1
|
Gharat SA, Tamhane VA, Giri AP, Aharoni A. Navigating the challenges of engineering composite specialized metabolite pathways in plants. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2025; 121:e70100. [PMID: 40089911 PMCID: PMC11910955 DOI: 10.1111/tpj.70100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2024] [Revised: 02/26/2025] [Accepted: 02/28/2025] [Indexed: 03/17/2025]
Abstract
Plants are a valuable source of diverse specialized metabolites with numerous applications. However, these compounds are often produced in limited quantities, particularly under unfavorable ecological conditions. To achieve sufficient levels of target metabolites, alternative strategies such as pathway engineering in heterologous systems like microbes (e.g., bacteria and fungi) or cell-free systems can be employed. Another approach is plant engineering, which aims to either enhance the native production in the original plant or reconstruct the target pathway in a model plant system. Although increasing metabolite production in the native plant is a promising strategy, these source plants are often exotic and pose significant challenges for genetic manipulation. Effective pathway engineering requires comprehensive prior knowledge of the genes and enzymes involved, as well as the precursor, intermediate, branching, and final metabolites. Thus, a thorough elucidation of the biosynthetic pathway is closely linked to successful metabolic engineering in host or model systems. In this review, we highlight recent advances in strategies for biosynthetic pathway elucidation and metabolic engineering. We focus on efforts to engineer complex, multi-step pathways that require the expression of at least eight genes for transient and three genes for stable transformation. Reports on the engineering of complex pathways in stably transformed plants remain relatively scarce. We discuss the major hurdles in pathway elucidation and strategies for overcoming them, followed by an overview of achievements, challenges, and solutions in pathway reconstitution through metabolic engineering. Recent advances including computer-based predictions offer valuable platforms for the sustainable production of specialized metabolites in plants.
Collapse
Affiliation(s)
- Sachin A Gharat
- Department of Plant and Environmental Sciences, Weizmann Institute of Science, Rehovot, 7610001, Israel
| | - Vaijayanti A Tamhane
- Department of Plant and Environmental Sciences, Weizmann Institute of Science, Rehovot, 7610001, Israel
- Department of Biotechnology (Merged With Institute of Bioinformatics and Biotechnology), Savitribai Phule Pune University, Pune, Maharashtra, 411007, India
| | - Ashok P Giri
- Department of Plant and Environmental Sciences, Weizmann Institute of Science, Rehovot, 7610001, Israel
- Biochemical Sciences Division, CSIR-National Chemical Laboratory, Pune, 411008, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Asaph Aharoni
- Department of Plant and Environmental Sciences, Weizmann Institute of Science, Rehovot, 7610001, Israel
| |
Collapse
|
2
|
Yin Q, Feng Z, Ren Z, Li A, Jaisi A, Yang M. Rhizosphere Growth-Promoting Fungi of Healthy Nicotiana tabacum L.: A Systematic Approach to Boosting Plant Growth and Drought Resistance. Microorganisms 2025; 13:543. [PMID: 40142436 PMCID: PMC11944967 DOI: 10.3390/microorganisms13030543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2025] [Revised: 02/09/2025] [Accepted: 02/25/2025] [Indexed: 03/28/2025] Open
Abstract
Drought, exacerbated by global warming, poses a significant threat to crop growth and productivity. This study identified a strain of Trichoderma harzianum from the rhizosphere of healthy Nicotiana tabacum L. plants and evaluated its role in enhancing drought tolerance. The isolated strain effectively colonized plant roots and promoted the growth of N. tabacum L. To investigate its potential, T. harzianum was inoculated into plants under varying drought conditions, and its impact on growth, physiological responses, and drought resilience was assessed. Comprehensive analyses of agronomic traits, physiological parameters, enzyme activities, photosynthetic performance, osmoprotectant levels, and membrane lipid peroxidation revealed that T. harzianum inoculation (light drought with T. harzianum, moderate drought with T. harzianum, and severe drought with T. harzianum treatments) systematically improved plant development and drought resistance. These findings provide valuable insights and lay a foundation for developing innovative biofertilizers to enhance crop drought tolerance and sustainability.
Collapse
Affiliation(s)
- Quanyu Yin
- National Tobacco Cultivation, Physiology and Biochemistry Research Center, College of Tobacco Science, Henan Agricultural University, Zhengzhou 450046, China
| | - Zhao Feng
- National Tobacco Cultivation, Physiology and Biochemistry Research Center, College of Tobacco Science, Henan Agricultural University, Zhengzhou 450046, China
| | - Zhichao Ren
- National Tobacco Cultivation, Physiology and Biochemistry Research Center, College of Tobacco Science, Henan Agricultural University, Zhengzhou 450046, China
| | - Ao Li
- National Tobacco Cultivation, Physiology and Biochemistry Research Center, College of Tobacco Science, Henan Agricultural University, Zhengzhou 450046, China
| | - Amit Jaisi
- School of Pharmacy, Walailak University, Thasala, Nakhon Si Thammarat 80160, Thailand
- Biomass and Oil Palm Center of Excellence, Walailak University, Thasala, Nakhon Si Thammarat 80160, Thailand
| | - Mengquan Yang
- National Tobacco Cultivation, Physiology and Biochemistry Research Center, College of Tobacco Science, Henan Agricultural University, Zhengzhou 450046, China
| |
Collapse
|
3
|
Perez-Colao P, Morelli L, Rodriguez-Concepcion M. Using Agrobacterium tumefaciens to Assemble Multi-step Metabolic Pathways in Nicotiana benthamiana. Methods Mol Biol 2025; 2911:11-20. [PMID: 40146506 DOI: 10.1007/978-1-0716-4450-8_3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/29/2025]
Abstract
Within the realm of the natural world, plants emerge as prolific producers of diverse bioactive compounds with pharmaceutical, nutritional, and industrial applications. However, many of these compounds are scarce with low concentrations and specific distributions among species, prompting the exploration of methods for producing them in plant biofactories. Typically, pathways comprising several enzymatic steps need to be engineered in plant hosts to produce the desired product of interest from available metabolic precursors. Transient expression systems, specifically agroinfiltration of Nicotiana benthamiana leaves with Agrobacterium tumefaciens, is a potent and cost-effective method for testing synthetic gene combinations. Here, we present a protocol to produce metabolites through a multi-step pathway, exemplifying the assembly of a carotenoid synthesis pathway within the plant cell cytosol. The approach showcases the efficiency and simplicity of agroinfiltration-mediated transient expression systems in reconstructing metabolic pathways, offering a valuable and sustainable alternative to stably transformed lines.
Collapse
Affiliation(s)
- Pablo Perez-Colao
- Institute for Plant Molecular and Cell Biology (IBMCP), CSIC-Universitat Politècnica de València, Valencia, Spain
| | - Luca Morelli
- Institute for Plant Molecular and Cell Biology (IBMCP), CSIC-Universitat Politècnica de València, Valencia, Spain
| | - Manuel Rodriguez-Concepcion
- Institute for Plant Molecular and Cell Biology (IBMCP), CSIC-Universitat Politècnica de València, Valencia, Spain.
| |
Collapse
|
4
|
Pizzio GA, Mayordomo C, Illescas-Miranda J, Coego A, Bono M, Sanchez-Olvera M, Martin-Vasquez C, Samantara K, Merilo E, Forment J, Estevez JC, Nebauer SG, Rodriguez PL. Basal ABA signaling balances transpiration and photosynthesis. PHYSIOLOGIA PLANTARUM 2024; 176:e14494. [PMID: 39210540 DOI: 10.1111/ppl.14494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Accepted: 07/31/2024] [Indexed: 09/04/2024]
Abstract
The balance between the CO2 entry for photosynthesis and transpiration water loss is crucial for plant growth, and ABA signaling can affect this equilibrium. To test how ABA balances plant growth and environmental adaptation, we performed molecular genetics studies in the biotech crop Nicotiana benthamiana under well-watered or drought conditions. Studies on ABA signaling in crops are complicated by the multigenic nature of the PYR/PYL/RCAR ABA receptor family and its functional redundancy, which is particularly challenging in polyploid plants. We have generated a pentuple pyl mutant in the allotetraploid Nicotiana benthamiana through CRISPR/Cas9 gene editing. The pentuple mutant is impaired in 2 NbPYL1-like and 3 NbPYL8-like receptors, affecting the regulation of transpiration and several ABA-dependent transcriptional processes. RNA-seq and metabolite analysis revealed that the synthesis of galactinol, an essential precursor for the osmoprotective raffinose family of oligosaccharides, is ABA-dependent and impaired in the mutant under osmotic stress. In contrast, our results show that, under well-watered conditions, partial inactivation of ABA signaling leads to higher CO2 entry and photosynthesis in the mutant than in WT. Photosynthesis analyses revealed an increased CO2 diffusion capacity mediated by higher stomatal and mesophyll conductances, and higher substomatal CO2 concentration in the pentuple mutant. RNA-seq analyses revealed that genes associated with cell wall loosening (e.g., expansins) and porosity were strongly downregulated by ABA in WT. In summary, a partial relief of the ABA control on transpiration mediated by ABA receptors positively affects photosynthesis when water is not limited, at the expense of reduced water use efficiency.
Collapse
Affiliation(s)
- Gaston A Pizzio
- Instituto de Biología Molecular y Celular de Plantas (IBMCP), Consejo Superior de Investigaciones Científicas-Universidad Politécnica de Valencia, Valencia, Spain
| | - Cristian Mayordomo
- Instituto de Biología Molecular y Celular de Plantas (IBMCP), Consejo Superior de Investigaciones Científicas-Universidad Politécnica de Valencia, Valencia, Spain
| | - Jonatan Illescas-Miranda
- Instituto de Biología Molecular y Celular de Plantas (IBMCP), Consejo Superior de Investigaciones Científicas-Universidad Politécnica de Valencia, Valencia, Spain
| | - Alberto Coego
- Instituto de Biología Molecular y Celular de Plantas (IBMCP), Consejo Superior de Investigaciones Científicas-Universidad Politécnica de Valencia, Valencia, Spain
| | - Mar Bono
- Instituto de Biología Molecular y Celular de Plantas (IBMCP), Consejo Superior de Investigaciones Científicas-Universidad Politécnica de Valencia, Valencia, Spain
| | - Mayra Sanchez-Olvera
- Instituto de Biología Molecular y Celular de Plantas (IBMCP), Consejo Superior de Investigaciones Científicas-Universidad Politécnica de Valencia, Valencia, Spain
| | - Constanza Martin-Vasquez
- Instituto de Biología Molecular y Celular de Plantas (IBMCP), Consejo Superior de Investigaciones Científicas-Universidad Politécnica de Valencia, Valencia, Spain
| | - Kajal Samantara
- Institute of Technology, University of Tartu, Tartu, Estonia
| | - Ebe Merilo
- Institute of Technology, University of Tartu, Tartu, Estonia
| | - Javier Forment
- Instituto de Biología Molecular y Celular de Plantas (IBMCP), Consejo Superior de Investigaciones Científicas-Universidad Politécnica de Valencia, Valencia, Spain
| | - Juan Carlos Estevez
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CiQUS), Departamento de Química Orgánica, Universidade de Santiago de Compostela, Santiago de Compostela, Spain
| | - Sergio G Nebauer
- Plant Production Department, Universitat Politècnica de València, Valencia, Spain
| | - Pedro L Rodriguez
- Instituto de Biología Molecular y Celular de Plantas (IBMCP), Consejo Superior de Investigaciones Científicas-Universidad Politécnica de Valencia, Valencia, Spain
| |
Collapse
|
5
|
Xie X, Jaleel A, Zhan J, Ren M. Microalgae: towards human health from urban areas to space missions. FRONTIERS IN PLANT SCIENCE 2024; 15:1419157. [PMID: 39220018 PMCID: PMC11361926 DOI: 10.3389/fpls.2024.1419157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Accepted: 07/29/2024] [Indexed: 09/04/2024]
Abstract
Space exploration and interstellar migration are important strategies for long-term human survival. However, extreme environmental conditions, such as space radiation and microgravity, can cause adverse effects, including DNA damage, cerebrovascular disease, osteoporosis, and muscle atrophy, which would require prophylactic and remedial treatment en route. Production of oral drugs in situ is therefore critical for interstellar travel and can be achieved through industrial production utilizing microalgae, which offers high production efficiency, edibility, resource minimization, adaptability, stress tolerance, and genetic manipulation ease. Synthetic biological techniques using microalgae as a chassis offer several advantages in producing natural products, including availability of biosynthetic precursors, potential for synthesizing natural metabolites, superior quality and efficiency, environmental protection, and sustainable development. This article explores the advantages of bioproduction from microalgal chassis using synthetic biological techniques, suitability of microalgal bioreactor-based cell factories for producing value-added natural metabolites, and prospects and applications of microalgae in interstellar travel.
Collapse
Affiliation(s)
- Xiulan Xie
- Laboratory of Space Biology, Institute of Urban Agriculture, Chinese Academy of Agricultural Sciences, Chengdu, China
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, School of Agricultural Sciences, Zhengzhou University, Zhengzhou, China
| | - Abdul Jaleel
- Department of Integrative Agriculture, College of Agriculture and Veterinary Medicine, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Jiasui Zhan
- Department of Forest Mycology and Plant Pathology, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Maozhi Ren
- Laboratory of Space Biology, Institute of Urban Agriculture, Chinese Academy of Agricultural Sciences, Chengdu, China
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, School of Agricultural Sciences, Zhengzhou University, Zhengzhou, China
| |
Collapse
|
6
|
Ferreira SS, Antunes MS. Genetically encoded Boolean logic operators to sense and integrate phenylpropanoid metabolite levels in plants. THE NEW PHYTOLOGIST 2024; 243:674-687. [PMID: 38752334 DOI: 10.1111/nph.19823] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Accepted: 04/30/2024] [Indexed: 06/21/2024]
Abstract
Synthetic biology has the potential to revolutionize biotechnology, public health, and agriculture. Recent studies have shown the enormous potential of plants as chassis for synthetic biology applications. However, tools to precisely manipulate metabolic pathways for bioproduction in plants are still needed. We used bacterial allosteric transcription factors (aTFs) that control gene expression in a ligand-specific manner and tested their ability to repress semi-synthetic promoters in plants. We also tested the modulation of their repression activity in response to specific plant metabolites, especially phenylpropanoid-related molecules. Using these aTFs, we also designed synthetic genetic circuits capable of computing Boolean logic operations. Three aTFs, CouR, FapR, and TtgR, achieved c. 95% repression of their respective target promoters. For TtgR, a sixfold de-repression could be triggered by inducing its ligand accumulation, showing its use as biosensor. Moreover, we designed synthetic genetic circuits that use AND, NAND, IMPLY, and NIMPLY Boolean logic operations and integrate metabolite levels as input to the circuit. We showed that biosensors can be implemented in plants to detect phenylpropanoid-related metabolites and activate a genetic circuit that follows a predefined logic, demonstrating their potential as tools for exerting control over plant metabolic pathways and facilitating the bioproduction of natural products.
Collapse
Affiliation(s)
- Savio S Ferreira
- Department of Biological Sciences, University of North Texas, Denton, TX, 76203, USA
- BioDiscovery Institute, University of North Texas, Denton, TX, 76203, USA
| | - Mauricio S Antunes
- Department of Biological Sciences, University of North Texas, Denton, TX, 76203, USA
- BioDiscovery Institute, University of North Texas, Denton, TX, 76203, USA
| |
Collapse
|
7
|
Chen C, Zhang X, Yue M. Spatial multi-omics in medicinal plants: from biosynthesis pathways to industrial applications. TRENDS IN PLANT SCIENCE 2024; 29:510-513. [PMID: 38485645 DOI: 10.1016/j.tplants.2024.02.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 02/18/2024] [Accepted: 02/21/2024] [Indexed: 05/04/2024]
Abstract
With the rapid development of molecular sequencing and imaging technology, the multi-omics of medicinal plants enters the single-cell era. We discuss spatial multi-omics applied in medicinal plants, evaluate the special products' biosynthesis pathways, and highlight the applications, perspectives, and challenges of biomanufacturing natural products (NPs).
Collapse
Affiliation(s)
- Chen Chen
- Xi'an Botanical Garden of Shaanxi Province, Institute of Botany of Shaanxi Province, Shaanxi Engineering Research Centre for Conservation and Utilization of Botanical Resources, No. 17 Cuihua South Road, 710061 Xi'an, Shaanxi Province, China
| | - Xiao Zhang
- Xi'an Botanical Garden of Shaanxi Province, Institute of Botany of Shaanxi Province, Shaanxi Engineering Research Centre for Conservation and Utilization of Botanical Resources, No. 17 Cuihua South Road, 710061 Xi'an, Shaanxi Province, China
| | - Ming Yue
- College of Life Sciences, Northwest University, No. 229 Taibai North Road, 710069 Xi'an, Shaanxi Province, China.
| |
Collapse
|
8
|
Shoji T, Hashimoto T, Saito K. Genetic regulation and manipulation of nicotine biosynthesis in tobacco: strategies to eliminate addictive alkaloids. JOURNAL OF EXPERIMENTAL BOTANY 2024; 75:1741-1753. [PMID: 37647764 PMCID: PMC10938045 DOI: 10.1093/jxb/erad341] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Accepted: 08/28/2023] [Indexed: 09/01/2023]
Abstract
Tobacco (Nicotiana tabacum L.) is a widely cultivated crop of the genus Nicotiana. Due to the highly addictive nature of tobacco products, tobacco smoking remains the leading cause of preventable death and disease. There is therefore a critical need to develop tobacco varieties with reduced or non-addictive nicotine levels. Nicotine and related pyridine alkaloids biosynthesized in the roots of tobacco plants are transported to the leaves, where they are stored in vacuoles as a defense against predators. Jasmonate, a defense-related plant hormone, plays a crucial signaling role in activating transcriptional regulators that coordinate the expression of downstream metabolic and transport genes involved in nicotine production. In recent years, substantial progress has been made in molecular and genomics research, revealing many metabolic and regulatory genes involved in nicotine biosynthesis. These advances have enabled us to develop tobacco plants with low or ultra-low nicotine levels through various methodologies, such as mutational breeding, genetic engineering, and genome editing. We review the recent progress on genetic manipulation of nicotine production in tobacco, which serves as an excellent example of plant metabolic engineering with profound social implications.
Collapse
Affiliation(s)
- Tsubasa Shoji
- Instutute of Natural Medicine, University of Toyama, Sugitani, Toyama, Toyama 930-0194, Japan
- RIKEN Center for Sustainable Resource Science, Tsurumi-ku, Yokohama, Kanagawa 230-0045, Japan
| | - Takashi Hashimoto
- Nara Institute of Science and Technology, Ikoma, Nara 630-0192, Japan
| | - Kazuki Saito
- RIKEN Center for Sustainable Resource Science, Tsurumi-ku, Yokohama, Kanagawa 230-0045, Japan
| |
Collapse
|
9
|
Zahmanova G, Aljabali AAA, Takova K, Minkov G, Tambuwala MM, Minkov I, Lomonossoff GP. Green Biologics: Harnessing the Power of Plants to Produce Pharmaceuticals. Int J Mol Sci 2023; 24:17575. [PMID: 38139405 PMCID: PMC10743837 DOI: 10.3390/ijms242417575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 12/11/2023] [Accepted: 12/15/2023] [Indexed: 12/24/2023] Open
Abstract
Plants are increasingly used for the production of high-quality biological molecules for use as pharmaceuticals and biomaterials in industry. Plants have proved that they can produce life-saving therapeutic proteins (Elelyso™-Gaucher's disease treatment, ZMapp™-anti-Ebola monoclonal antibodies, seasonal flu vaccine, Covifenz™-SARS-CoV-2 virus-like particle vaccine); however, some of these therapeutic proteins are difficult to bring to market, which leads to serious difficulties for the manufacturing companies. The closure of one of the leading companies in the sector (the Canadian biotech company Medicago Inc., producer of Covifenz) as a result of the withdrawal of investments from the parent company has led to the serious question: What is hindering the exploitation of plant-made biologics to improve health outcomes? Exploring the vast potential of plants as biological factories, this review provides an updated perspective on plant-derived biologics (PDB). A key focus is placed on the advancements in plant-based expression systems and highlighting cutting-edge technologies that streamline the production of complex protein-based biologics. The versatility of plant-derived biologics across diverse fields, such as human and animal health, industry, and agriculture, is emphasized. This review also meticulously examines regulatory considerations specific to plant-derived biologics, shedding light on the disparities faced compared to biologics produced in other systems.
Collapse
Affiliation(s)
- Gergana Zahmanova
- Department of Plant Physiology and Molecular Biology, University of Plovdiv, 4000 Plovdiv, Bulgaria; (K.T.)
- Center of Plant Systems Biology and Biotechnology, 4000 Plovdiv, Bulgaria
| | - Alaa A. A. Aljabali
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, Yarmouk University, Irbid 21163, Jordan;
| | - Katerina Takova
- Department of Plant Physiology and Molecular Biology, University of Plovdiv, 4000 Plovdiv, Bulgaria; (K.T.)
| | - George Minkov
- Department of Plant Physiology and Molecular Biology, University of Plovdiv, 4000 Plovdiv, Bulgaria; (K.T.)
| | - Murtaza M. Tambuwala
- Lincoln Medical School, University of Lincoln, Brayford Pool Campus, Lincoln LN6 7TS, UK;
| | - Ivan Minkov
- Center of Plant Systems Biology and Biotechnology, 4000 Plovdiv, Bulgaria
- Institute of Molecular Biology and Biotechnologies, 4108 Markovo, Bulgaria
| | | |
Collapse
|
10
|
Sulli M, Dall'Osto L, Ferrante P, Guardini Z, Gomez RL, Mini P, Demurtas OC, Aprea G, Nicolia A, Bassi R, Giuliano G. Generation and physiological characterization of genome-edited Nicotiana benthamiana plants containing zeaxanthin as the only leaf xanthophyll. PLANTA 2023; 258:93. [PMID: 37796356 PMCID: PMC10556183 DOI: 10.1007/s00425-023-04248-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Accepted: 09/20/2023] [Indexed: 10/06/2023]
Abstract
MAIN CONCLUSION Simultaneous genome editing of the two homeologous LCYe and ZEP genes of Nicotiana benthamiana results in plants in which all xanthophylls are replaced by zeaxanthin. Plant carotenoids act both as photoreceptors and photoprotectants in photosynthesis and as precursors of apocarotenoids, which include signaling molecules such as abscisic acid (ABA). As dietary components, the xanthophylls lutein and zeaxanthin have photoprotective functions in the human macula. We developed transient and stable combinatorial genome editing methods, followed by direct LC-MS screening for zeaxanthin accumulation, for the simultaneous genome editing of the two homeologous Lycopene Epsilon Cyclase (LCYe) and the two Zeaxanthin Epoxidase (ZEP) genes present in the allopolyploid Nicotiana benthamiana genome. Editing of the four genes resulted in plants in which all leaf xanthophylls were substituted by zeaxanthin, but with different ABA levels and growth habits, depending on the severity of the ZEP1 mutation. In high-zeaxanthin lines, the abundance of the major photosystem II antenna LHCII was reduced with respect to wild-type plants and the LHCII trimeric state became unstable upon thylakoid solubilization. Consistent with the depletion in LHCII, edited plants underwent a compensatory increase in PSII/PSI ratios and a loss of the large-size PSII supercomplexes, while the level of PSI-LHCI supercomplex was unaffected. Reduced activity of the photoprotective mechanism NPQ was shown in high-zeaxanthin plants, while PSII photoinhibition was similar for all genotypes upon exposure to excess light, consistent with the antioxidant and photoprotective role of zeaxanthin in vivo.
Collapse
Affiliation(s)
- Maria Sulli
- Casaccia Research Centre, Biotechnology and Agro-Industry Division, Italian National Agency for New Technologies, Energy and Sustainable Development (ENEA), Via Anguillarese 301, 00123, Rome, Italy.
| | - Luca Dall'Osto
- Biotechnology Department, University of Verona, Strada Le Grazie 15, 37134, Verona, Italy
| | - Paola Ferrante
- Casaccia Research Centre, Biotechnology and Agro-Industry Division, Italian National Agency for New Technologies, Energy and Sustainable Development (ENEA), Via Anguillarese 301, 00123, Rome, Italy
| | - Zeno Guardini
- Biotechnology Department, University of Verona, Strada Le Grazie 15, 37134, Verona, Italy
| | - Rodrigo Lionel Gomez
- Biotechnology Department, University of Verona, Strada Le Grazie 15, 37134, Verona, Italy
- Facultad de Ciencias Agrarias, Universidad Nacional de Rosario (UNR), Campo Experimental Villarino CC No 14, Zavalla - Santa Fe, Argentina
| | - Paola Mini
- Casaccia Research Centre, Biotechnology and Agro-Industry Division, Italian National Agency for New Technologies, Energy and Sustainable Development (ENEA), Via Anguillarese 301, 00123, Rome, Italy
| | - Olivia Costantina Demurtas
- Casaccia Research Centre, Biotechnology and Agro-Industry Division, Italian National Agency for New Technologies, Energy and Sustainable Development (ENEA), Via Anguillarese 301, 00123, Rome, Italy
| | - Giuseppe Aprea
- Casaccia Research Centre, Biotechnology and Agro-Industry Division, Italian National Agency for New Technologies, Energy and Sustainable Development (ENEA), Via Anguillarese 301, 00123, Rome, Italy
| | - Alessandro Nicolia
- Council for Agricultural Research and Economics, Research Centre for Vegetable and Ornamental Crops (CREA), Via Cavalleggeri 25, 84098, Pontecagnano, Italy
| | - Roberto Bassi
- Biotechnology Department, University of Verona, Strada Le Grazie 15, 37134, Verona, Italy
| | - Giovanni Giuliano
- Casaccia Research Centre, Biotechnology and Agro-Industry Division, Italian National Agency for New Technologies, Energy and Sustainable Development (ENEA), Via Anguillarese 301, 00123, Rome, Italy.
| |
Collapse
|
11
|
De Paola C, Garcia-Carpintero V, Vazquez-Vilar M, Kaminski K, Fernandez-Del-Carmen A, Sierro N, Ivanov NV, Giuliano G, Waterhouse P, Orzaez D. Comparative analysis of the Squamosa Promoter Binding-Like (SPL) gene family in Nicotiana benthamiana and Nicotiana tabacum. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2023; 335:111797. [PMID: 37467788 DOI: 10.1016/j.plantsci.2023.111797] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 07/14/2023] [Accepted: 07/16/2023] [Indexed: 07/21/2023]
Abstract
SQUAMOSA PROMOTER BINDING-LIKE (SPL) proteins constitute a large family of transcription factors known to play key roles in growth and developmental processes, including juvenile-to-adult and vegetative-to-reproductive phase transitions. This makes SPLs interesting targets for precision breeding in plants of the Nicotiana genus used as e.g. recombinant biofactories. We report the identification of 49 SPL genes in Nicotiana tabacum cv. K326 and 43 SPL genes in Nicotiana benthamiana LAB strain, which were classified into eight phylogenetic groups according to the SPL classification in Arabidopsis. Exon-intron gene structure and DNA-binding domains were highly conserved between homeologues and orthologues. Thirty of the NbSPL genes and 33 of the NtSPL genes were found to be possible targets of microRNA 156. The expression of SPL genes in leaves was analysed by RNA-seq at three different stages, revealing that genes not under miR156 control were in general constitutively expressed at high levels, whereas miR156-regulated genes showed lower expression, often developmentally regulated. We selected the N. benthamiana SPL13_1a gene as target for a CRISPR/Cas9 knock-out experiment. We show here that a full knock-out in this single gene leads to a significant delay in flowering time, a trait that could be exploited to increase biomass for recombinant protein production.
Collapse
Affiliation(s)
- Carmine De Paola
- Instituto de Biología Molecular y Celular de Plantas (CSIC-UPV), Valencia, Spain
| | | | - Marta Vazquez-Vilar
- Instituto de Biología Molecular y Celular de Plantas (CSIC-UPV), Valencia, Spain
| | | | | | - Nicolas Sierro
- PMI R&D, Philip Morris Products S.A, Neuchâtel, Switzerland
| | | | | | | | - Diego Orzaez
- Instituto de Biología Molecular y Celular de Plantas (CSIC-UPV), Valencia, Spain.
| |
Collapse
|
12
|
Moreno Cardenas C, Çiçek SS. Structure-dependent activity of plant natural products against methicillin-resistant Staphylococcus aureus. Front Microbiol 2023; 14:1234115. [PMID: 37649631 PMCID: PMC10463185 DOI: 10.3389/fmicb.2023.1234115] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2023] [Accepted: 07/14/2023] [Indexed: 09/01/2023] Open
Abstract
Methicillin-resistant Staphylococcus aureus (MRSA) is one of the major causes for nosocomial infections and has been classified as "high priority pathogen" by the World Health Organization. Its ability to develop resistances has been a challenge for the last decades and is still a threat to health care systems, as strains with resistances to the so-called drugs of last resort have been discovered. Therefore, new antibiotics are urgently needed. Natural products are an important source for the development of new drugs, thereby mostly serving as lead compounds for further modification. In this review, the data on plant natural products with reported anti-MRSA activity until the end of 2022 is discussed, highlighting the most effective drugs with respect to their inhibitory concentrations as well as with regard to eventual synergistic effects with existing antibiotics. In the latter sense, the class of alkaloids must be mentioned, exhibiting additive or synergistic effects by inhibiting bacterial efflux pumps. With regard to the antibiotic activity, phloroglucinol derivatives certainly belong to the most promising compounds, revealing several candidates with remarkable effects, e.g., lupulone, ivesinol, rhodomyrtone, aspidinol, or hyperforin. Also, the class of terpenoids yielded noteworthy compounds, such as the sesquiterpene lactones parthenolide and lactopicrin as well as acetophenone sesquiterpenes and sphaerodiene type diterpenoids, respectively. In addition, pronounced effects were observed for the macrolide neurymenolide A and three flavonol dicoumaroylrhamnosides.
Collapse
Affiliation(s)
| | - Serhat S. Çiçek
- Department of Pharmaceutical Biology, Institute of Pharmacy, Kiel University, Kiel, Germany
| |
Collapse
|
13
|
Kallam K, Moreno‐Giménez E, Mateos‐Fernández R, Tansley C, Gianoglio S, Orzaez D, Patron N. Tunable control of insect pheromone biosynthesis in Nicotiana benthamiana. PLANT BIOTECHNOLOGY JOURNAL 2023; 21:1440-1453. [PMID: 37032497 PMCID: PMC10281601 DOI: 10.1111/pbi.14048] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 03/14/2023] [Accepted: 03/22/2023] [Indexed: 06/19/2023]
Abstract
Previous work has demonstrated that plants can be used as production platforms for molecules used in health, medicine, and agriculture. Production has been exemplified in both stable transgenic plants and using transient expression strategies. In particular, species of Nicotiana have been engineered to produce a range of useful molecules, including insect sex pheromones, which are valued for species-specific control of agricultural pests. To date, most studies have relied on strong constitutive expression of all pathway genes. However, work in microbes has demonstrated that yields can be improved by controlling and balancing gene expression. Synthetic regulatory elements that provide control over the timing and levels of gene expression are therefore useful for maximizing yields from heterologous biosynthetic pathways. In this study, we demonstrate the use of pathway engineering and synthetic genetic elements for controlling the timing and levels of production of Lepidopteran sex pheromones in Nicotiana benthamiana. We demonstrate that copper can be used as a low-cost molecule for tightly regulated inducible expression. Further, we show how construct architecture influences relative gene expression and, consequently, product yields in multigene constructs. We compare a number of synthetic orthogonal regulatory elements and demonstrate maximal yields from constructs in which expression is mediated by dCas9-based synthetic transcriptional activators. The approaches demonstrated here provide new insights into the heterologous reconstruction of metabolic pathways in plants.
Collapse
Affiliation(s)
- Kalyani Kallam
- Engineering BiologyEarlham Institute, Norwich Research ParkNorwich, NorfolkUK
| | | | | | - Connor Tansley
- Engineering BiologyEarlham Institute, Norwich Research ParkNorwich, NorfolkUK
| | - Silvia Gianoglio
- Institute for Plant Molecular and Cell Biology (IBMCP), UPV‐CSICValenciaSpain
| | - Diego Orzaez
- Institute for Plant Molecular and Cell Biology (IBMCP), UPV‐CSICValenciaSpain
| | - Nicola Patron
- Engineering BiologyEarlham Institute, Norwich Research ParkNorwich, NorfolkUK
| |
Collapse
|
14
|
Demurtas OC, Sulli M, Ferrante P, Mini P, Martí M, Aragonés V, Daròs JA, Giuliano G. Production of Saffron Apocarotenoids in Nicotiana benthamiana Plants Genome-Edited to Accumulate Zeaxanthin Precursor. Metabolites 2023; 13:729. [PMID: 37367887 DOI: 10.3390/metabo13060729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 05/30/2023] [Accepted: 06/03/2023] [Indexed: 06/28/2023] Open
Abstract
Crocins are glycosylated apocarotenoids with strong coloring power and anti-oxidant, anticancer, and neuro-protective properties. We previously dissected the saffron crocin biosynthesis pathway, and demonstrated that the CsCCD2 enzyme, catalyzing the carotenoid cleavage step, shows a strong preference for the xanthophyll zeaxanthin in vitro and in bacterio. In order to investigate substrate specificity in planta and to establish a plant-based bio-factory system for crocin production, we compared wild-type Nicotiana benthamiana plants, accumulating various xanthophylls together with α- and β-carotene, with genome-edited lines, in which all the xanthophylls normally accumulated in leaves were replaced by a single xanthophyll, zeaxanthin. These plants were used as chassis for the production in leaves of saffron apocarotenoids (crocins, picrocrocin) using two transient expression methods to overexpress CsCCD2: agroinfiltration and inoculation with a viral vector derived from tobacco etch virus (TEV). The results indicated the superior performance of the zeaxanthin-accumulating line and of the use of the viral vector to express CsCCD2. The results also suggested a relaxed substrate specificity of CsCCD2 in planta, cleaving additional carotenoid substrates.
Collapse
Affiliation(s)
- Olivia Costantina Demurtas
- Biotechnology and Agro-Industry Division, ENEA, Italian National Agency for New Technologies, Energy and Sustainable Economic Development, Casaccia Research Center, 00123 Rome, Italy
| | - Maria Sulli
- Biotechnology and Agro-Industry Division, ENEA, Italian National Agency for New Technologies, Energy and Sustainable Economic Development, Casaccia Research Center, 00123 Rome, Italy
| | - Paola Ferrante
- Biotechnology and Agro-Industry Division, ENEA, Italian National Agency for New Technologies, Energy and Sustainable Economic Development, Casaccia Research Center, 00123 Rome, Italy
| | - Paola Mini
- Biotechnology and Agro-Industry Division, ENEA, Italian National Agency for New Technologies, Energy and Sustainable Economic Development, Casaccia Research Center, 00123 Rome, Italy
| | - Maricarmen Martí
- Instituto de Biología Molecular y Celular de Plantas, Consejo Superior de Investigaciones Científicas-Universitat Politècnica de València, 46022 Valencia, Spain
| | - Verónica Aragonés
- Instituto de Biología Molecular y Celular de Plantas, Consejo Superior de Investigaciones Científicas-Universitat Politècnica de València, 46022 Valencia, Spain
| | - José-Antonio Daròs
- Instituto de Biología Molecular y Celular de Plantas, Consejo Superior de Investigaciones Científicas-Universitat Politècnica de València, 46022 Valencia, Spain
| | - Giovanni Giuliano
- Biotechnology and Agro-Industry Division, ENEA, Italian National Agency for New Technologies, Energy and Sustainable Economic Development, Casaccia Research Center, 00123 Rome, Italy
| |
Collapse
|
15
|
Clustered regularly interspaced short palindromic repeats tools for plant metabolic engineering: achievements and perspectives. Curr Opin Biotechnol 2023; 79:102856. [PMID: 36473330 DOI: 10.1016/j.copbio.2022.102856] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Accepted: 11/17/2022] [Indexed: 12/09/2022]
Abstract
The plant kingdom represents the biggest source of feedstock, food, and added-value compounds. Engineering plant metabolic pathways to increase the phytochemical production or improve the nutraceutical value of crops is challenging because of the intricate interaction networks that link multiple genes, enzymatic steps, and metabolites, even when pathways are fully elucidated. The development of clustered regularly interspaced short palindromic repeats - CRISPR-associated (CRISPR-Cas) technologies has helped to overcome limitations in metabolic engineering, providing efficient and versatile tools for multigene editing. CRISPR approaches in plants were shown to have a remarkable efficiency in genome editing of different species to improve agronomic and metabolic traits. Here, we give an overview of the different achievements and perspectives of CRISPR technology in plant metabolic engineering.
Collapse
|
16
|
Kwan BD, Seligmann B, Nguyen TD, Franke J, Dang TTT. Leveraging synthetic biology and metabolic engineering to overcome obstacles in plant pathway elucidation. CURRENT OPINION IN PLANT BIOLOGY 2023; 71:102330. [PMID: 36599248 DOI: 10.1016/j.pbi.2022.102330] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 11/22/2022] [Accepted: 12/01/2022] [Indexed: 06/17/2023]
Abstract
Major hurdles in plant biosynthetic pathway elucidation and engineering include the need for rapid testing of enzyme candidates and the lack of complex substrates that are often not accumulated in the plant, amenable to synthesis, or commercially available. Linking metabolic engineering with gene discovery in both yeast and plant holds great promise to expedite the elucidation process and, at the same time, provide a platform for the sustainable production of plant metabolites. In this review, we highlight how synthetic biology and metabolic engineering alleviated longstanding obstacles in plant pathway elucidation. Recent advances in developing these chassis that showcase established and emerging strategies in accelerating biosynthetic gene discovery will also be discussed.
Collapse
Affiliation(s)
- Brooke D Kwan
- Department of Chemistry, Irving K. Barber Faculty of Science, University of British Columbia, 3427 University Way, Kelowna, BC, Canada
| | - Benedikt Seligmann
- Leibniz University Hannover, Institute of Botany, Herrenhäuser Str. 2, 30419 Hannover, Germany
| | - Trinh-Don Nguyen
- Department of Chemistry, Irving K. Barber Faculty of Science, University of British Columbia, 3427 University Way, Kelowna, BC, Canada
| | - Jakob Franke
- Leibniz University Hannover, Institute of Botany, Herrenhäuser Str. 2, 30419 Hannover, Germany.
| | - Thu-Thuy T Dang
- Department of Chemistry, Irving K. Barber Faculty of Science, University of British Columbia, 3427 University Way, Kelowna, BC, Canada.
| |
Collapse
|
17
|
Juteršek M, Petek M, Ramšak Ž, Moreno-Giménez E, Gianoglio S, Mateos-Fernández R, Orzáez D, Gruden K, Baebler Š. Transcriptional deregulation of stress-growth balance in Nicotiana benthamiana biofactories producing insect sex pheromones. FRONTIERS IN PLANT SCIENCE 2022; 13:941338. [PMID: 36388501 PMCID: PMC9645294 DOI: 10.3389/fpls.2022.941338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Accepted: 09/26/2022] [Indexed: 06/16/2023]
Abstract
Plant biofactories are a promising platform for sustainable production of high-value compounds, among which are insect sex pheromones, a green alternative to conventional insecticides in agriculture. Recently, we have constructed transgenic Nicotiana benthamiana plants ("Sexy Plants", SxP) that successfully produce a blend of moth (Lepidoptera) sex pheromone compounds (Z)-11-hexadecen-1-ol and (Z)-11-hexadecenyl acetate. However, efficient biosynthesis of sex pheromones resulted in growth and developmental penalty, diminishing the potential for commercial use of SxP in biomanufacturing. To gain insight into the underlying molecular responses, we analysed the whole-genome transcriptome and evaluated it in relation to growth and pheromone production in low- and high-producing transgenic plants of v1.0 and v1.2 SxP lines. In our study, high-producing SxPv1.2 plants accumulated the highest amounts of pheromones but still maintained better growth compared to v1.0 high producers. For an in-depth biological interpretation of the transcriptomic data, we have prepared a comprehensive functional N. benthamiana genome annotation as well as gene translations to Arabidopsis thaliana, enabling functional information transfer by using Arabidopsis knowledge networks. Differential gene expression analysis, contrasting pheromone producers to wild-type plants, revealed that while only a few genes were differentially regulated in low-producing plants, high-producing plants exhibited vast transcriptional reprogramming. They showed signs of stress-like response, manifested as downregulation of photosynthesis-related genes and significant differences in expression of hormonal signalling and secondary metabolism-related genes, the latter presumably leading to previously reported volatilome changes. Further network analyses confirmed stress-like response with activation of jasmonic acid and downregulation of gibberellic acid signalling, illuminating the possibility that the observed growth penalty was not solely a consequence of a higher metabolic burden imposed upon constitutive expression of a heterologous biosynthetic pathway, but rather the result of signalling pathway perturbation. Our work presents an example of comprehensive transcriptomic analyses of disadvantageous stress signalling in N. benthamiana biofactory that could be applied to other bioproduction systems.
Collapse
Affiliation(s)
- Mojca Juteršek
- Department of Biotechnology and Systems Biology, National Institute of Biology, Ljubljana, Slovenia
- Jožef Stefan International Postgraduate School, Ljubljana, Slovenia
| | - Marko Petek
- Department of Biotechnology and Systems Biology, National Institute of Biology, Ljubljana, Slovenia
| | - Živa Ramšak
- Department of Biotechnology and Systems Biology, National Institute of Biology, Ljubljana, Slovenia
| | - Elena Moreno-Giménez
- Institute for Plant Molecular and Cell Biology (IBMCP), Consejo Superior de Investigaciones Científicas (CSIC), Universidad Politécnica de Valencia (UPV), Valencia, Spain
| | - Silvia Gianoglio
- Institute for Plant Molecular and Cell Biology (IBMCP), Consejo Superior de Investigaciones Científicas (CSIC), Universidad Politécnica de Valencia (UPV), Valencia, Spain
| | - Rubén Mateos-Fernández
- Institute for Plant Molecular and Cell Biology (IBMCP), Consejo Superior de Investigaciones Científicas (CSIC), Universidad Politécnica de Valencia (UPV), Valencia, Spain
| | - Diego Orzáez
- Institute for Plant Molecular and Cell Biology (IBMCP), Consejo Superior de Investigaciones Científicas (CSIC), Universidad Politécnica de Valencia (UPV), Valencia, Spain
| | - Kristina Gruden
- Department of Biotechnology and Systems Biology, National Institute of Biology, Ljubljana, Slovenia
| | - Špela Baebler
- Department of Biotechnology and Systems Biology, National Institute of Biology, Ljubljana, Slovenia
| |
Collapse
|
18
|
Zhao L, Zhu Y, Jia H, Han Y, Zheng X, Wang M, Feng W. From Plant to Yeast-Advances in Biosynthesis of Artemisinin. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27206888. [PMID: 36296479 PMCID: PMC9609949 DOI: 10.3390/molecules27206888] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 10/11/2022] [Accepted: 10/12/2022] [Indexed: 11/28/2022]
Abstract
Malaria is a life-threatening disease. Artemisinin-based combination therapy (ACT) is the preferred choice for malaria treatment recommended by the World Health Organization. At present, the main source of artemisinin is extracted from Artemisia annua; however, the artemisinin content in A. annua is only 0.1-1%, which cannot meet global demand. Meanwhile, the chemical synthesis of artemisinin has disadvantages such as complicated steps, high cost and low yield. Therefore, the application of the synthetic biology approach to produce artemisinin in vivo has magnificent prospects. In this review, the biosynthesis pathway of artemisinin was summarized. Then we discussed the advances in the heterologous biosynthesis of artemisinin using microorganisms (Escherichia coli and Saccharomyces cerevisiae) as chassis cells. With yeast as the cell factory, the production of artemisinin was transferred from plant to yeast. Through the optimization of the fermentation process, the yield of artemisinic acid reached 25 g/L, thereby producing the semi-synthesis of artemisinin. Moreover, we reviewed the genetic engineering in A. annua to improve the artemisinin content, which included overexpressing artemisinin biosynthesis pathway genes, blocking key genes in competitive pathways, and regulating the expression of transcription factors related to artemisinin biosynthesis. Finally, the research progress of artemisinin production in other plants (Nicotiana, Physcomitrella, etc.) was discussed. The current advances in artemisinin biosynthesis may help lay the foundation for the remarkable up-regulation of artemisinin production in A. annua through gene editing or molecular design breeding in the future.
Collapse
Affiliation(s)
- Le Zhao
- School of Pharmacy, Henan University of Chinese Medicine, Zhengzhou 450046, China
- Co-Construction Collaborative Innovation Center for Chinese Medicine and Respiratory Diseases by Henan and Education Ministry of P. R. China, Henan University of Chinese Medicine, Zhengzhou 450046, China
| | - Yunhao Zhu
- School of Pharmacy, Henan University of Chinese Medicine, Zhengzhou 450046, China
- Co-Construction Collaborative Innovation Center for Chinese Medicine and Respiratory Diseases by Henan and Education Ministry of P. R. China, Henan University of Chinese Medicine, Zhengzhou 450046, China
| | - Haoyu Jia
- School of Pharmacy, Henan University of Chinese Medicine, Zhengzhou 450046, China
| | - Yongguang Han
- School of Pharmacy, Henan University of Chinese Medicine, Zhengzhou 450046, China
| | - Xiaoke Zheng
- School of Pharmacy, Henan University of Chinese Medicine, Zhengzhou 450046, China
- Co-Construction Collaborative Innovation Center for Chinese Medicine and Respiratory Diseases by Henan and Education Ministry of P. R. China, Henan University of Chinese Medicine, Zhengzhou 450046, China
| | - Min Wang
- College of Chemistry and Materials Engineering, Beijing Technology and Business University, Beijing 100048, China
- Beijing Key Laboratory of Plant Research and Development, Beijing Technology and Business University, Beijing 100048, China
- Correspondence: (M.W.); (W.F.); Tel.: +86-134-2629-2115 (M.W.); +86-371-60190296 (W.F.)
| | - Weisheng Feng
- School of Pharmacy, Henan University of Chinese Medicine, Zhengzhou 450046, China
- Co-Construction Collaborative Innovation Center for Chinese Medicine and Respiratory Diseases by Henan and Education Ministry of P. R. China, Henan University of Chinese Medicine, Zhengzhou 450046, China
- Correspondence: (M.W.); (W.F.); Tel.: +86-134-2629-2115 (M.W.); +86-371-60190296 (W.F.)
| |
Collapse
|
19
|
Koyama T, Murata J, Horikawa M, Satake H. Production of beneficial lignans in heterologous host plants. FRONTIERS IN PLANT SCIENCE 2022; 13:1026664. [PMID: 36330251 PMCID: PMC9623879 DOI: 10.3389/fpls.2022.1026664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Accepted: 09/26/2022] [Indexed: 06/16/2023]
|
20
|
Modulation of the Translation Efficiency of Heterologous mRNA and Target Protein Stability in a Plant System: The Case Study of Interferon-αA. PLANTS 2022; 11:plants11192450. [PMID: 36235315 PMCID: PMC9573741 DOI: 10.3390/plants11192450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 09/13/2022] [Accepted: 09/15/2022] [Indexed: 11/17/2022]
Abstract
A broad and amazingly intricate network of mechanisms underlying the decoding of a plant genome into the proteome forces the researcher to design new strategies to enhance both the accumulation of recombinant proteins and their purification from plants and to improve the available relevant strategies. In this paper, we propose new approaches to optimize a codon composition of target genes (case study of interferon-αA) and to search for regulatory sequences (case study of 5′UTR), and we demonstrated their effectiveness in increasing the synthesis of recombinant proteins in plant systems. In addition, we convincingly show that the approach utilizing stabilization of the protein product according to the N-end rule or a new protein-stabilizing partner (thermostable lichenase) is sufficiently effective and results in a significant increase in the protein yield manufactured in a plant system. Moreover, it is validly demonstrated that thermostable lichenase as a protein-stabilizing partner not only has no negative effect on the target protein activity (interferon-αA) integrated in its sequence, but rather enhances the accumulation of the target protein product in plant cells. In addition, the retention of lichenase enzyme activity and interferon biological activity after the incubation of plant protein lysates at 65 °C and precipitation of nontarget proteins with ethanol is applicable to a rapid and inexpensive purification of fusion proteins, thereby confirming the utility of thermostable lichenase as a protein-stabilizing partner for plant systems.
Collapse
|
21
|
Selma S, Gianoglio S, Uranga M, Vázquez‐Vilar M, Espinosa‐Ruiz A, Drapal M, Fraser PD, Daròs J, Orzáez D. Potato virus X-delivered CRISPR activation programs lead to strong endogenous gene induction and transient metabolic reprogramming in Nicotiana benthamiana. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2022; 111:1550-1564. [PMID: 35822533 PMCID: PMC9541417 DOI: 10.1111/tpj.15906] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 06/28/2022] [Accepted: 07/07/2022] [Indexed: 05/11/2023]
Abstract
Programmable transcriptional regulators based on CRISPR architecture are promising tools for the induction of plant gene expression. In plants, CRISPR gene activation is effective with respect to modulating development processes, such as the flowering time or customizing biochemical composition. The most widely used method for delivering CRISPR components into the plant is Agrobacterium tumefaciens-mediated genetic transformation, either transient or stable. However, as a result of their versatility and their ability to move, virus-derived systems have emerged as an interesting alternative for supplying the CRISPR components to the plant, in particular guide RNA (gRNA), which represents the variable component in CRISPR strategies. In the present study, we describe a Potato virus X-derived vector that, upon agroinfection in Nicotiana benthamiana, serves as a vehicle for delivery of gRNAs, producing highly specific virus-induced gene activation. The system works in combination with a N. benthamiana transgenic line carrying the remaining complementary CRISPR gene activation components, specifically the dCasEV2.1 cassette, which has been shown previously to mediate strong programmable transcriptional activation in plants. Using an easily scalable, non-invasive spraying method, we show that gRNA-mediated activation programs move locally and systemically, generating a strong activation response in different target genes. Furthermore, by activating three different endogenous MYB transcription factors, we demonstrate that this Potato virus X-based virus-induced gene reprogramming strategy results in program-specific metabolic fingerprints in N. benthamiana leaves characterized by distinctive phenylpropanoid-enriched metabolite profiles.
Collapse
Affiliation(s)
- Sara Selma
- Instituto Biología Molecular y celular de PlantasCSIC‐Universitat Politècnica de ValènciaValencia46022Spain
| | - Silvia Gianoglio
- Instituto Biología Molecular y celular de PlantasCSIC‐Universitat Politècnica de ValènciaValencia46022Spain
| | - Mireia Uranga
- Instituto Biología Molecular y celular de PlantasCSIC‐Universitat Politècnica de ValènciaValencia46022Spain
| | - Marta Vázquez‐Vilar
- Instituto Biología Molecular y celular de PlantasCSIC‐Universitat Politècnica de ValènciaValencia46022Spain
| | - Ana Espinosa‐Ruiz
- Instituto Biología Molecular y celular de PlantasCSIC‐Universitat Politècnica de ValènciaValencia46022Spain
| | | | | | - José‐Antonio Daròs
- Instituto Biología Molecular y celular de PlantasCSIC‐Universitat Politècnica de ValènciaValencia46022Spain
| | - Diego Orzáez
- Instituto Biología Molecular y celular de PlantasCSIC‐Universitat Politècnica de ValènciaValencia46022Spain
| |
Collapse
|
22
|
Tian C, Zhang Y, Li J, Wang Y. Benchmarking Intrinsic Promoters and Terminators for Plant Synthetic Biology Research. BIODESIGN RESEARCH 2022; 2022:9834989. [PMID: 37850139 PMCID: PMC10521690 DOI: 10.34133/2022/9834989] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Accepted: 05/11/2022] [Indexed: 10/19/2023] Open
Abstract
The emerging plant synthetic metabolic engineering has been exhibiting great promise to produce either value-added metabolites or therapeutic proteins. However, promoters for plant pathway engineering are generally selected empirically. The quantitative characterization of plant-based promoters is essential for optimal control of gene expression in plant chassis. Here, we used N. benthamiana leaves and BY2 suspension cells to quantitatively characterize a library of plant promoters by transient expression of firefly/Renilla luciferase. We validated the dual-luciferase reporter system by examining the correlation between reporter protein and mRNA levels. In addition, we investigated the effects of terminator-promoter combinations on gene expression and found that the combinations of promoters and terminators resulted in a 326-fold difference between the strongest and weakest performance, as reflected in reporter gene expression. As a proof of concept, we used the quantitatively characterized promoters to engineer the betalain pathway in N. benthamiana. Seven selected plant promoters with different expression strengths were used orthogonally to express CYP76AD1 and DODA, resulting in a final betalain production range of 6.0-362.4 μg/g fresh weight. Our systematic approach not only demonstrates the various intensities of multiple promoter sequences in N. benthamiana and BY2 cells but also adds to the toolbox of plant promoters for plant engineering.
Collapse
Affiliation(s)
- Chenfei Tian
- CAS-Key Laboratory of Synthetic Biology, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China
- University of Chinese Academy of Sciences, Beijing 100039, China
| | - Yixin Zhang
- College of Life Science, Jilin Agricultural University, Changchun 130118, China
| | - Jianhua Li
- CAS-Key Laboratory of Synthetic Biology, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China
| | - Yong Wang
- CAS-Key Laboratory of Synthetic Biology, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China
| |
Collapse
|
23
|
Ahrazem O, Zhu C, Huang X, Rubio-Moraga A, Capell T, Christou P, Gómez-Gómez L. Metabolic Engineering of Crocin Biosynthesis in Nicotiana Species. FRONTIERS IN PLANT SCIENCE 2022; 13:861140. [PMID: 35350302 PMCID: PMC8957871 DOI: 10.3389/fpls.2022.861140] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Accepted: 02/11/2022] [Indexed: 05/31/2023]
Abstract
Crocins are high-value soluble pigments that are used as colorants and supplements, their presence in nature is extremely limited and, consequently, the high cost of these metabolites hinders their use by other sectors, such as the pharmaceutical and cosmetic industries. The carotenoid cleavage dioxygenase 2L (CsCCD2L) is the key enzyme in the biosynthetic pathway of crocins in Crocus sativus. In this study, CsCCD2L was introduced into Nicotiana tabacum and Nicotiana glauca for the production of crocins. In addition, a chimeric construct containing the Brevundimonas sp. β-carotene hydroxylase (BrCrtZ), the Arabidopsis thaliana ORANGE mutant gene (AtOrMut), and CsCCD2L was also introduced into N. tabacum. Quantitative and qualitative studies on carotenoids and apocarotenoids in the transgenic plants expressing CsCCD2L alone showed higher crocin level accumulation in N. glauca transgenic plants, reaching almost 400 μg/g DW in leaves, while in N. tabacum 36 μg/g DW was obtained. In contrast, N. tabacum plants coexpressing CsCCD2L, BrCrtZ, and AtOrMut accumulated, 3.5-fold compared to N. tabacum plants only expressing CsCCD2L. Crocins with three and four sugar molecules were the main molecular species in both host systems. Our results demonstrate that the production of saffron apocarotenoids is feasible in engineered Nicotiana species and establishes a basis for the development of strategies that may ultimately lead to the commercial exploitation of these valuable pigments for multiple applications.
Collapse
Affiliation(s)
- Oussama Ahrazem
- Departamento de Ciencia y Tecnología Agroforestal y Genética, Instituto Botánico, Universidad de Castilla-La Mancha, Campus Universitario, Albacete, Spain
| | - Changfu Zhu
- Department of Plant Production and Forestry Science, University of Lleida-Agrotecnio Centre de Recerca en Agrotecnologia (CERCA) Center, Lleida, Spain
- School of Life Sciences, Changchun Normal University, Changchun, China
| | - Xin Huang
- Department of Plant Production and Forestry Science, University of Lleida-Agrotecnio Centre de Recerca en Agrotecnologia (CERCA) Center, Lleida, Spain
| | - Angela Rubio-Moraga
- Departamento de Ciencia y Tecnología Agroforestal y Genética, Instituto Botánico, Universidad de Castilla-La Mancha, Campus Universitario, Albacete, Spain
| | - Teresa Capell
- Department of Plant Production and Forestry Science, University of Lleida-Agrotecnio Centre de Recerca en Agrotecnologia (CERCA) Center, Lleida, Spain
| | - Paul Christou
- Department of Plant Production and Forestry Science, University of Lleida-Agrotecnio Centre de Recerca en Agrotecnologia (CERCA) Center, Lleida, Spain
- Catalan Institute for Research and Advanced Studies (ICREA), Catalan Institute for Research and Advanced Studies, Barcelona, Spain
| | - Lourdes Gómez-Gómez
- Departamento de Ciencia y Tecnología Agroforestal y Genética, Instituto Botánico, Universidad de Castilla-La Mancha, Campus Universitario, Albacete, Spain
| |
Collapse
|
24
|
González B, Vazquez-Vilar M, Sánchez-Vicente J, Orzáez D. Optimization of Vectors and Targeting Strategies Including GoldenBraid and Genome Editing Tools: GoldenBraid Assembly of Multiplex CRISPR /Cas12a Guide RNAs for Gene Editing in Nicotiana benthamiana. Methods Mol Biol 2022; 2480:193-214. [PMID: 35616865 DOI: 10.1007/978-1-0716-2241-4_12] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
New breeding techniques, especially CRISPR/Cas, could facilitate the expansion and diversification of molecular farming crops by speeding up the introduction of new traits that improve their value as biofactories. One of the main advantages of CRISPR/Cas is its ability to target multiple loci simultaneously, a key feature known as multiplexing. This characteristic is especially relevant for polyploid species, as it is the case of Nicotiana benthamiana and other species of the same genus widely used in molecular farming. Here, we describe in detail the making of a multiplex DNA construct for genome editing in N. benthamiana using the GoldenBraid modular cloning platform. In this case, the procedure is adapted for the requirements of LbCas12a (Lachnospiraceae bacterium Cas12a), a nuclease whose cloning strategy differs from that of the more often used SpCas9 (Streptococcus pyogenes Cas9) enzyme. LbCas12a-mediated edition has several advantages, as its high editing efficiency, described for different plant species, and its T/A-rich PAM sequence, which expands the range of genomic loci that can be targeted by site-specific nucleases. The protocol also includes recommendations for the selection of protospacer sequences and indications for the analysis of editing results.
Collapse
|
25
|
Mateos-Fernández R, Moreno-Giménez E, Gianoglio S, Quijano-Rubio A, Gavaldá-García J, Estellés L, Rubert A, Rambla JL, Vazquez-Vilar M, Huet E, Fernández-del-Carmen A, Espinosa-Ruiz A, Juteršek M, Vacas S, Navarro I, Navarro-Llopis V, Primo J, Orzáez D. Production of Volatile Moth Sex Pheromones in Transgenic Nicotiana benthamiana Plants. BIODESIGN RESEARCH 2021; 2021:9891082. [PMID: 37849952 PMCID: PMC10521740 DOI: 10.34133/2021/9891082] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Accepted: 08/31/2021] [Indexed: 10/19/2023] Open
Abstract
Plant-based bioproduction of insect sex pheromones has been proposed as an innovative strategy to increase the sustainability of pest control in agriculture. Here, we describe the engineering of transgenic plants producing (Z)-11-hexadecenol (Z11-16OH) and (Z)-11-hexadecenyl acetate (Z11-16OAc), two main volatile components in many Lepidoptera sex pheromone blends. We assembled multigene DNA constructs encoding the pheromone biosynthetic pathway and stably transformed them into Nicotiana benthamiana plants. The constructs contained the Amyelois transitella AtrΔ11 desaturase gene, the Helicoverpa armigera fatty acyl reductase HarFAR gene, and the Euonymus alatus diacylglycerol acetyltransferase EaDAct gene in different configurations. All the pheromone-producing plants showed dwarf phenotypes, the severity of which correlated with pheromone levels. All but one of the recovered lines produced high levels of Z11-16OH, but very low levels of Z11-16OAc, probably as a result of recurrent truncations at the level of the EaDAct gene. Only one plant line (SxPv1.2) was recovered that harboured an intact pheromone pathway and which produced moderate levels of Z11-16OAc (11.8 μg g-1 FW) and high levels of Z11-16OH (111.4 μg g-1). Z11-16OAc production was accompanied in SxPv1.2 by a partial recovery of the dwarf phenotype. SxPv1.2 was used to estimate the rates of volatile pheromone release, which resulted in 8.48 ng g-1 FW per day for Z11-16OH and 9.44 ng g-1 FW per day for Z11-16OAc. Our results suggest that pheromone release acts as a limiting factor in pheromone biodispenser strategies and establish a roadmap for biotechnological improvements.
Collapse
Affiliation(s)
- Rubén Mateos-Fernández
- Institute for Plant Molecular and Cell Biology (IBMCP), Consejo Superior de Investigaciones Científicas (CSIC) - Universidad Politécnica de Valencia (UPV), Valencia, Spain
| | - Elena Moreno-Giménez
- Institute for Plant Molecular and Cell Biology (IBMCP), Consejo Superior de Investigaciones Científicas (CSIC) - Universidad Politécnica de Valencia (UPV), Valencia, Spain
| | - Silvia Gianoglio
- Institute for Plant Molecular and Cell Biology (IBMCP), Consejo Superior de Investigaciones Científicas (CSIC) - Universidad Politécnica de Valencia (UPV), Valencia, Spain
| | - Alfredo Quijano-Rubio
- Institute for Plant Molecular and Cell Biology (IBMCP), Consejo Superior de Investigaciones Científicas (CSIC) - Universidad Politécnica de Valencia (UPV), Valencia, Spain
| | - Jose Gavaldá-García
- Institute for Plant Molecular and Cell Biology (IBMCP), Consejo Superior de Investigaciones Científicas (CSIC) - Universidad Politécnica de Valencia (UPV), Valencia, Spain
| | - Lucía Estellés
- Institute for Plant Molecular and Cell Biology (IBMCP), Consejo Superior de Investigaciones Científicas (CSIC) - Universidad Politécnica de Valencia (UPV), Valencia, Spain
| | - Alba Rubert
- Institute for Plant Molecular and Cell Biology (IBMCP), Consejo Superior de Investigaciones Científicas (CSIC) - Universidad Politécnica de Valencia (UPV), Valencia, Spain
| | - José Luis Rambla
- Institute for Plant Molecular and Cell Biology (IBMCP), Consejo Superior de Investigaciones Científicas (CSIC) - Universidad Politécnica de Valencia (UPV), Valencia, Spain
- Jaume I University, Castellon de la Plana, Spain
| | - Marta Vazquez-Vilar
- Institute for Plant Molecular and Cell Biology (IBMCP), Consejo Superior de Investigaciones Científicas (CSIC) - Universidad Politécnica de Valencia (UPV), Valencia, Spain
| | - Estefanía Huet
- Institute for Plant Molecular and Cell Biology (IBMCP), Consejo Superior de Investigaciones Científicas (CSIC) - Universidad Politécnica de Valencia (UPV), Valencia, Spain
| | - Asunción Fernández-del-Carmen
- Institute for Plant Molecular and Cell Biology (IBMCP), Consejo Superior de Investigaciones Científicas (CSIC) - Universidad Politécnica de Valencia (UPV), Valencia, Spain
| | - Ana Espinosa-Ruiz
- Institute for Plant Molecular and Cell Biology (IBMCP), Consejo Superior de Investigaciones Científicas (CSIC) - Universidad Politécnica de Valencia (UPV), Valencia, Spain
| | - Mojca Juteršek
- Department of Biotechnology and Systems Biology, National Institute of Biology, Ljubljana, Slovenia
- Jožef Stefan International Postgraduate School, Ljubljana, Slovenia
| | - Sandra Vacas
- Centro de Ecología Química Agrícola, Instituto Agroforestal del Mediterráneo, Universitat Politècnica de València, Valencia, Spain
| | | | - Vicente Navarro-Llopis
- Centro de Ecología Química Agrícola, Instituto Agroforestal del Mediterráneo, Universitat Politècnica de València, Valencia, Spain
| | - Jaime Primo
- Centro de Ecología Química Agrícola, Instituto Agroforestal del Mediterráneo, Universitat Politècnica de València, Valencia, Spain
| | - Diego Orzáez
- Institute for Plant Molecular and Cell Biology (IBMCP), Consejo Superior de Investigaciones Científicas (CSIC) - Universidad Politécnica de Valencia (UPV), Valencia, Spain
| |
Collapse
|
26
|
Citiulo F, Crosatti C, Cattivelli L, Biselli C. Frontiers in the Standardization of the Plant Platform for High Scale Production of Vaccines. PLANTS (BASEL, SWITZERLAND) 2021; 10:1828. [PMID: 34579360 PMCID: PMC8467261 DOI: 10.3390/plants10091828] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Revised: 08/30/2021] [Accepted: 09/01/2021] [Indexed: 12/13/2022]
Abstract
The recent COVID-19 pandemic has highlighted the value of technologies that allow a fast setup and production of biopharmaceuticals in emergency situations. The plant factory system can provide a fast response to epidemics/pandemics. Thanks to their scalability and genome plasticity, plants represent advantageous platforms to produce vaccines. Plant systems imply less complicated production processes and quality controls with respect to mammalian and bacterial cells. The expression of vaccines in plants is based on transient or stable transformation systems and the recent progresses in genome editing techniques, based on the CRISPR/Cas method, allow the manipulation of DNA in an efficient, fast, and easy way by introducing specific modifications in specific sites of a genome. Nonetheless, CRISPR/Cas is far away from being fully exploited for vaccine expression in plants. In this review, an overview of the potential conjugation of the renewed vaccine technologies (i.e., virus-like particles-VLPs, and industrialization of the production process) with genome editing to produce vaccines in plants is reported, illustrating the potential advantages in the standardization of the plant platforms, with the overtaking of constancy of large-scale production challenges, facilitating regulatory requirements and expediting the release and commercialization of the vaccine products of genome edited plants.
Collapse
Affiliation(s)
- Francesco Citiulo
- GSK Vaccines Institute for Global Health, Via Fiorentina 1, 53100 Siena, Italy;
| | - Cristina Crosatti
- Council for Agricultural Research and Economics, Research Centre for Genomics and Bioinformatics, Via San Protaso 302, 29017 Fiorenzuola d’Arda, Italy; (C.C.); (L.C.)
| | - Luigi Cattivelli
- Council for Agricultural Research and Economics, Research Centre for Genomics and Bioinformatics, Via San Protaso 302, 29017 Fiorenzuola d’Arda, Italy; (C.C.); (L.C.)
| | - Chiara Biselli
- Council for Agricultural Research and Economics, Research Centre for Viticulture and Enology, Viale Santa Margherita 80, 52100 Arezzo, Italy
| |
Collapse
|
27
|
Jamieson CS, Misa J, Tang Y, Billingsley JM. Biosynthesis and synthetic biology of psychoactive natural products. Chem Soc Rev 2021; 50:6950-7008. [PMID: 33908526 PMCID: PMC8217322 DOI: 10.1039/d1cs00065a] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Psychoactive natural products play an integral role in the modern world. The tremendous structural complexity displayed by such molecules confers diverse biological activities of significant medicinal value and sociocultural impact. Accordingly, in the last two centuries, immense effort has been devoted towards establishing how plants, animals, and fungi synthesize complex natural products from simple metabolic precursors. The recent explosion of genomics data and molecular biology tools has enabled the identification of genes encoding proteins that catalyze individual biosynthetic steps. Once fully elucidated, the "biosynthetic pathways" are often comparable to organic syntheses in elegance and yield. Additionally, the discovery of biosynthetic enzymes provides powerful catalysts which may be repurposed for synthetic biology applications, or implemented with chemoenzymatic synthetic approaches. In this review, we discuss the progress that has been made toward biosynthetic pathway elucidation amongst four classes of psychoactive natural products: hallucinogens, stimulants, cannabinoids, and opioids. Compounds of diverse biosynthetic origin - terpene, amino acid, polyketide - are identified, and notable mechanisms of key scaffold transforming steps are highlighted. We also provide a description of subsequent applications of the biosynthetic machinery, with an emphasis placed on the synthetic biology and metabolic engineering strategies enabling heterologous production.
Collapse
Affiliation(s)
- Cooper S Jamieson
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, CA, USA.
| | - Joshua Misa
- Department of Chemical and Biomolecular Engineering, University of California, Los Angeles, Los Angeles, CA, USA.
| | - Yi Tang
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, CA, USA. and Department of Chemical and Biomolecular Engineering, University of California, Los Angeles, Los Angeles, CA, USA.
| | - John M Billingsley
- Department of Chemical and Biomolecular Engineering, University of California, Los Angeles, Los Angeles, CA, USA. and Invizyne Technologies, Inc., Monrovia, CA, USA
| |
Collapse
|
28
|
Ferreira SS, Antunes MS. Re-engineering Plant Phenylpropanoid Metabolism With the Aid of Synthetic Biosensors. FRONTIERS IN PLANT SCIENCE 2021; 12:701385. [PMID: 34603348 PMCID: PMC8481569 DOI: 10.3389/fpls.2021.701385] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Accepted: 08/23/2021] [Indexed: 05/03/2023]
Abstract
Phenylpropanoids comprise a large class of specialized plant metabolites with many important applications, including pharmaceuticals, food nutrients, colorants, fragrances, and biofuels. Therefore, much effort has been devoted to manipulating their biosynthesis to produce high yields in a more controlled manner in microbial and plant systems. However, current strategies are prone to significant adverse effects due to pathway complexity, metabolic burden, and metabolite bioactivity, which still hinder the development of tailor-made phenylpropanoid biofactories. This gap could be addressed by the use of biosensors, which are molecular devices capable of sensing specific metabolites and triggering a desired response, as a way to sense the pathway's metabolic status and dynamically regulate its flux based on specific signals. Here, we provide a brief overview of current research on synthetic biology and metabolic engineering approaches to control phenylpropanoid synthesis and phenylpropanoid-related biosensors, advocating for the use of biosensors and genetic circuits as a step forward in plant synthetic biology to develop autonomously-controlled phenylpropanoid-producing plant biofactories.
Collapse
|