replicative oncolysis and eliciting immune responses for tumor clearance. An increasing evidence suggests that the metabolic state of tumor cells and immune cells is a putative determinant of the efficacy of cancer immunotherapy. However, how therapeutic intervention with OVs affects metabolic fluxes within the tumor microenvironment (TME) remains poorly understood. Herein, we review the complexities of metabolic reprogramming involving the effects of viruses and their consequences on tumor cells and immune cells. We highlight the inherent drawback of oncolytic virotherapy, namely that treatment with OVs inevitably further exacerbates the depletion of nutrients and the accumulation of metabolic wastes in the TME, leading to a metabolic barrier to antitumor immune responses. We also describe targeted metabolic strategies that can be used to unlock the therapeutic potential of OVs.
Collapse
Affiliation(s)
- Shiqun Wang
- Jiangsu Key Laboratory of Molecular Medicine, Medical School of Nanjing University, Nanjing, Jiangsu, P.R. China
| | - Jiwu Wei
- Jiangsu Key Laboratory of Molecular Medicine, Medical School of Nanjing University, Nanjing, Jiangsu, P.R. China
| |
Collapse
|
6
|
Rumachik NG, Malaker SA, Poweleit N, Maynard LH, Adams CM, Leib RD, Cirolia G, Thomas D, Stamnes S, Holt K, Sinn P, May AP, Paulk NK. Methods Matter: Standard Production Platforms for Recombinant AAV Produce Chemically and Functionally Distinct Vectors. Mol Ther Methods Clin Dev 2020; 18:98-118. [PMID: 32995354 PMCID: PMC7488757 DOI: 10.1016/j.omtm.2020.05.018] [Citation(s) in RCA: 100] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Accepted: 05/19/2020] [Indexed: 12/19/2022]
Abstract
Different approaches are used in the production of recombinant adeno-associated virus (rAAV). The two leading approaches are transiently transfected human HEK293 cells and live baculovirus infection of Spodoptera frugiperda (Sf9) insect cells. Unexplained differences in vector performance have been seen clinically and preclinically. Thus, we performed a controlled comparative production analysis varying only the host cell species but maintaining all other parameters. We characterized differences with multiple analytical approaches: proteomic profiling by mass spectrometry, isoelectric focusing, cryo-EM (transmission electron cryomicroscopy), denaturation assays, genomic and epigenomic sequencing of packaged genomes, human cytokine profiling, and functional transduction assessments in vitro and in vivo, including in humanized liver mice. Using these approaches, we have made two major discoveries: (1) rAAV capsids have post-translational modifications (PTMs), including glycosylation, acetylation, phosphorylation, and methylation, and these differ between platforms; and (2) rAAV genomes are methylated during production, and these are also differentially deposited between platforms. Our data show that host cell protein impurities differ between platforms and can have their own PTMs, including potentially immunogenic N-linked glycans. Human-produced rAAVs are more potent than baculovirus-Sf9 vectors in various cell types in vitro (p < 0.05-0.0001), in various mouse tissues in vivo (p < 0.03-0.0001), and in human liver in vivo (p < 0.005). These differences may have clinical implications for rAAV receptor binding, trafficking, expression kinetics, expression durability, vector immunogenicity, as well as cost considerations.
Collapse
Affiliation(s)
- Neil G. Rumachik
- Department of Chemistry, Stanford University, Stanford, CA 94305, USA
| | - Stacy A. Malaker
- Department of Chemistry, Stanford University, Stanford, CA 94305, USA
| | - Nicole Poweleit
- Department of Medicine, University of California San Francisco, San Francisco, CA 94305, USA
| | - Lucy H. Maynard
- Genome Engineering, Chan Zuckerberg Biohub, San Francisco, CA 94158, USA
| | - Christopher M. Adams
- Vincent Coates Foundation Mass Spectrometry Laboratory, Stanford University, Stanford, CA 94305, USA
| | - Ryan D. Leib
- Vincent Coates Foundation Mass Spectrometry Laboratory, Stanford University, Stanford, CA 94305, USA
| | - Giana Cirolia
- Genome Engineering, Chan Zuckerberg Biohub, San Francisco, CA 94158, USA
| | - Dennis Thomas
- Cryo-EM Core Facility, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA
| | - Susan Stamnes
- Viral Vector Core, University of Iowa Carver College of Medicine, Iowa City, IA 52242, USA
| | - Kathleen Holt
- Viral Vector Core, University of Iowa Carver College of Medicine, Iowa City, IA 52242, USA
| | - Patrick Sinn
- Viral Vector Core, University of Iowa Carver College of Medicine, Iowa City, IA 52242, USA
| | - Andrew P. May
- Genome Engineering, Chan Zuckerberg Biohub, San Francisco, CA 94158, USA
| | - Nicole K. Paulk
- Genome Engineering, Chan Zuckerberg Biohub, San Francisco, CA 94158, USA
- Department of Biochemistry & Biophysics, University of California San Francisco, San Francisco, CA 94158, USA
| |
Collapse
|
7
|
Rodrigues AF, Fernandes P, Laske T, Castro R, Alves PM, Genzel Y, Coroadinha AS. Cell Bank Origin of MDCK Parental Cells Shapes Adaptation to Serum-Free Suspension Culture and Canine Adenoviral Vector Production. Int J Mol Sci 2020; 21:E6111. [PMID: 32854295 PMCID: PMC7504089 DOI: 10.3390/ijms21176111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 08/19/2020] [Accepted: 08/21/2020] [Indexed: 12/03/2022] Open
Abstract
Phenotypic variation in cultured mammalian cell lines is known to be induced by passaging and culture conditions. Yet, the effect these variations have on the production of viral vectors has been overlooked. In this work we evaluated the impact of using Madin-Darby canine kidney (MDCK) parental cells from American Type Culture Collection (ATCC) or European Collection of Authenticated Cell Cultures (ECACC) cell bank repositories in both adherent and suspension cultures for the production of canine adenoviral vectors type 2 (CAV-2). To further explore the differences between cells, we conducted whole-genome transcriptome analysis. ECACC's MDCK showed to be a less heterogeneous population, more difficult to adapt to suspension and serum-free culture conditions, but more permissive to CAV-2 replication progression, enabling higher yields. Transcriptome data indicated that this increased permissiveness is due to a general down-regulation of biological networks of innate immunity in ECACC cells, including apoptosis and death receptor signaling, Janus kinase/signal transducers and activators of transcription (JAK/STAT) signaling, toll-like receptors signaling and the canonical pathway of nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) signaling. These results show the impact of MDCK source on the outcome of viral-based production processes further elucidating transcriptome signatures underlying enhanced adenoviral replication. Following functional validation, the genes and networks identified herein can be targeted in future engineering approaches aiming at improving the production of CAV-2 gene therapy vectors.
Collapse
Affiliation(s)
- Ana Filipa Rodrigues
- iBET, Instituto de Biologia Experimental e Tecnológica, Apartado 12, 2781-901 Oeiras, Portugal; (A.F.R.); (P.F.); (T.L.); (R.C.); (P.M.A.)
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Av. da República, 2780-157 Oeiras, Portugal
| | - Paulo Fernandes
- iBET, Instituto de Biologia Experimental e Tecnológica, Apartado 12, 2781-901 Oeiras, Portugal; (A.F.R.); (P.F.); (T.L.); (R.C.); (P.M.A.)
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Av. da República, 2780-157 Oeiras, Portugal
| | - Tanja Laske
- iBET, Instituto de Biologia Experimental e Tecnológica, Apartado 12, 2781-901 Oeiras, Portugal; (A.F.R.); (P.F.); (T.L.); (R.C.); (P.M.A.)
- Bioprocess Engineering, Max Planck Institute for Dynamics of Complex Technical Systems, Sandtorstr. 1, 39106 Magdeburg, Germany;
| | - Rute Castro
- iBET, Instituto de Biologia Experimental e Tecnológica, Apartado 12, 2781-901 Oeiras, Portugal; (A.F.R.); (P.F.); (T.L.); (R.C.); (P.M.A.)
| | - Paula Marques Alves
- iBET, Instituto de Biologia Experimental e Tecnológica, Apartado 12, 2781-901 Oeiras, Portugal; (A.F.R.); (P.F.); (T.L.); (R.C.); (P.M.A.)
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Av. da República, 2780-157 Oeiras, Portugal
| | - Yvonne Genzel
- Bioprocess Engineering, Max Planck Institute for Dynamics of Complex Technical Systems, Sandtorstr. 1, 39106 Magdeburg, Germany;
| | - Ana Sofia Coroadinha
- iBET, Instituto de Biologia Experimental e Tecnológica, Apartado 12, 2781-901 Oeiras, Portugal; (A.F.R.); (P.F.); (T.L.); (R.C.); (P.M.A.)
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Av. da República, 2780-157 Oeiras, Portugal
| |
Collapse
|
8
|
Formas‐Oliveira AS, Basílio JS, Rodrigues AF, Coroadinha AS. Overexpression of ER Protein Processing and Apoptosis Regulator Genes in Human Embryonic Kidney 293 Cells Improves Gene Therapy Vectors Production. Biotechnol J 2020; 15:e1900562. [DOI: 10.1002/biot.201900562] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Revised: 05/22/2020] [Indexed: 12/18/2022]
Affiliation(s)
- Ana S. Formas‐Oliveira
- iBET Instituto de Biologia Experimental e Tecnológica Apartado 12 2781‐901 Oeiras Portugal
- Instituto de Tecnologia Química e Biológica António Xavier Universidade Nova de Lisboa Av. da República 2780‐157 Oeiras Portugal
| | - João S. Basílio
- iBET Instituto de Biologia Experimental e Tecnológica Apartado 12 2781‐901 Oeiras Portugal
- Instituto de Tecnologia Química e Biológica António Xavier Universidade Nova de Lisboa Av. da República 2780‐157 Oeiras Portugal
| | - Ana F. Rodrigues
- iBET Instituto de Biologia Experimental e Tecnológica Apartado 12 2781‐901 Oeiras Portugal
- Instituto de Tecnologia Química e Biológica António Xavier Universidade Nova de Lisboa Av. da República 2780‐157 Oeiras Portugal
| | - Ana S. Coroadinha
- iBET Instituto de Biologia Experimental e Tecnológica Apartado 12 2781‐901 Oeiras Portugal
- Instituto de Tecnologia Química e Biológica António Xavier Universidade Nova de Lisboa Av. da República 2780‐157 Oeiras Portugal
- The Discoveries centre for Regenerative and Precision Medicine Nova University Lisbon Oeiras Campus, Av. da República 2780‐157 Oeiras Portugal
| |
Collapse
|
9
|
Xie L, Miao J, Li X, Yi X, Chu J. Regulation of the pyruvate metabolism node by monogene and polygene engineering of HEK-293 cells. RSC Adv 2019; 9:35760-35770. [PMID: 35528064 PMCID: PMC9074685 DOI: 10.1039/c9ra07418j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2019] [Accepted: 10/21/2019] [Indexed: 11/21/2022] Open
Abstract
HEK-293 cells are increasingly being used in the production of human adenovirus (HAdV) vaccines. However, the production of HAdV vaccine has not met the requirements of industrial production. Recently, we investigated the effects of various regulatory genes of the pyruvate metabolism node on the substance and energy metabolism and adenovirus reproduction in HEK-293 cells. Initially, single regulatory genes, including pkm2, pdhα, pyc2, mpc3, aralar1, ldha and pdk1, were studied. We found that metabolic performance and adenovirus reproduction capacity in HEK-293 cells were improved, and maximum adenovirus titre was increased approximately 15-fold. Next, we co-overexpressed the key genes, including pkm2, pyc2 and aralar1. The PYC2-A-P-L cells that had the appropriate co-overexpression levels of three genes had the most pronounced regulatory effect. The maximum cell density and maximum specific growth rate were increased by 21% compared with that in the control. The ΔLac/ΔGlc and ΔNH3/ΔGln were decreased by 26% and 27%, respectively. The ATP production rate and the ATP/O2 ratio were increased by 110% and 20%, respectively. The level of reactive oxygen species (ROS) was reduced by 60%. The adenovirus reproductive ability of the PYC2-A-P-L cells was approximately 30-fold higher than that of the control. The results showed that proper overexpression of the aralar1, pkm2 and pyc2 genes can significantly improve the substance and energy metabolism efficiency in HEK-293 cells, maximize the metabolic balance of pyruvate, and ultimately improve HAdV reproduction. This study provides a method of regulation of pyruvate metabolism and polygenic metabolic engineering in mammalian cells cultured in vitro and suggests an effective method for efficient HAdV production. HEK-293 cells are increasingly being used in the production of human adenovirus (HAdV) vaccines.![]()
Collapse
Affiliation(s)
- Li Xie
- State Key Laboratory of Bioreactor Engineering
- School of Bioengineering, East China University of Science and Technology
- Shanghai 200237
- China
| | - Junqing Miao
- State Key Laboratory of Bioreactor Engineering
- School of Bioengineering, East China University of Science and Technology
- Shanghai 200237
- China
| | - Xiangchao Li
- State Key Laboratory of Bioreactor Engineering
- School of Bioengineering, East China University of Science and Technology
- Shanghai 200237
- China
| | - Xiaoping Yi
- State Key Laboratory of Bioreactor Engineering
- School of Bioengineering, East China University of Science and Technology
- Shanghai 200237
- China
| | - Ju Chu
- State Key Laboratory of Bioreactor Engineering
- School of Bioengineering, East China University of Science and Technology
- Shanghai 200237
- China
| |
Collapse
|
10
|
Siji Antiviral Mixture Protects against CA16 Induced Brain Injury through Inhibiting PERK/STAT3/NF- κB Pathway. BIOMED RESEARCH INTERNATIONAL 2018; 2018:8475463. [PMID: 30186868 PMCID: PMC6116463 DOI: 10.1155/2018/8475463] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/23/2018] [Revised: 06/21/2018] [Accepted: 07/11/2018] [Indexed: 01/21/2023]
Abstract
Coxsackievirus 16 (CA16) causes hand, foot, and mouth disease (HFMD) in young children and infants, and it can lead to fatal neurological complications. This study investigated antiviral effects of Siji Antiviral Mixture (SAM) on CA16 in neonatal mice and the protective effects of SAM on CA16 induced brain injuries. Neonatal BALB/c mice and SH-SY5Y cells were used and injected with CA16 stains to study the efficacy. ELISA and Western blotting were used to measure the cytokines levels and proteins expression. Genes transduction was also used to verify interaction mechanism. As the results shown, SAM could reduce the clinical scores at the beginning and delay disease development in vivo. Treatment with SAM decreased the levels of LDH, CK-MB, caspase 3 and Bax, ER stress, and inflammatory reaction induced by CA16 infection. Further siRNA transfection results showed that CA16 induced ER stress and inflammatory reaction through PERK/STAT3/NF-κB signaling and the protective effects of SAM might be through inhibiting PERK/STAT3/NF-κB signaling. HPLC analysis showed fingerprint profiles of SAM had 42 chromatographic peaks. Collectively, our study highlighted distinct roles of SAM in inhibiting CA16 infection and brain injury. The molecular mechanism of SAM might be through inhibiting PERK/STAT3/NF-κB signaling.
Collapse
|
11
|
Tomás HA, Rodrigues AF, Carrondo MJT, Coroadinha AS. LentiPro26: novel stable cell lines for constitutive lentiviral vector production. Sci Rep 2018; 8:5271. [PMID: 29588490 PMCID: PMC5869598 DOI: 10.1038/s41598-018-23593-y] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2017] [Accepted: 03/12/2018] [Indexed: 12/20/2022] Open
Abstract
Lentiviral vectors (LVs) are excellent tools to promote gene transfer and stable gene expression. Their potential has been already demonstrated in gene therapy clinical trials for the treatment of diverse disorders. For large scale LV production, a stable producer system is desirable since it allows scalable and cost-effective viral productions, with increased reproducibility and safety. However, the development of stable systems has been challenging and time-consuming, being the selection of cells presenting high expression levels of Gag-Pro-Pol polyprotein and the cytotoxicity associated with some viral components, the main limitations. Hereby is described the establishment of a new LV producer cell line using a mutated less active viral protease to overcome potential cytotoxic limitations. The stable transfection of bicistronic expression cassettes with re-initiation of the translation mechanism enabled the generation of LentiPro26 packaging populations supporting high titers. Additionally, by skipping intermediate clone screening steps and performing only one final clone screening, it was possible to save time and generate LentiPro26-A59 cell line, that constitutively produces titers above 106 TU.mL-1.day-1, in less than six months. This work constitutes a step forward towards the development of improved LV producer cell lines, aiming to efficiently supply the clinical expanding gene therapy applications.
Collapse
Affiliation(s)
- H A Tomás
- iBET - Instituto de Biologia Experimental e Tecnológica, Apartado 12, 2781-901, Oeiras, Portugal
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Av. da República, 2780-157, Oeiras, Portugal
| | - A F Rodrigues
- iBET - Instituto de Biologia Experimental e Tecnológica, Apartado 12, 2781-901, Oeiras, Portugal
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Av. da República, 2780-157, Oeiras, Portugal
| | - M J T Carrondo
- iBET - Instituto de Biologia Experimental e Tecnológica, Apartado 12, 2781-901, Oeiras, Portugal
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Av. da República, 2780-157, Oeiras, Portugal
- Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, 2829-516, Monte da Caparica, Portugal
| | - A S Coroadinha
- iBET - Instituto de Biologia Experimental e Tecnológica, Apartado 12, 2781-901, Oeiras, Portugal.
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Av. da República, 2780-157, Oeiras, Portugal.
| |
Collapse
|
12
|
Impact of Adenovirus infection in host cell metabolism evaluated by (1)H-NMR spectroscopy. J Biotechnol 2016; 231:16-23. [PMID: 27215342 DOI: 10.1016/j.jbiotec.2016.05.025] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2016] [Revised: 05/12/2016] [Accepted: 05/19/2016] [Indexed: 12/22/2022]
Abstract
Adenovirus-based vectors are powerful vehicles for gene transfer applications in vaccination and gene therapy. Although highly exploited in the clinical setting, key aspects of the adenovirus biology are still not well understood, in particular the subversion of host cell metabolism during viral infection and replication. The aim of this work was to gain insights on the metabolism of two human cell lines (HEK293 and an amniocyte-derived cell line, 1G3) after infection with an adenovirus serotype 5 vector (AdV5). In order to profile metabolic alterations, we used (1)H-NMR spectroscopy, which allowed the quantification of 35 metabolites in cell culture supernatants with low sample preparation and in a relatively short time. Significant differences between both cell lines in non-infected cultures were identified, namely in glutamine and acetate metabolism, as well as by-product secretion. The main response to AdV5 infection was an increase in glucose consumption and lactate production rates. Moreover, cultures performed with or without glutamine supplementation confirmed the exhaustion of this amino acid as one of the main causes of lower AdV5 production at high cell densities (10- and 1.5-fold less specific yields in HEK293 and 1G3 cells, respectively), and highlighted different degrees of glutamine dependency of adenovirus replication in each cell line. The observed metabolic alterations associated with AdV5 infection and specificity of the host cell line can be useful for targeted bioprocess optimization.
Collapse
|
13
|
González Plaza JJ, Hulak N, Kausova G, Zhumadilov Z, Akilzhanova A. Role of metabolism during viral infections, and crosstalk with the innate immune system. Intractable Rare Dis Res 2016; 5:90-6. [PMID: 27195191 PMCID: PMC4869588 DOI: 10.5582/irdr.2016.01008] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Viruses have been for long polemic biological particles which stand in the twilight of being living entities or not. As their genome is reduced, they rely on the metabolic machinery of their host in order to replicate and be able to continue with their infection process. The understanding of their metabolic requirements is thus of paramount importance in order to develop tailored drugs to control their population, without affecting the normal functioning of their host. New advancements in high throughput technologies, especially metabolomics are allowing researchers to uncover the metabolic mechanisms of viral replication. In this short review, we present the latest discoveries that have been made in the field and an overview of the intrinsic relationship between metabolism and innate immunity as an important part of the immune system.
Collapse
Affiliation(s)
- Juan José González Plaza
- Division for Marine and Environmental Research, Ruđer Bošković Institute, Zagreb, Croatia
- Research Department, University Hospital for Infectious Diseases “Dr. Fran Mihaljević”, Zagreb, Croatia
- Address correspondence to: Dr. Juan José González Plaza, Division for Marine and Environmental Research, Ruđer Bošković Institute, Bijenička 54, P.O. Box 180, 10002 Zagreb, Croatia. E-mail:
| | - Nataša Hulak
- Department of Microbiology, Faculty of Agriculture, University of Zagreb, Zagreb, Croatia
| | | | - Zhaxybay Zhumadilov
- Laboratory of Genomic and Personalized Medicine, Center for Life Sciences, PI “National Laboratory Astana”, AOE “Nazarbayev University”, Astana, Kazakhstan
| | - Ainur Akilzhanova
- Laboratory of Genomic and Personalized Medicine, Center for Life Sciences, PI “National Laboratory Astana”, AOE “Nazarbayev University”, Astana, Kazakhstan
| |
Collapse
|
14
|
Metabolic flux profiling of MDCK cells during growth and canine adenovirus vector production. Sci Rep 2016; 6:23529. [PMID: 27004747 PMCID: PMC4804208 DOI: 10.1038/srep23529] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2015] [Accepted: 03/08/2016] [Indexed: 12/16/2022] Open
Abstract
Canine adenovirus vector type 2 (CAV2) represents an alternative to human adenovirus vectors for certain gene therapy applications, particularly neurodegenerative diseases. However, more efficient production processes, assisted by a greater understanding of the effect of infection on producer cells, are required. Combining [1,2-(13)C]glucose and [U-(13)C]glutamine, we apply for the first time (13)C-Metabolic flux analysis ((13)C-MFA) to study E1-transformed Madin-Darby Canine Kidney (MDCK) cells metabolism during growth and CAV2 production. MDCK cells displayed a marked glycolytic and ammoniagenic metabolism, and (13)C data revealed a large fraction of glutamine-derived labelling in TCA cycle intermediates, emphasizing the role of glutamine anaplerosis. (13)C-MFA demonstrated the importance of pyruvate cycling in balancing glycolytic and TCA cycle activities, as well as occurrence of reductive alphaketoglutarate (AKG) carboxylation. By turn, CAV2 infection significantly upregulated fluxes through most central metabolism, including glycolysis, pentose-phosphate pathway, glutamine anaplerosis and, more prominently, reductive AKG carboxylation and cytosolic acetyl-coenzyme A formation, suggestive of increased lipogenesis. Based on these results, we suggest culture supplementation strategies to stimulate nucleic acid and lipid biosynthesis for improved canine adenoviral vector production.
Collapse
|
15
|
Song J, Hu Y, Hu Y, Wang J, Zhang X, Wang L, Guo L, Wang Y, Ning R, Liao Y, Zhang Y, Zheng H, Shi H, He Z, Li Q, Liu L. Global gene expression analysis of peripheral blood mononuclear cells in rhesus monkey infants with CA16 infection-induced HFMD. Virus Res 2016; 214:1-10. [PMID: 26775814 DOI: 10.1016/j.virusres.2016.01.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2015] [Revised: 01/05/2016] [Accepted: 01/05/2016] [Indexed: 11/26/2022]
Abstract
Coxsackievirus A16 (CA16) is a dominant pathogen that results in hand, foot, and mouth disease and causes outbreaks worldwide, particularly in the Asia-Pacific region. However, the underlying molecular mechanisms remain unclear. Our previous study has demonstrated that the basic CA16 pathogenic process was successfully mimicked in rhesus monkey infant. The present study focused on the global gene expression changes in peripheral blood mononuclear cells of rhesus monkey infants with hand, foot, and mouth disease induced by CA16 infection at different time points. Genome-wide expression analysis was performed with Agilent whole-genome microarrays and established bioinformatics tools. Nine hundred and forty-eight significant differentially expressed genes that were associated with 5 gene ontology categories, including cell communication, cell cycle, immune system process, regulation of transcription and metabolic process were identified. Subsequently, the mapping of genes related to the immune system process by PANTHER pathway analysis revealed the predominance of inflammation mediated by chemokine and cytokine signaling pathways and the interleukin signaling pathway. Ultimately, co-expressed genes and their networks were analyzed. The results revealed the gene expression profile of the immune system in response to CA16 in rhesus monkey infants and suggested that such an immune response was generated as a result of the positive mobilization of the immune system. This initial microarray study will provide insights into the molecular mechanism of CA16 infection and will facilitate the identification of biomarkers for the evaluation of vaccines against this virus.
Collapse
Affiliation(s)
- Jie Song
- Institute of Medical Biology, Chinese Academy of Medical Science and Peking Union Medical College, Kunming, 650118, China
| | - Yajie Hu
- Institute of Medical Biology, Chinese Academy of Medical Science and Peking Union Medical College, Kunming, 650118, China
| | - Yunguang Hu
- Institute of Medical Biology, Chinese Academy of Medical Science and Peking Union Medical College, Kunming, 650118, China
| | - Jingjing Wang
- Institute of Medical Biology, Chinese Academy of Medical Science and Peking Union Medical College, Kunming, 650118, China
| | - Xiaolong Zhang
- Institute of Medical Biology, Chinese Academy of Medical Science and Peking Union Medical College, Kunming, 650118, China
| | - Lichun Wang
- Institute of Medical Biology, Chinese Academy of Medical Science and Peking Union Medical College, Kunming, 650118, China
| | - Lei Guo
- Institute of Medical Biology, Chinese Academy of Medical Science and Peking Union Medical College, Kunming, 650118, China
| | - Yancui Wang
- Institute of Medical Biology, Chinese Academy of Medical Science and Peking Union Medical College, Kunming, 650118, China
| | - Ruotong Ning
- Institute of Medical Biology, Chinese Academy of Medical Science and Peking Union Medical College, Kunming, 650118, China
| | - Yun Liao
- Institute of Medical Biology, Chinese Academy of Medical Science and Peking Union Medical College, Kunming, 650118, China
| | - Ying Zhang
- Institute of Medical Biology, Chinese Academy of Medical Science and Peking Union Medical College, Kunming, 650118, China
| | - Huiwen Zheng
- Institute of Medical Biology, Chinese Academy of Medical Science and Peking Union Medical College, Kunming, 650118, China
| | - Haijing Shi
- Institute of Medical Biology, Chinese Academy of Medical Science and Peking Union Medical College, Kunming, 650118, China
| | - Zhanlong He
- Institute of Medical Biology, Chinese Academy of Medical Science and Peking Union Medical College, Kunming, 650118, China
| | - Qihan Li
- Institute of Medical Biology, Chinese Academy of Medical Science and Peking Union Medical College, Kunming, 650118, China.
| | - Longding Liu
- Institute of Medical Biology, Chinese Academy of Medical Science and Peking Union Medical College, Kunming, 650118, China.
| |
Collapse
|
16
|
Petiot E, Cuperlovic-Culf M, Shen CF, Kamen A. Influence of HEK293 metabolism on the production of viral vectors and vaccine. Vaccine 2015; 33:5974-81. [DOI: 10.1016/j.vaccine.2015.05.097] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2015] [Revised: 05/20/2015] [Accepted: 05/22/2015] [Indexed: 12/17/2022]
|
17
|
Rodrigues AF, Guerreiro MR, Formas-Oliveira AS, Fernandes P, Blechert AK, Genzel Y, Alves PM, Hu WS, Coroadinha AS. Increased titer and reduced lactate accumulation in recombinant retrovirus production through the down-regulation of HIF1 and PDK. Biotechnol Bioeng 2015; 113:150-62. [PMID: 26134455 DOI: 10.1002/bit.25691] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2015] [Revised: 06/15/2015] [Accepted: 06/24/2015] [Indexed: 12/15/2022]
Abstract
Many mammalian cell lines used in the manufacturing of biopharmaceuticals exhibit high glycolytic flux predominantly channeled to the production of lactate. The accumulation of lactate in culture reduces cell viability and may also decrease product quality. In this work, we engineered a HEK 293 derived cell line producing a recombinant gene therapy retroviral vector, by down-regulating hypoxia inducible factor 1 (HIF1) and pyruvate dehydrogenase kinase (PDK). Specific productivity of infectious viral titers could be increased more than 20-fold for single gene knock-down (HIF1 or PDK) and more than 30-fold under combined down-regulation. Lactate production was reduced up to 4-fold. However, the reduction in lactate production, alone, was not sufficient to enhance the titer: high-titer clones also showed significant enrollment of metabolic routes not related to lactate production. Transcriptome analysis indicated activation of biological amines metabolism, detoxification routes, including glutathione metabolism, pentose phosphate pathway, glycogen biosynthesis and amino acid catabolism. The latter were validated by enzyme activity assays and metabolite profiling, respectively. High-titer clones also presented substantially increased transcript levels of the viral genes expression cassettes. The results herein presented demonstrate the impact of HIF1 and PDK down-regulation on the production performance of a mammalian cell line, reporting one of the highest fold-increase in specific productivity of infectious virus titers achieved by metabolic engineering. They additionally highlight the contribution of secondary pathways, beyond those related to lactate production, that can be also explored to pursue improved metabolic status favoring a high-producing phenotype.
Collapse
Affiliation(s)
- A F Rodrigues
- Instituto de Biologia Experimental e Tecnológica, Apartado 12, 2781-901 Oeiras, Portugal.,Instituto de Tecnologia Química e Biológica, Universidade Nova de Lisboa, Av. da República, 2780-157 Oeiras, Portugal
| | - M R Guerreiro
- Instituto de Biologia Experimental e Tecnológica, Apartado 12, 2781-901 Oeiras, Portugal.,Instituto de Tecnologia Química e Biológica, Universidade Nova de Lisboa, Av. da República, 2780-157 Oeiras, Portugal
| | - A S Formas-Oliveira
- Instituto de Biologia Experimental e Tecnológica, Apartado 12, 2781-901 Oeiras, Portugal.,Instituto de Tecnologia Química e Biológica, Universidade Nova de Lisboa, Av. da República, 2780-157 Oeiras, Portugal
| | - P Fernandes
- Instituto de Biologia Experimental e Tecnológica, Apartado 12, 2781-901 Oeiras, Portugal.,Instituto de Tecnologia Química e Biológica, Universidade Nova de Lisboa, Av. da República, 2780-157 Oeiras, Portugal
| | - A-K Blechert
- Max Planck Institute for Dynamics of Complex Technical Systems, Bioprocess Engineering Group, Magdeburg, Germany
| | - Y Genzel
- Max Planck Institute for Dynamics of Complex Technical Systems, Bioprocess Engineering Group, Magdeburg, Germany
| | - P M Alves
- Instituto de Biologia Experimental e Tecnológica, Apartado 12, 2781-901 Oeiras, Portugal.,Instituto de Tecnologia Química e Biológica, Universidade Nova de Lisboa, Av. da República, 2780-157 Oeiras, Portugal
| | - W S Hu
- Department of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, USA
| | - A S Coroadinha
- Instituto de Biologia Experimental e Tecnológica, Apartado 12, 2781-901 Oeiras, Portugal. .,Instituto de Tecnologia Química e Biológica, Universidade Nova de Lisboa, Av. da República, 2780-157 Oeiras, Portugal.
| |
Collapse
|
18
|
Rodrigues AF, Soares HR, Guerreiro MR, Alves PM, Coroadinha AS. Viral vaccines and their manufacturing cell substrates: New trends and designs in modern vaccinology. Biotechnol J 2015. [PMID: 26212697 PMCID: PMC7161866 DOI: 10.1002/biot.201400387] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Vaccination is one of the most effective interventions in global health. The worldwide vaccination programs significantly reduced the number of deaths caused by infectious agents. A successful example was the eradication of smallpox in 1979 after two centuries of vaccination campaigns. Since the first variolation administrations until today, the knowledge on immunology has increased substantially. This knowledge combined with the introduction of cell culture and DNA recombinant technologies revolutionized vaccine design. This review will focus on vaccines against human viral pathogens, recent developments on vaccine design and cell substrates used for their manufacture. While the production of attenuated and inactivated vaccines requires the use of the respective permissible cell substrates, the production of recombinant antigens, virus‐like particles, vectored vaccines and chimeric vaccines requires the use – and often the development – of specific cell lines. Indeed, the development of novel modern viral vaccine designs combined with, the stringent safety requirements for manufacture, and the better understanding on animal cell metabolism and physiology are increasing the awareness on the importance of cell line development and engineering areas. A new era of modern vaccinology is arriving, offering an extensive toolbox to materialize novel and creative ideas in vaccine design and its manufacture.
Collapse
Affiliation(s)
- Ana F Rodrigues
- iBET, Instituto de Biologia Experimental e Tecnológica, Oeiras, Portugal
| | - Hugo R Soares
- iBET, Instituto de Biologia Experimental e Tecnológica, Oeiras, Portugal.,Instituto de Tecnologia Química e Biológica, Universidade Nova de Lisboa, Oeiras, Portugal
| | - Miguel R Guerreiro
- iBET, Instituto de Biologia Experimental e Tecnológica, Oeiras, Portugal.,Instituto de Tecnologia Química e Biológica, Universidade Nova de Lisboa, Oeiras, Portugal
| | - Paula M Alves
- iBET, Instituto de Biologia Experimental e Tecnológica, Oeiras, Portugal.,Instituto de Tecnologia Química e Biológica, Universidade Nova de Lisboa, Oeiras, Portugal
| | - Ana S Coroadinha
- iBET, Instituto de Biologia Experimental e Tecnológica, Oeiras, Portugal. .,Instituto de Tecnologia Química e Biológica, Universidade Nova de Lisboa, Oeiras, Portugal.
| |
Collapse
|
19
|
Single-step cloning-screening method: a new tool for developing and studying high-titer viral vector producer cells. Gene Ther 2015; 22:685-95. [DOI: 10.1038/gt.2015.44] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2014] [Revised: 04/16/2015] [Accepted: 04/22/2015] [Indexed: 12/20/2022]
|
20
|
Nestola P, Peixoto C, Silva RRJS, Alves PM, Mota JPB, Carrondo MJT. Improved virus purification processes for vaccines and gene therapy. Biotechnol Bioeng 2015; 112:843-57. [PMID: 25677990 DOI: 10.1002/bit.25545] [Citation(s) in RCA: 95] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2014] [Revised: 01/05/2015] [Accepted: 01/13/2015] [Indexed: 01/10/2023]
Abstract
The downstream processing of virus particles for vaccination or gene therapy is becoming a critical bottleneck as upstream titers keep improving. Moreover, the growing pressure to develop cost-efficient processes has brought forward new downstream trains. This review aims at analyzing the state-of-the-art in viral downstream purification processes, encompassing the classical unit operations and their recent developments. Emphasis is given to novel strategies for process intensification, such as continuous or semi-continuous systems based on multicolumn technology, opening up process efficiency. Process understanding in the light of the pharmaceutical quality by design (QbD) initiative is also discussed. Finally, an outlook of the upcoming breakthrough technologies is presented.
Collapse
Affiliation(s)
- Piergiuseppe Nestola
- Instituto de Biologia Experimental e Tecnológica, Apartado 12, 2781-901, Oeiras, Portugal; Instituto de Tecnologia Química e Biológica, Universidade Nova de Lisboa, 2780-157, Oeiras, Portugal
| | | | | | | | | | | |
Collapse
|