1
|
Lubken RM, de Jong AM, Prins MWJ. Real-Time Monitoring of Biomolecules: Dynamic Response Limits of Affinity-Based Sensors. ACS Sens 2022; 7:286-295. [PMID: 34978190 PMCID: PMC8805115 DOI: 10.1021/acssensors.1c02307] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
![]()
Sensors for monitoring
biomolecular dynamics in biological systems
and biotechnological processes in real time, need to accurately and
precisely reconstruct concentration–time profiles. This requirement
becomes challenging when transport processes and biochemical kinetics
are important, as is typically the case for biomarkers at low concentrations.
Here, we present a comprehensive methodology to study the concentration–time
profiles generated by affinity-based sensors that continuously interact
with a biological system of interest. Simulations are performed for
sensors with diffusion-based sampling (e.g., a sensor
patch on the skin) and advection-based sampling (e.g., a sensor connected to a catheter). The simulations clarify how
transport processes and molecular binding kinetics result in concentration
gradients and time delays in the sensor system. Using these simulations,
measured and true concentration–time profiles of insulin were
compared as a function of sensor design parameters. The results lead
to guidelines on how biomolecular monitoring sensors can be designed
for optimal bioanalytical performance in terms of concentration and
time properties.
Collapse
Affiliation(s)
- Rafiq M. Lubken
- Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven 5612 AZ, the Netherlands
- Institute for Complex Molecular Systems (ICMS), Eindhoven University of Technology, Eindhoven 5612 AZ, the Netherlands
| | - Arthur M. de Jong
- Department of Applied Physics, Eindhoven University of Technology, Eindhoven 5612 AZ, the Netherlands
- Institute for Complex Molecular Systems (ICMS), Eindhoven University of Technology, Eindhoven 5612 AZ, the Netherlands
| | - Menno W. J. Prins
- Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven 5612 AZ, the Netherlands
- Department of Applied Physics, Eindhoven University of Technology, Eindhoven 5612 AZ, the Netherlands
- Institute for Complex Molecular Systems (ICMS), Eindhoven University of Technology, Eindhoven 5612 AZ, the Netherlands
- Helia Biomonitoring, Eindhoven 5612 AZ, the Netherlands
| |
Collapse
|
2
|
Lubken RM, Bergkamp MH, de Jong AM, Prins MWJ. Sensing Methodology for the Rapid Monitoring of Biomolecules at Low Concentrations over Long Time Spans. ACS Sens 2021; 6:4471-4481. [PMID: 34854303 PMCID: PMC8715529 DOI: 10.1021/acssensors.1c01991] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
![]()
Studies on the dynamics
of biological systems and biotechnological
processes require measurement techniques that can reveal time dependencies
of concentrations of specific biomolecules, preferably with small
time delays, short time intervals between subsequent measurements,
and the possibility to record over long time spans. For low-concentration
biomolecules, these requirements are very challenging since low-concentration
assays are typically slow and require new reagents in every assay.
Here, we present a sensing methodology that enables rapid monitoring
of picomolar and sub-picomolar concentrations in a reversible affinity-based
assay, studied using simulations. We demonstrate that low-concentration
biomolecules can be monitored with small time delays, short time intervals,
and in principle over an endless time span.
Collapse
Affiliation(s)
- Rafiq M. Lubken
- Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven 5612 AZ, The Netherlands
- Institute for Complex Molecular Systems (ICMS), Eindhoven University of Technology, Eindhoven 5612 AZ, The Netherlands
| | - Max H. Bergkamp
- Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven 5612 AZ, The Netherlands
- Institute for Complex Molecular Systems (ICMS), Eindhoven University of Technology, Eindhoven 5612 AZ, The Netherlands
| | - Arthur M. de Jong
- Department of Applied Physics, Eindhoven University of Technology, Eindhoven 5612 AZ, The Netherlands
- Institute for Complex Molecular Systems (ICMS), Eindhoven University of Technology, Eindhoven 5612 AZ, The Netherlands
| | - Menno W. J. Prins
- Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven 5612 AZ, The Netherlands
- Department of Applied Physics, Eindhoven University of Technology, Eindhoven 5612 AZ, The Netherlands
- Institute for Complex Molecular Systems (ICMS), Eindhoven University of Technology, Eindhoven 5612 AZ, The Netherlands
- Helia Biomonitoring, Eindhoven 5612 AZ, The Netherlands
| |
Collapse
|
3
|
Kim S, Lee MS, Yang HS, Jung JH. Enhanced extraction of skin interstitial fluid using a 3D printed device enabling tilted microneedle penetration. Sci Rep 2021; 11:14018. [PMID: 34234204 PMCID: PMC8263571 DOI: 10.1038/s41598-021-93235-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Accepted: 06/09/2021] [Indexed: 12/23/2022] Open
Abstract
Interstitial fluid (ISF) is a body fluid that fills, surrounds cells and contains various biomarkers, but it has been challenging to extract ISF in a reliable and sufficient amount with high speed. To address the issues, we developed the tilted microneedle ISF collecting system (TMICS) fabricated by 3D printing. In this system, the microneedle (MN) was inserted at 66° to the skin by TMICS so that the MN length could be extended within a safe range of skin penetration. Moreover, TMICS incorporating three MN patches created reliable ISF collecting conditions by penetrating the skin at consistent angle and force, 4.9 N. Due to the MN length increase and the patch number expansion, the surface area of the penetrated tissue was increased, thereby confirming that ISF extraction efficiency was improved. Skin ISF was collected into the paper reservoir on the patch, and the absorbed area was converted into a volume. ISF extraction from the rat skin in vivo by TMICS was well tolerated, and the 2.9 μL of ISF was obtained within 30 s. Therefore, TMICS is promising to apply in the diagnosis of multiple biomarkers in ISF with high speed and stability.
Collapse
Affiliation(s)
- Sanha Kim
- Department of Pharmaceutical Engineering, Dankook University, 119 Dandae-ro, Dongnam-gu, Cheonan, 31116, Republic of Korea
| | - Min Suk Lee
- Department of Nanobiomedical Science & BK21 FOUR NBM Global Research Center for Regenerative Medicine, Dankook University, Cheonan, 31116, Republic of Korea
| | - Hee Seok Yang
- Department of Nanobiomedical Science & BK21 FOUR NBM Global Research Center for Regenerative Medicine, Dankook University, Cheonan, 31116, Republic of Korea.,Center for Bio-Medical Engineering Core-Facility, Dankook University, Cheonan, 31116, Republic of Korea
| | - Jae Hwan Jung
- Department of Pharmaceutical Engineering, Dankook University, 119 Dandae-ro, Dongnam-gu, Cheonan, 31116, Republic of Korea.
| |
Collapse
|
4
|
Lipofection with Synthetic mRNA as a Simple Method for T-Cell Immunomonitoring. Viruses 2021; 13:v13071232. [PMID: 34202260 PMCID: PMC8310085 DOI: 10.3390/v13071232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 06/10/2021] [Accepted: 06/16/2021] [Indexed: 11/30/2022] Open
Abstract
The quantification of T-cell immune responses is crucial for the monitoring of natural and treatment-induced immunity, as well as for the validation of new immunotherapeutic approaches. The present study presents a simple method based on lipofection of synthetic mRNA in mononuclear cells as a method to determine in vitro T-cell responses. We compared several commercially available transfection reagents for their potential to transfect mRNA into human peripheral blood mononuclear cells and murine splenocytes. We also investigated the impact of RNA modifications in improving this method. Our results demonstrate that antigen-specific T-cell immunomonitoring can be easily and quickly performed by simple lipofection of antigen-coding mRNA in complex immune cell populations. Thus, our work discloses a convenient solution for the in vitro monitoring of natural or therapy-induced T-cell immune responses.
Collapse
|
5
|
Adam L, Rosenbaum P, Bonduelle O, Combadière B. Strategies for Immunomonitoring after Vaccination and during Infection. Vaccines (Basel) 2021; 9:365. [PMID: 33918841 PMCID: PMC8070333 DOI: 10.3390/vaccines9040365] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Revised: 04/05/2021] [Accepted: 04/07/2021] [Indexed: 01/08/2023] Open
Abstract
Immunomonitoring is the study of an individual's immune responses over the course of vaccination or infection. In the infectious context, exploring the innate and adaptive immune responses will help to investigate their contribution to viral control or toxicity. After vaccination, immunomonitoring of the correlate(s) and surrogate(s) of protection is a major asset for measuring vaccine immune efficacy. Conventional immunomonitoring methods include antibody-based technologies that are easy to use. However, promising sensitive high-throughput technologies allowed the emergence of holistic approaches. This raises the question of data integration methods and tools. These approaches allow us to increase our knowledge on immune mechanisms as well as the identification of key effectors of the immune response. However, the depiction of relevant findings requires a well-rounded consideration beforehand about the hypotheses, conception, organization and objectives of the immunomonitoring. Therefore, well-standardized and comprehensive studies fuel insight to design more efficient, rationale-based vaccines and therapeutics to fight against infectious diseases. Hence, we will illustrate this review with examples of the immunomonitoring approaches used during vaccination and the COVID-19 pandemic.
Collapse
Affiliation(s)
| | | | | | - Behazine Combadière
- Inserm, Centre d’Immunologie et des Maladies Infectieuses, Sorbonne Université, 75013 Paris, France; (L.A.); (P.R.); (O.B.)
| |
Collapse
|
6
|
Aoki H, Ueha S, Shichino S, Ogiwara H, Shitara K, Shimomura M, Suzuki T, Nakatsura T, Yamashita M, Kitano S, Kuroda S, Wakabayashi M, Kurachi M, Ito S, Doi T, Matsushima K. Transient Depletion of CD4 + Cells Induces Remodeling of the TCR Repertoire in Gastrointestinal Cancer. Cancer Immunol Res 2021; 9:624-636. [PMID: 33674357 DOI: 10.1158/2326-6066.cir-20-0989] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Revised: 01/20/2021] [Accepted: 03/03/2021] [Indexed: 11/16/2022]
Abstract
Antibody-mediated transient depletion of CD4+ cells enhances the expansion of tumor-reactive CD8+ T cells and exhibits robust antitumor effects in preclinical and clinical studies. To investigate the clonal T-cell responses following transient CD4+ cell depletion in patients with cancer, we conducted a temporal analysis of the T-cell receptor (TCR) repertoire in the first-in-human clinical trial of IT1208, a defucosylated humanized monoclonal anti-CD4. Transient depletion of CD4+ cells promoted replacement of T-cell clones among CD4+ and CD8+ T cells in the blood. This replacement of the TCR repertoire was associated with the extent of CD4+ T-cell depletion and an increase in CD8+ T-cell count in the blood. Next, we focused on T-cell clones overlapping between the blood and tumor in order to track tumor-associated T-cell clones in the blood. The total frequency of blood-tumor overlapping clones tended to increase in patients receiving a depleting dose of anti-CD4, which was accompanied by the replacement of overlapping clones. The greater expansion of CD8+ overlapping clones was commonly observed in the patients who achieved tumor shrinkage. These results suggested that the clonal replacement of the TCR repertoire induced by transient CD4+ cell depletion was accompanied by the expansion of tumor-reactive T-cell clones that mediated antitumor responses. Our findings propose beneficial remodeling of the TCR repertoire following transient CD4+ cell depletion and provide novel insight into the antitumor effects of monoclonal anti-CD4 treatment in patients with cancer.See related Spotlight on p. 601.
Collapse
Affiliation(s)
- Hiroyasu Aoki
- Department of Molecular Preventive Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan.,Division of Molecular Regulation of Inflammatory and Immune Diseases, Research Institute for Biomedical Sciences, Tokyo University of Science, Tokyo, Japan
| | - Satoshi Ueha
- Department of Molecular Preventive Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan. .,Division of Molecular Regulation of Inflammatory and Immune Diseases, Research Institute for Biomedical Sciences, Tokyo University of Science, Tokyo, Japan
| | - Shigeyuki Shichino
- Department of Molecular Preventive Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan.,Division of Molecular Regulation of Inflammatory and Immune Diseases, Research Institute for Biomedical Sciences, Tokyo University of Science, Tokyo, Japan
| | - Haru Ogiwara
- Department of Molecular Preventive Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan.,Division of Molecular Regulation of Inflammatory and Immune Diseases, Research Institute for Biomedical Sciences, Tokyo University of Science, Tokyo, Japan
| | - Kohei Shitara
- Department of Gastrointestinal Oncology, National Cancer Center Hospital East, Kashiwa, Japan
| | - Manami Shimomura
- Division of Cancer Immunotherapy, Exploratory Oncology Research and Clinical Trial Center, National Cancer Center, Kashiwa, Japan
| | - Toshihiro Suzuki
- Division of Cancer Immunotherapy, Exploratory Oncology Research and Clinical Trial Center, National Cancer Center, Kashiwa, Japan
| | - Tetsuya Nakatsura
- Division of Cancer Immunotherapy, Exploratory Oncology Research and Clinical Trial Center, National Cancer Center, Kashiwa, Japan
| | - Makiko Yamashita
- Department of Experimental Therapeutics, National Cancer Center Hospital, Tokyo, Japan
| | - Shigehisa Kitano
- Department of Experimental Therapeutics, National Cancer Center Hospital, Tokyo, Japan
| | - Sakiko Kuroda
- Clinical Research Support Office, National Cancer Center Hospital East, Kashiwa, Japan
| | - Masashi Wakabayashi
- Clinical Research Support Office, National Cancer Center Hospital East, Kashiwa, Japan
| | - Makoto Kurachi
- Department of Molecular Genetics, Graduate School of Medical Science, Kanazawa University, Kanazawa, Japan
| | - Satoru Ito
- Department of Molecular Preventive Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan.,IDAC Theranostics, Inc., Tokyo, Japan
| | - Toshihiko Doi
- Department of Experimental Therapeutics, National Cancer Center Hospital East, Kashiwa, Japan
| | - Kouji Matsushima
- Department of Molecular Preventive Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan.,Division of Molecular Regulation of Inflammatory and Immune Diseases, Research Institute for Biomedical Sciences, Tokyo University of Science, Tokyo, Japan
| |
Collapse
|
7
|
Hirschfeld M, Rücker G, Weiß D, Berner K, Ritter A, Jäger M, Erbes T. Urinary Exosomal MicroRNAs as Potential Non-invasive Biomarkers in Breast Cancer Detection. Mol Diagn Ther 2021; 24:215-232. [PMID: 32112368 DOI: 10.1007/s40291-020-00453-y] [Citation(s) in RCA: 58] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
INTRODUCTION Breast cancer (BC) is the most frequent malignant disease in women worldwide and is therefore challenging for the healthcare system. Early BC detection remains a leading factor that improves overall outcome and disease management. Aside from established screening procedures, there is a constant demand for additional BC detection methods. Routine BC screening via non-invasive liquid biopsy biomarkers is one auspicious approach to either complete or even replace the current state-of-the-art diagnostics. The study explores the diagnostic potential of urinary exosomal microRNAs with specific BC biomarker characteristics to initiate the potential prospective application of non-invasive BC screening as routine practice. METHODS Based on a case-control study (69 BC vs. 40 healthy controls), expression level quantification and subsequent biostatistical computation of 13 urine-derived microRNAs were performed to evaluate their diagnostic relevance in BC. RESULTS Multilateral statistical assessment determined and repeatedly confirmed a specific panel of four urinary microRNA types (miR-424, miR-423, miR-660, and let7-i) as a highly specific combinatory biomarker tool discriminating BC patients from healthy controls, with 98.6% sensitivity and 100% specificity. DISCUSSION Urine-based BC diagnosis may be achieved through the analysis of distinct microRNA panels with proven biomarker abilities. Subject to further validation, the implementation of urinary BC detection in routine screening offers a promising non-invasive alternative in women's healthcare.
Collapse
Affiliation(s)
- Marc Hirschfeld
- Department of Obstetrics and Gynecology, Medical Center, University of Freiburg, Freiburg, Germany.,Faculty of Medicine, University of Freiburg, Freiburg, Germany.,Institute of Veterinary Medicine, Georg-August-University Goettingen, Goettingen, Germany
| | - Gerta Rücker
- Faculty of Medicine, University of Freiburg, Freiburg, Germany.,Institute of Medical Biometry and Statistics, Medical Center, University of Freiburg, Freiburg, Germany
| | - Daniela Weiß
- Department of Obstetrics and Gynecology, Medical Center, University of Freiburg, Freiburg, Germany.,Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Kai Berner
- Department of Obstetrics and Gynecology, Medical Center, University of Freiburg, Freiburg, Germany.,Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Andrea Ritter
- Department of Obstetrics and Gynecology, Medical Center, University of Freiburg, Freiburg, Germany.,Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Markus Jäger
- Department of Obstetrics and Gynecology, Medical Center, University of Freiburg, Freiburg, Germany.,Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Thalia Erbes
- Department of Obstetrics and Gynecology, Medical Center, University of Freiburg, Freiburg, Germany. .,Faculty of Medicine, University of Freiburg, Freiburg, Germany.
| |
Collapse
|
8
|
Duffy D, Nemes E, Llibre A, Rouilly V, Musvosvi M, Smith N, Filander E, Africa H, Mabwe S, Jaxa L, Charbit B, Mulenga H, Tameris M, Walzl G, Malherbe S, Thomas S, Hatherill M, Bilek N, Scriba TJ, Albert ML. Immune profiling enables stratification of patients with active TB disease or M. tuberculosis infection. Clin Infect Dis 2020; 73:e3398-e3408. [PMID: 33059361 PMCID: PMC8563210 DOI: 10.1093/cid/ciaa1562] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Indexed: 02/07/2023] Open
Abstract
Background Tuberculosis (TB) is caused by Mycobacterium tuberculosis (Mtb) infection and is a major public health problem. Clinical challenges include the lack of a blood-based test for active disease. Current blood-based tests, such as QuantiFERON (QFT) do not distinguish active TB disease from asymptomatic Mtb infection. Methods We hypothesized that TruCulture, an immunomonitoring method for whole-blood stimulation, could discriminate active disease from latent Mtb infection (LTBI). We stimulated whole blood from patients with active TB and compared with LTBI donors. Mtb-specific antigens and live bacillus Calmette-Guérin (BCG) were used as stimuli, with direct comparison to QFT. Protein analyses were performed using conventional and digital enzyme-linked immunosorbent assay (ELISA), as well as Luminex. Results TruCulture showed discrimination of active TB cases from LTBI (P < .0001, AUC = .81) compared with QFT (P = .45, AUC = .56), based on an interferon γ (IFNγ) readout after Mtb antigen (Ag) stimulation. This result was replicated in an independent cohort (AUC = .89). In exploratory analyses, TB stratification could be further improved by the Mtb antigen to BCG IFNγ ratio (P < .0001, AUC = .91). Finally, the combination of digital ELISA and transcriptional analysis showed that LTBI donors with high IFNγ clustered with patients with TB, suggesting the possibility to identify subclinical disease. Conclusions TruCulture offers a next-generation solution for whole-blood stimulation and immunomonitoring with the possibility to discriminate active and latent infection.
Collapse
Affiliation(s)
- Darragh Duffy
- Immunobiology of Dendritic Cells, Institut Pasteur, Paris, France.,Inserm U1223, Institut Pasteur, Paris, France
| | - Elisa Nemes
- South African Tuberculosis Vaccine Initiative (SATVI), Division of Immunology, Department of Pathology and Institute of Infectious Disease and Molecular Medicine, University of Cape Town, South Africa
| | - Alba Llibre
- Immunobiology of Dendritic Cells, Institut Pasteur, Paris, France.,Inserm U1223, Institut Pasteur, Paris, France
| | | | - Munyaradzi Musvosvi
- South African Tuberculosis Vaccine Initiative (SATVI), Division of Immunology, Department of Pathology and Institute of Infectious Disease and Molecular Medicine, University of Cape Town, South Africa
| | - Nikaïa Smith
- Immunobiology of Dendritic Cells, Institut Pasteur, Paris, France.,Inserm U1223, Institut Pasteur, Paris, France
| | - Elizabeth Filander
- South African Tuberculosis Vaccine Initiative (SATVI), Division of Immunology, Department of Pathology and Institute of Infectious Disease and Molecular Medicine, University of Cape Town, South Africa
| | - Hadn Africa
- South African Tuberculosis Vaccine Initiative (SATVI), Division of Immunology, Department of Pathology and Institute of Infectious Disease and Molecular Medicine, University of Cape Town, South Africa
| | - Simbarashe Mabwe
- South African Tuberculosis Vaccine Initiative (SATVI), Division of Immunology, Department of Pathology and Institute of Infectious Disease and Molecular Medicine, University of Cape Town, South Africa
| | - Lungisa Jaxa
- South African Tuberculosis Vaccine Initiative (SATVI), Division of Immunology, Department of Pathology and Institute of Infectious Disease and Molecular Medicine, University of Cape Town, South Africa
| | - Bruno Charbit
- Centre for Translational Research, Institut Pasteur, Paris, France
| | - Humphrey Mulenga
- South African Tuberculosis Vaccine Initiative (SATVI), Division of Immunology, Department of Pathology and Institute of Infectious Disease and Molecular Medicine, University of Cape Town, South Africa
| | | | - Michele Tameris
- South African Tuberculosis Vaccine Initiative (SATVI), Division of Immunology, Department of Pathology and Institute of Infectious Disease and Molecular Medicine, University of Cape Town, South Africa
| | - Gerhard Walzl
- DST-NRF Centre of Excellence for Biomedical Tuberculosis Research; South African Medical Research Council Centre for Tuberculosis Research; Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
| | - Stephanus Malherbe
- DST-NRF Centre of Excellence for Biomedical Tuberculosis Research; South African Medical Research Council Centre for Tuberculosis Research; Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
| | - Stephanie Thomas
- Immunobiology of Dendritic Cells, Institut Pasteur, Paris, France.,Inserm U1223, Institut Pasteur, Paris, France
| | - Mark Hatherill
- South African Tuberculosis Vaccine Initiative (SATVI), Division of Immunology, Department of Pathology and Institute of Infectious Disease and Molecular Medicine, University of Cape Town, South Africa
| | - Nicole Bilek
- South African Tuberculosis Vaccine Initiative (SATVI), Division of Immunology, Department of Pathology and Institute of Infectious Disease and Molecular Medicine, University of Cape Town, South Africa
| | - Thomas J Scriba
- South African Tuberculosis Vaccine Initiative (SATVI), Division of Immunology, Department of Pathology and Institute of Infectious Disease and Molecular Medicine, University of Cape Town, South Africa
| | | |
Collapse
|
9
|
Muñoz-Ruiz M, Pujol-Autonell I, Rhys H, Long HM, Greco M, Peakman M, Tree T, Hayday AC, Di Rosa F. Tracking immunodynamics by identification of S-G 2/M-phase T cells in human peripheral blood. J Autoimmun 2020; 112:102466. [PMID: 32414606 PMCID: PMC7527781 DOI: 10.1016/j.jaut.2020.102466] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Revised: 04/13/2020] [Accepted: 04/13/2020] [Indexed: 12/13/2022]
Abstract
The ready availability of human blood makes it the first choice for immuno-monitoring. However, this has been largely confined to static metrics, particularly resting T cell phenotypes. Conversely, dynamic assessments have mostly relied on cell stimulation in vitro which is subject to multiple variables. Here, immunodynamic insights from the peripheral blood are shown to be obtainable by applying a revised approach to cell-cycle analysis. Specifically, refined flow cytometric protocols were employed, assuring the reliable quantification of T cells in the S-G2/M phases of the cell-cycle (collectively termed "T Double S" for T cells in S-phase in Sanguine: in short "TDS" cells). Without protocol refinement, TDS could be either missed, as most of them layed out of the conventional lymphocyte gates, or confused with cell doublets artefactually displaying high DNA-content. To illustrate the nature of TDS cells, and their relationship to different immunodynamic scenarios, we examined them in healthy donors (HD); infectious mononucleosis (IM) patients versus asymptomatic EBV+ carriers; and recently-diagnosed T1D patients. TDS were reproducibly more abundant among CD8+ T cells and a defined subset of T-regulatory CD4+ T cells, and were substantially increased in IM and a subset of T1D patients. Of note, islet antigen-reactive TDS cell frequencies were associated with an aggressive T cell effector phenotype, suggesting that peripheral blood can reflect immune events within tissues in T1D, and possibly in other organ-specific autoimmune diseases. Our results suggest that tracking TDS cells may provide a widely applicable means of gaining insight into ongoing immune response dynamics in a variety of settings, including tissue immunopathologies where the peripheral blood has often not been considered insightful.
Collapse
Affiliation(s)
- Miguel Muñoz-Ruiz
- Immunosurveillance Laboratory, The Francis Crick Institute, London, UK
| | - Irma Pujol-Autonell
- Peter Gorer Department of Immunobiology, King's College London, London, UK; National Institute for Health Research (NIHR) Biomedical Research Center (BRC), Guy's and St Thomas' NHS Foundation Trust and King's College London, London, UK
| | - Hefin Rhys
- Flow Cytometry Science Technology Platform, The Francis Crick Institute, London, UK
| | - Heather M Long
- Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, UK
| | - Maria Greco
- Genomics Equipment Park, The Francis Crick Institute, London, UK
| | - Mark Peakman
- Peter Gorer Department of Immunobiology, King's College London, London, UK; National Institute for Health Research (NIHR) Biomedical Research Center (BRC), Guy's and St Thomas' NHS Foundation Trust and King's College London, London, UK
| | - Tim Tree
- Peter Gorer Department of Immunobiology, King's College London, London, UK; National Institute for Health Research (NIHR) Biomedical Research Center (BRC), Guy's and St Thomas' NHS Foundation Trust and King's College London, London, UK
| | - Adrian C Hayday
- Immunosurveillance Laboratory, The Francis Crick Institute, London, UK; Peter Gorer Department of Immunobiology, King's College London, London, UK; National Institute for Health Research (NIHR) Biomedical Research Center (BRC), Guy's and St Thomas' NHS Foundation Trust and King's College London, London, UK
| | - Francesca Di Rosa
- Immunosurveillance Laboratory, The Francis Crick Institute, London, UK; Peter Gorer Department of Immunobiology, King's College London, London, UK; Institute of Molecular Biology and Pathology, National Research Council of Italy (CNR), Rome, Italy.
| |
Collapse
|
10
|
Duffy D. Understanding immune variation for improved translational medicine. Curr Opin Immunol 2020; 65:83-88. [PMID: 32745736 DOI: 10.1016/j.coi.2020.06.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Revised: 06/29/2020] [Accepted: 06/30/2020] [Indexed: 12/19/2022]
Abstract
The goal of translational medicine is to use an improved understanding of human biology to develop new clinical approaches. Immune responses are highly variable from one person to another, with this variability strongly impacting clinical outcome. Variable immunity can determine differential risks for infection, for development of autoimmunity, and for response to therapeutic interventions. Therefore, a better understanding of the causes of such differences has huge potential to improve patient management through precision medicine strategies. Variability in immunity is determined by intrinsic (e.g. age, sex), extrinsic (e.g. environment, diet), and genetic factors. There is a growing consensus that genetics factors account for 20-40% of immune variability between individuals. The remaining unexplained variability is likely due to direct environmental influences, as well as specific gene-environmental interactions, which are more challenging to quantify and study. However, population based cohort studies with systems immunology approaches are now providing new understanding into these associations.
Collapse
Affiliation(s)
- Darragh Duffy
- Translational Immunology Lab, Department of Immunology, Institut Pasteur, Paris, France; INSERM U1223, Paris, France
| |
Collapse
|
11
|
Boccard M, Albert-Vega C, Mouton W, Durieu I, Brengel-Pesce K, Venet F, Trouillet-Assant S, Ader F. [Functional immunoassays in the setting of infectious risk and immunosuppressive therapy of non-HIV immunocompromised patients]. Rev Med Interne 2020; 41:545-551. [PMID: 32624260 DOI: 10.1016/j.revmed.2020.04.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Revised: 03/24/2020] [Accepted: 04/09/2020] [Indexed: 11/25/2022]
Abstract
The holistic approach of the human immune system is based on the study of its components collectively driving a functional response to an immunogenic stimulus. To appreciate a specific immune dysfunction, a condition is mimicked ex vivo and the immune response induced is assessed. The application field of such assays are broad and expanding, from the diagnosis of primary and secondary immunodeficiencies, immunotherapy for cancer to the management of patients at-risk for infections and vaccination. These assays are immune monitoring tools that may contribute to a personalised and precision medicine. The purpose of this review is to describe immune functional assays available in the setting of non-HIV acquired immune deficiency. First, we will address the use of theses assays in the diagnosis of opportunistic infections such as viral reactivation. Secondly, we will report the usefulness of these assays to assess vaccine efficacy and to manage immunosuppressive therapies.
Collapse
Affiliation(s)
- M Boccard
- Centre International de Recherche en Infectiologie (CIRI), Inserm 1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, École Normale Supérieure de Lyon, Univ Lyon, F-69007, Lyon, France; Département de médecine interne et vasculaire, centre hospitalier Lyon Sud, Hospices civils de Lyon, 69310 Pierre-Bénite, France; Unité mixte Hospices civils de Lyon-bioMérieux, centre hospitalier Lyon Sud, Hospices civils de Lyon, Pierre-Bénite, 69495 Lyon, France.
| | - C Albert-Vega
- Unité mixte Hospices civils de Lyon-bioMérieux, centre hospitalier Lyon Sud, Hospices civils de Lyon, Pierre-Bénite, 69495 Lyon, France
| | - W Mouton
- Unité mixte Hospices civils de Lyon-bioMérieux, centre hospitalier Lyon Sud, Hospices civils de Lyon, Pierre-Bénite, 69495 Lyon, France; Laboratoire virologie et pathologies humaines (VirPath), faculté de médecine Lyon Est, université Claude-Bernard Lyon 1, 69008 Lyon, France
| | - I Durieu
- Département de médecine interne et vasculaire, centre hospitalier Lyon Sud, Hospices civils de Lyon, 69310 Pierre-Bénite, France
| | - K Brengel-Pesce
- Unité mixte Hospices civils de Lyon-bioMérieux, centre hospitalier Lyon Sud, Hospices civils de Lyon, Pierre-Bénite, 69495 Lyon, France
| | - F Venet
- Unité mixte Hospices civils de Lyon-bioMérieux, centre hospitalier Lyon Sud, Hospices civils de Lyon, Pierre-Bénite, 69495 Lyon, France; Laboratoire d'immunologie, hôpital Édouard-Herriot, Hospices civils de Lyon, 69003 Lyon, France; EA7426 Pathophysiology of injury-induced immunosuppression, université Claude-Bernard Lyon 1, 69008 Lyon, France
| | - S Trouillet-Assant
- Unité mixte Hospices civils de Lyon-bioMérieux, centre hospitalier Lyon Sud, Hospices civils de Lyon, Pierre-Bénite, 69495 Lyon, France; Laboratoire virologie et pathologies humaines (VirPath), faculté de médecine Lyon Est, université Claude-Bernard Lyon 1, 69008 Lyon, France
| | - F Ader
- Centre International de Recherche en Infectiologie (CIRI), Inserm 1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, École Normale Supérieure de Lyon, Univ Lyon, F-69007, Lyon, France; Département des maladies infectieuses et tropicales, hôpital de la Croix-Rousse, Hospices civils de Lyon, 69004 Lyon, France
| |
Collapse
|
12
|
Sung HH, Choi KM, Jung YH, Cho EK. Study on the Fourth Industrial Revolution and Clinical Laboratory Science Techniques. KOREAN JOURNAL OF CLINICAL LABORATORY SCIENCE 2019. [DOI: 10.15324/kjcls.2019.51.3.386] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Affiliation(s)
- Hyun Ho Sung
- Department of Clinical Laboratory Science, Dongnam Health University, Suwon, Korea
| | - Kwang-Mo Choi
- Department of Laboratory Medicine, Samsung Medical Center, Seoul, Korea
| | - You Hyun Jung
- Department of Biomedical Laboratory Science, Dankook University College of Health Sciences, Cheonan, Korea
| | - Eun Kyung Cho
- Department of Biomedical Laboratory Science, Kyungwoon University, Gumi, Korea
| |
Collapse
|
13
|
Sanchez A, Bocklage T. Precision cytopathology: expanding opportunities for biomarker testing in cytopathology. J Am Soc Cytopathol 2019; 8:95-115. [PMID: 31287426 DOI: 10.1016/j.jasc.2018.12.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2018] [Revised: 12/14/2018] [Accepted: 12/15/2018] [Indexed: 06/09/2023]
Abstract
Precision cytopathology refers to therapeutically linked biomarker testing in cytopatology, a dynamically growing area of the discipline. This review describes basic steps to expand precision cytopathology services. Focusing exclusively on solid tumors, the review is divided into four sections: Section 1: Overview of precision pathology- opportunities and challenges; Section 2: Basic steps in establishing or expanding a precision cytopathology laboratory; Section 3: Cytopathology specimens suitable for next generation sequencing platforms; and Section 4: Summary. precision cytopathology continues to rapidly evolve in parallel with expanding targeted therapy options. Biomarker assays (companion diagnostics) comprise a multitude of test types including immunohistochemistry, in situ hybridization and molecular genetic tests such as PCR and next generation sequencing all of which are performable on cytology specimens. Best practices for precision cytopathology will incorporate traditional diagnostic approaches allied with careful specimen triage to enable successful biomarker analysis. Beyond triaging, cytopathologists knowledgeable about molecular test options and capabilities have the opportunity to refine diagnoses, prognoses and predictive information thereby assuming a lead role in precision oncology biomarker testing.
Collapse
Affiliation(s)
| | - Thèrése Bocklage
- Department of Pathology and Laboratory Medicine, University of Kentucky College of Medicine, MS.
| |
Collapse
|