1
|
Tian Z, Li X, Yu X, Yan S, Sun J, Ma W, Zhu X, Tang Y. The role of primary cilia in thyroid diseases. Front Endocrinol (Lausanne) 2024; 14:1306550. [PMID: 38260150 PMCID: PMC10801159 DOI: 10.3389/fendo.2023.1306550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Accepted: 12/05/2023] [Indexed: 01/24/2024] Open
Abstract
Primary cilia (PC) are non-motile and microtube-based organelles protruding from the surface of almost all thyroid follicle cells. They maintain homeostasis in thyrocytes and loss of PC can result in diverse thyroid diseases. The dysfunction of structure and function of PC are found in many patients with common thyroid diseases. The alterations are associated with the cause, development, and recovery of the diseases and are regulated by PC-mediated signals. Restoring normal PC structure and function in thyrocytes is a promising therapeutic strategy to treat thyroid diseases. This review explores the function of PC in normal thyroid glands. It summarizes the pathology caused by PC alterations in thyroid cancer (TC), autoimmune thyroid diseases (AITD), hypothyroidism, and thyroid nodules (TN) to provide comprehensive references for further study.
Collapse
Affiliation(s)
- Zijiao Tian
- College of Traditional Chinese Medicine of Beijing University of Chinese Medicine, Beijing, China
| | - Xinlin Li
- College of Traditional Chinese Medicine of Beijing University of Chinese Medicine, Beijing, China
| | - Xue Yu
- College of Traditional Chinese Medicine of Beijing University of Chinese Medicine, Beijing, China
| | - Shuxin Yan
- College of Traditional Chinese Medicine of Beijing University of Chinese Medicine, Beijing, China
| | - Jingwei Sun
- College of Traditional Chinese Medicine of Beijing University of Chinese Medicine, Beijing, China
| | - Wenxin Ma
- College of Traditional Chinese Medicine of Beijing University of Chinese Medicine, Beijing, China
| | - Xiaoyun Zhu
- Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yang Tang
- College of Traditional Chinese Medicine of Beijing University of Chinese Medicine, Beijing, China
| |
Collapse
|
2
|
Farnkopf IC, George JC, Kishida T, Hillmann DJ, Suydam RS, Thewissen JGM. Olfactory epithelium and ontogeny of the nasal chambers in the bowhead whale (Balaena mysticetus). Anat Rec (Hoboken) 2021; 305:643-667. [PMID: 34117725 DOI: 10.1002/ar.24682] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Revised: 01/27/2021] [Accepted: 03/09/2021] [Indexed: 11/11/2022]
Abstract
In a species of baleen whale, we identify olfactory epithelium that suggests a functional sense of smell and document the ontogeny of the surrounding olfactory anatomy. Whales must surface to breathe, thereby providing an opportunity to detect airborne odorants. Although many toothed whales (odontocetes) lack olfactory anatomy, baleen whales (mysticetes) have retained theirs. Here, we investigate fetal and postnatal specimens of bowhead whales (Balaena mysticetus). Computed tomography (CT) reveals the presence of nasal passages and nasal chambers with simple ethmoturbinates through ontogeny. Additionally, we describe the dorsal nasal meatuses and olfactory bulb chambers. The cribriform plate has foramina that communicate with the nasal chambers. We show this anatomy within the context of the whole prenatal and postnatal skull. We document the tunnel for the ethmoidal nerve (ethmoid foramen) and the rostrolateral recess of the nasal chamber, which appears postnatally. Bilateral symmetry was apparent in the postnatal nasal chambers. No such symmetry was found prenatally, possibly due to tissue deformation. No nasal air sacs were found in fetal development. Olfactory epithelium, identified histologically, covers at least part of the ethmoturbinates. We identify olfactory epithelium using six explicit criteria of mammalian olfactory epithelium. Immunohistochemistry revealed the presence of olfactory marker protein (OMP), which is only found in mature olfactory sensory neurons. Although it seems that these neurons are scarce in bowhead whales compared to typical terrestrial mammals, our results suggest that bowhead whales have a functional sense of smell, which they may use to find prey.
Collapse
Affiliation(s)
- Ian C Farnkopf
- College of Arts and Sciences, School of Biomedical Sciences, Integrated Sciences Building, Kent State University, Kent, Ohio, USA.,Department of Anatomy and Neurobiology, Northeast Ohio Medical University, Rootstown, Ohio, USA
| | - John Craig George
- Department of Wildlife Management, North Slope Borough, Barrow, Alaska, USA
| | - Takushi Kishida
- Museum of Natural and Environmental History, Shizuoka, Japan.,Wildlife Research Center, Kyoto University, Kyoto, Japan
| | - Daniel J Hillmann
- Comparative Biomedical Sciences, Louisiana State University, Baton Rouge, Louisiana, USA
| | - Robert S Suydam
- Department of Wildlife Management, North Slope Borough, Barrow, Alaska, USA
| | - J G M Thewissen
- Department of Anatomy and Neurobiology, Northeast Ohio Medical University, Rootstown, Ohio, USA
| |
Collapse
|
3
|
Ma CX, Ma XN, Li YD, Fu SB. The Role of Primary Cilia in Thyroid Cancer: From Basic Research to Clinical Applications. Front Endocrinol (Lausanne) 2021; 12:685228. [PMID: 34168619 PMCID: PMC8218906 DOI: 10.3389/fendo.2021.685228] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Accepted: 05/24/2021] [Indexed: 12/07/2022] Open
Abstract
Primary cilia (PC) are microtubule-based organelles that are present on nearly all thyroid follicle cells and play an important role in physiological development and in maintaining the dynamic homeostasis of thyroid follicles. PC are generally lost in many thyroid cancers (TCs), and this loss has been linked to the malignant transformation of thyrocytes, which is regulated by PC-mediated signaling reciprocity between the stroma and cancer cells. Restoring PC on TC cells is a possible promising therapeutic strategy, and the therapeutic response and prognosis of TC are associated with the presence or absence of PC. This review mainly discusses the role of PC in the normal thyroid and TC as well as their potential clinical utility.
Collapse
Affiliation(s)
- Cheng-Xu Ma
- Department of Endocrinology, The First Hospital of Lanzhou University, Lanzhou, China
- The First Clinical Medical College of Lanzhou University, Lanzhou, China
| | - Xiao-Ni Ma
- Department of Endocrinology, The First Hospital of Lanzhou University, Lanzhou, China
- The First Clinical Medical College of Lanzhou University, Lanzhou, China
| | - Ying-Dong Li
- College of Integrated Traditional Chinese and Western Medicine, Gansu University of Chinese Medicine, Lanzhou, China
| | - Song-Bo Fu
- Department of Endocrinology, The First Hospital of Lanzhou University, Lanzhou, China
- The First Clinical Medical College of Lanzhou University, Lanzhou, China
- *Correspondence: Song-Bo Fu,
| |
Collapse
|
4
|
Osaki A, Sanematsu K, Yamazoe J, Hirose F, Watanabe Y, Kawabata Y, Oike A, Hirayama A, Yamada Y, Iwata S, Takai S, Wada N, Shigemura N. Drinking Ice-Cold Water Reduces the Severity of Anticancer Drug-Induced Taste Dysfunction in Mice. Int J Mol Sci 2020; 21:E8958. [PMID: 33255773 PMCID: PMC7728361 DOI: 10.3390/ijms21238958] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2020] [Revised: 11/16/2020] [Accepted: 11/23/2020] [Indexed: 10/22/2022] Open
Abstract
Taste disorders are common adverse effects of cancer chemotherapy that can reduce quality of life and impair nutritional status. However, the molecular mechanisms underlying chemotherapy-induced taste disorders remain largely unknown. Furthermore, there are no effective preventive measures for chemotherapy-induced taste disorders. We investigated the effects of a combination of three anticancer drugs (TPF: docetaxel, cisplatin and 5-fluorouracil) on the structure and function of mouse taste tissues and examined whether the drinking of ice-cold water after TPF administration would attenuate these effects. TPF administration significantly increased the number of cells expressing apoptotic and proliferative markers. Furthermore, TPF administration significantly reduced the number of cells expressing taste cell markers and the magnitudes of the responses of taste nerves to tastants. The above results suggest that anticancer drug-induced taste dysfunction may be due to a reduction in the number of taste cells expressing taste-related molecules. The suppressive effects of TPF on taste cell marker expression and taste perception were reduced by the drinking of ice-cold water. We speculate that oral cryotherapy with an ice cube might be useful for prophylaxis against anticancer drug-induced taste disorders in humans.
Collapse
Affiliation(s)
- Ayana Osaki
- Section of Oral Neuroscience, Graduate School of Dental Science, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan; (A.O.); (F.H.); (Y.W.); (Y.K.); (A.O.); (A.H.); (Y.Y.); (S.I.); (S.T.)
- Division of General Dentistry, Kyushu University Hospital, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan;
| | - Keisuke Sanematsu
- Section of Oral Neuroscience, Graduate School of Dental Science, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan; (A.O.); (F.H.); (Y.W.); (Y.K.); (A.O.); (A.H.); (Y.Y.); (S.I.); (S.T.)
- Oral Health/Brain Health/Total Health Research Center, Graduate School of Dental Science, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
- Research and Development Center for Five-Sense Devices, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Junichi Yamazoe
- Section of Oral Healthcare and Dentistry Cooperation, Division of Maxillofacial Diagnostic and Surgical Science, Faculty of Dental Science, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan;
| | - Fumie Hirose
- Section of Oral Neuroscience, Graduate School of Dental Science, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan; (A.O.); (F.H.); (Y.W.); (Y.K.); (A.O.); (A.H.); (Y.Y.); (S.I.); (S.T.)
| | - Yu Watanabe
- Section of Oral Neuroscience, Graduate School of Dental Science, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan; (A.O.); (F.H.); (Y.W.); (Y.K.); (A.O.); (A.H.); (Y.Y.); (S.I.); (S.T.)
| | - Yuko Kawabata
- Section of Oral Neuroscience, Graduate School of Dental Science, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan; (A.O.); (F.H.); (Y.W.); (Y.K.); (A.O.); (A.H.); (Y.Y.); (S.I.); (S.T.)
| | - Asami Oike
- Section of Oral Neuroscience, Graduate School of Dental Science, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan; (A.O.); (F.H.); (Y.W.); (Y.K.); (A.O.); (A.H.); (Y.Y.); (S.I.); (S.T.)
| | - Ayaka Hirayama
- Section of Oral Neuroscience, Graduate School of Dental Science, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan; (A.O.); (F.H.); (Y.W.); (Y.K.); (A.O.); (A.H.); (Y.Y.); (S.I.); (S.T.)
| | - Yu Yamada
- Section of Oral Neuroscience, Graduate School of Dental Science, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan; (A.O.); (F.H.); (Y.W.); (Y.K.); (A.O.); (A.H.); (Y.Y.); (S.I.); (S.T.)
| | - Shusuke Iwata
- Section of Oral Neuroscience, Graduate School of Dental Science, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan; (A.O.); (F.H.); (Y.W.); (Y.K.); (A.O.); (A.H.); (Y.Y.); (S.I.); (S.T.)
- Research and Development Center for Five-Sense Devices, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Shingo Takai
- Section of Oral Neuroscience, Graduate School of Dental Science, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan; (A.O.); (F.H.); (Y.W.); (Y.K.); (A.O.); (A.H.); (Y.Y.); (S.I.); (S.T.)
| | - Naohisa Wada
- Division of General Dentistry, Kyushu University Hospital, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan;
| | - Noriatsu Shigemura
- Section of Oral Neuroscience, Graduate School of Dental Science, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan; (A.O.); (F.H.); (Y.W.); (Y.K.); (A.O.); (A.H.); (Y.Y.); (S.I.); (S.T.)
- Research and Development Center for Five-Sense Devices, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| |
Collapse
|
5
|
Sun C, Zhu L, Zhang C, Song C, Wang C, Zhang M, Xie Y, Schaefer HF. Conformers, properties, and docking mechanism of the anticancer drug docetaxel: DFT and molecular dynamics studies. J Comput Chem 2018; 39:889-900. [DOI: 10.1002/jcc.25165] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Revised: 12/20/2017] [Accepted: 12/23/2017] [Indexed: 12/18/2022]
Affiliation(s)
- Chuancai Sun
- School of Biomedical Engineering and TechnologyTianjin Medical University, No.22 Qi xiang tai Road, Heping DistrictTianjin300070 China
| | - Lijuan Zhu
- School of Biomedical Engineering and TechnologyTianjin Medical University, No.22 Qi xiang tai Road, Heping DistrictTianjin300070 China
| | - Chao Zhang
- School of Biomedical Engineering and TechnologyTianjin Medical University, No.22 Qi xiang tai Road, Heping DistrictTianjin300070 China
| | - Ce Song
- Hefei National Laboratory of Physical Sciences at the MicroscaleUniversity of Science and Technology of ChinaHefei Anhui230026 China
- Department of Theoretical Chemistry and Biology, School of BiotechnologyRoyal Institute of TechnologyStockholmSE‐10691 Sweden
| | - Cuihong Wang
- School of ScienceTianjin Chengjian UniversityTianjin300384 China
| | - Meiling Zhang
- School of Biomedical Engineering and TechnologyTianjin Medical University, No.22 Qi xiang tai Road, Heping DistrictTianjin300070 China
| | - Yaoming Xie
- Center for Computational Quantum ChemistryUniversity of GeorgiaAthens Georgia 30602
| | - Henry F. Schaefer
- Center for Computational Quantum ChemistryUniversity of GeorgiaAthens Georgia 30602
| |
Collapse
|
6
|
Serrano Sponton LE, Januschek E. A Rare Case of Docetaxel-Induced Hydrocephalus Presenting with Gait Disturbances Mimicking and Coexisting with Taxane-Associated Polyneuropathy: The Relevance of Differential Diagnosis, Clinical Assessment, and Response to Ventriculoperitoneal Shunt. Case Rep Oncol 2017; 10:973-980. [PMID: 29279701 PMCID: PMC5731179 DOI: 10.1159/000481706] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2017] [Accepted: 09/21/2017] [Indexed: 11/19/2022] Open
Abstract
Docetaxel constitutes a widely used chemotherapeutic agent as a first-line treatment for several neoplastic diseases. One of the most common side effects induced by this drug is polyneuropathy, which among other symptoms can cause gait disbalance. However, in exceptional cases gait disturbances could be related to docetaxel-induced hydrocephalus, a rare event that up to the present has been overseen throughout the medical literature and should be meticulously differentiated from polyneuropathy, since its clinical features, treatment, and prognosis differ drastically. We present the case of a woman with a progressive gait disturbance that started immediately after having been treated with docetaxel for breast cancer resembling the same clinical characteristics as seen in patients affected by normal pressure hydrocephalus. The symptoms had been observed for about 2 years as having been caused only by polyneuropathy, given the high incidence of this side effect and the accompanying numbness of distal extremities. However, brain MRI evidenced a marked enlargement of the ventricular system. Brain metastases as well as carcinomatous meningitis were ruled out. After having placed a ventriculoperitoneal shunt, the patient showed a rapid, long-lasting and outstanding improvement of gait performance. We discuss the coexistence, in this case, of taxane-associated hydrocephalus and polyneuropathy and describe the clinical features, assessment and surgical outcome of docetaxel-induced hydrocephalus, since its early recognition and differentiation from the highly frequent taxane-associated polyneuropathy has relevant consequences for the management and treatment of these patients.
Collapse
Affiliation(s)
| | - Elke Januschek
- Department of Neurosurgery, Offenbach Hospital, Offenbach am Main, Germany
| |
Collapse
|
7
|
Khan NA, Willemarck N, Talebi A, Marchand A, Binda MM, Dehairs J, Rueda-Rincon N, Daniels VW, Bagadi M, Raj DBTG, Vanderhoydonc F, Munck S, Chaltin P, Swinnen JV. Identification of drugs that restore primary cilium expression in cancer cells. Oncotarget 2016; 7:9975-92. [PMID: 26862738 PMCID: PMC4891097 DOI: 10.18632/oncotarget.7198] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2015] [Accepted: 12/08/2015] [Indexed: 12/19/2022] Open
Abstract
The development of cancer is often accompanied by a loss of the primary cilium, a microtubule-based cellular protrusion that functions as a cellular antenna and that puts a break on cell proliferation. Hence, restoration of the primary cilium in cancer cells may represent a novel promising approach to attenuate tumor growth. Using a high content analysis-based approach we screened a library of clinically evaluated compounds and marketed drugs for their ability to restore primary cilium expression in pancreatic ductal cancer cells. A diverse set of 118 compounds stimulating cilium expression was identified. These included glucocorticoids, fibrates and other nuclear receptor modulators, neurotransmitter regulators, ion channel modulators, tyrosine kinase inhibitors, DNA gyrase/topoisomerase inhibitors, antibacterial compounds, protein inhibitors, microtubule modulators, and COX inhibitors. Certain compounds also dramatically affected the length of the cilium. For a selection of compounds (Clofibrate, Gefitinib, Sirolimus, Imexon and Dexamethasone) their ability to restore ciliogenesis was confirmed in a panel of human cancer cell line models representing different cancer types (pancreas, lung, kidney, breast). Most compounds attenuated cell proliferation, at least in part through induction of the primary cilium, as demonstrated by cilium removal using chloral hydrate. These findings reveal that several commonly used drugs restore ciliogenesis in cancer cells, and warrant further investigation of their antineoplastic properties.
Collapse
Affiliation(s)
- Niamat Ali Khan
- KU Leuven - University of Leuven, Department of Oncology, Laboratory of Lipid Metabolism and Cancer, 3000 Leuven, Belgium
| | - Nicolas Willemarck
- KU Leuven - University of Leuven, Department of Oncology, Laboratory of Lipid Metabolism and Cancer, 3000 Leuven, Belgium
| | - Ali Talebi
- KU Leuven - University of Leuven, Department of Oncology, Laboratory of Lipid Metabolism and Cancer, 3000 Leuven, Belgium
| | | | - Maria Mercedes Binda
- KU Leuven - University of Leuven, Department of Oncology, Laboratory of Lipid Metabolism and Cancer, 3000 Leuven, Belgium
| | - Jonas Dehairs
- KU Leuven - University of Leuven, Department of Oncology, Laboratory of Lipid Metabolism and Cancer, 3000 Leuven, Belgium
| | - Natalia Rueda-Rincon
- KU Leuven - University of Leuven, Department of Oncology, Laboratory of Lipid Metabolism and Cancer, 3000 Leuven, Belgium
| | - Veerle W. Daniels
- KU Leuven - University of Leuven, Department of Oncology, Laboratory of Lipid Metabolism and Cancer, 3000 Leuven, Belgium
| | - Muralidhararao Bagadi
- KU Leuven - University of Leuven, Department of Oncology, Laboratory of Lipid Metabolism and Cancer, 3000 Leuven, Belgium
| | - Deepak Balaji Thimiri Govinda Raj
- European Molecular Biology Laboratory (EMBL), Grenoble Outstation and Unit of Virus Host-Cell Interactions (UVHCI), UJF-EMBL-CNRS, CS 90181, France
| | - Frank Vanderhoydonc
- KU Leuven - University of Leuven, Department of Oncology, Laboratory of Lipid Metabolism and Cancer, 3000 Leuven, Belgium
| | - Sebastian Munck
- VIB Bio Imaging Core and Center for the Biology of Disease, 3000 Leuven, Belgium
- KU Leuven - University of Leuven, Center for Human Genetics, 3000 Leuven, Belgium
| | - Patrick Chaltin
- Cistim Leuven vzw, Bioincubator 2, 3001 Leuven, Belgium
- Centre for Drug Design and Discovery (CD3) KU Leuven R & D, Bioincubator 2, 3001 Leuven, Belgium
| | - Johannes V. Swinnen
- KU Leuven - University of Leuven, Department of Oncology, Laboratory of Lipid Metabolism and Cancer, 3000 Leuven, Belgium
| |
Collapse
|