1
|
Fukada T, U SL, Nakamura N. Effect of ECM nanostructures in decellularized small intestine on differentiation of intestinal epithelial model cells. J Artif Organs 2025:10.1007/s10047-025-01509-8. [PMID: 40399480 DOI: 10.1007/s10047-025-01509-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2025] [Accepted: 05/02/2025] [Indexed: 05/23/2025]
Abstract
Caco-2 cells are derived from human colon cancer and have the ability to differentiate into human intestinal epithelial-like cells. The 2D in vitro intestinal model of Caco-2 cells cultured on a semi-permeable membrane is widely used in drug development and the evaluation of absorption functions. However, these intestinal models lack the structural characteristics of the small intestine in vivo, and the cell behavior is not properly controlled. Previous studies have reported that the microstructure of the villi and crypts on a small intestine-mimicking scaffold promotes Caco-2 differentiation; however, the effect of the nanostructure of the small intestine-mimicking scaffold on Caco-2 differentiation remains unclear. This study aimed to elucidate the effects of nanostructures on the small intestine mimetic scaffold in Caco-2 differentiation. We fabricated a decellularized small intestine in which the basement membrane nanostructure was altered through a subtractive process. Caco-2 cells were cultured on decellularized small intestine for 21 days, and the differentiation of Caco-2 cells was assessed. The microvillus density of Caco-2 cultured on decellularized small intestine that retained the unique nanostructure of small intestinal basement membrane was significantly higher than that of Caco-2 cultured on decellularized small intestine that did not retain the unique nanostructure of small intestinal basement membrane. This indicates that nanostructures specific to the basement membrane of the small intestine enhanced Caco-2 cell maturation.
Collapse
Affiliation(s)
- Towa Fukada
- Graduate School of Engineering and Science, Shibaura Institute of Technology, 307 Fukasaku, Minuma-Ku, Saitama-Shi, Saitama, 337-8570, Japan
| | - Sin Lam U
- Department of Biomedical Engineering, The Hong Kong Polytechnic University, 11 Yuk Choi Rd, Hung Hom, Hong Kong, China
| | - Naoko Nakamura
- Graduate School of Engineering and Science, Shibaura Institute of Technology, 307 Fukasaku, Minuma-Ku, Saitama-Shi, Saitama, 337-8570, Japan.
- College of Systems Engineering and Science, Shibaura Institute of Technology, 307 Fukasaku, Minuma-Ku, Saitama-Shi, Saitama, 337-8570, Japan.
| |
Collapse
|
2
|
Pleiss J. Modeling Enzyme Kinetics: Current Challenges and Future Perspectives for Biocatalysis. Biochemistry 2024; 63:2533-2541. [PMID: 39325558 DOI: 10.1021/acs.biochem.4c00501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/28/2024]
Abstract
Biocatalysis is becoming a data science. High-throughput experimentation generates a rapidly increasing stream of biocatalytic data, which is the raw material for mechanistic and novel data-driven modeling approaches for the predictive design of improved biocatalysts and novel bioprocesses. The holistic and molecular understanding of enzymatic reaction systems will enable us to identify and overcome kinetic bottlenecks and shift the thermodynamics of a reaction. The full characterization and modeling of reaction systems is a community effort; therefore, published methods and results should be findable, accessible, interoperable, and reusable (FAIR), which is achieved by developing standardized data exchange formats, by a complete and reproducible documentation of experimentation, by collaborative platforms for developing sustainable software and for analyzing data, and by repositories for publishing results together with raw data. The FAIRification of biocatalysis is a prerequisite to developing highly automated laboratory infrastructures that improve the reproducibility of scientific results and reduce the time and costs required to develop novel synthesis routes.
Collapse
Affiliation(s)
- Jürgen Pleiss
- Institute of Biochemistry and Technical Biochemistry, University of Stuttgart, Allmandring 31, 70569 Stuttgart, Germany
| |
Collapse
|
3
|
Boosting the kinetic efficiency of formate dehydrogenase by combining the effects of temperature, high pressure and co-solvent mixtures. Colloids Surf B Biointerfaces 2021; 208:112127. [PMID: 34626897 DOI: 10.1016/j.colsurfb.2021.112127] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2021] [Revised: 09/16/2021] [Accepted: 09/21/2021] [Indexed: 10/20/2022]
Abstract
The application of co-solvents and high pressure has been shown to be an efficient means to modify the kinetics of enzyme-catalyzed reactions without compromising enzyme stability, which is often limited by temperature modulation. In this work, the high-pressure stopped-flow methodology was applied in conjunction with fast UV/Vis detection to investigate kinetic parameters of formate dehydrogenase reaction (FDH), which is used in biotechnology for cofactor recycling systems. Complementary FTIR spectroscopic and differential scanning fluorimetric studies were performed to reveal pressure and temperature effects on the structure and stability of the FDH. In neat buffer solution, the kinetic efficiency increases by one order of magnitude by increasing the temperature from 25° to 45 °C and the pressure from ambient up to the kbar range. The addition of particular co-solvents further doubled the kinetic efficiency of the reaction, in particular the compatible osmolyte trimethylamine-N-oxide and its mixtures with the macromolecular crowding agent dextran. The thermodynamic model PC-SAFT was successfully applied within a simplified activity-based Michaelis-Menten framework to predict the effects of co-solvents on the kinetic efficiency by accounting for interactions involving substrate, co-solvent, water, and FDH. Especially mixtures of the co-solvents at high concentrations were beneficial for the kinetic efficiency and for the unfolding temperature.
Collapse
|
4
|
Pleiss J. Standardized Data, Scalable Documentation, Sustainable Storage – EnzymeML As A Basis For FAIR Data Management In Biocatalysis. ChemCatChem 2021. [DOI: 10.1002/cctc.202100822] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Affiliation(s)
- Jürgen Pleiss
- Institute of Biochemistry and Technical Biochemistry University of Stuttgart Allmandring 31 70569 Stuttgart Germany
| |
Collapse
|
5
|
Metzger KE, Moyer MM, Trewyn BG. Tandem Catalytic Systems Integrating Biocatalysts and Inorganic Catalysts Using Functionalized Porous Materials. ACS Catal 2020. [DOI: 10.1021/acscatal.0c04488] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Kara E. Metzger
- Department of Chemistry, Colorado School of Mines, Golden, Colorado 80401, United States
| | - Megan M. Moyer
- Department of Chemistry, The Citadel, Charleston, South Carolina 29409, United States
| | - Brian G. Trewyn
- Department of Chemistry, Colorado School of Mines, Golden, Colorado 80401, United States
| |
Collapse
|
6
|
Vogel K, Greinert T, Reichard M, Held C, Harms H, Maskow T. Thermodynamics and Kinetics of Glycolytic Reactions. Part I: Kinetic Modeling Based on Irreversible Thermodynamics and Validation by Calorimetry. Int J Mol Sci 2020; 21:ijms21218341. [PMID: 33172189 PMCID: PMC7664384 DOI: 10.3390/ijms21218341] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Revised: 11/03/2020] [Accepted: 11/04/2020] [Indexed: 12/20/2022] Open
Abstract
In systems biology, material balances, kinetic models, and thermodynamic boundary conditions are increasingly used for metabolic network analysis. It is remarkable that the reversibility of enzyme-catalyzed reactions and the influence of cytosolic conditions are often neglected in kinetic models. In fact, enzyme-catalyzed reactions in numerous metabolic pathways such as in glycolysis are often reversible, i.e., they only proceed until an equilibrium state is reached and not until the substrate is completely consumed. Here, we propose the use of irreversible thermodynamics to describe the kinetic approximation to the equilibrium state in a consistent way with very few adjustable parameters. Using a flux-force approach allowed describing the influence of cytosolic conditions on the kinetics by only one single parameter. The approach was applied to reaction steps 2 and 9 of glycolysis (i.e., the phosphoglucose isomerase reaction from glucose 6-phosphate to fructose 6-phosphate and the enolase-catalyzed reaction from 2-phosphoglycerate to phosphoenolpyruvate and water). The temperature dependence of the kinetic parameter fulfills the Arrhenius relation and the derived activation energies are plausible. All the data obtained in this work were measured efficiently and accurately by means of isothermal titration calorimetry (ITC). The combination of calorimetric monitoring with simple flux-force relations has the potential for adequate consideration of cytosolic conditions in a simple manner.
Collapse
Affiliation(s)
- Kristina Vogel
- UFZ–Helmholtz Centre for Environmental Research, Department of Environmental Microbiology, Leipzig, Permoserstr. 15, D-04318 Leipzig, Germany; (K.V.); (M.R.); (H.H.)
- Institute for Drug Development, Leipzig University Medical School, Leipzig University, Bruederstr. 34, 04103 Leipzig, Germany
| | - Thorsten Greinert
- Laboratory of Thermodynamics, Department of Biochemical and Chemical Engineering, Technische Universitaet Dortmund, Emil-Figge-Str. 70, 44227 Dortmund, Germany; (T.G.); (C.H.)
| | - Monique Reichard
- UFZ–Helmholtz Centre for Environmental Research, Department of Environmental Microbiology, Leipzig, Permoserstr. 15, D-04318 Leipzig, Germany; (K.V.); (M.R.); (H.H.)
| | - Christoph Held
- Laboratory of Thermodynamics, Department of Biochemical and Chemical Engineering, Technische Universitaet Dortmund, Emil-Figge-Str. 70, 44227 Dortmund, Germany; (T.G.); (C.H.)
| | - Hauke Harms
- UFZ–Helmholtz Centre for Environmental Research, Department of Environmental Microbiology, Leipzig, Permoserstr. 15, D-04318 Leipzig, Germany; (K.V.); (M.R.); (H.H.)
| | - Thomas Maskow
- UFZ–Helmholtz Centre for Environmental Research, Department of Environmental Microbiology, Leipzig, Permoserstr. 15, D-04318 Leipzig, Germany; (K.V.); (M.R.); (H.H.)
- Correspondence:
| |
Collapse
|
7
|
Rifai EA, Ferrario V, Pleiss J, Geerke DP. Combined Linear Interaction Energy and Alchemical Solvation Free-Energy Approach for Protein-Binding Affinity Computation. J Chem Theory Comput 2020; 16:1300-1310. [PMID: 31894691 PMCID: PMC7017367 DOI: 10.1021/acs.jctc.9b00890] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Calculating free energies of binding (ΔGbind) between ligands and their target protein is of major interest to drug discovery and safety, yet it is still associated with several challenges and difficulties. Linear interaction energy (LIE) is an efficient in silico method for ΔGbind computation. LIE models can be trained and used to directly calculate binding affinities from interaction energies involving ligands in the bound and unbound states only, and LIE can be combined with statistical weighting to calculate ΔGbind for flexible proteins that may bind their ligands in multiple orientations. Here, we investigate if LIE predictions can be effectively improved by explicitly including the entropy of (de)solvation into our free-energy calculations. For that purpose, we combine LIE calculations for the protein-ligand-bound state with explicit free-energy perturbation to rigorously compute the unbound ligand's solvation free energy. We show that for 28 Cytochrome P450 2A6 (CYP2A6) ligands, coupling LIE with alchemical solvation free-energy calculation helps to improve obtained correlation between computed and reference (experimental) binding data.
Collapse
Affiliation(s)
- Eko Aditya Rifai
- AIMMS Division of Molecular and Computational Toxicology, Department of Chemistry and Pharmaceutical Sciences , Vrije Universiteit Amsterdam , De Boelelaan 1108 , 1081 HZ Amsterdam , The Netherlands
| | - Valerio Ferrario
- Institute of Biochemistry and Technical Biochemistry , Universität Stuttgart , Allmandring 31 , 70569 Stuttgart , Germany
| | - Jürgen Pleiss
- Institute of Biochemistry and Technical Biochemistry , Universität Stuttgart , Allmandring 31 , 70569 Stuttgart , Germany
| | - Daan P Geerke
- AIMMS Division of Molecular and Computational Toxicology, Department of Chemistry and Pharmaceutical Sciences , Vrije Universiteit Amsterdam , De Boelelaan 1108 , 1081 HZ Amsterdam , The Netherlands
| |
Collapse
|
8
|
Knierbein M, Wangler A, Luong TQ, Winter R, Held C, Sadowski G. Combined co-solvent and pressure effect on kinetics of a peptide hydrolysis: an activity-based approach. Phys Chem Chem Phys 2019; 21:22224-22229. [PMID: 31576857 DOI: 10.1039/c9cp03868j] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The application of co-solvents and high pressure has been reported to be an efficient means to tune the kinetics of enzyme-catalyzed reactions. Co-solvents and pressure can lead to increased reaction rates without sacrificing enzyme stability, while temperature and pH operation windows are generally very narrow. Quantitative prediction of co-solvent and pressure effects on enzymatic reactions has not been successfully addressed in the literature. Herein, we are introducing a thermodynamic approach that is based on molecular interactions in the form of activity coefficients of substrate and of enzyme in the multi-component solution. This allowed us to quantitatively predict the combined effect of co-solvent and pressure on the kinetic constants, i.e. the Michaelis constant KM and the catalytic constant kcat, of an α-CT-catalyzed peptide hydrolysis reaction. The reaction was studied in the presence of different types of co-solvents and at pressures up to 2 kbar, and quantitative predictions could be obtained for KM, kcat, and finally even primary Michaelis-Menten plots using activity coefficients provided by the thermodynamic model PC-SAFT.
Collapse
Affiliation(s)
- Michael Knierbein
- Laboratory of Thermodynamics, TU Dortmund University, Emil-Figge-Str. 70, 44227 Dortmund, Germany.
| | - Anton Wangler
- Laboratory of Thermodynamics, TU Dortmund University, Emil-Figge-Str. 70, 44227 Dortmund, Germany.
| | - Trung Quan Luong
- Physical Chemistry I, TU Dortmund University, Otto-Hahn-Str. 4a, 44227 Dortmund, Germany
| | - Roland Winter
- Physical Chemistry I, TU Dortmund University, Otto-Hahn-Str. 4a, 44227 Dortmund, Germany
| | - Christoph Held
- Laboratory of Thermodynamics, TU Dortmund University, Emil-Figge-Str. 70, 44227 Dortmund, Germany.
| | - Gabriele Sadowski
- Laboratory of Thermodynamics, TU Dortmund University, Emil-Figge-Str. 70, 44227 Dortmund, Germany.
| |
Collapse
|
9
|
Held C, Stolzke T, Knierbein M, Jaworek MW, Luong TQ, Winter R, Sadowski G. Cosolvent and pressure effects on enzyme-catalysed hydrolysis reactions. Biophys Chem 2019; 252:106209. [DOI: 10.1016/j.bpc.2019.106209] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2019] [Revised: 06/18/2019] [Accepted: 06/18/2019] [Indexed: 12/13/2022]
|
10
|
Wangler A, Held C, Sadowski G. Thermodynamic Activity-Based Solvent Design for Bioreactions. Trends Biotechnol 2019; 37:1038-1041. [PMID: 31160055 DOI: 10.1016/j.tibtech.2019.04.015] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Revised: 04/28/2019] [Accepted: 04/29/2019] [Indexed: 11/25/2022]
Abstract
To improve the kinetics of enzyme-catalyzed reactions, cosolvents are commonly added to reaction mixtures. The search for a good cosolvent is still empirical and experimentally based. We discuss a thermodynamic activity-based approach that improves biocatalytic processes by predicting cosolvent influences on Michaelis constants, ultimately reducing time and cost.
Collapse
Affiliation(s)
- Anton Wangler
- Laboratory of Thermodynamics, Department of Biochemical and Chemical Engineering, Technische Universität (TU) Dortmund, Emil-Figge-Strasse 70, 44227 Dortmund, Germany
| | - Christoph Held
- Laboratory of Thermodynamics, Department of Biochemical and Chemical Engineering, Technische Universität (TU) Dortmund, Emil-Figge-Strasse 70, 44227 Dortmund, Germany.
| | - Gabriele Sadowski
- Laboratory of Thermodynamics, Department of Biochemical and Chemical Engineering, Technische Universität (TU) Dortmund, Emil-Figge-Strasse 70, 44227 Dortmund, Germany
| |
Collapse
|
11
|
Wangler A, Hüser A, Sadowski G, Held C. Simultaneous Prediction of Cosolvent Influence on Reaction Equilibrium and Michaelis Constants of Enzyme-Catalyzed Ketone Reductions. ACS OMEGA 2019; 4:6264-6272. [PMID: 31459767 PMCID: PMC6648939 DOI: 10.1021/acsomega.8b03159] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/13/2018] [Accepted: 01/18/2019] [Indexed: 06/10/2023]
Abstract
Understanding and quantification of cosolvent influences on enzyme-catalyzed reactions are driven by a twofold interest. On the one hand, cosolvents can simulate the cellular environment for deeper understanding of in cellulo reaction conditions. On the other hand, cosolvents are applied in biotechnology to tune yield and kinetics of reactions. Further, cosolvents are even present inherently, for example, for reactions with cofactor regeneration or for enzymes that need cosolvents in a function of a stabilizer. As the experimental determination of yield and kinetics is costly and time consuming, this work aims at providing a thermodynamic predictive approach that might allow screening cosolvent influences on yield and Michaelis constants. Reactions investigated in this work are the reduction of butanone and 2-pentanone under the influence of 17 wt % of the cosolvent polyethylene glycol 6000, which is also often used as a crowder to simulate cellular environments. The considered reactions were catalyzed by a genetically modified alcohol dehydrogenase (ADH 270). Predictions of cosolvent influences are based on accounting for a cosolvent-induced change of molecular interactions among the reacting agents as well as between the reacting agents and the solvent. Such interactions were characterized by activity coefficients of the reacting agents that were predicted by means of electrolyte perturbed-chain statistical associating fluid theory. This allowed simultaneously predicting the cosolvent effects on yield and Michaelis constants for two-substrate reactions for the first time.
Collapse
|
12
|
Wangler A, Böttcher D, Hüser A, Sadowski G, Held C. Prediction and Experimental Validation of Co-Solvent Influence on Michaelis Constants: A Thermodynamic Activity-Based Approach. Chemistry 2018; 24:16418-16425. [DOI: 10.1002/chem.201803573] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2018] [Indexed: 01/12/2023]
Affiliation(s)
- Anton Wangler
- Department of Biochemical and Chemical Engineering; Laboratory of Thermodynamics; TU Dortmund University; Emil-Figge-Str. 70 44227 Dortmund Germany
| | - Dominik Böttcher
- Department of Biochemical and Chemical Engineering; Laboratory of Thermodynamics; TU Dortmund University; Emil-Figge-Str. 70 44227 Dortmund Germany
| | - Aline Hüser
- Department of Biochemical and Chemical Engineering; Laboratory of Thermodynamics; TU Dortmund University; Emil-Figge-Str. 70 44227 Dortmund Germany
| | - Gabriele Sadowski
- Department of Biochemical and Chemical Engineering; Laboratory of Thermodynamics; TU Dortmund University; Emil-Figge-Str. 70 44227 Dortmund Germany
| | - Christoph Held
- Department of Biochemical and Chemical Engineering; Laboratory of Thermodynamics; TU Dortmund University; Emil-Figge-Str. 70 44227 Dortmund Germany
| |
Collapse
|
13
|
Ferrario V, Hansen N, Pleiss J. Interpretation of cytochrome P450 monooxygenase kinetics by modeling of thermodynamic activity. J Inorg Biochem 2018. [DOI: 10.1016/j.jinorgbio.2018.02.016] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
14
|
Lotti M, Pleiss J, Valero F, Ferrer P. Enzymatic Production of Biodiesel: Strategies to Overcome Methanol Inactivation. Biotechnol J 2018; 13:e1700155. [PMID: 29461685 DOI: 10.1002/biot.201700155] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2017] [Revised: 02/10/2018] [Indexed: 01/15/2023]
Abstract
Lipase-catalyzed transesterification of triglycerides and alcohols to obtain biodiesel is an environmentally friendly and sustainable route for fuels production since, besides proceeding in mild reaction conditions, it allows for the use of low-cost feedstocks that contain water and free fatty acids, for example non-edible oils and waste oils. This review article reports recent advances in the field and focus in particular on a major issue in the enzymatic process, the inactivation of most lipases caused by methanol, the preferred acyl acceptor used for alcoholysis. The recent results about immobilization of enzymes on nano-materials and the use of whole-cell biocatalysts, as well as the use of cell-surface display technologies and metabolic engineering strategies for microbial production of biodiesel are described. It is discussed also insight into the effects of methanol on lipases obtained by modeling approaches and report on studies aimed at mining novel alcohol stable enzymes or at improving robustness in existing ones by protein engineering.
Collapse
Affiliation(s)
- Marina Lotti
- Department of Biotechnology and Biosciences, State University of Milano-Bicocca, Piazza della Scienza 2, 20126 Milano, Italy
| | - Jürgen Pleiss
- Institute of Biochemistry and Technical Biochemistry, University of Stuttgart, 70569 Stuttgart, Germany
| | - Francisco Valero
- Department of Chemical, Biological and Environmental Engineering, Universitat Autònoma de Barcelona, 08193 Bellaterra (Barcelona), Spain
| | - Pau Ferrer
- Department of Chemical, Biological and Environmental Engineering, Universitat Autònoma de Barcelona, 08193 Bellaterra (Barcelona), Spain
| |
Collapse
|
15
|
Thermodynamic Activity-Based Progress Curve Analysis in Enzyme Kinetics. Trends Biotechnol 2018; 36:234-238. [DOI: 10.1016/j.tibtech.2017.10.004] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2017] [Revised: 10/02/2017] [Accepted: 10/03/2017] [Indexed: 11/19/2022]
|
16
|
Wangler A, Canales R, Held C, Luong TQ, Winter R, Zaitsau DH, Verevkin SP, Sadowski G. Co-solvent effects on reaction rate and reaction equilibrium of an enzymatic peptide hydrolysis. Phys Chem Chem Phys 2018; 20:11317-11326. [DOI: 10.1039/c7cp07346a] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
This work presents an approach that expresses the Michaelis constant KaM and the equilibrium constant Kth of an enzymatic peptide hydrolysis based on thermodynamic activities instead of concentrations.
Collapse
Affiliation(s)
- A. Wangler
- Department BCI, Laboratory of Thermodynamics
- TU Dortmund University
- 44227 Dortmund
- Germany
| | - R. Canales
- Department BCI, Laboratory of Thermodynamics
- TU Dortmund University
- 44227 Dortmund
- Germany
- Departamento de Ingeniería Química y Bioprocesos
| | - C. Held
- Department BCI, Laboratory of Thermodynamics
- TU Dortmund University
- 44227 Dortmund
- Germany
| | - T. Q. Luong
- Department of Chemistry and Chemical Biology
- TU Dortmund University
- 44227 Dortmund
- Germany
| | - R. Winter
- Department of Chemistry and Chemical Biology
- TU Dortmund University
- 44227 Dortmund
- Germany
| | - D. H. Zaitsau
- Department of Physical Chemistry
- Institute of Chemistry
- University of Rostock
- 18059 Rostock
- Germany
| | - S. P. Verevkin
- Department of Physical Chemistry
- Institute of Chemistry
- University of Rostock
- 18059 Rostock
- Germany
| | - G. Sadowski
- Department BCI, Laboratory of Thermodynamics
- TU Dortmund University
- 44227 Dortmund
- Germany
| |
Collapse
|
17
|
Gao M, Held C, Patra S, Arns L, Sadowski G, Winter R. Crowders and Cosolvents-Major Contributors to the Cellular Milieu and Efficient Means to Counteract Environmental Stresses. Chemphyschem 2017; 18:2951-2972. [DOI: 10.1002/cphc.201700762] [Citation(s) in RCA: 73] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2017] [Revised: 08/15/2017] [Indexed: 01/27/2023]
Affiliation(s)
- Mimi Gao
- TU Dortmund University; Faculty of Chemistry and Chemical Biology; Physical Chemistry I-Biophysical Chemistry; Otto Hahn Str. 4a 44227 Dortmund Germany
| | - Christoph Held
- TU Dortmund University; Department of Biochemical and Chemical Engineering; Emil-Figge-Str. 70 44227 Dortmund Germany
| | - Satyajit Patra
- TU Dortmund University; Faculty of Chemistry and Chemical Biology; Physical Chemistry I-Biophysical Chemistry; Otto Hahn Str. 4a 44227 Dortmund Germany
| | - Loana Arns
- TU Dortmund University; Faculty of Chemistry and Chemical Biology; Physical Chemistry I-Biophysical Chemistry; Otto Hahn Str. 4a 44227 Dortmund Germany
| | - Gabriele Sadowski
- TU Dortmund University; Department of Biochemical and Chemical Engineering; Emil-Figge-Str. 70 44227 Dortmund Germany
| | - Roland Winter
- TU Dortmund University; Faculty of Chemistry and Chemical Biology; Physical Chemistry I-Biophysical Chemistry; Otto Hahn Str. 4a 44227 Dortmund Germany
| |
Collapse
|