1
|
Lai J, Wu Q, Gao B, Cai W, Wang Y. Piezo Channels in Dentistry: Decoding the Functional Effects of Forces. J Dent Res 2025:220345251329376. [PMID: 40353513 DOI: 10.1177/00220345251329376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/14/2025] Open
Abstract
The oral system is a highly complex mechanosensory structure that continuously adapts to changes in mechanical stimuli, exerting mechanical forces on cells and tissues. Understanding how these forces are converted into biochemical signals and how they mediate gene expression and cellular activities has been a significant focus in dentistry. Piezo channels, including Piezo1 and Piezo2, are mechanically activated cation channels characterized by an extracellular "cap" domain and 3 peripheral mechanosensitive blades. Recent research has demonstrated that mechanical forces applied to tissues can induce deformation of cell membranes, leading to conformational changes in Piezo channels that facilitate cation influx, thereby regulating cellular activities. The influx of Ca2+, the most discussed outcome of Piezo channel activation, initiates diverse signaling pathways that regulate dentin hypersensitivity, alveolar bone remodeling, and temporomandibular joint (TMJ) osteoarthritis. The chemical inhibition of Piezo channels has been shown to alleviate dentinal hypersensitivity, reduce the rate of orthodontic tooth movement, and slow the progression of TMJ osteoarthritis in rat models. Mice deficient in piezo channels exhibit impaired reactive dentin formation, reduced alveolar bone volume, and developmental deformities of the jawbone. Considering their roles in decoding the functional effects of mechanical forces, this review summarizes the involvement of Piezo channels in dentistry, organized by anatomical sites, to provide comprehensive knowledge of Piezo channels and their mediated signal crosstalk, which offers promising therapeutic prospects for the treatment of various force-related oral diseases.
Collapse
Affiliation(s)
- J Lai
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Engineering Research Center of Oral Biomaterials and Devices of Zhejiang Province, Hangzhou, Zhejiang, China
| | - Q Wu
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Engineering Research Center of Oral Biomaterials and Devices of Zhejiang Province, Hangzhou, Zhejiang, China
| | - B Gao
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Engineering Research Center of Oral Biomaterials and Devices of Zhejiang Province, Hangzhou, Zhejiang, China
| | - W Cai
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Engineering Research Center of Oral Biomaterials and Devices of Zhejiang Province, Hangzhou, Zhejiang, China
| | - Y Wang
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Engineering Research Center of Oral Biomaterials and Devices of Zhejiang Province, Hangzhou, Zhejiang, China
| |
Collapse
|
2
|
Liu F, Qin L, Zhang K, Yuan F, Zeng X, Zhao Y. Differential impact of chronic intermittent hypoxia and stress changes on condylar development. Arch Oral Biol 2024; 167:106051. [PMID: 39094424 DOI: 10.1016/j.archoralbio.2024.106051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 06/22/2024] [Accepted: 07/13/2024] [Indexed: 08/04/2024]
Abstract
OBJECTIVES This study aimed to determine the effects of chronic intermittent hypoxia (CIH) and stress change (SC) on the development of the condyle in mouth breathing rats. DESIGN A total of 120 4-week-old rats were randomly assigned to one of five groups. The control (Ctrl) group was the blank control and the intermittent nasal obstruction (INO) group was the positive control. Mild CIH (mCIH) and severe CIH (sCIH) groups were developed by adjusting environmental oxygen concentration and monitoring real-time blood oxygen saturation (SpO2). The SC group was developed using INO, increased environmental oxygen concentration, and real-time SpO2 monitoring. Six rats from each group were sacrificed for analysis at 0, 1, 2, or 4 weeks. RESULTS Similar to the INO group, condyle and mandibular body development in the sCIH group, but not in the mCIH group, was significantly inhibited compared with the Ctrl group. The SC group had inhibited development of the condyle, especially of the posterior zone, but had minimal impact on the growth of the mandible. CONCLUSION The inhibitory effects of CIH on the development of the condyle and mandibular body were SpO2-dose-dependent. When SC occurred, inhibited development was observed in the posterior zone of condyle but not the whole mandible. These findings provide important insights for targeted interventions that address the consequences of mouth breathing in children.
Collapse
Affiliation(s)
- Fei Liu
- Department of Dentistry, Xuanwu Hospital Capital Medical University, Changchun Street, No.45, Xicheng District, Beijing 100053, People's Republic of China
| | - Lu Qin
- Department of Dentistry, Xuanwu Hospital Capital Medical University, Changchun Street, No.45, Xicheng District, Beijing 100053, People's Republic of China
| | - Ke Zhang
- Department of Dentistry, Xuanwu Hospital Capital Medical University, Changchun Street, No.45, Xicheng District, Beijing 100053, People's Republic of China
| | - Fengning Yuan
- Department of Dentistry, Xuanwu Hospital Capital Medical University, Changchun Street, No.45, Xicheng District, Beijing 100053, People's Republic of China
| | - Xiangjun Zeng
- Department of Physiology and Pathophysiology, Capital Medical University, No.10 You An Men Wai Xi Tou Tiao, Fengtai District, Beijing 100069, People's Republic of China.
| | - Ying Zhao
- Department of Dentistry, Xuanwu Hospital Capital Medical University, Changchun Street, No.45, Xicheng District, Beijing 100053, People's Republic of China.
| |
Collapse
|
3
|
Liu Y, Jia F, Li K, Liang C, Lin X, Geng W, Li Y. Critical signaling molecules in the temporomandibular joint osteoarthritis under different magnitudes of mechanical stimulation. Front Pharmacol 2024; 15:1419494. [PMID: 39055494 PMCID: PMC11269110 DOI: 10.3389/fphar.2024.1419494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Accepted: 06/14/2024] [Indexed: 07/27/2024] Open
Abstract
The mechanical stress environment in the temporomandibular joint (TMJ) is constantly changing due to daily mandibular movements. Therefore, TMJ tissues, such as condylar cartilage, the synovial membrane and discs, are influenced by different magnitudes of mechanical stimulation. Moderate mechanical stimulation is beneficial for maintaining homeostasis, whereas abnormal mechanical stimulation leads to degeneration and ultimately contributes to the development of temporomandibular joint osteoarthritis (TMJOA), which involves changes in critical signaling molecules. Under abnormal mechanical stimulation, compensatory molecules may prevent degenerative changes while decompensatory molecules aggravate. In this review, we summarize the critical signaling molecules that are stimulated by moderate or abnormal mechanical loading in TMJ tissues, mainly in condylar cartilage. Furthermore, we classify abnormal mechanical stimulation-induced molecules into compensatory or decompensatory molecules. Our aim is to understand the pathophysiological mechanism of TMJ dysfunction more deeply in the ever-changing mechanical environment, and then provide new ideas for discovering effective diagnostic and therapeutic targets in TMJOA.
Collapse
Affiliation(s)
| | | | | | | | | | - Wei Geng
- Department of Dental Implant Center, Beijing Stomatological Hospital, School of Stomatology, Capital Medical University, Beijing, China
| | - Yanxi Li
- Department of Dental Implant Center, Beijing Stomatological Hospital, School of Stomatology, Capital Medical University, Beijing, China
| |
Collapse
|
4
|
Liu Z, Sa G, Zhang Z, Wu Q, Zhou J, Yang X. Regulatory role of primary cilia in oral and maxillofacial development and disease. Tissue Cell 2024; 88:102389. [PMID: 38714113 DOI: 10.1016/j.tice.2024.102389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 04/11/2024] [Accepted: 04/16/2024] [Indexed: 05/09/2024]
Abstract
Primary cilia have versatile functions, such as receiving signals from the extracellular microenvironment, mediating signaling transduction, and transporting ciliary substances, in tissue and organ development and clinical disease pathogenesis. During early development (embryos within 10 weeks) in the oral and maxillofacial region, defects in the structure and function of primary cilia can result in severe craniofacial malformations. For example, mice with mutations in the cilia-related genes Kif3a and IFT88 exhibit midline expansion and cleft lip/palate, which occur due to abnormalities in the fusion of the single frontonasal prominence and maxillary prominences. In the subsequent development of the oral and maxillofacial region, we discussed the regulatory role of primary cilia in the development of the maxilla, mandible, Meckel cartilage, condylar cartilage, lip, tongue, and tooth, among others. Moreover, primary cilia are promising regulators in some oral and maxillofacial diseases, such as tumors and malocclusion. We also summarize the regulatory mechanisms of primary cilia in oral and maxillofacial development and related diseases, including their role in various signaling transduction pathways. For example, aplasia of submandibular glands in the Kif3a mutant mice is associated with a decrease in SHH signaling within the glands. This review summarizes the similarities and specificities of the role of primary cilia in tissue and organ development and disease progression in the oral and maxillofacial region, which is expected to contribute several ideas for the treatment of primary cilia-related diseases.
Collapse
Affiliation(s)
- Zhan Liu
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, PR China
| | - Guoliang Sa
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, PR China; Department of Oral and Maxillofacial Surgery, Hospital of Stomatology, Wuhan University, Wuhan, PR China
| | - Zhuoyu Zhang
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, PR China
| | - Qingwei Wu
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, PR China
| | - Jing Zhou
- School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University, Jinan, PR China
| | - Xuewen Yang
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, PR China; Department of Oral and Maxillofacial Surgery, Hospital of Stomatology, Wuhan University, Wuhan, PR China.
| |
Collapse
|
5
|
Cheng D, Wang J, Yao M, Cox CD. Joining forces: crosstalk between mechanosensitive PIEZO1 ion channels and integrin-mediated focal adhesions. Biochem Soc Trans 2023; 51:1897-1906. [PMID: 37772664 DOI: 10.1042/bst20230042] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 09/18/2023] [Accepted: 09/20/2023] [Indexed: 09/30/2023]
Abstract
Both integrin-mediated focal adhesions (FAs) and mechanosensitive ion channels such as PIEZO1 are critical in mechanotransduction processes that influence cell differentiation, development, and cancer. Ample evidence now exists for regulatory crosstalk between FAs and PIEZO1 channels with the molecular mechanisms underlying this process remaining unclear. However, an emerging picture is developing based on spatial crosstalk between FAs and PIEZO1 revealing a synergistic model involving the cytoskeleton, extracellular matrix (ECM) and calcium-dependent signaling. Already cell type, cell contractility, integrin subtypes and ECM composition have been shown to regulate this crosstalk, implying a highly fine-tuned relationship between these two major mechanosensing systems. In this review, we summarize the latest advances in this area, highlight the physiological implications of this crosstalk and identify gaps in our knowledge that will improve our understanding of cellular mechanosensing.
Collapse
Affiliation(s)
- Delfine Cheng
- The Victor Chang Cardiac Research Institute, Sydney, NSW 2010, Australia
- School of Clinical Medicine, Faculty of Medicine and Health, University of New South Wales, Kensington, NSW 2052, Australia
| | - Junfan Wang
- Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen 518055, China
- Guangdong Provincial Key Laboratory of Advanced Biomaterials, Southern University of Science and Technology, Shenzhen 518055, China
| | - Mingxi Yao
- Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen 518055, China
- Guangdong Provincial Key Laboratory of Advanced Biomaterials, Southern University of Science and Technology, Shenzhen 518055, China
| | - Charles D Cox
- The Victor Chang Cardiac Research Institute, Sydney, NSW 2010, Australia
- School of Biomedical Sciences, Faculty of Medicine & Health, University of New South Wales, Kensington, NSW 2052, Australia
| |
Collapse
|
6
|
Takács R, Kovács P, Ebeid RA, Almássy J, Fodor J, Ducza L, Barrett-Jolley R, Lewis R, Matta C. Ca2+-Activated K+ Channels in Progenitor Cells of Musculoskeletal Tissues: A Narrative Review. Int J Mol Sci 2023; 24:ijms24076796. [PMID: 37047767 PMCID: PMC10095002 DOI: 10.3390/ijms24076796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 04/01/2023] [Accepted: 04/04/2023] [Indexed: 04/08/2023] Open
Abstract
Musculoskeletal disorders represent one of the main causes of disability worldwide, and their prevalence is predicted to increase in the coming decades. Stem cell therapy may be a promising option for the treatment of some of the musculoskeletal diseases. Although significant progress has been made in musculoskeletal stem cell research, osteoarthritis, the most-common musculoskeletal disorder, still lacks curative treatment. To fine-tune stem-cell-based therapy, it is necessary to focus on the underlying biological mechanisms. Ion channels and the bioelectric signals they generate control the proliferation, differentiation, and migration of musculoskeletal progenitor cells. Calcium- and voltage-activated potassium (KCa) channels are key players in cell physiology in cells of the musculoskeletal system. This review article focused on the big conductance (BK) KCa channels. The regulatory function of BK channels requires interactions with diverse sets of proteins that have different functions in tissue-resident stem cells. In this narrative review article, we discuss the main ion channels of musculoskeletal stem cells, with a focus on calcium-dependent potassium channels, especially on the large conductance BK channel. We review their expression and function in progenitor cell proliferation, differentiation, and migration and highlight gaps in current knowledge on their involvement in musculoskeletal diseases.
Collapse
Affiliation(s)
- Roland Takács
- Department of Anatomy, Histology and Embryology, Faculty of Medicine, University of Debrecen, H-4032 Debrecen, Hungary
| | - Patrik Kovács
- Department of Anatomy, Histology and Embryology, Faculty of Medicine, University of Debrecen, H-4032 Debrecen, Hungary
| | - Rana Abdelsattar Ebeid
- Department of Anatomy, Histology and Embryology, Faculty of Medicine, University of Debrecen, H-4032 Debrecen, Hungary
| | - János Almássy
- Department of Physiology, Faculty of Medicine, Semmelweis University, H-1428 Budapest, Hungary
| | - János Fodor
- Department of Physiology, Faculty of Medicine, University of Debrecen, H-4032 Debrecen, Hungary
| | - László Ducza
- Department of Anatomy, Histology and Embryology, Faculty of Medicine, University of Debrecen, H-4032 Debrecen, Hungary
| | - Richard Barrett-Jolley
- Department of Musculoskeletal Biology, Faculty of Health and Life Sciences, Institute of Ageing and Chronic Disease, University of Liverpool, Liverpool L69 3GA, UK
| | - Rebecca Lewis
- Department of Comparative Biomedical Sciences, School of Veterinary Medicine, Faculty of Health and Medical Sciences, University of Surrey, Guildford GU2 7XH, UK
| | - Csaba Matta
- Department of Anatomy, Histology and Embryology, Faculty of Medicine, University of Debrecen, H-4032 Debrecen, Hungary
| |
Collapse
|
7
|
Lin Y, Ren J, McGrath C. Mechanosensitive Piezo1 and Piezo2 ion channels in craniofacial development and dentistry: Recent advances and prospects. Front Physiol 2022; 13:1039714. [PMID: 36338498 PMCID: PMC9633653 DOI: 10.3389/fphys.2022.1039714] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Accepted: 10/10/2022] [Indexed: 12/04/2022] Open
Abstract
Mechanical forces play important roles in many biological processes and there is increasing interest and understanding of these roles. Mechanotransduction is the process by which mechanical stimuli are converted to biochemical signals through specific mechanisms, and this results in the activation of downstream signaling pathways with specific effects on cell behaviors. This review systematically summarizes the current understanding of the mechanosensitive Piezo1 and Piezo2 ion channels in craniofacial bone, tooth, and periodontal tissue, presenting the latest relevant evidence with implications for potential treatments and managements of dental and orofacial diseases and deformities. The mechanosensitive ion channels Piezo1 and Piezo2 are widely expressed in various cells and tissues and have essential functions in mechanosensation and mechanotransduction. These channels play an active role in many physiological and pathological processes, such as growth and development, mechano-stimulated bone homeostasis and the mediation of inflammatory responses. Emerging evidence indicates the expression of Piezo1 and Piezo2 in bone, dental tissues and dental tissue-derived stem cells and suggests that they function in dental sensation transduction, dentin mineralization and periodontal bone remodeling and modulate orthodontic tooth movement.
Collapse
|
8
|
Wang Z, Sa G, Zheng L, Wei Z, Zhang Z, Hu Y, Yang X. Intraflagellar transport protein 88 interacts with polycystin 2 to regulate mechanosensitive hedgehog signaling in mandibular condylar chondrocytes. Arch Oral Biol 2022; 143:105548. [PMID: 36155344 DOI: 10.1016/j.archoralbio.2022.105548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2022] [Revised: 08/03/2022] [Accepted: 09/17/2022] [Indexed: 11/25/2022]
Abstract
OBJECTIVE This study aimed to explore whether intraflagellar transport protein 88 (IFT88) was associated with polycystin 2 during mechanotransduction of mandibular condylar chondrocytes. METHODS Rat mandibular condylar chondrocytes isolated from the condylar bone-cartilage junction were subjected to cyclic tensile strain (0.1 Hz, 10% elongation). Overexpression of IFT88 was achieved by lentiviral vector-mediated transfection. Knockdown of IFT88 and polycystin 2 was achieved by small interfering RNA (siRNA). The prevalence and length of cilia were reflected by immunofluorescence staining. The activities of hedgehog signaling were evaluated by western blot analysis. The interaction between polycystin 2 and IFT88 was evaluated by conducting a co-immunoprecipitation (co-IP) assay. RESULTS Overexpression of IFT88 increased the length of cilia. Protein levels of polycystin 2, Indian hedgehog (Ihh), Patched 1 (Ptch1), Smoothened (Smo), and Glioma-associated oncogene homolog 1 (Gli1) were elevated in IFT88-overexpressing mandibular condylar chondrocytes under cyclic tensile strain. Knockdown of the protein level of IFT88 reduced the prevalence and length of cilia, and protein levels of polycystin 2, Ihh, Ptch1, Smo, and Gli1. A co-IP assay showed that IFT88 formed a complex with polycystin 2 under cyclic tensile strain. Knockdown of polycystin 2 decreased the protein levels of IFT88, Ihh, Ptch1, Smo, and Gli1 in mandibular condylar chondrocytes following cyclic tensile strain. CONCLUSION These findings highlight the vital role of an interaction between IFT88 and polycystin 2 in mechanosensitive hedgehog signaling in mandibular condylar chondrocytes following cyclic tensile strain, which suggest that therapies regulating polycystin 2 may be considered for the disorders of temporomandibular joints.
Collapse
Affiliation(s)
- Zhuo Wang
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Guoliang Sa
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Wuhan University, Wuhan, China; Department of Oral Maxillofacial Surgery, School and Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Liwu Zheng
- Department of Oral and Maxillofacial Surgery, Faculty of Dentistry, The University of Hong Kong, Hong Kong, China
| | - Zequan Wei
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Zhuoyu Zhang
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Yanping Hu
- Stomatological Hospital of Xiamen Medical Collage, Xiamen, China
| | - Xuewen Yang
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Wuhan University, Wuhan, China; Department of Oral Maxillofacial Surgery, School and Hospital of Stomatology, Wuhan University, Wuhan, China.
| |
Collapse
|