1
|
Donahue CL, Westman CL, Faanes BL, Qureshi AM, Barocas VH, Aggarwal V. Finite element modeling with patient-specific geometry to assess clinical risks of percutaneous pulmonary valve implantation. Catheter Cardiovasc Interv 2024; 103:924-933. [PMID: 38597297 DOI: 10.1002/ccd.31016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 03/10/2024] [Accepted: 03/19/2024] [Indexed: 04/11/2024]
Abstract
BACKGROUND Percutaneous pulmonary valve implantation (PPVI) is a non-surgical treatment for right ventricular outflow tract (RVOT) dysfunction. During PPVI, a stented valve, delivered via catheter, replaces the dysfunctional pulmonary valve. Stent oversizing allows valve anchoring within the RVOT, but overexpansion can intrude on the surrounding structures. Potentially dangerous outcomes include aortic valve insufficiency (AVI) from aortic root (AR) distortion and myocardial ischemia from coronary artery (CA) compression. Currently, risks are evaluated via balloon angioplasty/sizing before stent deployment. Patient-specific finite element (FE) analysis frameworks can improve pre-procedural risk assessment, but current methods require hundreds of hours of high-performance computation. METHODS We created a simplified method to simulate the procedure using patient-specific FE models for accurate, efficient pre-procedural PPVI (using balloon expandable valves) risk assessment. The methodology was tested by retrospectively evaluating the clinical outcome of 12 PPVI candidates. RESULTS Of 12 patients (median age 14.5 years) with dysfunctional RVOT, 7 had native RVOT and 5 had RV-PA conduits. Seven patients had undergone successful RVOT stent/valve placement, three had significant AVI on balloon testing, one had left CA compression, and one had both AVI and left CA compression. A model-calculated change of more than 20% in lumen diameter of the AR or coronary arteries correctly predicted aortic valve sufficiency and/or CA compression in all the patients. CONCLUSION Agreement between FE results and clinical outcomes is excellent. Additionally, these models run in 2-6 min on a desktop computer, demonstrating potential use of FE analysis for pre-procedural risk assessment of PPVI in a clinically relevant timeframe.
Collapse
Affiliation(s)
- Carly L Donahue
- Department of Biomedical Engineering, University of Minnesota, Twin Cities, Minnesota, USA
| | - Claire L Westman
- Department of Biomedical Engineering, University of Minnesota, Twin Cities, Minnesota, USA
| | - Brittany L Faanes
- Division of Pediatric Cardiology, Department of Pediatrics, University of Minnesota Masonic Children's Hospital, Minneapolis, Minnesota, USA
| | - Athar M Qureshi
- Department of Pediatrics, The Lillei Frank Abercombie Section of Pediatric Cardiology, Texas Children's Hospital and Baylor College of Medicine, Houston, Texas, USA
| | - Victor H Barocas
- Department of Biomedical Engineering, University of Minnesota, Twin Cities, Minnesota, USA
| | - Varun Aggarwal
- Division of Pediatric Cardiology, Department of Pediatrics, University of Minnesota Masonic Children's Hospital, Minneapolis, Minnesota, USA
| |
Collapse
|
2
|
Karimi A, Aga M, Khan T, D'costa SD, Cardenas-Riumallo S, Zelenitz M, Kelley MJ, Acott TS. Dynamic traction force in trabecular meshwork cells: A 2D culture model for normal and glaucomatous states. Acta Biomater 2024; 175:138-156. [PMID: 38151067 PMCID: PMC10843681 DOI: 10.1016/j.actbio.2023.12.033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 12/10/2023] [Accepted: 12/20/2023] [Indexed: 12/29/2023]
Abstract
Glaucoma, which is associated with intraocular pressure (IOP) elevation, results in trabecular meshwork (TM) cellular dysfunction, leading to increased rigidity of the extracellular matrix (ECM), larger adhesion forces between the TM cells and ECM, and higher resistance to aqueous humor drainage. TM cells sense the mechanical forces due to IOP dynamic and apply multidimensional forces on the ECM. Recognizing the importance of cellular forces in modulating various cellular activities and development, this study is aimed to develop a 2D in vitro cell culture model to calculate the 3D, depth-dependent, dynamic traction forces, tensile/compressive/shear strain of the normal and glaucomatous human TM cells within a deformable polyacrylamide (PAM) gel substrate. Normal and glaucomatous human TM cells were isolated, cultured, and seeded on top of the PAM gel substrate with embedded FluoSpheres, spanning elastic moduli of 1.5 to 80 kPa. Sixteen-hour post-seeding live confocal microscopy in an incubator was conducted to Z-stack image the 3D displacement map of the FluoSpheres within the PAM gels. Combined with the known PAM gel stiffness, we ascertained the 3D traction forces in the gel. Our results revealed meaningfully larger traction forces in the glaucomatous TM cells compared to the normal TM cells, reaching depths greater than 10-µm in the PAM gel substrate. Stress fibers in TM cells increased with gel rigidity, but diminished when stiffness rose from 20 to 80 kPa. The developed 2D cell culture model aids in understanding how altered mechanical properties in glaucoma impact TM cell behavior and aqueous humor outflow resistance. STATEMENT OF SIGNIFICANCE: Glaucoma, a leading cause of irreversible blindness, is intricately linked to elevated intraocular pressures and their subsequent cellular effects. The trabecular meshwork plays a pivotal role in this mechanism, particularly its interaction with the extracellular matrix. This research unveils an advanced 2D in vitro cell culture model that intricately maps the complex 3D forces exerted by trabecular meshwork cells on the extracellular matrix, offering unparalleled insights into the cellular biomechanics at play in both healthy and glaucomatous eyes. By discerning the changes in these forces across varying substrate stiffness levels, we bridge the gap in understanding between cellular mechanobiology and the onset of glaucoma. The findings stand as a beacon for potential therapeutic avenues, emphasizing the gravity of cellular/extracellular matrix interactions in glaucoma's pathogenesis and setting the stage for targeted interventions in its early stages.
Collapse
Affiliation(s)
- Alireza Karimi
- Department of Ophthalmology, Casey Eye Institute, Oregon Health & Science University, Portland, OR, USA; Department of Biomedical Engineering, Oregon Health & Science University, Portland, OR, USA.
| | - Mini Aga
- Department of Ophthalmology, Casey Eye Institute, Oregon Health & Science University, Portland, OR, USA
| | - Taaha Khan
- Department of Ophthalmology, Casey Eye Institute, Oregon Health & Science University, Portland, OR, USA
| | - Siddharth Daniel D'costa
- Department of Ophthalmology, Casey Eye Institute, Oregon Health & Science University, Portland, OR, USA
| | | | - Meadow Zelenitz
- Department of Ophthalmology, Casey Eye Institute, Oregon Health & Science University, Portland, OR, USA
| | - Mary J Kelley
- Department of Ophthalmology, Casey Eye Institute, Oregon Health & Science University, Portland, OR, USA; Department Integrative Biosciences, School of Dentistry, Oregon Health & Science University, Portland, OR, USA
| | - Ted S Acott
- Department of Ophthalmology, Casey Eye Institute, Oregon Health & Science University, Portland, OR, USA; Department Chemical Physiology & Biochemistry, School of Medicine, Oregon Health & Science University, Portland, OR, USA
| |
Collapse
|
3
|
Karimi A, Khan S, Razaghi R, Aga M, Rahmati SM, White E, Kelley MJ, Jian Y, Acott TS. Segmental biomechanics of the normal and glaucomatous human aqueous outflow pathway. Acta Biomater 2024; 173:148-166. [PMID: 37944773 PMCID: PMC10841915 DOI: 10.1016/j.actbio.2023.11.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 10/18/2023] [Accepted: 11/02/2023] [Indexed: 11/12/2023]
Abstract
The conventional aqueous outflow pathway, encompassing the trabecular meshwork (TM), juxtacanalicular connective tissue (JCT), and inner wall endothelium of Schlemm's canal (SC), governs intraocular pressure (IOP) regulation. This study targets the biomechanics of low-flow (LF) and high-flow (HF) regions within the aqueous humor outflow pathway in normal and glaucomatous human donor eyes, using a combined experimental and computational approach. LF and HF TM/JCT/SC complex tissues from normal and glaucomatous eyes underwent uniaxial tensile testing. Dynamic motion of the TM/JCT/SC complex was recorded using customized green-light optical coherence tomography during SC pressurization in cannulated anterior segment wedges. A hyperviscoelastic model quantified TM/JCT/SC complex properties. A fluid-structure interaction model simulated tissue-aqueous humor interaction. FluoSpheres were introduced into the pathway via negative pressure in the SC, with their motion tracked using two-photon excitation microscopy. Tensile test results revealed that the elastic moduli of the LF and HF regions in glaucomatous eyes are 3.5- and 1.5-fold stiffer than the normal eyes, respectively. The FE results also showed significantly larger shear moduli in the TM, JCT, and SC of the glaucomatous eyes compared to the normal subjects. The LF regions in normal eyes demonstrated larger elastic moduli compared to the HF regions in glaucomatous eyes. The resultant strain in the outflow tissues and velocity of the aqueous humor in the FSI models were in good agreement with the digital volume correlation and 3D particle image velocimetry data, respectively. This study uncovers stiffer biomechanical responses in glaucomatous eyes, with LF regions stiffer than HF regions in both normal and glaucomatous eyes. STATEMENT OF SIGNIFICANCE: This study delves into the biomechanics of the conventional aqueous outflow pathway, a crucial regulator of intraocular pressure and ocular health. By analyzing mechanical differences in low-flow and high-flow regions of normal and glaucomatous eyes, this research unveils the stiffer response in glaucomatous eyes. The distinction between regions' properties offers insights into aqueous humor outflow regulation, while the integration of experimental and computational methods enhances credibility. These findings have potential implications for disease management and present a vital step toward innovative ophthalmic interventions. This study advances our understanding of glaucoma's biomechanical basis and its broader impact on ocular health.
Collapse
Affiliation(s)
- Alireza Karimi
- Department of Ophthalmology, Casey Eye Institute, Oregon Health & Science University, Portland, OR, USA; Department of Biomedical Engineering, Oregon Health & Science University, Portland, OR, USA.
| | - Shanjida Khan
- Department of Ophthalmology, Casey Eye Institute, Oregon Health & Science University, Portland, OR, USA; Department of Biomedical Engineering, Oregon Health & Science University, Portland, OR, USA
| | - Reza Razaghi
- Department of Ophthalmology, Casey Eye Institute, Oregon Health & Science University, Portland, OR, USA
| | - Mini Aga
- Department of Ophthalmology, Casey Eye Institute, Oregon Health & Science University, Portland, OR, USA
| | | | - Elizabeth White
- Department of Ophthalmology, Casey Eye Institute, Oregon Health & Science University, Portland, OR, USA
| | - Mary J Kelley
- Department of Ophthalmology, Casey Eye Institute, Oregon Health & Science University, Portland, OR, USA; Department Integrative Biosciences, School of Dentistry, Oregon Health & Science University, Portland, OR, USA
| | - Yifan Jian
- Department of Ophthalmology, Casey Eye Institute, Oregon Health & Science University, Portland, OR, USA; Department of Biomedical Engineering, Oregon Health & Science University, Portland, OR, USA
| | - Ted S Acott
- Department of Ophthalmology, Casey Eye Institute, Oregon Health & Science University, Portland, OR, USA; Department Chemical Physiology & Biochemistry, School of Medicine, Oregon Health & Science University, Portland, OR, USA
| |
Collapse
|
4
|
Taheri RA, Razaghi R, Bahramifar A, Morshedi M, Mafi M, Karimi A. Interaction of the Blood Components with Ascending Thoracic Aortic Aneurysm Wall: Biomechanical and Fluid Analyses. Life (Basel) 2022; 12:1296. [PMID: 36143333 PMCID: PMC9503674 DOI: 10.3390/life12091296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 08/09/2022] [Accepted: 08/19/2022] [Indexed: 01/13/2023] Open
Abstract
BACKGROUND Ascending thoracic aortic aneurysm (ATAA) is an asymptomatic localized dilation of the aorta that is prone to rupture with a high rate of mortality. While diameter is the main risk factor for rupture assessment, it has been shown that the peak wall stress from finite element (FE) simulations may contribute to refinement of clinical decisions. In FE simulations, the intraluminal boundary condition is a single-phase blood flow that interacts with the thoracic aorta (TA). However, the blood is consisted of red blood cells (RBCs), white blood cells (WBCs), and plasma that interacts with the TA wall, so it may affect the resultant stresses and strains in the TA, as well as hemodynamics of the blood. METHODS In this study, discrete elements were distributed in the TA lumen to represent the blood components and mechanically coupled using fluid-structure interaction (FSI). Healthy and aneurysmal human TA tissues were subjected to axial and circumferential tensile loadings, and the hyperelastic mechanical properties were assigned to the TA and ATAA FE models. RESULTS The ATAA showed larger tensile and shear stresses but smaller fluid velocity compared to the ATA. The blood components experienced smaller shear stress in interaction with the ATAA wall compared to TA. The computational fluid dynamics showed smaller blood velocity and wall shear stress compared to the FSI. CONCLUSIONS This study is a first proof of concept, and future investigations will aim at validating the novel methodology to derive a more reliable ATAA rupture risk assessment considering the interaction of the blood components with the TA wall.
Collapse
Affiliation(s)
- Ramezan Ali Taheri
- Nanobiotechnology Research Center, Baqiyatallah University of Medical Sciences, Tehran 1435916471, Iran
| | - Reza Razaghi
- Department of Ophthalmology and Visual Sciences, University of Alabama at Birmingham, Birmingham, AL 35233, USA
| | - Ali Bahramifar
- Trauma Research Center, Baqiyatallah University of Medical Sciences, Tehran 1435916471, Iran
| | - Mahdi Morshedi
- Department of Surgery, Trauma Research Center, Baqiyatallah University of Medical Sciences, Tehran 1435916471, Iran
| | - Majid Mafi
- Biomedical Engineering Research Center, Baqiyatallah University of Medical Sciences, Tehran 1435916471, Iran
| | - Alireza Karimi
- Department of Ophthalmology and Visual Sciences, University of Alabama at Birmingham, Birmingham, AL 35233, USA
| |
Collapse
|
5
|
An inverse method for mechanical characterization of heterogeneous diseased arteries using intravascular imaging. Sci Rep 2021; 11:22540. [PMID: 34795350 PMCID: PMC8602310 DOI: 10.1038/s41598-021-01874-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2021] [Accepted: 10/27/2021] [Indexed: 11/08/2022] Open
Abstract
The increasing prevalence of finite element (FE) simulations in the study of atherosclerosis has spawned numerous inverse FE methods for the mechanical characterization of diseased tissue in vivo. Current approaches are however limited to either homogenized or simplified material representations. This paper presents a novel method to account for tissue heterogeneity and material nonlinearity in the recovery of constitutive behavior using imaging data acquired at differing intravascular pressures by incorporating interfaces between various intra-plaque tissue types into the objective function definition. Method verification was performed in silico by recovering assigned material parameters from a pair of vessel geometries: one derived from coronary optical coherence tomography (OCT); one generated from in silico-based simulation. In repeated tests, the method consistently recovered 4 linear elastic (0.1 ± 0.1% error) and 8 nonlinear hyperelastic (3.3 ± 3.0% error) material parameters. Method robustness was also highlighted in noise sensitivity analysis, where linear elastic parameters were recovered with average errors of 1.3 ± 1.6% and 8.3 ± 10.5%, at 5% and 20% noise, respectively. Reproducibility was substantiated through the recovery of 9 material parameters in two more models, with mean errors of 3.0 ± 4.7%. The results highlight the potential of this new approach, enabling high-fidelity material parameter recovery for use in complex cardiovascular computational studies.
Collapse
|
6
|
Kozuń M, Chwiłkowska A, Pezowicz C, Kobielarz M. Influence of atherosclerosis on anisotropy and incompressibility of the human thoracic aortic wall. Biocybern Biomed Eng 2021. [DOI: 10.1016/j.bbe.2020.11.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
7
|
Razaghi R, Biglari H, Karimi A. A patient-specific fluid–structure interaction model of the cerebrovascular damage in relation to traumatic brain injury. TRAUMA-ENGLAND 2020. [DOI: 10.1177/1460408620921729] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Background There is a lack of knowledge on the magnitudes of the biomechanical stresses and deformations occurring in the cerebral arterial wall after traumatic brain injury (TBI). Experimental techniques are unable to calculate the stresses and deformations in the cerebral arterial wall after TBI; therefore, the application of numerical simulations, such as finite element modeling, is preferred. Methods This study was aimed to calculate the stresses and deformations as well as the alteration in the pressure and velocity of the blood in the cerebrovascular artery using a fluid–structure interaction model. Results The results revealed considerable increase in the pressure and velocity of the blood which might lead to cerebrovascular damage followed by hemorrhage. The arterial wall showed the highest deformation of 0.047 mm in the X direction which was higher than that in the Y (0.035–0.050 mm) and Z (0.019–0.030 mm) directions. Conclusions These results have implications not only for the understanding of the stresses and deformations in the cerebral artery because of TBI, but also for providing a comprehensive knowledge for biomechanical and medical experts in regard to thresholds of cerebrovascular damage for use in establishing preventive and/or treatment methods.
Collapse
Affiliation(s)
- Reza Razaghi
- Department of Mechanical Engineering, University of Tabriz, Tabriz, Iran
| | - Hasan Biglari
- Department of Mechanical Engineering, University of Tabriz, Tabriz, Iran
| | - Alireza Karimi
- Department of Mechanical Engineering, Kyushu University, Fukuoka, Japan
| |
Collapse
|
8
|
Karimi A, Razaghi R, Koyama M. A patient-specific numerical modeling of the spontaneous coronary artery dissection in relation to atherosclerosis. COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE 2019; 182:105060. [PMID: 31514089 DOI: 10.1016/j.cmpb.2019.105060] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Revised: 08/28/2019] [Accepted: 08/31/2019] [Indexed: 06/10/2023]
Abstract
The spontaneous coronary artery dissection (SCAD) is a clinical complication of angioplasty leading to an initiation of a tear/crack in the intima layer of the artery. The crack can propagate to the interface of the intima-media layer following by intramural hematoma. The relation between the SCAD and atherosclerosis is a controversial issue, as some studies stated no correlation between them while others showed that a crack can initiate in the intima but cannot propagate into the atrophied media layer. To investigate the relation between the intraluminal crack propagation in the atherosclerotic artery and SCAD, this study numerically investigated the initiation and propagation of a crack in the intraluminal and radial locations of the healthy and atherosclerotic human coronary arterial walls. The energy release rate, namely J-integral, is computed as a numerical derivative of the strain energy with respect to a crack extension using a user-defined virtual crack method (VCE) of extended finite element method (XFEM). Experimental measurements were carried out to calculate the elasto-plastic mechanical properties of the healthy and atherosclerotic human coronary arteries. The experimental data were then assigned to our own established patient-specific FE model of the coronary artery. Cracks were sketched in the intraluminal and radial locations of the arterial wall and allowed to propagate to the virtual interface of the intima-media to form a false lumen. The results revealed a higher stress at the crack tip of the healthy arterial wall compared to the atherosclerotic one. Lower crack tip opening displacement (CTOD) and crack tip opening angle (CTOA) were observed in the intraluminal crack of the atherosclerotic artery. J-integral of the atherosclerotic arterial wall was also found to be higher than the healthy one at the intraluminal crack. The results revealed that although a crack can initiate in the intraluminal of an atherosclerotic artery, it cannot propagate into the media layer due to a relatively higher rate of the strain energy release in the atherosclerotic arterial wall compared to the healthy one.
Collapse
Affiliation(s)
- Alireza Karimi
- Department of Mechanical Engineering, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan.
| | - Reza Razaghi
- Research Department, Heel of Scene Ltd., Fukuoka, Japan
| | - Motomichi Koyama
- Institute for Materials Research, Tohoku University, Sendai 980-8577, Japan.
| |
Collapse
|
9
|
Determination of the Material Parameters in the Holzapfel-Gasser-Ogden Constitutive Model for Simulation of Age-Dependent Material Nonlinear Behavior for Aortic Wall Tissue under Uniaxial Tension. APPLIED SCIENCES-BASEL 2019. [DOI: 10.3390/app9142851] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
In this study, computational simulations and experiments were performed to investigate the mechanical behavior of the aorta wall because of the increasing occurrences of aorta-related diseases. The study focused on the deformation and strength of porcine and healthy human abdominal aortic tissues under uniaxial tensile loading. The experiments for the mechanical behavior of the arterial tissue were conducted using a uniaxial tensile test apparatus to validate the simulation results. In addition, the strength and stretching of the tissues in the abdominal aorta of a healthy human as a function of age were investigated based on the uniaxial tensile tests. Moreover, computational simulations using the ABAQUS finite element analysis program were conducted on the experimental scenarios based on age, and the Holzapfel–Gasser–Ogden (HGO) model was applied during the simulation. The material parameters and formulae to be used in the HGO model were proposed to identify the failure stress and stretch correlation with age.
Collapse
|
10
|
Razaghi R, Biglari H, Karimi A. Risk of rupture of the cerebral aneurysm in relation to traumatic brain injury using a patient-specific fluid-structure interaction model. COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE 2019; 176:9-16. [PMID: 31200915 DOI: 10.1016/j.cmpb.2019.04.015] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Revised: 04/10/2019] [Accepted: 04/13/2019] [Indexed: 06/09/2023]
Abstract
BACKGROUND AND OBJECTIVE Cerebral aneurysm, which is defined as one of the weakened area in the wall of an artery in the brain, ruptures when wall tension exceeds its mechanical strength. Traumatic brain injury (TBI) by exerting a sudden impact load to the brain can lead to mechanical failure of the cerebral blood vessels followed by an alteration in not only the structure but also the function of the cerebrovascular. TBI also alters the hemodynamics of the blood flow in the cerebrovascular, while it has been shown that hemodynamics has a key asset in the progression and rupture of the cerebral aneurysms. So far, there is a lack of knowledge on the risk of rupture of the cerebral aneurysm in relation to TBI. Therefore, this study aimed to calculate the mechanical stresses and deformations in the arterial wall as well as the pressure and velocity of the blood using a fluid-structure interaction (FSI) model of the cerebral aneurysm located in the anterior circulation region of the circle of Willis. METHOD A patient-specific FSI model of the human skull, brain, and cerebral aneurysm, was established using human computed tomography (CT)/ magnetic resonance imaging (MRI) data and subjected to a frontal TBI. RESULTS The results revealed considerable increasing of ∼ 8 kPa (60 mmHg) and 0.40 m/s in the pressure and velocity of the blood in the intraluminal of the cerebral artery after TBI. The von Mises stress, shear stress, and deformation of the cerebral aneurysm wall also showed the increasing of 56.03 kPa, 15.66 Pa, and 0.072 mm after TBI, respectively. CONCLUSIONS Although the injury to the aneurysm wall after TBI is lower than that of the aneurysm wall mechanical strength, it still can alter the stress pattern in the wall and disrupt the hemodynamics of the blood. These results have implications in understanding the rupture risk of the cerebral aneurysm due to TBI, which may contribute in establishing preventive and/or treatment methods.
Collapse
Affiliation(s)
- Reza Razaghi
- Department of Mechanical Engineering, University of Tabriz, Tabriz 51666, Iran.
| | - Hasan Biglari
- Department of Mechanical Engineering, University of Tabriz, Tabriz 51666, Iran.
| | - Alireza Karimi
- Department of Mechanical Engineering, Kyushu University, 744 Motooka, Nishi-Ku, Fukuoka 819-0395, Japan.
| |
Collapse
|
11
|
Karimi A, Razaghi R. The role of smoking on the mechanical properties of the human lung. Technol Health Care 2018; 26:963-972. [DOI: 10.3233/thc-181340] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Affiliation(s)
- Alireza Karimi
- Department of Mechanical Engineering, Kyushu University, Fukuoka 819-0395, Japan
| | | |
Collapse
|
12
|
Maso Talou GD, Blanco PJ, Ares GD, Guedes Bezerra C, Lemos PA, Feijóo RA. Mechanical Characterization of the Vessel Wall by Data Assimilation of Intravascular Ultrasound Studies. Front Physiol 2018; 9:292. [PMID: 29643815 PMCID: PMC5882902 DOI: 10.3389/fphys.2018.00292] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2017] [Accepted: 03/12/2018] [Indexed: 12/24/2022] Open
Abstract
Atherosclerotic plaque rupture and erosion are the most important mechanisms underlying the sudden plaque growth, responsible for acute coronary syndromes and even fatal cardiac events. Advances in the understanding of the culprit plaque structure and composition are already reported in the literature, however, there is still much work to be done toward in-vivo plaque visualization and mechanical characterization to assess plaque stability, patient risk, diagnosis and treatment prognosis. In this work, a methodology for the mechanical characterization of the vessel wall plaque and tissues is proposed based on the combination of intravascular ultrasound (IVUS) imaging processing, data assimilation and continuum mechanics models within a high performance computing (HPC) environment. Initially, the IVUS study is gated to obtain volumes of image sequences corresponding to the vessel of interest at different cardiac phases. These sequences are registered against the sequence of the end-diastolic phase to remove transversal and longitudinal rigid motions prescribed by the moving environment due to the heartbeat. Then, optical flow between the image sequences is computed to obtain the displacement fields of the vessel (each associated to a certain pressure level). The obtained displacement fields are regarded as observations within a data assimilation paradigm, which aims to estimate the material parameters of the tissues within the vessel wall. Specifically, a reduced order unscented Kalman filter is employed, endowed with a forward operator which amounts to address the solution of a hyperelastic solid mechanics model in the finite strain regime taking into account the axially stretched state of the vessel, as well as the effect of internal and external forces acting on the arterial wall. Due to the computational burden, a HPC approach is mandatory. Hence, the data assimilation and computational solid mechanics computations are parallelized at three levels: (i) a Kalman filter level; (ii) a cardiac phase level; and (iii) a mesh partitioning level. To illustrate the capabilities of this novel methodology toward the in-vivo analysis of patient-specific vessel constituents, mechanical material parameters are estimated using in-silico and in-vivo data retrieved from IVUS studies. Limitations and potentials of this approach are exposed and discussed.
Collapse
Affiliation(s)
- Gonzalo D Maso Talou
- National Laboratory for Scientific Computing, Department of Mathematical and Computational Methods, Petrópolis, Brazil.,National Institute of Science and Technology in Medicine Assisted by Scientific Computing, São Paulo, Brazil
| | - Pablo J Blanco
- National Laboratory for Scientific Computing, Department of Mathematical and Computational Methods, Petrópolis, Brazil.,National Institute of Science and Technology in Medicine Assisted by Scientific Computing, São Paulo, Brazil
| | - Gonzalo D Ares
- National Institute of Science and Technology in Medicine Assisted by Scientific Computing, São Paulo, Brazil.,National Scientific and Technical Research Council, Buenos Aires, Argentina.,CAE Group, National University of Mar del Plata, Mar del Plata, Argentina
| | - Cristiano Guedes Bezerra
- National Institute of Science and Technology in Medicine Assisted by Scientific Computing, São Paulo, Brazil.,Department of Interventional Cardiology, Heart Institute (Incor), São Paulo, Brazil
| | - Pedro A Lemos
- National Institute of Science and Technology in Medicine Assisted by Scientific Computing, São Paulo, Brazil.,Department of Interventional Cardiology, Heart Institute (Incor), São Paulo, Brazil
| | - Raúl A Feijóo
- National Laboratory for Scientific Computing, Department of Mathematical and Computational Methods, Petrópolis, Brazil.,National Institute of Science and Technology in Medicine Assisted by Scientific Computing, São Paulo, Brazil
| |
Collapse
|
13
|
|
14
|
Bahreinizad H, Salimi Bani M, Khosravi A, Karimi A. A numerical study on the application of the functionally graded bioabsorbable materials in the stent design. Artery Res 2018. [DOI: 10.1016/j.artres.2018.09.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022] Open
|
15
|
Karimi A, Shojaei A. An Experimental Study to Measure the Mechanical Properties of the Human Liver. Dig Dis 2017; 36:150-155. [PMID: 29131053 DOI: 10.1159/000481344] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/19/2017] [Accepted: 09/04/2017] [Indexed: 02/02/2023]
Abstract
BACKGROUND Since the liver is one of the most important organs of the body that can be injured during trauma, that is, during accidents like car crashes, understanding its mechanical properties is of great interest. Experimental data is needed to address the mechanical properties of the liver to be used for a variety of applications, such as the numerical simulations for medical purposes, including the virtual reality simulators, trauma research, diagnosis objectives, as well as injury biomechanics. However, the data on the mechanical properties of the liver capsule is limited to the animal models or confined to the tensile/compressive loading under single direction. Therefore, this study was aimed at experimentally measuring the axial and transversal mechanical properties of the human liver capsule under both the tensile and compressive loadings. METHODS To do that, 20 human cadavers were autopsied and their liver capsules were excised and histologically analyzed to extract the mean angle of a large fibers population (bundle of the fine collagen fibers). Thereafter, the samples were cut and subjected to a series of axial and transversal tensile/compressive loadings. RESULTS The results revealed the tensile elastic modulus of 12.16 ± 1.20 (mean ± SD) and 7.17 ± 0.85 kPa under the axial and transversal loadings respectively. Correspondingly, the compressive elastic modulus of 196.54 ± 13.15 and 112.41 ± 8.98 kPa were observed under the axial and transversal loadings respectively. The compressive axial and transversal maximum/failure stress of the capsule were 32.54 and 37.30 times higher than that of the tensile ones respectively. The capsule showed a stiffer behavior under the compressive load compared to the tensile one. In addition, the axial elastic modulus of the capsule was found to be higher than that of the transversal one. CONCLUSIONS The findings of the current study have implications not only for understanding the mechanical properties of the human capsule tissue under tensile/compressive loading, but also for providing unprocessed data for both the doctors and engineers to be used for diagnosis and simulation purposes.
Collapse
Affiliation(s)
- Alireza Karimi
- Department of Mechanical Engineering, Kyushu University, Fukuoka, Japan
| | | |
Collapse
|
16
|
Khosravi A, Akbari A, Bahreinizad H, Salimi Bani M, Karimi A. Optimizing through computational modeling to reduce dogboning of functionally graded coronary stent material. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2017; 28:142. [PMID: 28819891 DOI: 10.1007/s10856-017-5959-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2017] [Accepted: 08/03/2017] [Indexed: 06/07/2023]
Abstract
Coronary artery disease is the leading cause of death among the men and women. One of the most suitable treatments for this problem is balloon angioplasty with stenting. Functionally graded material (FGM) stents have shown suitable mechanical behavior in simulations. While their deformation was superior to uniform materials, the study was aimed at finding the most suitable configuration to reach the optimum performance. A combination of finite element method (FEM) and optimization algorithm have been used to fulfil this objective. To do that, three different conditions have been investigated in a Palmaz-Schatz geometry, where in the first and second ones the stent was a combination of steel and CoCr alloy (L605), and the third condition was a combination of CoCr alloy (L605) and CoCr alloy (F562). In the first and third conditions, dogboning was the objective function, but in the second condition a non-uniform deformation indicator was chosen as the objective function. In all three conditions the heterogeneous index was the control variable. The stent in the third condition showed a poor performance. While in the steel/CoCr alloy (L605) stents the heterogeneous index of 0.374 showed the lowest maximum dogboning, the heterogeneous index of 5 had more uniform deformation. Overall due to the lower dogboning of the steel/CoCr alloy (L605) stent with heterogeneous index of 0.374, this stent is recommended as the optimum stent in this geometrical configuration.
Collapse
Affiliation(s)
- Arezoo Khosravi
- Atherosclerosis Research Center, Baqiyatallah University of Medical science, Tehran, Iran
| | - Amir Akbari
- Department of Mechanical and Aerospace Engineering, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Hossein Bahreinizad
- Mechanical Engineering Department, Sahand University of Technology, Tabriz, Iran
| | - Milad Salimi Bani
- Department of Mechanical Engineering, Iran University of Science and Technology, Tehran, Iran.
| | - Alireza Karimi
- Department of Mechanical Engineering, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka, 819-0395, Japan
| |
Collapse
|
17
|
Karimi A, Rahmati SM, Razaghi R. A combination of experimental measurement, constitutive damage model, and diffusion tensor imaging to characterize the mechanical properties of the human brain. Comput Methods Biomech Biomed Engin 2017; 20:1350-1363. [DOI: 10.1080/10255842.2017.1362694] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Alireza Karimi
- Department of Mechanical Engineering, Kyushu University, Fukuoka, Japan
| | - Seyed Mohammadali Rahmati
- Biomechanics Groups, Faculty of Biomedical Engineering, Amirkabir University of Technology, Tehran, Iran
| | | |
Collapse
|
18
|
Khosravi A, Bahreinizad H, Bani MS, Karimi A. A numerical study on the application of the functionally graded materials in the stent design. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2017; 73:182-188. [PMID: 28183596 DOI: 10.1016/j.msec.2016.12.034] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2016] [Revised: 11/08/2016] [Accepted: 12/07/2016] [Indexed: 11/25/2022]
Abstract
Undesirable deformation of the stent can induce a significant amount of injure not only to the blood vessel but also to the plaque. The objective of this study was to reduce/minimize these undesirable deformations by the application of Functionally Graded Materials (FGM). To do this, Finite Element (FE) method was employed to simulate the expansion of a stent and the corresponding displacement of the stenosis plaque. Three hyperelastic plaque types as well as five elastoplastic stents were simulated. Dogboning, foreshortening, maximum stress in the plaque, and the pressure which is needed to fully expand the stent for different stent materials, were acquired. While all FGMs had lower dogboning in comparison to the stents made of the uniform materials, the stent with the lowest heterogeneous index displayed the lowest amount of dogboning. Steel stent showed the lowest foreshortening and fully expansion pressure but the difference was much lower than that the one for dogboning. Therefore, the FGM with the heterogeneous index of 0.5 is expected to exhibit the most suitable results. In addition, the results revealed that the material parameters has crucial effects on the deformation of the stent and, as a result, as a design point of view the FGM parameters can be tailored to achieve the goal of the biomechanical optimization.
Collapse
Affiliation(s)
- Arezoo Khosravi
- Atherosclerosis Research Center, Baqiyatallah University of Medical science, Tehran, Iran
| | - Hossein Bahreinizad
- Mechanical Engineering Department, Sahand University of Technology, Tabriz, Iran
| | - Milad Salimi Bani
- Mechanical Engineering Department, Iran University of Science and Technology, Tehran, Iran.
| | | |
Collapse
|
19
|
Karimi A, Rahmati SM, Sera T, Kudo S, Navidbakhsh M. A Combination of Constitutive Damage Model and Artificial Neural Networks to Characterize the Mechanical Properties of the Healthy and Atherosclerotic Human Coronary Arteries. Artif Organs 2017; 41:E103-E117. [PMID: 28150399 DOI: 10.1111/aor.12855] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2016] [Revised: 06/29/2016] [Indexed: 01/10/2023]
Abstract
It has been indicated that the content and structure of the elastin and collagen of the arterial wall can subject to a significant alteration due to the atherosclerosis. Consequently, a high tissue stiffness, stress, and even damage/rupture are triggered in the arterial wall. Although many studies so far have been conducted to quantify the mechanical properties of the coronary arteries, none of them consider the role of collagen damage of the healthy and atherosclerotic human coronary arterial walls. Recently, a fiber family-based constitutive equation was proposed to capture the anisotropic mechanical response of the healthy and atherosclerotic human coronary arteries via both the histostructural and uniaxial data. In this study, experimental mechanical measurements along with histological data of the healthy and atherosclerotic arterial walls were employed to determine the constitutive damage parameters and remodeling of the collagen fibers. To do this, the preconditioned arterial tissues were excised from human cadavers within 5-h postmortem, and the mean angle of their collagen fibers was precisely determined. Thereafter, a group of quasistatic axial and circumferential loadings were applied to the arterial walls, and the constrained nonlinear minimization method was employed to identify the arterial parameters according to the axial and circumferential extension data. The remodeling of the collagen fibers during the tensile test was also predicted via Artificial Neural Networks algorithm. Regardless of loading direction, the results presented a noteworthy load-bearing capability and stiffness of the atherosclerotic arteries compared to the healthy ones (P < 0.005). Theoretical fiber angles were found to be consistent with the experimental histological data with less than 2 and 5° difference for the healthy and atherosclerotic arterial walls, respectively. The pseudoelastic damage model data were also compared with that of the experimental data, and interestingly, the arterial mechanical behavior for both the primary loading (up to the elastic region) and the discontinuous softening (up to the ultimate stress) was well addressed. The proposed model predicted well the mechanical response of the arterial tissue considering the damage of collagen fibers for both the healthy and atherosclerotic arterial walls.
Collapse
Affiliation(s)
- Alireza Karimi
- Tissue Engineering and Biological Systems Research Laboratory, School of Mechanical Engineering, Iran University of Science and Technology.,Basir Eye Health Research Center, Tehran, Iran
| | | | - Toshihiro Sera
- Department of Mechanical Engineering, Kyushu University, Nishi-ku, Fukuoka, Japan
| | - Susumu Kudo
- Department of Mechanical Engineering, Kyushu University, Nishi-ku, Fukuoka, Japan
| | - Mahdi Navidbakhsh
- Tissue Engineering and Biological Systems Research Laboratory, School of Mechanical Engineering, Iran University of Science and Technology
| |
Collapse
|
20
|
Azinfar L, Ravanfar M, Wang Y, Zhang K, Duan D, Yao G. High resolution imaging of the fibrous microstructure in bovine common carotid artery using optical polarization tractography. JOURNAL OF BIOPHOTONICS 2017; 10:231-241. [PMID: 26663698 DOI: 10.1002/jbio.201500229] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2015] [Revised: 11/04/2015] [Accepted: 11/23/2015] [Indexed: 05/18/2023]
Abstract
The biomechanical properties of artery are primarily determined by the fibrous structures in the vessel wall. Many vascular diseases are associated with alternations in the orientation and alignment of the fibrous structure in the arterial wall. Knowledge on the structural features of the artery wall is crucial to our understanding of the biology of vascular diseases and the development of novel therapies. Optical coherence tomography (OCT) and polarization-sensitive OCT have shown great promise in imaging blood vessels due to their high resolution, fast acquisition, good imaging depth, and large field of view. However, the feasibility of using OCT based methods for imaging fiber orientation and distribution in the arterial wall has not been investigated. Here we show that the optical polarization tractography (OPT), a technology developed from Jones matrix OCT, can reveal the fiber orientation and alignment in the bovine common carotid artery. The fiber orientation and alignment data obtained in OPT provided a robust contrast marker to clearly resolve the intima and media boundary of the carotid artery wall. Optical polarization tractography can visualize fiber orientation and alignment in carotid artery.
Collapse
Affiliation(s)
- Leila Azinfar
- Department of Bioengineering, University of Missouri, Columbia, MO 65211, USA
| | | | - Yuanbo Wang
- Department of Bioengineering, University of Missouri, Columbia, MO 65211, USA
| | - Keqing Zhang
- Department of Molecular Microbiology & Immunology, University of Missouri, Columbia, MO 65211, USA
| | - Dongsheng Duan
- Department of Molecular Microbiology & Immunology, University of Missouri, Columbia, MO 65211, USA
| | - Gang Yao
- Department of Bioengineering, University of Missouri, Columbia, MO 65211, USA
| |
Collapse
|
21
|
Karimi A, Shojaei A, Razaghi R. Viscoelastic mechanical measurement of the healthy and atherosclerotic human coronary arteries using DIC technique. Artery Res 2017. [DOI: 10.1016/j.artres.2017.02.004] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
|
22
|
Halabian M, Beigzadeh B, Karimi A, Shirazi HA, Shaali MH. A combination of experimental and finite element analyses of needle-tissue interaction to compute the stresses and deformations during injection at different angles. J Clin Monit Comput 2016; 30:965-975. [PMID: 26515741 DOI: 10.1007/s10877-015-9801-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2015] [Accepted: 10/26/2015] [Indexed: 11/30/2022]
Abstract
One of the main clinical applications of the needles is its practical usage in the femoral vein catheterization. Annually more than two million peoples in the United States are exposed to femoral vein catheterization. How to use the input needles into the femoral vein has a key role in the sense of pain in post-injection and possible injuries, such as tissue damage and bleeding. It has been shown that there might be a correlation between the stresses and deformations due to femoral injection to the tissue and the sense of pain and, consequently, injuries caused by needles. In this study, the stresses and deformations induced by the needle to the femoral tissue were experimentally and numerically investigated in response to an input needle at four different angles, i.e., 30°, 45°, 60°, and 90°, via finite element method. In addition, a set of experimental injections at different angles were carried out to compare the numerical results with that of the experimental ones, namely pain score. The results revealed that by increasing the angle of injection up to 60°, the strain at the interaction site of the needle-tissue is increased accordingly while a significant falling is observed at the angle of 90°. In contrast, the stress due to injection was decreased at the region of needle-tissue interaction with showing the lowest one at the angle of 90°. Experimental results were also well confirmed the numerical observations since the lowest pain score was seen at the angle of 90°. The results suggest that the most effective angle of injection would be 90° due to a lower amount of stresses and deformations compared to the other angles of injection. These findings may have implications not only for understating the stresses and deformations induced during injection around the needle-tissue interaction, but also to give an outlook to the doctors to implement the most suitable angle of injection in order to reduce the pain as well as post injury of the patients.
Collapse
Affiliation(s)
- Mahdi Halabian
- School of Mechanical Engineering, Iran University of Science and Technology, Tehran, 16846, Iran.,Tissue Engineering and Biological Systems Research Laboratory, School of Mechanical Engineering, Iran University of Science and Technology, Tehran, 16886, Iran
| | - Borhan Beigzadeh
- School of Mechanical Engineering, Iran University of Science and Technology, Tehran, 16846, Iran
| | - Alireza Karimi
- School of Mechanical Engineering, Iran University of Science and Technology, Tehran, 16846, Iran. .,Tissue Engineering and Biological Systems Research Laboratory, School of Mechanical Engineering, Iran University of Science and Technology, Tehran, 16886, Iran. .,Department of Mechanical Engineering, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka, 819-0395, Japan.
| | - Hadi Asgharzadeh Shirazi
- School of Mechanical Engineering, Iran University of Science and Technology, Tehran, 16846, Iran.,Tissue Engineering and Biological Systems Research Laboratory, School of Mechanical Engineering, Iran University of Science and Technology, Tehran, 16886, Iran
| | - Mohammad Hasan Shaali
- School of Mechanical Engineering, Iran University of Science and Technology, Tehran, 16846, Iran
| |
Collapse
|
23
|
Numerical investigation of the haemodynamics in the human fetal umbilical vein/ductus venosus based on the experimental data. Biosci Rep 2016; 36:BSR20160099. [PMID: 27512094 PMCID: PMC5041159 DOI: 10.1042/bsr20160099] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2016] [Accepted: 08/10/2016] [Indexed: 11/25/2022] Open
Abstract
Abortion of the fetus due to a disease, in an early stage of pregnancy, has been dramatically increased in the last decades. There is a still lack of knowledge on the various types of diseases which lead fetus to a vulnerable circumstance. The transport of oxygenated blood from the placenta to the human fetus has been an important clinical feature in Doppler velocimetry studies, especially the ductus venosus (DV). The DV connects intra-abdominal portion of the umbilical vein and the inferior vena cava (IVC) at the inlet of the right atrium and is, therefore, important when examining the fetus state of health. An abnormal flow in the DV can indicate a fetal disease such as, chromosomal abnormalities, cardiac defect, hypoxaemia and intrauterine growth restriction (IUGR). The blood flow in the fetal circulation has not been investigated much in detail. The blood flow in the fetal circulation provides necessary information for physician to make a suitable decision on abortion or alternative medical practice before or even after birth. The present study performed a comparative study to quantify the blood velocity in DV by a combination approach based on 3D computational simulation and Doppler measurement. The results showed that the velocity value in DV is significant and can be considered as an indicator of any kind of disease in fetal. The nodal displacement of the model was also analysed. It shows that DV tolerates a higher level of displacement compared with the other regions of the model, whereas the nodal pressure shows different results as the lowest values are located in DV.
Collapse
|
24
|
Karimi A, Rahmati SM, Sera T, Kudo S, Navidbakhsh M. A combination of experimental and numerical methods to investigate the role of strain rate on the mechanical properties and collagen fiber orientations of the healthy and atherosclerotic human coronary arteries. Bioengineered 2016; 8:154-170. [PMID: 27588460 DOI: 10.1080/21655979.2016.1212134] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022] Open
Abstract
Atherosclerosis enables to alter not only the microstructural but also the physical properties of the arterial walls by plaque forming. Few studies so far have been conducted to calculate the isotropic or anisotropic mechanical properties of the healthy and atherosclerotic human coronary arteries. To date there is a paucity of knowledge on the mechanical response of the arteries under different strain rates. Therefore, the objective of the concurrent research was to comprehend whether the alteration in the strain rates of the human atherosclerotic arteries in comparison with the healthy ones contribute to the biomechanical behaviors. To do this, healthy and atherosclerotic human coronary arteries were removed from 18 individuals during autopsy. Histological analyses by both an expert histopathologist and an imaged-based recognizer software were performed to figure out the average angle of collagen fibers in the healthy and atherosclerotic arterial walls. Thereafter, the samples were subjected to 3 diverse strain rates, i.e., 5, 20, and 50 mm/min, until the material failure occurs. The stress-strain diagrams of the arterial tissues were calculated in order to capture their linear elastic and nonlinear hyperelastic mechanical properties. In addition, Artificial Neural Networks (ANNs) was employed to predict the alteration of mean angle of collagen fibers during load bearing up to failure. The findings suggest that strain rate has a significant (p < 0.05) role in the linear elastic and nonlinear hyperelastic mechanical properties as well as the mean angle of collagen fibers of the atherosclerotic arteries, whereas no specific impact on the healthy ones. Furthermore, the mean angle of collagen fibers during the load bearing up to the failure at each strain rate was well predicted by the proposed ANNs code.
Collapse
Affiliation(s)
- Alireza Karimi
- a Tissue Engineering and Biological Systems Research Laboratory, School of Mechanical Engineering, Iran University of Science and Technology , Tehran , Iran.,b Basir Health Research Center , Tehran , Iran
| | | | - Toshihiro Sera
- d Department of Mechanical Engineering , Kyushu University , Nishi-ku , Fukuoka , Japan
| | - Susumu Kudo
- d Department of Mechanical Engineering , Kyushu University , Nishi-ku , Fukuoka , Japan
| | - Mahdi Navidbakhsh
- a Tissue Engineering and Biological Systems Research Laboratory, School of Mechanical Engineering, Iran University of Science and Technology , Tehran , Iran
| |
Collapse
|
25
|
Guo X, Zhu J, Maehara A, Monoly D, Samady H, Wang L, Billiar KL, Zheng J, Yang C, Mintz GS, Giddens DP, Tang D. Quantify patient-specific coronary material property and its impact on stress/strain calculations using in vivo IVUS data and 3D FSI models: a pilot study. Biomech Model Mechanobiol 2016; 16:333-344. [PMID: 27561649 DOI: 10.1007/s10237-016-0820-3] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2016] [Accepted: 08/17/2016] [Indexed: 01/09/2023]
Abstract
Computational models have been used to calculate plaque stress and strain for plaque progression and rupture investigations. An intravascular ultrasound (IVUS)-based modeling approach is proposed to quantify in vivo vessel material properties for more accurate stress/strain calculations. In vivo Cine IVUS and VH-IVUS coronary plaque data were acquired from one patient with informed consent obtained. Cine IVUS data and 3D thin-slice models with axial stretch were used to determine patient-specific vessel material properties. Twenty full 3D fluid-structure interaction models with ex vivo and in vivo material properties and various axial and circumferential shrink combinations were constructed to investigate the material stiffness impact on stress/strain calculations. The approximate circumferential Young's modulus over stretch ratio interval [1.0, 1.1] for an ex vivo human plaque sample and two slices (S6 and S18) from our IVUS data were 1631, 641, and 346 kPa, respectively. Average lumen stress/strain values from models using ex vivo, S6 and S18 materials with 5 % axial shrink and proper circumferential shrink were 72.76, 81.37, 101.84 kPa and 0.0668, 0.1046, and 0.1489, respectively. The average cap strain values from S18 material models were 150-180 % higher than those from the ex vivo material models. The corresponding percentages for the average cap stress values were 50-75 %. Dropping axial and circumferential shrink consideration led to stress and strain over-estimations. In vivo vessel material properties may be considerably softer than those from ex vivo data. Material stiffness variations may cause 50-75 % stress and 150-180 % strain variations.
Collapse
Affiliation(s)
- Xiaoya Guo
- Department of Mathematics, Southeast University, Nanjing, 210096, China
| | - Jian Zhu
- Department of Cardiology, Zhongda Hospital, Southeast University, Nanjing, 210009, China
| | - Akiko Maehara
- The Cardiovascular Research Foundation, Columbia University, New York, NY, 10022, USA
| | - David Monoly
- Department of Medicine, Emory University School of Medicine, Atlanta, GA, 30307, USA
| | - Habib Samady
- Department of Medicine, Emory University School of Medicine, Atlanta, GA, 30307, USA
| | - Liang Wang
- Mathematical Sciences Department, Worcester Polytechnic Institute, Worcester, MA, 01609, USA
| | - Kristen L Billiar
- Department of Biomedical Engineering, Worcester Polytechnic Institute, Worcester, MA, 01609, USA
| | - Jie Zheng
- Mallinckrodt Institute of Radiology, Washington University, St. Louis, MO, 63110, USA
| | - Chun Yang
- Network Technology Research Institute, China United Network Communications Co., Ltd., Beijing, China
| | - Gary S Mintz
- The Cardiovascular Research Foundation, Columbia University, New York, NY, 10022, USA
| | - Don P Giddens
- Department of Medicine, Emory University School of Medicine, Atlanta, GA, 30307, USA.,The Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, GA, 30332, USA
| | - Dalin Tang
- Department of Mathematics, Southeast University, Nanjing, 210096, China. .,Mathematical Sciences Department, Worcester Polytechnic Institute, Worcester, MA, 01609, USA.
| |
Collapse
|
26
|
Tissier F, Mallem Y, Goanvec C, Didier R, Aubry T, Bourgeois N, Desfontis JC, Dubreuil M, Le Grand Y, Mansourati J, Pichavant-Rafini K, Plee-Gautier E, Roquefort P, Theron M, Gilard M. A non-hypocholesterolemic atorvastatin treatment improves vessel elasticity by acting on elastin composition in WHHL rabbits. Atherosclerosis 2016; 251:70-77. [PMID: 27266824 DOI: 10.1016/j.atherosclerosis.2016.05.039] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/16/2016] [Revised: 05/13/2016] [Accepted: 05/25/2016] [Indexed: 12/28/2022]
Abstract
BACKGROUND AND AIMS Statins are prescribed for their preventative effects within atherosclerosis development. To our knowledge, no study focusing on very low-dose (non-hypolipidemic effect) and long-term atorvastatin treatment in vivo was available. Our aim was to assess the effect of such atorvastatin treatment on the mechanical and functional characteristics of arteries in the context of primary prevention. METHODS An atorvastatin treatment (2.5 mg/kg/day) was tested against controls on 34 male 3 to 12 month-old WHHL rabbits. No effect on total cholesterol, triglycerides, HDL or LDL was observed. The arterial stiffness was evaluated on vigil animals by pulse wave velocity (PWV) measurement. Then, in vitro measurements were made to evaluate (1) the endothelial and vascular smooth muscle function, (2) the elasticity of the arterial wall and (3) the composition in collagen and elastin in the aorta. RESULTS The PWV increasing observed with age in control group was canceled by treatment, creating a significance difference between groups at 12 months (5.17 ± 0.50 vs 2.14 ± 0.34 m s(-1) in control and treated groups respectively). Vasoreactivity modifications can't explain this result but maintain of elasticity with treatment in large arteries was confirm by a static tensile test. A first possible explanation is the change of wall composition with treatment, validated by the percentage of elastin at 12 months, 4.4% lower in the control group compared to the treated group (p < 0.05). CONCLUSIONS This study shows that a non-hypocholesterolemic statin treatment could improve vessel elasticity in the atherosclerotic WHHL model. The great novelty of this work is the vessel wall composition changing associated. This first approach in animal opens the reflection on the use of these low doses in humans. This could be interesting in the context of arterial stiffening with aging, non-hyperlipidemic atherosclerosis or with cholesterol reduce by another therapy or lifestyle modification.
Collapse
Affiliation(s)
- Florine Tissier
- EA 4324 ORPHY, UBO, UFR Sciences et Techniques, 6 Avenue Victor Le Gorgeu CS 93837, 29238 Brest Cedex 3, France.
| | - Yassine Mallem
- Université LUNAM, Oniris, UPSP 5304 de Pathophysiologie animale et de Pharmacologie fonctionnelle, Nantes, France
| | - Christelle Goanvec
- EA 4324 ORPHY, UBO, UFR Sciences et Techniques, 6 Avenue Victor Le Gorgeu CS 93837, 29238 Brest Cedex 3, France
| | - Romain Didier
- EA 4324 ORPHY, UBO, UFR Sciences et Techniques, 6 Avenue Victor Le Gorgeu CS 93837, 29238 Brest Cedex 3, France; Département de Cardiologie, CHRU Brest, Brest, France
| | - Thierry Aubry
- LIMATB, Equipe Rhéologie, EA4250 UFR Sciences et Techniques, 6 Avenue Victor Le Gorgeu CS 93837, 29238 Brest Cedex 3, France
| | - Nathalie Bourgeois
- Université LUNAM, Oniris, UPSP 5304 de Pathophysiologie animale et de Pharmacologie fonctionnelle, Nantes, France
| | - Jean-Claude Desfontis
- Université LUNAM, Oniris, UPSP 5304 de Pathophysiologie animale et de Pharmacologie fonctionnelle, Nantes, France
| | - Matthieu Dubreuil
- EA 938 LSOL, UBO, UFR Sciences et Techniques, 6 Avenue Victor Le Gorgeu CS 93837, 29238 Brest Cedex 3, France
| | - Yann Le Grand
- EA 938 LSOL, UBO, UFR Sciences et Techniques, 6 Avenue Victor Le Gorgeu CS 93837, 29238 Brest Cedex 3, France
| | - Jacques Mansourati
- EA 4324 ORPHY, UBO, UFR Sciences et Techniques, 6 Avenue Victor Le Gorgeu CS 93837, 29238 Brest Cedex 3, France; Département de Cardiologie, CHRU Brest, Brest, France
| | - Karine Pichavant-Rafini
- EA 4324 ORPHY, UBO, UFR Sciences et Techniques, 6 Avenue Victor Le Gorgeu CS 93837, 29238 Brest Cedex 3, France
| | | | - Philippe Roquefort
- LIMATB, Equipe Rhéologie, EA4250 UFR Sciences et Techniques, 6 Avenue Victor Le Gorgeu CS 93837, 29238 Brest Cedex 3, France
| | - Michael Theron
- EA 4324 ORPHY, UBO, UFR Sciences et Techniques, 6 Avenue Victor Le Gorgeu CS 93837, 29238 Brest Cedex 3, France
| | - Martine Gilard
- EA 4324 ORPHY, UBO, UFR Sciences et Techniques, 6 Avenue Victor Le Gorgeu CS 93837, 29238 Brest Cedex 3, France; Département de Cardiologie, CHRU Brest, Brest, France
| |
Collapse
|
27
|
Karimi A, Rahmati SM, Navidbakhsh M. Mechanical characterization of the rat and mice skin tissues using histostructural and uniaxial data. Bioengineered 2016; 6:153-60. [PMID: 25837446 DOI: 10.1080/21655979.2015.1036202] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022] Open
Abstract
The skin tissue has been shown to behave like a nonlinear anisotropic material. This study was aimed to employ a constitutive fiber family equation to characterize the nonlinear anisotropic mechanical behavior of the rat and mice skin tissues in different anatomical locations, including the abdomen and back, using histostructural and uniaxial data. The rat and mice skin tissues were excised from the animals' body and then the histological analyses were performed on each skin type to determine the mean fiber orientation angle. Afterward, the preconditioned skin tissues were subjected to a series of quasi-static axial and circumferential loads until the incidence of failure. The crucial role of fiber orientation was explicitly added into a proposed strain energy density function. The material coefficients were determined using the constrained nonlinear optimization method based on the axial and circumferential extension data of the rat and mice samples at different anatomical locations. The material coefficients of the skins were given with R(2) ≥ 0.998. The results revealed a significant load-bearing capacity and stiffness of the rat abdomen compared to the rat back tissues. In addition, the mice abdomen showed a higher stiffness in the axial direction in comparison with circumferential one, while the mice back displayed its highest stiffness in the circumferential direction. The material coefficients of the rat and mice skin tissues were determined and well compared to the experimental data. The optimized fiber angles were also compared to the experimental histological data, and in all cases less than 11.85% differences were observed in both the skin tissues.
Collapse
Affiliation(s)
- Alireza Karimi
- a School of Mechanical Engineering ; Iran University of Science and Technology ; Tehran , Iran
| | | | | |
Collapse
|
28
|
Experimental verification of the healthy and atherosclerotic coronary arteries incompressibility via Digital Image Correlation. Artery Res 2016. [DOI: 10.1016/j.artres.2016.08.002] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
29
|
Measurement of the mechanical properties of soccer balls using digital image correlation method. SPORT SCIENCES FOR HEALTH 2015. [DOI: 10.1007/s11332-015-0255-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
30
|
Carbon/PEEK composite materials as an alternative for stainless steel/titanium hip prosthesis: a finite element study. AUSTRALASIAN PHYSICAL & ENGINEERING SCIENCES IN MEDICINE 2015; 38:569-80. [DOI: 10.1007/s13246-015-0380-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2015] [Accepted: 09/27/2015] [Indexed: 10/23/2022]
|
31
|
Measurement of the mechanical properties of the handball, volleyball, and basketball using DIC method: a combination of experimental, constitutive, and viscoelastic models. SPORT SCIENCES FOR HEALTH 2015. [DOI: 10.1007/s11332-015-0240-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
32
|
Karimi A, Navidbakhsh M, Kudo S. A comparative study on the mechanical properties of the healthy and varicose human saphenous vein under uniaxial loading. J Med Eng Technol 2015; 39:490-7. [PMID: 26361230 DOI: 10.3109/03091902.2015.1086030] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Saphenous Vein (SV) due to fatness, age, inactiveness, etc. can be afflicted with varicose. The main reason of the varicose vein is believed to be related to the leg muscle pump which is unable to return the blood to the heart in contradiction of the effect of gravity. As a result of the varicose vein, both the structure and mechanical properties of the vein wall would alter. However, so far there is a lack of knowledge on the mechanical properties of the varicose vein. In this study, a comparative study was carried out to measure the elastic and hyperelastic mechanical properties of the healthy and varicose SVs. Healthy and varicose SVs were removed at autopsy and surgery from seven individuals and then axial tensile load was applied to them up to the failure point. In order to investigate the mechanical behaviour of the vein, this study was benefitted from three different stress definitions, such as 2nd Piola-Kichhoff, engineering and true stresses and four different strain definitions, i.e. Almansi-Hamel, Green-St. Venant, engineering and true strains, to determine the linear mechanical properties of the SVs. A Digital Image Correlation (DIC) technique was used to measure the true strain of the vein walls during load bearing. The non-linear mechanical behaviour of the SVs was also computationally evaluated via the Mooney-Rivlin material model. The true/Cauchy stress-strain diagram exhibited the elastic modulus of the varicose SVs as 45.11% lower than that of the healthy ones. Furthermore, by variation of the stress a significant alteration on the maximum stress of the healthy SVs was observed, but then not for the varicose veins. Additionally, the highest stresses of 4.99 and 0.65 MPa were observed for the healthy and varicose SVs, respectively. These results indicate a weakness in the mechanical strength of the SV when it becomes varicose, owing to the degradation of the elastin and collagen content of the SV. The Mooney-Rivlin hyperelastic and the Finite Element (FE) data were finally well compared to the experimental data.
Collapse
Affiliation(s)
- Alireza Karimi
- a Tissue Engineering and Biological Systems Research Laboratory, School of Mechanical Engineering, Iran University of Science and Technology , Tehran 16887 , Iran and.,b Department of Mechanical Engineering , Kyushu University , 744 Motooka, Nishi-ku , Fukuoka 819-0395 , Japan
| | - Mahdi Navidbakhsh
- a Tissue Engineering and Biological Systems Research Laboratory, School of Mechanical Engineering, Iran University of Science and Technology , Tehran 16887 , Iran and
| | - Susumu Kudo
- b Department of Mechanical Engineering , Kyushu University , 744 Motooka, Nishi-ku , Fukuoka 819-0395 , Japan
| |
Collapse
|
33
|
Razaghi R, Karimi A, Rahmani S, Navidbakhsh M. A computational fluid–structure interaction model of the blood flow in the healthy and varicose saphenous vein. Vascular 2015; 24:254-63. [DOI: 10.1177/1708538115594095] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Objective Varicose vein has become enlarged and twisted and, consequently, has lost its mechanical strength. As a result of the varicose saphenous vein (SV) mechanical alterations, the hemodynamic parameters of the blood flow, such as blood velocity as well as vein wall stress and strain, would change accordingly. However, little is known about stress and strain and there consequences under experimental conditions on blood flow and velocity within normal and varicose veins. In this study, a three-dimensional (3D) computational fluid–structure interaction (FSI) model of a human healthy and varicose SVs was established to determine the hemodynamic characterization of the blood flow as a function of vein wall mechanical properties, i.e. elastic and hyperelastic. Methods The mechanical properties of the human healthy and varicose SVs were experimentally measured and implemented into the computational model. The fully coupled fluid and structure models were solved using the explicit dynamics finite element code LS-DYNA. Results The results revealed that, regardless of healthy and varicose, the elastic walls reach to the ultimate strength of the vein wall, whereas the hyperelastic wall can tolerate more stress. The highest von Mises stress compared to the healthy ones was seen in the elastic and hyperelastic varicose SVs with 1.412 and 1.535 MPa, respectively. In addition, analysis of the resultant displacement in the vein wall indicated that the varicose SVs experienced a higher displacement compared to the healthy ones irrespective of elastic and hyperelastic material models. The highest blood velocity was also observed for the healthy hyperelastic SV wall. Conclusion The findings of this study may have implications not only for determining the role of the vein wall mechanical properties in the hemodynamic alterations of the blood, but also for employing as a null information in balloon-angioplasty and bypass surgeries.
Collapse
Affiliation(s)
- Reza Razaghi
- Tissue Engineering and Biological Systems Research Laboratory, School of Mechanical Engineering, Iran University of Science and Technology, Tehran 16887, Iran
| | - Alireza Karimi
- Tissue Engineering and Biological Systems Research Laboratory, School of Mechanical Engineering, Iran University of Science and Technology, Tehran 16887, Iran
| | - Shahrokh Rahmani
- Tissue Engineering and Biological Systems Research Laboratory, School of Mechanical Engineering, Iran University of Science and Technology, Tehran 16887, Iran
| | - Mahdi Navidbakhsh
- Tissue Engineering and Biological Systems Research Laboratory, School of Mechanical Engineering, Iran University of Science and Technology, Tehran 16887, Iran
| |
Collapse
|