1
|
Yuan Y, Feng Z, Wang Z. Cluster Neuronal Firing Induced by Uniform Pulses of High-Frequency Stimulation on Axons in Rat Hippocampus. IEEE Trans Biomed Eng 2025; 72:1108-1120. [PMID: 39471114 DOI: 10.1109/tbme.2024.3488014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2024]
Abstract
OBJECTIVE High-frequency stimulation (HFS) of electrical pulse sequences has been used in various neuromodulation techniques to treat certain disorders. Here, we test the hypothesis that HFS sequences with purely periodic pulses could directly generate non-uniform firing in directly stimulated neurons. METHODS In vivo experiments were conducted in the rat hippocampal CA1 region. A stimulation electrode was placed on the alveus fibers, and a recording electrode array was inserted into the CA1 region upstream of the stimulation site. Antidromic-HFS (A-HFS) of 100 Hz pulses was applied to the alveus to antidromically activate the soma of pyramidal neurons around the recording site. By minimizing the interferences of population spikes, the evoked unit spikes of individual pyramidal neurons were obtained during A-HFS. Additionally, a computational model of pyramidal neuron was used to simulate the neuronal responses to A-HFS, revealing possible mechanisms underlying the different firing patterns. RESULTS Of the total 54 pyramidal neurons recorded during 2-min 100 Hz A-HFS, 38 (70%) neurons fired in a cluster pattern with alternating periods of intensive spikes and silence. The remaining 16 (30%) neurons fired in a non-cluster pattern with regular spikes. Modeling simulations showed that under the situation of HFS-induced intermittent block, conduction failure and generation failure of action potentials along the axons resulted in the cluster and non-cluster firing. CONCLUSION Sustained axonal A-HFS with periodic pulses can induce non-uniform firing in directly stimulated neurons. SIGNIFICANCE This finding provides new evidence for the nonlinear dynamics of neuronal firing, even under uniform stimulation.
Collapse
|
2
|
Paßmann S, Baselgia S, Kasten FH, Herrmann CS, Rasch B. Differential online and offline effects of theta-tACS on memory encoding and retrieval. COGNITIVE, AFFECTIVE & BEHAVIORAL NEUROSCIENCE 2024; 24:894-911. [PMID: 39085585 PMCID: PMC11390785 DOI: 10.3758/s13415-024-01204-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 07/01/2024] [Indexed: 08/02/2024]
Abstract
Theta oscillations support memory formation, but their exact contribution to the communication between prefrontal cortex (PFC) and the hippocampus is unknown. We tested the functional relevance of theta oscillations as a communication link between both areas for memory formation using transcranial alternating current stimulation (tACS). Healthy, young participants learned two lists of Dutch-German word pairs and retrieved them immediately and with a 30-min delay. In the encoding group (N = 30), tACS was applied during the encoding of list 1. List 2 was used to test stimulation aftereffects. In the retrieval group (N = 23), we stimulated during the delayed recall. In both groups, we applied tACS bilaterally at prefrontal and tempo-parietal sites, using either individualized theta frequency or 15 Hz (as control), according to a within-subject design. Stimulation with theta-tACS did not alter overall learning performance. An exploratory analysis revealed that immediate recall improved when word-pairs were learned after theta-tACS (list 2). Applying theta-tACS during retrieval had detrimental effects on memory. No changes in the power of the respective frequency bands were observed. Our results do not support the notion that impacting the communication between PFC and the hippocampus during a task by bilateral tACS improves memory. However, we do find evidence that direct stimulation had a trend for negatively interfering effects during immediate and delayed recall. Hints for beneficial effects on memory only occurred with aftereffects of the stimulation. Future studies need to further examine the effects during and after stimulation on memory formation.
Collapse
Affiliation(s)
- Sven Paßmann
- Cognitive Biopsychology and Methods, Department of Psychology, Université Fribourg, Rue P.-A.-de-Faucigny 2, 1700, Fribourg, Switzerland.
- Department of Neurology, University Medicine Greifswald, Greifswald, Germany.
| | - Sandrine Baselgia
- Cognitive Biopsychology and Methods, Department of Psychology, Université Fribourg, Rue P.-A.-de-Faucigny 2, 1700, Fribourg, Switzerland
| | - Florian H Kasten
- Centre de Recherche Cerveau & Cognition, CNRS, Toulouse, France
- Université Toulouse III Paul Sabatier, Toulouse, France
| | - Christoph S Herrmann
- Experimental Psychology Lab, Department of Psychology, Carl Von Ossietzky Universität, Oldenburg, Germany
| | - Björn Rasch
- Cognitive Biopsychology and Methods, Department of Psychology, Université Fribourg, Rue P.-A.-de-Faucigny 2, 1700, Fribourg, Switzerland
| |
Collapse
|
3
|
Young RA, Shin JD, Guo Z, Jadhav SP. Hippocampal-prefrontal communication subspaces align with behavioral and network patterns in a spatial memory task. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.08.601617. [PMID: 39026752 PMCID: PMC11257456 DOI: 10.1101/2024.07.08.601617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/20/2024]
Abstract
Rhythmic network states have been theorized to facilitate communication between brain regions, but how these oscillations influence communication subspaces, i.e, the low-dimensional neural activity patterns that mediate inter-regional communication, and in turn how subspaces impact behavior remains unclear. Using a spatial memory task in rats, we simultaneously recorded ensembles from hippocampal CA1 and the prefrontal cortex (PFC) to address this question. We found that task behaviors best aligned with low-dimensional, shared subspaces between these regions, rather than local activity in either region. Critically, both network oscillations and speed modulated the structure and performance of this communication subspace. Contrary to expectations, theta coherence did not better predict CA1-PFC shared activity, while theta power played a more significant role. To understand the communication space, we visualized shared CA1-PFC communication geometry using manifold techniques and found ring-like structures. We hypothesize that these shared activity manifolds are utilized to mediate the task behavior. These findings suggest that memory-guided behaviors are driven by shared CA1-PFC interactions that are dynamically modulated by oscillatory states, offering a novel perspective on the interplay between rhythms and behaviorally relevant neural communication.
Collapse
|
4
|
Zhang Y, Chen Y, Zhang J, Luo X, Zhang M, Qu H, Yi Z. Minicolumn-Based Episodic Memory Model With Spiking Neurons, Dendrites and Delays. IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS 2024; 35:7072-7086. [PMID: 36279337 DOI: 10.1109/tnnls.2022.3213688] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Episodic memory is fundamental to the brain's cognitive function, but how neuronal activity is temporally organized during its encoding and retrieval is still unknown. In this article, combining hippocampus structure with a spiking neural network (SNN), a new bionic spiking temporal memory (BSTM) model is proposed to explore the encoding, formation, and retrieval of episodic memory. For encoding episodic memory, the spike-timing-dependent-plasticity (STDP) learning algorithm and a proposed minicolumn selection algorithm are used to encode each input item into several active minicolumns. For the formation of episodic memory, a sequential memory algorithm is proposed to store the contexts between items. For retrieval of episodic memory, the local retrieval algorithm and the global retrieval algorithm are proposed to retrieve sequence information, achieving multisentence prediction and multitime step prediction. All functions of BSTM are based on bionic spiking neurons, which have biological characteristics including columnar and dendritic structures, firing and receiving spikes, and delaying transmission. To test the performance of the BSTM model, the Children's Book Test (CBT) data set was used to conduct a series of experiments under different settings, including changing the number of minicolumns, neurons and sequences, modifying sequence items, etc. Compared to other sequence memory algorithms, the experimental results show that the proposed BSTM achieves higher accuracy and better robustness.
Collapse
|
5
|
Ruikes TR, Fiorilli J, Lim J, Huis In 't Veld G, Bosman C, Pennartz CMA. Theta Phase Entrainment of Single-Cell Spiking in Rat Somatosensory Barrel Cortex and Secondary Visual Cortex Is Enhanced during Multisensory Discrimination Behavior. eNeuro 2024; 11:ENEURO.0180-23.2024. [PMID: 38621992 PMCID: PMC11055653 DOI: 10.1523/eneuro.0180-23.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2023] [Revised: 02/16/2024] [Accepted: 02/16/2024] [Indexed: 04/17/2024] Open
Abstract
Phase entrainment of cells by theta oscillations is thought to globally coordinate the activity of cell assemblies across different structures, such as the hippocampus and neocortex. This coordination is likely required for optimal processing of sensory input during recognition and decision-making processes. In quadruple-area ensemble recordings from male rats engaged in a multisensory discrimination task, we investigated phase entrainment of cells by theta oscillations in areas along the corticohippocampal hierarchy: somatosensory barrel cortex (S1BF), secondary visual cortex (V2L), perirhinal cortex (PER), and dorsal hippocampus (dHC). Rats discriminated between two 3D objects presented in tactile-only, visual-only, or both tactile and visual modalities. During task engagement, S1BF, V2L, PER, and dHC LFP signals showed coherent theta-band activity. We found phase entrainment of single-cell spiking activity to locally recorded as well as hippocampal theta activity in S1BF, V2L, PER, and dHC. While phase entrainment of hippocampal spikes to local theta oscillations occurred during sustained epochs of task trials and was nonselective for behavior and modality, somatosensory and visual cortical cells were only phase entrained during stimulus presentation, mainly in their preferred modality (S1BF, tactile; V2L, visual), with subsets of cells selectively phase-entrained during cross-modal stimulus presentation (S1BF: visual; V2L: tactile). This effect could not be explained by modulations of firing rate or theta amplitude. Thus, hippocampal cells are phase entrained during prolonged epochs, while sensory and perirhinal neurons are selectively entrained during sensory stimulus presentation, providing a brief time window for coordination of activity.
Collapse
Affiliation(s)
- Thijs R Ruikes
- Center for Neuroscience, Faculty of Science, Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam 1098 XH, The Netherlands
| | - Julien Fiorilli
- Center for Neuroscience, Faculty of Science, Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam 1098 XH, The Netherlands
| | - Judith Lim
- Center for Neuroscience, Faculty of Science, Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam 1098 XH, The Netherlands
| | - Gerjan Huis In 't Veld
- Center for Neuroscience, Faculty of Science, Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam 1098 XH, The Netherlands
| | - Conrado Bosman
- Center for Neuroscience, Faculty of Science, Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam 1098 XH, The Netherlands
| | - Cyriel M A Pennartz
- Center for Neuroscience, Faculty of Science, Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam 1098 XH, The Netherlands
| |
Collapse
|
6
|
Nishioka Y, Hayashi K, Morito K, Takayama K, Nagasawa K. Altered Expression of Astrocytic ATP Channels and Ectonucleotidases in the Cerebral Cortex and Hippocampus of Chronic Social Defeat Stress-Susceptible BALB/c Mice. Biol Pharm Bull 2024; 47:1172-1178. [PMID: 38880625 DOI: 10.1248/bpb.b24-00236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/18/2024]
Abstract
The increasing number of patients with depressive disorder is a serious socioeconomic problem worldwide. Although several therapeutic agents have been developed and used clinically, their effectiveness is insufficient and thus discovery of novel therapeutic targets is desired. Here, focusing on dysregulation of neuronal purinergic signaling in depressive-like behavior, we examined the expression profiles of ATP channels and ectonucleotidases in astrocytes of cerebral cortex and hippocampus of chronic social defeat stress (CSDS)-susceptible BALB/c mice. Mice were exposed to 10-d CSDS, and their astrocytes were obtained using a commercially available kit based on magnetic activated cell sorting technology. In astrocytes derived from cerebral cortex of CSDS-susceptible mice, the expression levels of mRNAs for connexin 43, P2X7 receptors and maxi anion channels were increased, those for connexin 43 and P2X7 receptors being inversely correlated with mouse sociability, and the expression of mRNAs for ecto-nucleoside triphosphate diphosphohydrase 2 and ecto-5'nucleotidase was decreased and increased, respectively. On the other hand, the alteration profiles of ATP channels and ectonucleotidases in hippocampal astrocytes of CSDS-susceptible mice were different from in the case of cortical astrocytes, and there was no significant correlation between expression levels of their mRNAs and mouse sociability. These findings imply that increased expression of ATP channels in cerebral cortex might be involved in the development of reduced sociability in CSDS-subjected BALB/c mice. Together with recent findings, it is suggested that ATP channels expressed by cortical astrocytes might be potential therapeutic targets for depressive disorder.
Collapse
Affiliation(s)
- Yuka Nishioka
- Laboratory of Environmental Biochemistry, Division of Biological Sciences, Kyoto Pharmaceutical University
| | - Kana Hayashi
- Laboratory of Environmental Biochemistry, Division of Biological Sciences, Kyoto Pharmaceutical University
| | - Katsuya Morito
- Laboratory of Environmental Biochemistry, Division of Biological Sciences, Kyoto Pharmaceutical University
| | - Kentaro Takayama
- Laboratory of Environmental Biochemistry, Division of Biological Sciences, Kyoto Pharmaceutical University
| | - Kazuki Nagasawa
- Laboratory of Environmental Biochemistry, Division of Biological Sciences, Kyoto Pharmaceutical University
| |
Collapse
|
7
|
Peng K, Wammes JD, Nguyen A, Cătălin Iordan M, Norman KA, Turk-Browne NB. INDUCING REPRESENTATIONAL CHANGE IN THE HIPPOCAMPUS THROUGH REAL-TIME NEUROFEEDBACK. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.12.01.569487. [PMID: 38106228 PMCID: PMC10723264 DOI: 10.1101/2023.12.01.569487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2023]
Abstract
When you perceive or remember one thing, other related things come to mind. This competition has consequences for how these items are later perceived, attended, or remembered. Such behavioral consequences result from changes in how much the neural representations of the items overlap, especially in the hippocampus. These changes can reflect increased (integration) or decreased (differentiation) overlap; previous studies have posited that the amount of coactivation between competing representations in cortex determines which will occur: high coactivation leads to hippocampal integration, medium coactivation leads to differentiation, and low coactivation is inert. However, those studies used indirect proxies for coactivation, by manipulating stimulus similarity or task demands. Here we induce coactivation of competing memories in visual cortex more directly using closed-loop neurofeedback from real-time fMRI. While viewing one object, participants were rewarded for implicitly activating the representation of another object as strongly as possible. Across multiple real-time fMRI training sessions, they succeeded in using the neurofeedback to induce coactivation. Compared with untrained objects, this coactivation led to behavioral and neural integration: The trained objects became harder for participants to discriminate in a categorical perception task and harder to decode from patterns of fMRI activity in the hippocampus.
Collapse
Affiliation(s)
- Kailong Peng
- Department of Psychology, Interdepartmental Neuroscience Program, Yale University
| | - Jeffrey D Wammes
- Department of Psychology, Centre for Neuroscience Studies, Queen's University
| | - Alex Nguyen
- Department of Psychology, Princeton Neuroscience Institute, Princeton University
| | - Marius Cătălin Iordan
- Department of Brain and Cognitive Sciences, Department of Neuroscience, University of Rochester
| | - Kenneth A Norman
- Department of Psychology, Princeton Neuroscience Institute, Princeton University
| | | |
Collapse
|
8
|
Haciahmet CC, Golubickis M, Schäfer S, Frings C, Pastötter B. The oscillatory fingerprints of self-prioritization: Novel markers in spectral EEG for self-relevant processing. Psychophysiology 2023; 60:e14396. [PMID: 37497664 DOI: 10.1111/psyp.14396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 05/09/2023] [Accepted: 07/07/2023] [Indexed: 07/28/2023]
Abstract
Self-prioritization is a very influential modulator of human information processing. Still, little is known about the time-frequency dynamics of the self-prioritization network. In this EEG study, we used the familiarity-confound free matching task to investigate the spectral dynamics of self-prioritization and their underlying cognitive functions in a drift-diffusion model. Participants (N = 40) repeatedly associated arbitrary geometric shapes with either "the self" or "a stranger." Behavioral results demonstrated prominent self-prioritization effects (SPEs) in reaction time and accuracy. Remarkably, EEG cluster analysis also revealed two significant SPEs, one in delta/theta power (2-7 Hz) and one in beta power (19-29 Hz). Drift-diffusion modeling indicated that beta activity was associated with evidence accumulation, whereas delta/theta activity was associated with response selection. The decreased beta suppression of the SPE might indicate more efficient sensorimotor processing of self-associated stimulus-response features, whereas the increased delta/theta SPE might refer to the facilitated retrieval of self-relevant features across a widely distributed associative self-network. These novel oscillatory biomarkers of self-prioritization indicate their function as an associative glue for the self-concept.
Collapse
|
9
|
Lu JJ, Xing XX, Qu J, Wu JJ, Hua XY, Zheng MX, Xu JG. Morphological alterations of contralesional hemisphere relate to functional outcomes after stroke. Eur J Neurosci 2023; 58:3347-3361. [PMID: 37489657 DOI: 10.1111/ejn.16097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Revised: 06/05/2023] [Accepted: 07/06/2023] [Indexed: 07/26/2023]
Abstract
The present study aimed to investigate poststroke morphological alterations contralesionally and correlations with functional outcomes. Structural magnetic resonance images were obtained from 27 poststroke patients (24 males, 50.21 ± 10.97 years) and 20 healthy controls (13 males, 46.63 ± 12.18 years). Voxel-based and surface-based morphometry analysis were conducted to detect alterations of contralesional grey matter volume (GMV), cortical thickness (CT), gyrification index (GI), sulcus depth (SD), and fractal dimension (FD) in poststroke patients. Partial correlation analysis was used to explore the relationship between regions with significant structural differences and scores of clinical assessments, including Modified Barthel Index (MBI), Berg Balance Scale (BBS), Fugl-Meyer Assessment of Upper Extremity (FMA-UE), Mini-Mental State Examination (MMSE), and Montreal Cognitive Assessment (MoCA). Correction for multiplicity was conducted within each parameter and for all tests. GMV significantly decreased in the contralesional motor-related, occipital and temporal cortex, limbic system, and cerebellum lobe (P < 0.01, family-wise error [FWE] correction). Lower CT was found in the contralesional precentral and lingual gyrus (P < 0.01, FWE correction), while lower GI found in the contralesional superior temporal gyrus and insula (P < 0.01, FWE correction). There were significant correlations between GMV of contralesional lingual gyrus and MBI (P = 0.031, r = 0.441), and BBS (P = 0.047, r = 0.409) scores, and GMV of contralesional hippocampus and FMA-UE scores (P = 0.048, r = 0.408). In conclusion, stroke patients exhibited wide grey matter loss and cortical morphological changes in the contralesional hemisphere, which correlated with sensorimotor functions and the ability of daily living.
Collapse
Affiliation(s)
- Juan-Juan Lu
- School of Rehabilitation Science, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Xiang-Xin Xing
- Department of Rehabilitation Medicine, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Jiao Qu
- Department of Radiology, Shanghai Songjiang District Central Hospital, Shanghai, China
| | - Jia-Jia Wu
- Department of Rehabilitation Medicine, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Xu-Yun Hua
- Department of Traumatology and Orthopedics, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Mou-Xiong Zheng
- Department of Traumatology and Orthopedics, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Jian-Guang Xu
- School of Rehabilitation Science, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Department of Rehabilitation Medicine, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Engineering Research Center of Traditional Chinese Medicine Intelligent Rehabilitation, Ministry of Education, Shanghai, China
| |
Collapse
|
10
|
Modi B, Guardamagna M, Stella F, Griguoli M, Cherubini E, Battaglia FP. State-dependent coupling of hippocampal oscillations. eLife 2023; 12:e80263. [PMID: 37462671 PMCID: PMC10411970 DOI: 10.7554/elife.80263] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Accepted: 07/17/2023] [Indexed: 08/10/2023] Open
Abstract
Oscillations occurring simultaneously in a given area represent a physiological unit of brain states. They allow for temporal segmentation of spikes and support distinct behaviors. To establish how multiple oscillatory components co-vary simultaneously and influence neuronal firing during sleep and wakefulness in mice, we describe a multivariate analytical framework for constructing the state space of hippocampal oscillations. Examining the co-occurrence patterns of oscillations on the state space, across species, uncovered the presence of network constraints and distinct set of cross-frequency interactions during wakefulness compared to sleep. We demonstrated how the state space can be used as a canvas to map the neural firing and found that distinct neurons during navigation were tuned to different sets of simultaneously occurring oscillations during sleep. This multivariate analytical framework provides a window to move beyond classical bivariate pipelines for investigating oscillations and neuronal firing, thereby allowing to factor-in the complexity of oscillation-population interactions.
Collapse
Affiliation(s)
| | - Matteo Guardamagna
- Donders Institute for Brain, Cognition and Behavior, Radboud UniversityNijmegenNetherlands
| | - Federico Stella
- Donders Institute for Brain, Cognition and Behavior, Radboud UniversityNijmegenNetherlands
| | - Marilena Griguoli
- European Brain Research InstituteRomeItaly
- CNR, Institute of Molecular Biology and PathologyRomeItaly
| | | | - Francesco P Battaglia
- Donders Institute for Brain, Cognition and Behavior, Radboud UniversityNijmegenNetherlands
| |
Collapse
|
11
|
Muza PM, Bush D, Pérez-González M, Zouhair I, Cleverley K, Sopena ML, Aoidi R, West SJ, Good M, Tybulewicz VL, Walker MC, Fisher EM, Chang P. Cognitive impairments in a Down syndrome model with abnormal hippocampal and prefrontal dynamics and cytoarchitecture. iScience 2023; 26:106073. [PMID: 36818290 PMCID: PMC9929862 DOI: 10.1016/j.isci.2023.106073] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 12/22/2022] [Accepted: 01/24/2023] [Indexed: 01/29/2023] Open
Abstract
The Dp(10)2Yey mouse carries a ∼2.3-Mb intra-chromosomal duplication of mouse chromosome 10 (Mmu10) that has homology to human chromosome 21, making it an essential model for aspects of Down syndrome (DS, trisomy 21). In this study, we investigated neuronal dysfunction in the Dp(10)2Yey mouse and report spatial memory impairment and anxiety-like behavior alongside altered neural activity in the medial prefrontal cortex (mPFC) and hippocampus (HPC). Specifically, Dp(10)2Yey mice showed impaired spatial alternation associated with increased sharp-wave ripple activity in mPFC during a period of memory consolidation, and reduced mobility in a novel environment accompanied by reduced theta-gamma phase-amplitude coupling in HPC. Finally, we found alterations in the number of interneuron subtypes in mPFC and HPC that may contribute to the observed phenotypes and highlight potential approaches to ameliorate the effects of human trisomy 21.
Collapse
Affiliation(s)
- Phillip M. Muza
- Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology, London WC1N 3BG, UK
| | - Daniel Bush
- Department of Clinical and Experimental Epilepsy, UCL Queen Square Institute of Neurology, London WC1N 3BG, UK
- UCL Institute of Cognitive Neuroscience and UCL Queen Square Institute of Neurology, University College London, London WC1N 3AZ, UK
| | - Marta Pérez-González
- Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology, London WC1N 3BG, UK
| | - Ines Zouhair
- Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology, London WC1N 3BG, UK
| | - Karen Cleverley
- Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology, London WC1N 3BG, UK
| | - Miriam L. Sopena
- Bioinformatics and Biostatistics, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - Rifdat Aoidi
- Immune Cell Biology and Down Syndrome Laboratory, The Francis Crick Institute, London NW1 1AT, UK
| | - Steven J. West
- Sainsbury Wellcome Centre, University College London, London W1T 4JG, UK
| | - Mark Good
- School of Psychology, Cardiff University, Cardiff CF10 3AT, UK
| | - Victor L.J. Tybulewicz
- Immune Cell Biology and Down Syndrome Laboratory, The Francis Crick Institute, London NW1 1AT, UK
| | - Matthew C. Walker
- Department of Clinical and Experimental Epilepsy, UCL Queen Square Institute of Neurology, London WC1N 3BG, UK
| | - Elizabeth M.C. Fisher
- Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology, London WC1N 3BG, UK
| | - Pishan Chang
- Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology, London WC1N 3BG, UK
- Department of Clinical and Experimental Epilepsy, UCL Queen Square Institute of Neurology, London WC1N 3BG, UK
- School of Physiology, Pharmacology, and Neuroscience, University of Bristol, Bristol BS8 1TD, UK
| |
Collapse
|
12
|
Lim J, Bang Y, Kim KM, Choi HJ. Differentiated HT22 cells as a novel model for in vitro screening of serotonin reuptake inhibitors. Front Pharmacol 2023; 13:1062650. [PMID: 36703746 PMCID: PMC9871236 DOI: 10.3389/fphar.2022.1062650] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Accepted: 12/13/2022] [Indexed: 01/12/2023] Open
Abstract
The mouse hippocampal neuronal cell line HT22 is frequently used as an in vitro model to investigate the role of hippocampal cholinergic neurons in cognitive functions. HT22 cells are derived from hippocampal neuronal HT4 cells. However, whether these cells exhibit the serotonergic neuronal phenotype observed in mature hippocampal neurons has not been determined yet. In this present study, we examined whether the differentiation of HT22 cells enhances the serotonergic neuronal phenotype, and if so, whether it can be used for antidepressant screening. Our results show that differentiation of HT22 cells promoted neurite outgrowth and upregulation of N-methyl-D-aspartate receptor and choline acetyltransferase, which is similar to that observed in primary cultured hippocampal neurons. Furthermore, proteins required for serotonergic neurotransmission, such as tryptophan hydroxylase 2, serotonin (5-hydroxytryptamine, 5-HT)1a receptor, and serotonin transporter (SERT), were significantly upregulated in differentiated HT22 cells. The transcription factor Pet-1 was upregulated during HT22 differentiation and was responsible for the regulation of the serotonergic neuronal phenotype. Differentiation also enhanced the functional serotonergic properties of HT22 cells, as evidenced by increase in intracellular 5-HT levels, serotonin transporter SERT glycosylation, and 5-HT reuptake activity. The sensitivity of 5-HT reuptake inhibition by venlafaxine in differentiated HT22 cells (IC50, 27.21 nM) was comparable to that in HEK293 cells overexpressing serotonin transporter SERT (IC50, 30.65 nM). These findings suggest that the differentiation of HT22 cells enhances their functional serotonergic properties, and these cells could be a potential in vitro system for assessing the efficacy of antidepressant 5-HT reuptake inhibitors.
Collapse
Affiliation(s)
- Juhee Lim
- College of Pharmacy and Institute of Pharmaceutical Sciences, CHA University, Pocheon, Gyeonggi-do, South Korea,College of Pharmacy and Research Institute of Pharmaceutical Sciences, Woosuk University, Wanju, Jeollabuk-do, South Korea
| | - Yeojin Bang
- College of Pharmacy and Institute of Pharmaceutical Sciences, CHA University, Pocheon, Gyeonggi-do, South Korea
| | - Kyeong-Man Kim
- College of Pharmacy, Chonnam National University, Gwangju, South Korea
| | - Hyun Jin Choi
- College of Pharmacy and Institute of Pharmaceutical Sciences, CHA University, Pocheon, Gyeonggi-do, South Korea,*Correspondence: Hyun Jin Choi,
| |
Collapse
|
13
|
Madan Mohan V, Banerjee A. A perturbative approach to study information communication in brain networks. Netw Neurosci 2022; 6:1275-1295. [PMID: 38800461 PMCID: PMC11117119 DOI: 10.1162/netn_a_00260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Accepted: 06/15/2022] [Indexed: 05/29/2024] Open
Abstract
How communication among neuronal ensembles shapes functional brain dynamics is a question of fundamental importance to neuroscience. Communication in the brain can be viewed as a product of the interaction of node activities with the structural network over which these activities flow. The study of these interactions is, however, restricted by the difficulties in describing the complex dynamics of the brain. There is thus a need to develop methods to study these network-dynamical interactions and how they impact information flow, without having to ascertain dynamics a priori or resort to restrictive analytical approaches. Here, we adapt a recently established network analysis method based on perturbations, it to a neuroscientific setting to study how information flow in the brain can raise from properties of underlying structure. For proof-of-concept, we apply the approach on in silico whole-brain models. We expound on the functional implications of the distributions of metrics that capture network-dynamical interactions, termed net influence and flow. We also study the network-dynamical interactions at the level of resting-state networks. An attractive feature of this method is its simplicity, which allows a direct translation to an experimental or clinical setting, such as for identifying targets for stimulation studies or therapeutic interventions.
Collapse
|
14
|
Replay, the default mode network and the cascaded memory systems model. Nat Rev Neurosci 2022; 23:628-640. [PMID: 35970912 DOI: 10.1038/s41583-022-00620-6] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/07/2022] [Indexed: 12/25/2022]
Abstract
The spontaneous replay of patterns of activity related to past experiences and memories is a striking feature of brain activity, as is the coherent activation of sets of brain areas - particularly those comprising the default mode network (DMN) - during rest. We propose that these two phenomena are strongly intertwined and that their potential functions overlap. In the 'cascaded memory systems model' that we outline here, we hypothesize that the DMN forms the backbone for the propagation of replay, mediating interactions between the hippocampus and the neocortex that enable the consolidation of new memories. The DMN may also independently ignite replay cascades, which support reactivation of older memories or high-level semantic representations. We suggest that transient cortical activations, inducing long-range correlations across the neocortex, are a key mechanism supporting a hierarchy of representations that progresses from simple percepts to semantic representations of causes and, finally, to whole episodes.
Collapse
|
15
|
Stoewer P, Schlieker C, Schilling A, Metzner C, Maier A, Krauss P. Neural network based successor representations to form cognitive maps of space and language. Sci Rep 2022; 12:11233. [PMID: 35787659 PMCID: PMC9253065 DOI: 10.1038/s41598-022-14916-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2022] [Accepted: 06/15/2022] [Indexed: 11/21/2022] Open
Abstract
How does the mind organize thoughts? The hippocampal-entorhinal complex is thought to support domain-general representation and processing of structural knowledge of arbitrary state, feature and concept spaces. In particular, it enables the formation of cognitive maps, and navigation on these maps, thereby broadly contributing to cognition. It has been proposed that the concept of multi-scale successor representations provides an explanation of the underlying computations performed by place and grid cells. Here, we present a neural network based approach to learn such representations, and its application to different scenarios: a spatial exploration task based on supervised learning, a spatial navigation task based on reinforcement learning, and a non-spatial task where linguistic constructions have to be inferred by observing sample sentences. In all scenarios, the neural network correctly learns and approximates the underlying structure by building successor representations. Furthermore, the resulting neural firing patterns are strikingly similar to experimentally observed place and grid cell firing patterns. We conclude that cognitive maps and neural network-based successor representations of structured knowledge provide a promising way to overcome some of the short comings of deep learning towards artificial general intelligence.
Collapse
Affiliation(s)
- Paul Stoewer
- Cognitive Computational Neuroscience Group, University Erlangen-Nuremberg, Erlangen, Germany
- Pattern Recognition Lab, University Erlangen-Nuremberg, Erlangen, Germany
| | - Christian Schlieker
- Cognitive Computational Neuroscience Group, University Erlangen-Nuremberg, Erlangen, Germany
- Pattern Recognition Lab, University Erlangen-Nuremberg, Erlangen, Germany
| | - Achim Schilling
- Cognitive Computational Neuroscience Group, University Erlangen-Nuremberg, Erlangen, Germany
- Neuroscience Lab, University Hospital Erlangen, Erlangen, Germany
| | - Claus Metzner
- Neuroscience Lab, University Hospital Erlangen, Erlangen, Germany
- Biophysics Lab, University Erlangen-Nuremberg, Erlangen, Germany
| | - Andreas Maier
- Pattern Recognition Lab, University Erlangen-Nuremberg, Erlangen, Germany
| | - Patrick Krauss
- Cognitive Computational Neuroscience Group, University Erlangen-Nuremberg, Erlangen, Germany.
- Pattern Recognition Lab, University Erlangen-Nuremberg, Erlangen, Germany.
- Neuroscience Lab, University Hospital Erlangen, Erlangen, Germany.
- Linguistics Lab, University Erlangen-Nuremberg, Erlangen, Germany.
| |
Collapse
|
16
|
Menzel R. In Search for the Retrievable Memory Trace in an Insect Brain. Front Syst Neurosci 2022; 16:876376. [PMID: 35757095 PMCID: PMC9214861 DOI: 10.3389/fnsys.2022.876376] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Accepted: 04/05/2022] [Indexed: 11/30/2022] Open
Abstract
The search strategy for the memory trace and its semantics is exemplified for the case of olfactory learning in the honeybee brain. The logic of associative learning is used to guide the experimental approach into the brain by identifying the anatomical and functional convergence sites of the conditioned stimulus and unconditioned stimulus pathways. Two of the several convergence sites are examined in detail, the antennal lobe as the first-order sensory coding area, and the input region of the mushroom body as a higher order integration center. The memory trace is identified as the pattern of associative changes on the level of synapses. The synapses are recruited, drop out, and change the transmission properties for both specifically associated stimulus and the non-associated stimulus. Several rules extracted from behavioral studies are found to be mirrored in the patterns of synaptic change. The strengths and the weaknesses of the honeybee as a model for the search for the memory trace are addressed in a comparison with Drosophila. The question is discussed whether the memory trace exists as a hidden pattern of change if it is not retrieved and whether an external reading of the content of the memory trace may ever be possible. Doubts are raised on the basis that the retrieval circuits are part of the memory trace. The concept of a memory trace existing beyond retrieval is defended by referring to two well-documented processes also in the honeybee, memory consolidation during sleep, and transfer of memory across brain areas.
Collapse
Affiliation(s)
- Randolf Menzel
- Institute Biology - Neurobiology, Freie Universität Berlin, Berlin, Germany
| |
Collapse
|
17
|
Association of Hippocampal Subfield Volumes with Amyloid-Beta Deposition in Alzheimer's Disease. J Clin Med 2022; 11:jcm11061526. [PMID: 35329851 PMCID: PMC8955328 DOI: 10.3390/jcm11061526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Revised: 03/01/2022] [Accepted: 03/08/2022] [Indexed: 11/25/2022] Open
Abstract
We investigated the relationship between hippocampal subfield volumes and cortical amyloid-beta (Aβ) deposition in Alzheimer’s disease (AD). Fifty participants (11 cognitively unimpaired [CU], 10 with mild cognitive impairment [MCI], and 29 with AD) who underwent 18F-florbetaben positron emission tomography, magnetic resonance imaging, and neuropsychological tests were enrolled. The hippocampal subfield volumes were obtained using an automated brain volumetry system with the Winterburn atlas and were compared among the diagnostic groups, and the correlations with the Aβ deposition and AD risk factors were determined. Patients with MCI and AD showed decreased volume in the stratum radiatum/lacunosum/moleculare (SRLM) of the cornu ammonis (CA)1 and CA4-dentate gyrus (DG) compared with the CU. Decreased SRLM and CA4-DG volumes were associated with an increased Aβ deposition in the global cortex (R = −0.459, p = 0.001; R = −0.393, p = 0.005, respectively). The SRLM and CA4-DG volumes aided in the distinction of AD from CU (areas under the receiver operating characteristic [AUROC] curve = 0.994 and 0.981, respectively, p < 0.001), and Aβ+ from Aβ− individuals (AUROC curve = 0.949 and 0.958, respectively, p < 0.001). Hippocampal subfield volumes demonstrated potential as imaging biomarkers in the diagnosis and detection of AD and Aβ deposition, respectively.
Collapse
|
18
|
Stiso J, Lynn CW, Kahn AE, Rangarajan V, Szymula KP, Archer R, Revell A, Stein JM, Litt B, Davis KA, Lucas TH, Bassett DS. Neurophysiological Evidence for Cognitive Map Formation during Sequence Learning. eNeuro 2022; 9:ENEURO.0361-21.2022. [PMID: 35105662 PMCID: PMC8896554 DOI: 10.1523/eneuro.0361-21.2022] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Revised: 12/03/2021] [Accepted: 01/03/2022] [Indexed: 12/29/2022] Open
Abstract
Humans deftly parse statistics from sequences. Some theories posit that humans learn these statistics by forming cognitive maps, or underlying representations of the latent space which links items in the sequence. Here, an item in the sequence is a node, and the probability of transitioning between two items is an edge. Sequences can then be generated from walks through the latent space, with different spaces giving rise to different sequence statistics. Individual or group differences in sequence learning can be modeled by changing the time scale over which estimates of transition probabilities are built, or in other words, by changing the amount of temporal discounting. Latent space models with temporal discounting bear a resemblance to models of navigation through Euclidean spaces. However, few explicit links have been made between predictions from Euclidean spatial navigation and neural activity during human sequence learning. Here, we use a combination of behavioral modeling and intracranial encephalography (iEEG) recordings to investigate how neural activity might support the formation of space-like cognitive maps through temporal discounting during sequence learning. Specifically, we acquire human reaction times from a sequential reaction time task, to which we fit a model that formulates the amount of temporal discounting as a single free parameter. From the parameter, we calculate each individual's estimate of the latent space. We find that neural activity reflects these estimates mostly in the temporal lobe, including areas involved in spatial navigation. Similar to spatial navigation, we find that low-dimensional representations of neural activity allow for easy separation of important features, such as modules, in the latent space. Lastly, we take advantage of the high temporal resolution of iEEG data to determine the time scale on which latent spaces are learned. We find that learning typically happens within the first 500 trials, and is modulated by the underlying latent space and the amount of temporal discounting characteristic of each participant. Ultimately, this work provides important links between behavioral models of sequence learning and neural activity during the same behavior, and contextualizes these results within a broader framework of domain general cognitive maps.
Collapse
Affiliation(s)
- Jennifer Stiso
- Department of Bioengineering, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, PA 19104
| | - Christopher W Lynn
- Initiative for the Theoretical Sciences, Graduate Center, City University of New York, New York, NY 10016
- Joseph Henry Laboratories of Physics, Princeton University, Princeton, NJ 08544
| | - Ari E Kahn
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ 08544
| | - Vinitha Rangarajan
- Department of Bioengineering, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, PA 19104
| | - Karol P Szymula
- Department of Bioengineering, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, PA 19104
| | - Ryan Archer
- Department of Neurology, Hospital of the University of Pennsylvania, Philadelphia, PA 19104
| | - Andrew Revell
- Department of Neurology, Hospital of the University of Pennsylvania, Philadelphia, PA 19104
| | - Joel M Stein
- Department of Radiology, Hospital of the University of Pennsylvania, Philadelphia, PA 19104
| | - Brian Litt
- Department of Neurology, Hospital of the University of Pennsylvania, Philadelphia, PA 19104
| | - Kathryn A Davis
- Department of Neurology, Hospital of the University of Pennsylvania, Philadelphia, PA 19104
| | - Timothy H Lucas
- Department of Neurology, Hospital of the University of Pennsylvania, Philadelphia, PA 19104
| | - Dani S Bassett
- Department of Bioengineering, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, PA 19104
- Department of Electrical and Systems Engineering, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, PA 19104
- Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104
- Department of Physics and Astronomy, College of Arts and Sciences, University of Pennsylvania, Philadelphia, PA 19104
- The Santa Fe Institute, Santa Fe, NM 87501
- Department of Bioengineering, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, PA 19104
- Initiative for the Theoretical Sciences, Graduate Center, City University of New York, New York, NY 10016
| |
Collapse
|
19
|
Guo J, Qiu T, Wang L, Shi L, Ai M, Xia Z, Peng Z, Zheng A, Li X, Kuang L. Microglia Loss and Astrocyte Activation Cause Dynamic Changes in Hippocampal [18F]DPA-714 Uptake in Mouse Models of Depression. Front Cell Neurosci 2022; 16:802192. [PMID: 35250485 PMCID: PMC8896346 DOI: 10.3389/fncel.2022.802192] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Accepted: 01/31/2022] [Indexed: 12/18/2022] Open
Abstract
Major depression is a serious and chronic mental illness. However, its etiology is poorly understood. Although glial cells have been increasingly implicated in the pathogenesis of depression, the specific role of microglia and astrocytes in stress-induced depression remains unclear. Translocator protein (TSPO) has long been considered a marker of neuroinflammation and microglial activation. However, this protein is also present on astrocytes. Thus, it is necessary to explore the relationships between TSPO, microglia, and astrocytes in the context of depression. In this study, C57BL/6J male mice were subjected to chronic unpredictable stress (CUS) for 5 weeks. Subsequently, sucrose preference and tail suspension tests (TSTs) were performed to assess anhedonia and despair in these mice. [18F]DPA-714 positron emission tomography (PET) was adopted to dynamically assess the changes in glial cells before and 2, 4, or 5 weeks after CUS exposure. The numbers of TSPO+ cells, ionized calcium-binding adaptor molecule (Iba)-1+ microglial cells, TSPO+/Iba-1+ cells, glial fibrillary acidic protein (GFAP)+ astrocytes, TSPO+/GFAP+ cells, and TUNEL-stained microglia were quantified using immunofluorescence staining. Real-time PCR was used to evaluate interleukin (IL)-1β, IL-4, and IL-18 expression in the hippocampus. We observed that hippocampal [18F]DPA-714 uptake significantly increased after 2 weeks of CUS. However, the signal significantly decreased after 5 weeks of CUS. CUS significantly reduced the number of Iba-1+, TSPO+, and TSPO+/Iba-1+ cells in the hippocampus, especially in the CA1 and dentate gyrus (DG) subregions. However, this intervention increased the number of GFAP+ astrocytes in the CA2/CA3 subregions of the hippocampus. In addition, microglial apoptosis in the early stage of CUS appeared to be involved in microglia loss. Further, the expression of pro-inflammatory cytokines (IL-1β and IL-18) was significantly decreased after CUS. In contrast, the expression of the anti-inflammatory cytokine IL-4 was significantly increased after 2 weeks of CUS. These results suggested that the CUS-induced dynamic changes in hippocampal [18F]DPA-714 uptake and several cytokines may be due to combined microglial and astrocyte action. These findings provide a theoretical reference for the future clinical applications of TSPO PET.
Collapse
Affiliation(s)
- Jiamei Guo
- Department of Psychiatry, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Tian Qiu
- Department of Psychiatry, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Lixia Wang
- Department of Psychiatry, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Lei Shi
- Department of Psychiatry, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Ming Ai
- Department of Psychiatry, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Zhu Xia
- Department of Nuclear Medicine, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Zhiping Peng
- College of Basic Medicine, Chongqing Medical University, Chongqing, China
| | - Anhai Zheng
- Department of Psychiatry, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Xiao Li
- Department of Psychiatry, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Li Kuang
- Department of Psychiatry, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
- *Correspondence: Li Kuang,
| |
Collapse
|
20
|
Karalis N, Sirota A. Breathing coordinates cortico-hippocampal dynamics in mice during offline states. Nat Commun 2022; 13:467. [PMID: 35075139 PMCID: PMC8786964 DOI: 10.1038/s41467-022-28090-5] [Citation(s) in RCA: 87] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Accepted: 12/13/2021] [Indexed: 12/18/2022] Open
Abstract
Network dynamics have been proposed as a mechanistic substrate for the information transfer across cortical and hippocampal circuits. However, little is known about the mechanisms that synchronize and coordinate these processes across widespread brain regions during offline states. Here we address the hypothesis that breathing acts as an oscillatory pacemaker, persistently coupling distributed brain circuit dynamics. Using large-scale recordings from a number of cortical and subcortical brain regions in behaving mice, we uncover the presence of an intracerebral respiratory corollary discharge, that modulates neural activity across these circuits. During offline states, the respiratory modulation underlies the coupling of hippocampal sharp-wave ripples and cortical DOWN/UP state transitions, which mediates systems memory consolidation. These results highlight breathing, a perennial brain rhythm, as an oscillatory scaffold for the functional coordination of the limbic circuit that supports the segregation and integration of information flow across neuronal networks during offline states.
Collapse
Affiliation(s)
- Nikolaos Karalis
- Faculty of Medicine, Ludwig-Maximilian University, Munich, 82152, Martinsried, Germany.
- Friedrich Miescher Institute for Biomedical Research, 4058, Basel, Switzerland.
| | - Anton Sirota
- Faculty of Medicine, Ludwig-Maximilian University, Munich, 82152, Martinsried, Germany.
| |
Collapse
|
21
|
Symanski CA, Bladon JH, Kullberg ET, Miller P, Jadhav SP. Rhythmic coordination and ensemble dynamics in the hippocampal-prefrontal network during odor-place associative memory and decision making. eLife 2022; 11:79545. [PMID: 36480255 PMCID: PMC9799972 DOI: 10.7554/elife.79545] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2022] [Accepted: 12/08/2022] [Indexed: 12/14/2022] Open
Abstract
Memory-guided decision making involves long-range coordination across sensory and cognitive brain networks, with key roles for the hippocampus and prefrontal cortex (PFC). In order to investigate the mechanisms of such coordination, we monitored activity in hippocampus (CA1), PFC, and olfactory bulb (OB) in rats performing an odor-place associative memory guided decision task on a T-maze. During odor sampling, the beta (20-30 Hz) and respiratory (7-8 Hz) rhythms (RR) were prominent across the three regions, with beta and RR coherence between all pairs of regions enhanced during the odor-cued decision making period. Beta phase modulation of phase-locked CA1 and PFC neurons during this period was linked to accurate decisions, with a key role of CA1 interneurons in temporal coordination. Single neurons and ensembles in both CA1 and PFC encoded and predicted animals' upcoming choices, with different cell ensembles engaged during decision-making and decision execution on the maze. Our findings indicate that rhythmic coordination within the hippocampal-prefrontal-olfactory bulb network supports utilization of odor cues for memory-guided decision making.
Collapse
Affiliation(s)
| | - John H Bladon
- Neuroscience Program, Brandeis UniversityWalthamUnited States,Department of Psychology, Brandeis UniversityWalthamUnited States
| | - Emi T Kullberg
- Neuroscience Program, Brandeis UniversityWalthamUnited States,Department of Psychology, Brandeis UniversityWalthamUnited States
| | - Paul Miller
- Neuroscience Program, Brandeis UniversityWalthamUnited States,Volen National Center for Complex Systems, Brandeis UniversityWalthamUnited States
| | | |
Collapse
|
22
|
Surget A, Belzung C. Adult hippocampal neurogenesis shapes adaptation and improves stress response: a mechanistic and integrative perspective. Mol Psychiatry 2022; 27:403-421. [PMID: 33990771 PMCID: PMC8960391 DOI: 10.1038/s41380-021-01136-8] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Revised: 04/09/2021] [Accepted: 04/19/2021] [Indexed: 02/03/2023]
Abstract
Adult hippocampal neurogenesis (AHN) represents a remarkable form of neuroplasticity that has increasingly been linked to the stress response in recent years. However, the hippocampus does not itself support the expression of the different dimensions of the stress response. Moreover, the main hippocampal functions are essentially preserved under AHN depletion and adult-born immature neurons (abGNs) have no extrahippocampal projections, which questions the mechanisms by which abGNs influence functions supported by brain areas far from the hippocampus. Within this framework, we propose that through its computational influences AHN is pivotal in shaping adaption to environmental demands, underlying its role in stress response. The hippocampus with its high input convergence and output divergence represents a computational hub, ideally positioned in the brain (1) to detect cues and contexts linked to past, current and predicted stressful experiences, and (2) to supervise the expression of the stress response at the cognitive, affective, behavioral, and physiological levels. AHN appears to bias hippocampal computations toward enhanced conjunctive encoding and pattern separation, promoting contextual discrimination and cognitive flexibility, reducing proactive interference and generalization of stressful experiences to safe contexts. These effects result in gating downstream brain areas with more accurate and contextualized information, enabling the different dimensions of the stress response to be more appropriately set with specific contexts. Here, we first provide an integrative perspective of the functional involvement of AHN in the hippocampus and a phenomenological overview of the stress response. We then examine the mechanistic underpinning of the role of AHN in the stress response and describe its potential implications in the different dimensions accompanying this response.
Collapse
Affiliation(s)
- A Surget
- UMR 1253, iBrain, Université de Tours, Inserm, Tours, France.
| | - C Belzung
- UMR 1253, iBrain, Université de Tours, Inserm, Tours, France.
| |
Collapse
|
23
|
Yuan C, Gao A, Xu Q, Zhang B, Xue R, Dou Y, Yu C. A multi-dosing regimen to enhance the spatial memory of normal rats with α5-containing GABA A receptor negative allosteric modulator L-655,708. Psychopharmacology (Berl) 2021; 238:3375-3389. [PMID: 34389882 DOI: 10.1007/s00213-021-05951-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/27/2020] [Accepted: 08/03/2021] [Indexed: 01/20/2023]
Abstract
RATIONALE AND OBJECTIVES The reported inconsistent effects of negative allosteric modulators of α5-containing GABAA receptors on learning and memory may be attributed to receptor selectivity, effective plasma concentration maintenance, and administration time. This study aimed to compare the effects of L-655,708 administered by single-dosing regimen versus multi-dosing regimen on spatial memory, signaling molecules, and brain functional connectivity. METHODS After comparing the maintenance time of the effective plasma concentration of L-655,708 between multi-dosing and single-dosing regimens, we further compared the effects of the administration of the two regimens at different phases (before-learning, during-learning, and before-probe) of the Morris water maze (MWM) test on the performance of learning and memory and the levels of signaling molecules related to learning and memory in hippocampal tissues. Functional connectivity analyses between hippocampal and cortical regions were performed to further clarify the effects of the multi-dosing regimen. RESULTS The multi-dosing regimen could maintain the effective plasma concentration of L-655,708 much longer than the single-dosing regimen. Only the multi-dosing regimen for L-655,708 administration during the learning period led to significant improvement in spatial memory in the MWM test and increases in levels of glutamate receptors and phosphorylated signaling molecules (p-PKAα, p-CaMKII, and p-CREB-1). Compared with the vehicle control, the multi-dosing regimen increased the functional connectivity of the left hippocampal CA1 with cingulate and motor cortices. CONCLUSIONS A multi-dosing regimen for L-655,708 administered during the learning period is an effective strategy to improve spatial memory, increase signaling molecule levels, and enhance the functional connectivity of the hippocampus.
Collapse
Affiliation(s)
- Congcong Yuan
- Department of Radiology and Tianjin Key Laboratory of Functional Imaging, Tianjin Medical University General Hospital, Tianjin, 300052, People's Republic of China
| | - An Gao
- Department of Radiology and Tianjin Key Laboratory of Functional Imaging, Tianjin Medical University General Hospital, Tianjin, 300052, People's Republic of China
| | - Qiang Xu
- Department of Radiology and Tianjin Key Laboratory of Functional Imaging, Tianjin Medical University General Hospital, Tianjin, 300052, People's Republic of China
| | - Beibei Zhang
- Department of Radiology and Tianjin Key Laboratory of Functional Imaging, Tianjin Medical University General Hospital, Tianjin, 300052, People's Republic of China
| | - Rui Xue
- Department of Radiology and Tianjin Key Laboratory of Functional Imaging, Tianjin Medical University General Hospital, Tianjin, 300052, People's Republic of China
| | - Yan Dou
- Department of Radiology and Tianjin Key Laboratory of Functional Imaging, Tianjin Medical University General Hospital, Tianjin, 300052, People's Republic of China.
| | - Chunshui Yu
- Department of Radiology and Tianjin Key Laboratory of Functional Imaging, Tianjin Medical University General Hospital, Tianjin, 300052, People's Republic of China.
- School of Medical Imaging, Tianjin Medical University, Tianjin, 300052, People's Republic of China.
| |
Collapse
|
24
|
Webb EK, Weis CN, Huggins AA, Fitzgerald JM, Bennett K, Bird CM, Parisi EA, Kallenbach M, Miskovich T, Krukowski J, deRoon-Cassini TA, Larson CL. Neural impact of neighborhood socioeconomic disadvantage in traumatically injured adults. Neurobiol Stress 2021; 15:100385. [PMID: 34471656 PMCID: PMC8390770 DOI: 10.1016/j.ynstr.2021.100385] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 08/17/2021] [Accepted: 08/20/2021] [Indexed: 11/30/2022] Open
Abstract
Nearly 14 percent of Americans live in a socioeconomically disadvantaged neighborhood. Lower individual socioeconomic position (iSEP) has been linked to increased exposure to trauma and stress, as well as to alterations in brain structure and function; however, the neural effects of neighborhood SEP (nSEP) factors, such as neighborhood disadvantage, are unclear. Using a multi-modal approach with participants who recently experienced a traumatic injury (N = 185), we investigated the impact of neighborhood disadvantage, acute post-traumatic stress symptoms, and iSEP on brain structure and functional connectivity at rest. After controlling for iSEP, demographic variables, and acute PTSD symptoms, nSEP was associated with decreased volume and alterations of resting-state functional connectivity in structures implicated in affective processing, including the insula, ventromedial prefrontal cortex, amygdala, and hippocampus. Even in individuals who have recently experienced a traumatic injury, and after accounting for iSEP, the impact of living in a disadvantaged neighborhood is apparent, particularly in brain regions critical for experiencing and regulating emotion. These results should inform future research investigating how various levels of socioeconomic circumstances may impact recovery after a traumatic injury as well as policies and community-developed interventions aimed at reducing the impact of socioeconomic stressors.
Collapse
Affiliation(s)
- E. Kate Webb
- University of Wisconsin-Milwaukee, Department of Psychology, Milwaukee, WI, USA
| | - Carissa N. Weis
- University of Wisconsin-Milwaukee, Department of Psychology, Milwaukee, WI, USA
| | - Ashley A. Huggins
- University of Wisconsin-Milwaukee, Department of Psychology, Milwaukee, WI, USA
| | | | | | - Claire M. Bird
- Marquette University, Department of Psychology, Milwaukee, WI, USA
| | - Elizabeth A. Parisi
- University of Wisconsin-Milwaukee, Department of Psychology, Milwaukee, WI, USA
| | - Maddy Kallenbach
- University of Wisconsin-Milwaukee, Department of Psychology, Milwaukee, WI, USA
| | - Tara Miskovich
- VA Northern California Healthcare System, Martinez, CA, USA
| | | | - Terri A. deRoon-Cassini
- Medical College of Wisconsin, Department of Surgery, Division of Trauma & Acute Care Surgery, Milwaukee, WI, USA
| | - Christine L. Larson
- University of Wisconsin-Milwaukee, Department of Psychology, Milwaukee, WI, USA
| |
Collapse
|
25
|
Klee JL, Souza BC, Battaglia FP. Learning differentially shapes prefrontal and hippocampal activity during classical conditioning. eLife 2021; 10:e65456. [PMID: 34665131 PMCID: PMC8545395 DOI: 10.7554/elife.65456] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Accepted: 10/10/2021] [Indexed: 11/25/2022] Open
Abstract
The ability to use sensory cues to inform goal-directed actions is a critical component of behavior. To study how sounds guide anticipatory licking during classical conditioning, we employed high-density electrophysiological recordings from the hippocampal CA1 area and the prefrontal cortex (PFC) in mice. CA1 and PFC neurons undergo distinct learning-dependent changes at the single-cell level and maintain representations of cue identity at the population level. In addition, reactivation of task-related neuronal assemblies during hippocampal awake Sharp-Wave Ripples (aSWRs) changed within individual sessions in CA1 and over the course of multiple sessions in PFC. Despite both areas being highly engaged and synchronized during the task, we found no evidence for coordinated single cell or assembly activity during conditioning trials or aSWR. Taken together, our findings support the notion that persistent firing and reactivation of task-related neural activity patterns in CA1 and PFC support learning during classical conditioning.
Collapse
Affiliation(s)
- Jan L Klee
- Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen, Netherlands
| | - Bryan C Souza
- Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen, Netherlands
| | - Francesco P Battaglia
- Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen, Netherlands
| |
Collapse
|
26
|
Hou X, Xiao X, Gong Y, Li Z, Chen A, Zhu C. Functional Near-Infrared Spectroscopy Neurofeedback Enhances Human Spatial Memory. Front Hum Neurosci 2021; 15:681193. [PMID: 34658812 PMCID: PMC8511425 DOI: 10.3389/fnhum.2021.681193] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Accepted: 09/09/2021] [Indexed: 11/13/2022] Open
Abstract
Spatial memory is an important cognitive function for human daily life and may present dysfunction or decline due to aging or clinical diseases. Functional near-infrared spectroscopy neurofeedback (fNIRS-NFB) is a promising neuromodulation technique with several special advantages that can be used to improve human cognitive functions by manipulating the neural activity of targeted brain regions or networks. In this pilot study, we intended to test the feasibility of fNIRS-NFB to enhance human spatial memory ability. The lateral parietal cortex, an accessible cortical region in the posterior medial hippocampal-cortical network that plays a crucial role in human spatial memory processing, was selected as the potential feedback target. A placebo-controlled fNIRS-NFB experiment was conducted to instruct individuals to regulate the neural activity in this region or an irrelevant control region. Experimental results showed that individuals learned to up-regulate the neural activity in the region of interest successfully. A significant increase in spatial memory performance was found after 8-session neurofeedback training in the experimental group but not in the control group. Furthermore, neurofeedback-induced neural activation increase correlated with spatial memory improvement. In summary, this study preliminarily demonstrated the feasibility of fNIRS-NFB to improve human spatial memory and has important implications for further applications.
Collapse
Affiliation(s)
- Xin Hou
- State Key Laboratory of Cognitive Neuroscience and Learning, IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, China.,School of Education, Chongqing Normal University, Chongqing, China
| | - Xiang Xiao
- State Key Laboratory of Cognitive Neuroscience and Learning, IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, China
| | - Yilong Gong
- State Key Laboratory of Cognitive Neuroscience and Learning, IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, China
| | - Zheng Li
- State Key Laboratory of Cognitive Neuroscience and Learning, Center for Cognition and Neuroergonomics, Beijing Normal University at Zhuhai, Zhuhai, China.,Center for Collaboration and Innovation in Brain and Learning Sciences, Beijing Normal University, Beijing, China
| | - Antao Chen
- Key Laboratory of Cognition and Personality of the Ministry of Education, Faculty of Psychology, Southwest University, Chongqing, China
| | - Chaozhe Zhu
- State Key Laboratory of Cognitive Neuroscience and Learning, IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, China.,Center for Collaboration and Innovation in Brain and Learning Sciences, Beijing Normal University, Beijing, China
| |
Collapse
|
27
|
Samara A, Raji CA, Li Z, Hershey T. Comparison of Hippocampal Subfield Segmentation Agreement between 2 Automated Protocols across the Adult Life Span. AJNR Am J Neuroradiol 2021; 42:1783-1789. [PMID: 34353786 DOI: 10.3174/ajnr.a7244] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Accepted: 05/14/2021] [Indexed: 12/20/2022]
Abstract
BACKGROUND AND PURPOSE The hippocampus is a frequent focus of quantitative neuroimaging research, and structural hippocampal alterations are related to multiple neurocognitive disorders. An increasing number of neuroimaging studies are focusing on hippocampal subfield regional involvement in these disorders using various automated segmentation approaches. Direct comparisons among these approaches are limited. The purpose of this study was to compare the agreement between two automated hippocampal segmentation algorithms in an adult population. MATERIALS AND METHODS We compared the results of 2 automated segmentation algorithms for hippocampal subfields (FreeSurfer v6.0 and volBrain) within a single imaging data set from adults (n = 176, 89 women) across a wide age range (20-79 years). Brain MR imaging was acquired on a single 3T scanner as part of the IXI Brain Development Dataset and included T1- and T2-weighted MR images. We also examined subfield volumetric differences related to age and sex and the impact of different intracranial volume and total hippocampal volume normalization methods. RESULTS Estimated intracranial volume and total hippocampal volume of both protocols were strongly correlated (r = 0.93 and 0.9, respectively; both P < .001). Hippocampal subfield volumes were correlated (ranging from r = 0.42 for the subiculum to r = 0.78 for the cornu ammonis [CA]1, all P < .001). However, absolute volumes were significantly different between protocols. volBrain produced larger CA1 and CA4-dentate gyrus and smaller CA2-CA3 and subiculum volumes compared with FreeSurfer v6.0. Regional age- and sex-related differences in subfield volumes were qualitatively and quantitatively different depending on segmentation protocol and intracranial volume/total hippocampal volume normalization method. CONCLUSIONS The hippocampal subfield volume relationship to demographic factors and disease states should undergo nuanced interpretation, especially when considering different segmentation protocols.
Collapse
Affiliation(s)
- A Samara
- From the Department of Psychiatry (A.S., Z.L., T.H.), Washington University School of Medicine, St. Louis, Missouri
| | - C A Raji
- From the Department of Psychiatry (A.S., Z.L., T.H.), Washington University School of Medicine, St. Louis, Missouri
- Mallinckrodt Institute of Radiology (C.A.R., T.H.), Washington University School of Medicine, St. Louis, Missouri
- Department of Neurology (C.A.R., T.H.), Washington University School of Medicine, St. Louis, Missouri
| | - Z Li
- From the Department of Psychiatry (A.S., Z.L., T.H.), Washington University School of Medicine, St. Louis, Missouri
- Department of Psychological and Brain Sciences (Z.L.), Washington University School of Medicine, St. Louis, Missouri
| | - T Hershey
- From the Department of Psychiatry (A.S., Z.L., T.H.), Washington University School of Medicine, St. Louis, Missouri
- Mallinckrodt Institute of Radiology (C.A.R., T.H.), Washington University School of Medicine, St. Louis, Missouri
- Department of Neurology (C.A.R., T.H.), Washington University School of Medicine, St. Louis, Missouri
| |
Collapse
|
28
|
Uscătescu LC, Kronbichler L, Stelzig-Schöler R, Pearce BG, Said-Yürekli S, Reich LA, Weber S, Aichhorn W, Kronbichler M. Effective Connectivity of the Hippocampus Can Differentiate Patients with Schizophrenia from Healthy Controls: A Spectral DCM Approach. Brain Topogr 2021; 34:762-778. [PMID: 34482503 PMCID: PMC8556208 DOI: 10.1007/s10548-021-00868-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Accepted: 08/22/2021] [Indexed: 12/01/2022]
Abstract
We applied spectral dynamic causal modelling (Friston et al. in Neuroimage 94:396–407. 10.1016/j.neuroimage.2013.12.009, 2014) to analyze the effective connectivity differences between the nodes of three resting state networks (i.e. default mode network, salience network and dorsal attention network) in a dataset of 31 male healthy controls (HC) and 25 male patients with a diagnosis of schizophrenia (SZ). Patients showed increased directed connectivity from the left hippocampus (LHC) to the: dorsal anterior cingulate cortex (DACC), right anterior insula (RAI), left frontal eye fields and the bilateral inferior parietal sulcus (LIPS & RIPS), as well as increased connectivity from the right hippocampus (RHC) to the: bilateral anterior insula (LAI & RAI), right frontal eye fields and RIPS. In SZ, negative symptoms predicted the connectivity strengths from the LHC to: the DACC, the left inferior parietal sulcus (LIPAR) and the RHC, while positive symptoms predicted the connectivity strengths from the LHC to the LIPAR and from the RHC to the LHC. These results reinforce the crucial role of hippocampus dysconnectivity in SZ pathology and its potential as a biomarker of disease severity.
Collapse
Affiliation(s)
- Lavinia Carmen Uscătescu
- Centre for Cognitive Neuroscience and Department of Psychology, University of Salzburg, Salzburg, Austria
| | - Lisa Kronbichler
- Centre for Cognitive Neuroscience and Department of Psychology, University of Salzburg, Salzburg, Austria
- Neuroscience Institute, Christian-Doppler Medical Centre, Paracelsus Medical University, Salzburg, Austria
| | - Renate Stelzig-Schöler
- Department of Psychiatry, Psychotherapy and Psychosomatics, Christian-Doppler Medical Centre, Paracelsus Medical University, Salzburg, Austria
| | - Brandy-Gale Pearce
- Department of Psychiatry, Psychotherapy and Psychosomatics, Christian-Doppler Medical Centre, Paracelsus Medical University, Salzburg, Austria
| | - Sarah Said-Yürekli
- Centre for Cognitive Neuroscience and Department of Psychology, University of Salzburg, Salzburg, Austria
- Neuroscience Institute, Christian-Doppler Medical Centre, Paracelsus Medical University, Salzburg, Austria
| | | | - Stefanie Weber
- Department of Psychiatry, Psychotherapy and Psychosomatics, Christian-Doppler Medical Centre, Paracelsus Medical University, Salzburg, Austria
| | - Wolfgang Aichhorn
- Department of Psychiatry, Psychotherapy and Psychosomatics, Christian-Doppler Medical Centre, Paracelsus Medical University, Salzburg, Austria
| | - Martin Kronbichler
- Centre for Cognitive Neuroscience and Department of Psychology, University of Salzburg, Salzburg, Austria
- Neuroscience Institute, Christian-Doppler Medical Centre, Paracelsus Medical University, Salzburg, Austria
| |
Collapse
|
29
|
Yu M, Sporns O, Saykin AJ. The human connectome in Alzheimer disease - relationship to biomarkers and genetics. Nat Rev Neurol 2021; 17:545-563. [PMID: 34285392 PMCID: PMC8403643 DOI: 10.1038/s41582-021-00529-1] [Citation(s) in RCA: 114] [Impact Index Per Article: 28.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/10/2021] [Indexed: 02/06/2023]
Abstract
The pathology of Alzheimer disease (AD) damages structural and functional brain networks, resulting in cognitive impairment. The results of recent connectomics studies have now linked changes in structural and functional network organization in AD to the patterns of amyloid-β and tau accumulation and spread, providing insights into the neurobiological mechanisms of the disease. In addition, the detection of gene-related connectome changes might aid in the early diagnosis of AD and facilitate the development of personalized therapeutic strategies that are effective at earlier stages of the disease spectrum. In this article, we review studies of the associations between connectome changes and amyloid-β and tau pathologies as well as molecular genetics in different subtypes and stages of AD. We also highlight the utility of connectome-derived computational models for replicating empirical findings and for tracking and predicting the progression of biomarker-indicated AD pathophysiology.
Collapse
Affiliation(s)
- Meichen Yu
- Indiana Alzheimer's Disease Research Center, Indiana University School of Medicine, Indianapolis, IN, USA
- Department of Radiology and Imaging Sciences, Indiana University School of Medicine, Indianapolis, IN, USA
- Indiana University Network Science Institute, Bloomington, IN, USA
| | - Olaf Sporns
- Indiana Alzheimer's Disease Research Center, Indiana University School of Medicine, Indianapolis, IN, USA
- Department of Radiology and Imaging Sciences, Indiana University School of Medicine, Indianapolis, IN, USA
- Indiana University Network Science Institute, Bloomington, IN, USA
- Department of Psychological and Brain Sciences, Indiana University, Bloomington, IN, USA
| | - Andrew J Saykin
- Indiana Alzheimer's Disease Research Center, Indiana University School of Medicine, Indianapolis, IN, USA.
- Department of Radiology and Imaging Sciences, Indiana University School of Medicine, Indianapolis, IN, USA.
- Indiana University Network Science Institute, Bloomington, IN, USA.
| |
Collapse
|
30
|
Revealing the Precise Role of Calretinin Neurons in Epilepsy: We Are on the Way. Neurosci Bull 2021; 38:209-222. [PMID: 34324145 PMCID: PMC8821741 DOI: 10.1007/s12264-021-00753-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Accepted: 04/24/2021] [Indexed: 02/03/2023] Open
Abstract
Epilepsy is a common neurological disorder characterized by hyperexcitability in the brain. Its pathogenesis is classically associated with an imbalance of excitatory and inhibitory neurons. Calretinin (CR) is one of the three major types of calcium-binding proteins present in inhibitory GABAergic neurons. The functions of CR and its role in neural excitability are still unknown. Recent data suggest that CR neurons have diverse neurotransmitters, morphologies, distributions, and functions in different brain regions across various species. Notably, CR neurons in the hippocampus, amygdala, neocortex, and thalamus are extremely susceptible to excitotoxicity in the epileptic brain, but the causal relationship is unknown. In this review, we focus on the heterogeneous functions of CR neurons in different brain regions and their relationship with neural excitability and epilepsy. Importantly, we provide perspectives on future investigations of the role of CR neurons in epilepsy.
Collapse
|
31
|
Banjac S, Roger E, Cousin E, Perrone-Bertolotti M, Haldin C, Pichat C, Lamalle L, Minotti L, Kahane P, Baciu M. Interactive mapping of language and memory with the GE2REC protocol. Brain Imaging Behav 2021; 15:1562-1579. [PMID: 32761343 PMCID: PMC8286228 DOI: 10.1007/s11682-020-00355-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Previous studies have highlighted the importance of considering cognitive functions from a dynamic and interactive perspective and multiple evidence was brought for a language and memory interaction. In this study performed with healthy participants, we present a new protocol entitled GE2REC that interactively accesses the neural representation of language-and-memory network. This protocol consists of three runs related to each other, providing a link between tasks, in order to assure an interactive measure of linguistic and episodic memory processes. GE2REC consists of a sentence generation (GE) in the auditory modality and two recollecting (2REC) memory tasks, one recognition performed in the visual modality, and another one recall performed in the auditory modality. Its efficiency was evaluated in 20 healthy volunteers using a 3T MR imager. Our results corroborate the ability of GE2REC to robustly activate fronto-temporo-parietal language network as well as temporal mesial, prefrontal and parietal cortices in encoding during sentence generation and recognition. GE2REC is useful because it: (a) requires simultaneous and interactive language-and-memory processes and jointly maps their neural basis; (b) explores encoding and retrieval, managing to elicit activation of mesial temporal structures; (c) is easy to perform, hence being suitable for more restrictive settings, and (d) has an ecological dimension of tasks and stimuli. GE2REC may be useful for studying neuroplasticity of cognitive functions, especially in patients with temporal lobe epilepsy who show reorganization of both language and memory networks. Overall, GE2REC can provide valuable information in terms of the practical foundation of exploration language and memory interconnection.
Collapse
Affiliation(s)
- Sonja Banjac
- Univ. Grenoble Alpes, CNRS LPNC UMR 5105, F-38000, Grenoble, France
| | - Elise Roger
- Univ. Grenoble Alpes, CNRS LPNC UMR 5105, F-38000, Grenoble, France
| | - Emilie Cousin
- Univ. Grenoble Alpes, CNRS LPNC UMR 5105, F-38000, Grenoble, France.,Univ. Grenoble Alpes, UMS IRMaGe CHU Grenoble, F-38000, Grenoble, France
| | | | - Célise Haldin
- Univ. Grenoble Alpes, CNRS LPNC UMR 5105, F-38000, Grenoble, France
| | - Cédric Pichat
- Univ. Grenoble Alpes, CNRS LPNC UMR 5105, F-38000, Grenoble, France
| | - Laurent Lamalle
- Univ. Grenoble Alpes, UMS IRMaGe CHU Grenoble, F-38000, Grenoble, France
| | - Lorella Minotti
- Univ. Grenoble Alpes, GIN, Synchronisation et modulation des Réseaux Neuronaux dans l'Epilepsie' and Neurology Department, F-38000, Grenoble, France
| | - Philippe Kahane
- Univ. Grenoble Alpes, GIN, Synchronisation et modulation des Réseaux Neuronaux dans l'Epilepsie' and Neurology Department, F-38000, Grenoble, France
| | - Monica Baciu
- Univ. Grenoble Alpes, CNRS LPNC UMR 5105, F-38000, Grenoble, France.
| |
Collapse
|
32
|
Jia Y, Xu L, Yang K, Zhang Y, Lv X, Zhu Z, Chen Z, Zhu Y, Wei L, Li X, Qian M, Shen Y, Hu W, Chen W. Precision Repetitive Transcranial Magnetic Stimulation Over the Left Parietal Cortex Improves Memory in Alzheimer's Disease: A Randomized, Double-Blind, Sham-Controlled Study. Front Aging Neurosci 2021; 13:693611. [PMID: 34267648 PMCID: PMC8276073 DOI: 10.3389/fnagi.2021.693611] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2021] [Accepted: 05/31/2021] [Indexed: 11/13/2022] Open
Abstract
Objective We aim to study the effect of precision repetitive transcranial magnetic stimulation (rTMS) over the left parietal cortex on the memory and cognitive function in Alzheimer’s disease (AD). Methods Based on the resting-state functional magnetic resonance imaging, the left parietal cortex site with the highest functional connectivity to the hippocampus was selected as the target of rTMS treatment. Sixty-nine AD patients were randomized to either rTMS or sham treatment (five sessions/week for a total of 10 sessions). The Mini-Mental State Examination (MMSE), 12-Word Philadelphia Verbal Learning Test (PVLT), and Clinical Dementia Rating (CDR) were assessed at baseline and after the last session. Results After a 2-week treatment, compared to patients in the sham group, those in the rTMS group scored significantly higher on PVLT total score and its immediate recall subscale score. Moreover, in the rTMS group, there were significant improvements after the 2-week treatment, which were manifested in MMSE total score and its time orientation and recall subscale scores, as well as PVLT total score and its immediate recall and short delay recall subscale scores. In the sham group, the PVLT total score was significantly improved. Conclusion The target site of the left parietal cortex can improve AD patients’ cognitive function, especially memory, providing a potential therapy.
Collapse
Affiliation(s)
- Yanli Jia
- Department of Psychiatry, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Luoyi Xu
- Department of Psychiatry, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Kehua Yang
- Department of Psychiatry, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yingchun Zhang
- Department of Psychiatry, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Xinghui Lv
- Department of Psychiatry, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Zhenwei Zhu
- Department of Psychiatry, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Zheli Chen
- Third People's Hospital of Huzhou, Huzhou, China
| | | | - Lili Wei
- Department of Psychiatry, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Xia Li
- Department of Geriatric Psychiatry, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Mincai Qian
- Third People's Hospital of Huzhou, Huzhou, China
| | - Yuedi Shen
- School of Medicine, Hangzhou Normal University, Hangzhou, China
| | - Weiming Hu
- The Third Hospital of Quzhou, Quzhou, China
| | - Wei Chen
- Department of Psychiatry, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Department of Psychology and Behavioral Sciences, Zhejiang University, Hangzhou, China.,Key Laboratory of Medical Neurobiology of Zhejiang Province, Hangzhou, China
| |
Collapse
|
33
|
Gu Z, Smith KG, Alexander GM, Guerreiro I, Dudek SM, Gutkin B, Jensen P, Yakel JL. Hippocampal Interneuronal α7 nAChRs Modulate Theta Oscillations in Freely Moving Mice. Cell Rep 2021; 31:107740. [PMID: 32521265 DOI: 10.1016/j.celrep.2020.107740] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Revised: 04/03/2020] [Accepted: 05/14/2020] [Indexed: 10/24/2022] Open
Abstract
Muscarinic acetylcholine receptors (mAChRs) are critically involved in hippocampal theta generation, but much less is known about the role of nicotinic AChRs (nAChRs). Here we provide evidence that α7 nAChRs expressed on interneurons, particularly those in oriens lacunosum moleculare (OLM), also regulate hippocampal theta generation. Local hippocampal infusion of a selective α7 nAChR antagonist significantly reduces hippocampal theta power and impairs Y-maze spontaneous alternation performance in freely moving mice. By knocking out receptors in different neuronal subpopulations, we find that α7 nAChRs expressed in OLM interneurons regulate theta generation. Our in vitro slice studies indicate that α7 nAChR activation increases OLM neuron activity that, in turn, enhances pyramidal cell excitatory postsynaptic currents (EPSCs). Our study also suggests that mAChR activation promotes transient theta generation, while α7 nAChR activation facilitates future theta generation by similar stimulations, revealing a complex mechanism whereby cholinergic signaling modulates different aspects of hippocampal theta oscillations through different receptor subtypes.
Collapse
Affiliation(s)
- Zhenglin Gu
- Neurobiology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Department of Health and Human Services, Research Triangle Park, NC 27709, USA
| | - Kathleen G Smith
- Neurobiology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Department of Health and Human Services, Research Triangle Park, NC 27709, USA
| | - Georgia M Alexander
- Neurobiology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Department of Health and Human Services, Research Triangle Park, NC 27709, USA
| | - Inês Guerreiro
- Group for Neural Theory, LNC INSERM U960, DEC Ecole Normale Superieure PSL University, Paris 75005, France
| | - Serena M Dudek
- Neurobiology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Department of Health and Human Services, Research Triangle Park, NC 27709, USA
| | - Boris Gutkin
- Group for Neural Theory, LNC INSERM U960, DEC Ecole Normale Superieure PSL University, Paris 75005, France; Center for Cognition and Decision Making, Institute for Cognitive Neuroscience, NRU Higher School of Economics, Moscow 101000, Russia
| | - Patricia Jensen
- Neurobiology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Department of Health and Human Services, Research Triangle Park, NC 27709, USA
| | - Jerrel L Yakel
- Neurobiology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Department of Health and Human Services, Research Triangle Park, NC 27709, USA.
| |
Collapse
|
34
|
Neuronal Network Excitability in Alzheimer's Disease: The Puzzle of Similar versus Divergent Roles of Amyloid β and Tau. eNeuro 2021; 8:ENEURO.0418-20.2020. [PMID: 33741601 PMCID: PMC8174042 DOI: 10.1523/eneuro.0418-20.2020] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Revised: 12/02/2020] [Accepted: 12/18/2020] [Indexed: 12/12/2022] Open
Abstract
Alzheimer’s disease (AD) is the most frequent neurodegenerative disorder that commonly causes dementia in the elderly. Recent evidence indicates that network abnormalities, including hypersynchrony, altered oscillatory rhythmic activity, interneuron dysfunction, and synaptic depression, may be key mediators of cognitive decline in AD. In this review, we discuss characteristics of neuronal network excitability in AD, and the role of Aβ and tau in the induction of network hyperexcitability. Many patients harboring genetic mutations that lead to increased Aβ production suffer from seizures and epilepsy before the development of plaques. Similarly, pathologic accumulation of hyperphosphorylated tau has been associated with hyperexcitability in the hippocampus. We present common and divergent roles of tau and Aβ on neuronal hyperexcitability in AD, and hypotheses that could serve as a template for future experiments.
Collapse
|
35
|
Kolibius LD, Born J, Feld GB. Vast Amounts of Encoded Items Nullify but Do Not Reverse the Effect of Sleep on Declarative Memory. Front Psychol 2021; 11:607070. [PMID: 33488465 PMCID: PMC7821853 DOI: 10.3389/fpsyg.2020.607070] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Accepted: 11/30/2020] [Indexed: 11/13/2022] Open
Abstract
Sleep strengthens memories by repeatedly reactivating associated neuron ensembles. Our studies show that although long-term memory for a medium number of word-pairs (160) benefits from sleep, a large number (320) does not. This suggests an upper limit to the amount of information that has access to sleep-dependent declarative memory consolidation, which is possibly linked to the availability of reactivation opportunities. Due to competing processes of global forgetting that are active during sleep, we hypothesized that even larger amounts of information would enhance the proportion of information that is actively forgotten during sleep. In the present study, we aimed to induce such forgetting by challenging the sleeping brain with vast amounts of to be remembered information. For this, 78 participants learned a very large number of 640 word-pairs interspersed with periods of quiet awake rest over the course of an entire day and then either slept or stayed awake during the night. Recall was tested after another night of regular sleep. Results revealed comparable retention rates between the sleep and wake groups. Although this null-effect can be reconciled with the concept of limited capacities available for sleep-dependent consolidation, it contradicts our hypothesis that sleep would increase forgetting compared to the wake group. Additional exploratory analyses relying on equivalence testing and Bayesian statistics reveal that there is evidence against sleep having a detrimental effect on the retention of declarative memory at high information loads. We argue that forgetting occurs in both wake and sleep states through different mechanisms, i.e., through increased interference and through global synaptic downscaling, respectively. Both of these processes might scale similarly with information load.
Collapse
Affiliation(s)
- Luca D. Kolibius
- School of Psychology, Cognition and Oscillations Lab, University of Birmingham, Birmingham, United Kingdom
- Centre for Human Brain Health, University of Birmingham, Birmingham, United Kingdom
- Institute of Medical Psychology and Behavioral Neurobiology, Eberhard Karls University of Tübingen, Tübingen, Germany
- Centre for Cognitive Neuroimaging, Institute for Neuroscience and Psychology, University of Glasgow, Glasgow, United Kingdom
| | - Jan Born
- Institute of Medical Psychology and Behavioral Neurobiology, Eberhard Karls University of Tübingen, Tübingen, Germany
- Werner Reichardt Centre for Integrative Neuroscience, Eberhard Karls University of Tübingen, Tübingen, Germany
- German Center for Diabetes Research (DZD), Institute for Diabetes Research & Metabolic Diseases (IDM) of the Helmholtz Center Munich at the University of Tübingen, Tübingen, Germany
| | - Gordon B. Feld
- Institute of Medical Psychology and Behavioral Neurobiology, Eberhard Karls University of Tübingen, Tübingen, Germany
- Department of Clinical Psychology, Central Institute of Mental Health, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany
- Department of Addiction Behavior and Addiction Medicine, Central Institute of Mental Health, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany
- Department of Psychiatry and Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany
| |
Collapse
|
36
|
VEGF Modulates the Neural Dynamics of Hippocampal Subregions in Chronic Global Cerebral Ischemia Rats. Neuromolecular Med 2021; 23:416-427. [PMID: 33398803 DOI: 10.1007/s12017-020-08642-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Accepted: 12/16/2020] [Indexed: 12/12/2022]
Abstract
Theta and gamma rhythms in hippocampus are important to cognitive performance. The cognitive impairments following cerebral ischemia is linked with the dysfunction of theta and gamma oscillations. As the primary mechanism for learning and memory, synaptic plasticity is in connection with these neural oscillations. Although vascular endothelial growth factor (VEGF) is thought to protect synaptic function in the ischemia rats to relieve cognitive impairment, little has been done on its effect of neural dynamics with this process. The present study investigated whether the alternation of neural oscillations in the hippocampus of ischemia rats is one of the potential neuroprotective mechanisms of VEGF. Rats were treated with the intranasal administration of VEGF at 72 h following chronic global cerebral ischemia procedure. Then local field potentials (LFPs) in hippocampal CA1 and CA3 regions were recorded and analyzed. Our results showed that VEGF can improve the power of theta and gamma rhythms in CA1 region after ischemia. Chronic global cerebral ischemia reduced the theta-gamma phase-amplitude coupling (PAC) not only within CA1 area but also in the pathway from CA3 to CA1, while VEGF alleviated the decreased coupling strength. Despite these notable differences, there were no obvious changes in the PAC within CA3 region. Surprisingly, the ischemia state did not affect the phase-phase interaction of hippocampus. In conclusion, our findings demonstrated that VEGF enhanced the theta-gamma PAC strength of CA3-CA1 pathway in ischemia rats, which may futher improve the information transmission within the hippocampus. These results illustrated the potential electrophysiologic mechanism of VEGF on cognitive improvement.
Collapse
|
37
|
Acute Effects of Two Different Species of Amyloid- β on Oscillatory Activity and Synaptic Plasticity in the Commissural CA3-CA1 Circuit of the Hippocampus. Neural Plast 2021; 2020:8869526. [PMID: 33381164 PMCID: PMC7765721 DOI: 10.1155/2020/8869526] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Revised: 12/04/2020] [Accepted: 12/08/2020] [Indexed: 11/29/2022] Open
Abstract
Recent evidence indicates that soluble amyloid-β (Aβ) species induce imbalances in excitatory and inhibitory transmission, resulting in neural network functional impairment and cognitive deficits during early stages of Alzheimer's disease (AD). To evaluate the in vivo effects of two soluble Aβ species (Aβ25-35 and Aβ1-40) on commissural CA3-to-CA1 (cCA3-to-CA1) synaptic transmission and plasticity, and CA1 oscillatory activity, we used acute intrahippocampal microinjections in adult anaesthetized male Wistar rats. Soluble Aβ microinjection increased cCA3-to-CA1 synaptic variability without significant changes in synaptic efficiency. High-frequency CA3 stimulation was rendered inefficient by soluble Aβ intrahippocampal injection to induce long-term potentiation and to enhance synaptic variability in CA1, contrasting with what was observed in vehicle-injected subjects. Although soluble Aβ microinjection significantly increased the relative power of γ-band and ripple oscillations and significantly shifted the average vector of θ-to-γ phase-amplitude coupling (PAC) in CA1, it prevented θ-to-γ PAC shift induced by high-frequency CA3 stimulation, opposite to what was observed in vehicle-injected animals. These results provide further evidence that soluble Aβ species induce synaptic dysfunction causing abnormal synaptic variability, impaired long-term plasticity, and deviant oscillatory activity, leading to network activity derailment in the hippocampus.
Collapse
|
38
|
Lee PL, Chou KH, Chung CP, Lai TH, Zhou JH, Wang PN, Lin CP. Posterior Cingulate Cortex Network Predicts Alzheimer's Disease Progression. Front Aging Neurosci 2020; 12:608667. [PMID: 33384594 PMCID: PMC7770227 DOI: 10.3389/fnagi.2020.608667] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Accepted: 11/24/2020] [Indexed: 12/14/2022] Open
Abstract
Alzheimer's disease (AD) is a progressive neurodegenerative disorder characterized by the accumulation of toxic misfolded proteins, which are believed to have propagated from disease-specific epicenters through their corresponding large-scale structural networks in the brain. Although previous cross-sectional studies have identified potential AD-associated epicenters and corresponding brain networks, it is unclear whether these networks are associated with disease progression. Hence, this study aims to identify the most vulnerable epicenters and corresponding large-scale structural networks involved in the early stages of AD and to evaluate its associations with multiple cognitive domains using longitudinal study design. Annual neuropsychological and MRI assessments were obtained from 23 patients with AD, 37 patients with amnestic mild cognitive impairment (MCI), and 33 healthy controls (HC) for 3 years. Candidate epicenters were identified as regions with faster decline rate in the gray matter volume (GMV) in patients with MCI who progressed to AD as compared to those regions in patients without progression. These epicenters were then further used as pre-defined regions of interest to map the synchronized degeneration network (SDN) in HCs. Spatial similarity, network preference and clinical association analyses were used to evaluate the specific roles of the identified SDNs. Our results demonstrated that the hippocampus and posterior cingulate cortex (PCC) were the most vulnerable AD-associated epicenters. The corresponding PCC-SDN showed significant spatial association with the patterns of GMV atrophy rate in each patient group and the overlap of these patterns was more evident in the advanced stages of the disease. Furthermore, individuals with a higher GMV atrophy rate of the PCC-SDN also showed faster decline in multiple cognitive domains. In conclusion, our findings suggest the PCC and hippocampus are two vulnerable regions involved early in AD pathophysiology. However, the PCC-SDN, but not hippocampus-SDN, was more closely associated with AD progression. These results may provide insight into the pathophysiology of AD from large-scale network perspective.
Collapse
Affiliation(s)
- Pei-Lin Lee
- Institute of Neuroscience, National Yang-Ming University, Taipei, Taiwan
| | - Kun-Hsien Chou
- Institute of Neuroscience, National Yang-Ming University, Taipei, Taiwan.,Brain Research Center, National Yang-Ming University, Taipei, Taiwan
| | - Chih-Ping Chung
- Department of Neurology, School of Medicine, National Yang-Ming University, Taipei, Taiwan.,Department of Neurology, The Neurological Institute, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Tzu-Hsien Lai
- Department of Neurology, School of Medicine, National Yang-Ming University, Taipei, Taiwan.,Department of Neurology, Far Eastern Memorial Hospital, New Taipei, Taiwan
| | - Juan Helen Zhou
- Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.,Center for Cognitive Neuroscience, Neuroscience & Behavioral Disorders Program, Duke-National University of Singapore Medical School, Singapore, Singapore
| | - Pei-Ning Wang
- Brain Research Center, National Yang-Ming University, Taipei, Taiwan.,Department of Neurology, School of Medicine, National Yang-Ming University, Taipei, Taiwan.,Department of Neurology, The Neurological Institute, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Ching-Po Lin
- Institute of Neuroscience, National Yang-Ming University, Taipei, Taiwan.,Brain Research Center, National Yang-Ming University, Taipei, Taiwan
| |
Collapse
|
39
|
Contextual experience modifies functional connectome indices of topological strength and efficiency. Sci Rep 2020; 10:19843. [PMID: 33199790 PMCID: PMC7670469 DOI: 10.1038/s41598-020-76935-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Accepted: 10/27/2020] [Indexed: 11/08/2022] Open
Abstract
Stimuli presented at short temporal delays before functional magnetic resonance imaging (fMRI) can have a robust impact on the organization of synchronous activity in resting state networks. This presents an opportunity to investigate how sensory, affective and cognitive stimuli alter functional connectivity in rodent models. In the present study we assessed the effect on functional connectivity of a familiar contextual stimulus presented 10 min prior to sedation for imaging. A subset of animals were co-presented with an unfamiliar social stimulus in the same environment to further investigate the effect of familiarity on network topology. Rats were imaged at 11.1 T and graph theory analysis was applied to matrices generated from seed-based functional connectivity data sets with 144 brain regions (nodes) and 10,152 pairwise correlations (after excluding 144 diagonal edges). Our results show substantial changes in network topology in response to the familiar (context). Presentation of the familiar context, both in the absence and presence of the social stimulus, strongly reduced network strength, global efficiency, and altered the location of the highest eigenvector centrality nodes from cortex to the hypothalamus. We did not observe changes in modular organization, nodal cartographic assignments, assortative mixing, rich club organization, and network resilience. We propose that experiential factors, perhaps involving associative or episodic memory, can exert a dramatic effect on functional network strength and efficiency when presented at a short temporal delay before imaging.
Collapse
|
40
|
Barron HC, Reeve HM, Koolschijn RS, Perestenko PV, Shpektor A, Nili H, Rothaermel R, Campo-Urriza N, O'Reilly JX, Bannerman DM, Behrens TEJ, Dupret D. Neuronal Computation Underlying Inferential Reasoning in Humans and Mice. Cell 2020; 183:228-243.e21. [PMID: 32946810 PMCID: PMC7116148 DOI: 10.1016/j.cell.2020.08.035] [Citation(s) in RCA: 91] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Revised: 05/10/2020] [Accepted: 08/18/2020] [Indexed: 12/17/2022]
Abstract
Every day we make decisions critical for adaptation and survival. We repeat actions with known consequences. But we also draw on loosely related events to infer and imagine the outcome of entirely novel choices. These inferential decisions are thought to engage a number of brain regions; however, the underlying neuronal computation remains unknown. Here, we use a multi-day cross-species approach in humans and mice to report the functional anatomy and neuronal computation underlying inferential decisions. We show that during successful inference, the mammalian brain uses a hippocampal prospective code to forecast temporally structured learned associations. Moreover, during resting behavior, coactivation of hippocampal cells in sharp-wave/ripples represent inferred relationships that include reward, thereby "joining-the-dots" between events that have not been observed together but lead to profitable outcomes. Computing mnemonic links in this manner may provide an important mechanism to build a cognitive map that stretches beyond direct experience, thus supporting flexible behavior.
Collapse
Affiliation(s)
- Helen C Barron
- Medical Research Council Brain Network Dynamics Unit, Nuffield Department of Clinical Neurosciences, University of Oxford, Mansfield Road, Oxford OX1 3TH, UK; Wellcome Centre for Integrative Neuroimaging, University of Oxford, FMRIB, John Radcliffe Hospital, Oxford OX3 9DU, UK.
| | - Hayley M Reeve
- Medical Research Council Brain Network Dynamics Unit, Nuffield Department of Clinical Neurosciences, University of Oxford, Mansfield Road, Oxford OX1 3TH, UK
| | - Renée S Koolschijn
- Wellcome Centre for Integrative Neuroimaging, University of Oxford, FMRIB, John Radcliffe Hospital, Oxford OX3 9DU, UK
| | - Pavel V Perestenko
- Medical Research Council Brain Network Dynamics Unit, Nuffield Department of Clinical Neurosciences, University of Oxford, Mansfield Road, Oxford OX1 3TH, UK
| | - Anna Shpektor
- Wellcome Centre for Integrative Neuroimaging, University of Oxford, FMRIB, John Radcliffe Hospital, Oxford OX3 9DU, UK
| | - Hamed Nili
- Wellcome Centre for Integrative Neuroimaging, University of Oxford, FMRIB, John Radcliffe Hospital, Oxford OX3 9DU, UK
| | - Roman Rothaermel
- Medical Research Council Brain Network Dynamics Unit, Nuffield Department of Clinical Neurosciences, University of Oxford, Mansfield Road, Oxford OX1 3TH, UK
| | - Natalia Campo-Urriza
- Medical Research Council Brain Network Dynamics Unit, Nuffield Department of Clinical Neurosciences, University of Oxford, Mansfield Road, Oxford OX1 3TH, UK
| | - Jill X O'Reilly
- Wellcome Centre for Integrative Neuroimaging, University of Oxford, FMRIB, John Radcliffe Hospital, Oxford OX3 9DU, UK; Department of Experimental Psychology, University of Oxford, 15 Parks Road, Oxford OX1 3AQ, UK
| | - David M Bannerman
- Department of Experimental Psychology, University of Oxford, 15 Parks Road, Oxford OX1 3AQ, UK
| | - Timothy E J Behrens
- Wellcome Centre for Integrative Neuroimaging, University of Oxford, FMRIB, John Radcliffe Hospital, Oxford OX3 9DU, UK; The Wellcome Trust Centre for Neuroimaging, Institute of Neurology, University College London, London WC1N 3BG, UK
| | - David Dupret
- Medical Research Council Brain Network Dynamics Unit, Nuffield Department of Clinical Neurosciences, University of Oxford, Mansfield Road, Oxford OX1 3TH, UK.
| |
Collapse
|
41
|
Cell Assemblies in the Cortico-Hippocampal-Reuniens Network during Slow Oscillations. J Neurosci 2020; 40:8343-8354. [PMID: 32994338 DOI: 10.1523/jneurosci.0571-20.2020] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Revised: 07/22/2020] [Accepted: 09/01/2020] [Indexed: 11/21/2022] Open
Abstract
The nucleus reuniens (NR) is an important anatomic and functional relay between the medial prefrontal cortex (mPFC) and the hippocampus (HPC). Whether the NR controls neuronal assemblies, a hallmark of information exchange between the HPC and mPFC for memory transfer/consolidation, is not known. Using simultaneous local field potential and unit recordings in NR, HPC, and mPFC in male rats during slow oscillations under anesthesia, we identified a reliable sequential activation of NR neurons at the beginning of UP states, which preceded mPFC ones. NR sequences were spatially organized, from dorsal to ventral NR. Chemical inactivation of the NR disrupted mPFC sequences at the onset of UP states as well as HPC sequences present during sharp-wave ripples. We conclude that the NR contributes to the coordination and stabilization of mPFC and HPC neuronal sequences during slow oscillations, possibly via the early activation of its own sequences.SIGNIFICANCE STATEMENT Neuronal assemblies are believed to be instrumental to code/encode/store information. They can be recorded in different brain regions, suggesting that widely distributed networks of networks are involved in such information processing. The medial prefrontal cortex, the hippocampus, and the thalamic nucleus reuniens constitute a typical example of a complex network involved in memory consolidation. In this study, we show that spatially organized cells assemblies are recruited in the nucleus reuniens at the UP state onset during slow oscillations. Nucleus reuniens activity appears to be necessary to the stability of medial prefrontal cortex and hippocampal cell assembly formation during slow oscillations. This result further highlights the role of the nucleus reuniens as a functional hub for exchanging and processing memories.
Collapse
|
42
|
Rivas-Fernández MÁ, Galdo-Álvarez S, Zurrón M, Díaz F, Lindín M. Spatiotemporal pattern of brain electrical activity related to immediate and delayed episodic memory retrieval. Neurobiol Learn Mem 2020; 175:107309. [PMID: 32890759 DOI: 10.1016/j.nlm.2020.107309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Revised: 07/30/2020] [Accepted: 08/26/2020] [Indexed: 10/23/2022]
Abstract
In the present study we used the event-related brain potentials (ERP) technique and eLORETA (exact low-resolution electromagnetic tomography) method in order to characterize and compare the performance and the spatiotemporal pattern of the brain electrical activity related to the immediate episodic retrieval of information (words) that is being learned relative to delayed episodic retrieval twenty-minutes later. For this purpose, 16 young participants carried out an old/new word recognition task with source memory (word colour). The task included an immediate memory phase (with three study-test blocks) followed (20 min later) by a delayed memory phase with one test block. The behavioural data showed progressive learning and consolidation of the information (old words) during the immediate memory phase. The ERP data to correctly identified old words for which the colour was subsequently recollected (H/H) compared to the correctly rejected new words (CR) showed: (1) a significant more positive-going potential in the 500-675 ms post-stimulus interval (parietal old/new effect, related to recollection), and (2) a more negative-going potential in the 950-1850 ms interval (LPN effect, related to retrieval and post-retrieval processes). The eLORETA data also revealed that the successful recognition of old words (and probably retrieval of their colour) was accompanied by activation of (1) left medial temporal (parahippocampal gyrus) and parietal regions involved in the recollection in both memory phases, and (2) prefrontal regions and the superior temporal gyrus (in the immediate and delayed memory phases respectively) involved in monitoring, evaluating and maintaining the retrieval products. These findings indicate that episodic memory retrieval depends on a network involving medial temporal lobe and frontal, parietal and temporal neocortical structures. That network was involved in immediate and delayed memory retrieval and during the course of memory consolidation, with greater activation of some nodes (mobilization of more processing resources) for the delayed respect to the immediate retrieval condition.
Collapse
Affiliation(s)
- Miguel Ángel Rivas-Fernández
- Laboratorio de Neurociencia Cognitiva, Departamento de Psicoloxía Clínica e Psicobioloxía, Universidade de Santiago de Compostela, Galicia, Spain.
| | - Santiago Galdo-Álvarez
- Laboratorio de Neurociencia Cognitiva, Departamento de Psicoloxía Clínica e Psicobioloxía, Universidade de Santiago de Compostela, Galicia, Spain.
| | - Montserrat Zurrón
- Laboratorio de Neurociencia Cognitiva, Departamento de Psicoloxía Clínica e Psicobioloxía, Universidade de Santiago de Compostela, Galicia, Spain.
| | - Fernando Díaz
- Laboratorio de Neurociencia Cognitiva, Departamento de Psicoloxía Clínica e Psicobioloxía, Universidade de Santiago de Compostela, Galicia, Spain.
| | - Mónica Lindín
- Laboratorio de Neurociencia Cognitiva, Departamento de Psicoloxía Clínica e Psicobioloxía, Universidade de Santiago de Compostela, Galicia, Spain.
| |
Collapse
|
43
|
He JW, Rabiller G, Nishijima Y, Akamatsu Y, Khateeb K, Yazdan-Shahmorad A, Liu J. Experimental cortical stroke induces aberrant increase of sharp-wave-associated ripples in the hippocampus and disrupts cortico-hippocampal communication. J Cereb Blood Flow Metab 2020; 40:1778-1796. [PMID: 31558106 PMCID: PMC7446570 DOI: 10.1177/0271678x19877889] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Revised: 07/22/2019] [Accepted: 07/25/2019] [Indexed: 11/16/2022]
Abstract
The functional consequences of ischemic stroke in the remote brain regions are not well characterized. The current study sought to determine changes in hippocampal oscillatory activity that may underlie the cognitive impairment observed following distal middle cerebral artery occlusion (dMCAO) without causing hippocampal structural damage. Local field potentials were recorded from the dorsal hippocampus and cortex in urethane-anesthetized rats with multichannel silicon probes during dMCAO and reperfusion, or mild ischemia induced by bilateral common carotid artery occlusion (CCAO). Bilateral change of brain state was evidenced by reduced theta/delta amplitude ratio and shortened high theta duration following acute dMCAO but not CCAO. An aberrant increase in the occurrence of sharp-wave-associated ripples (150-250 Hz), crucial for memory consolidation, was only detected after dMCAO reperfusion, coinciding with an increased occurrence of high-frequency discharges (250-450 Hz). dMCAO also significantly affected the modulation of gamma amplitude in the cortex coupled to hippocampal theta phase, although both hippocampal theta and gamma power were temporarily decreased during dMCAO. Our results suggest that MCAO may disrupt the balance between excitatory and inhibitory circuits in the hippocampus and alter the function of cortico-hippocampal network, providing a novel insight in how cortical stroke affects function in remote brain regions.
Collapse
Affiliation(s)
- Ji-Wei He
- Department of Neurological Surgery, UCSF, San Francisco, CA, USA
- Department of Neurological Surgery, SFVAMC, San Francisco, CA, USA
| | - Gratianne Rabiller
- Department of Neurological Surgery, UCSF, San Francisco, CA, USA
- Department of Neurological Surgery, SFVAMC, San Francisco, CA, USA
| | - Yasuo Nishijima
- Department of Neurological Surgery, UCSF, San Francisco, CA, USA
- Department of Neurological Surgery, SFVAMC, San Francisco, CA, USA
- Department of Neurosurgery, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Yosuke Akamatsu
- Department of Neurological Surgery, UCSF, San Francisco, CA, USA
- Department of Neurological Surgery, SFVAMC, San Francisco, CA, USA
- Department of Neurosurgery, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Karam Khateeb
- Departments of Bioengineering and Electrical and Computer Engineering, University of Washington, Seattle, WA, USA
| | - Azadeh Yazdan-Shahmorad
- Departments of Bioengineering and Electrical and Computer Engineering, University of Washington, Seattle, WA, USA
- Center for Integrative Neuroscience and Department of Physiology, University of California, San Francisco, CA, USA
| | - Jialing Liu
- Department of Neurological Surgery, UCSF, San Francisco, CA, USA
- Department of Neurological Surgery, SFVAMC, San Francisco, CA, USA
| |
Collapse
|
44
|
Tambini A, D'Esposito M. Causal Contribution of Awake Post-encoding Processes to Episodic Memory Consolidation. Curr Biol 2020; 30:3533-3543.e7. [PMID: 32735812 DOI: 10.1016/j.cub.2020.06.063] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Revised: 05/06/2020] [Accepted: 06/19/2020] [Indexed: 11/29/2022]
Abstract
Stable representations of past experience are thought to depend on processes that unfold after events are initially encoded into memory. Post-encoding reactivation and hippocampal-cortical interactions are leading candidate mechanisms thought to support memory retention and stabilization across hippocampal-cortical networks. Although putative consolidation mechanisms have been observed during sleep and periods of awake rest, the direct causal contribution of awake consolidation mechanisms to later behavior is unclear, especially in humans. Moreover, it has been argued that observations of putative consolidation processes are epiphenomenal and not causally important, yet there are few tools to test the functional contribution of these mechanisms in humans. Here, we combined transcranial magnetic stimulation (TMS) and fMRI to test the role of awake consolidation processes by targeting hippocampal interactions with lateral occipital cortex (LOC). We applied theta-burst TMS to LOC (and a control site) to interfere with an extended window (approximately 30-50 min) after memory encoding. Behaviorally, post-encoding TMS to LOC selectively impaired associative memory retention compared to multiple control conditions. In the control TMS condition, we replicated prior reports of post-encoding reactivation and memory-related hippocampal-LOC interactions during periods of awake rest using fMRI. However, post-encoding LOC TMS reduced these processes, such that post-encoding reactivation in LOC and memory-related hippocampal-LOC functional connectivity were no longer present. By targeting and manipulating post-encoding neural processes, these findings highlight the direct contribution of awake time periods to episodic memory consolidation. This combined TMS-fMRI approach provides an opportunity for causal manipulations of human memory consolidation.
Collapse
Affiliation(s)
- Arielle Tambini
- Helen Wills Neuroscience Institute and Department of Psychology, University of California, Berkeley, Berkeley, CA 94720, USA; Department of Neurobiology and Behavior, Center for Neurobiology of Learning and Memory, University of California, Irvine, Irvine, CA 92617, USA.
| | - Mark D'Esposito
- Helen Wills Neuroscience Institute and Department of Psychology, University of California, Berkeley, Berkeley, CA 94720, USA
| |
Collapse
|
45
|
Del Campo-Vera RM, Gogia AS, Chen KH, Sebastian R, Kramer DR, Lee MB, Peng T, Tafreshi A, Barbaro MF, Liu CY, Kellis S, Lee B. Beta-band power modulation in the human hippocampus during a reaching task. J Neural Eng 2020; 17:036022. [PMID: 32413878 PMCID: PMC8544757 DOI: 10.1088/1741-2552/ab937f] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
OBJECTIVE Characterize the role of the beta-band (13-30 Hz) in the human hippocampus during the execution of voluntary movement. APPROACH We recorded electrophysiological activity in human hippocampus during a reach task using stereotactic electroencephalography (SEEG). SEEG has previously been utilized to study the theta band (3-8 Hz) in conflict processing and spatial navigation, but most studies of hippocampal activity during movement have used noninvasive measures such as fMRI. We analyzed modulation in the beta band (13-30 Hz), which is known to play a prominent role throughout the motor system including the cerebral cortex and basal ganglia. We conducted the classic 'center-out' direct-reach experiment with nine patients undergoing surgical treatment for medically refractory epilepsy. MAIN RESULTS In seven of the nine patients, power spectral analysis showed a statistically significant decrease in power within the beta band (13-30 Hz) during the response phase, compared to the fixation phase, of the center-out direct-reach task using the Wilcoxon signed-rank hypothesis test (p < 0.05). SIGNIFICANCE This finding is consistent with previous literature suggesting that the hippocampus may be involved in the execution of movement, and it is the first time that changes in beta-band power have been demonstrated in the hippocampus using human electrophysiology. Our findings suggest that beta-band modulation in the human hippocampus may play a role in the execution of voluntary movement.
Collapse
|
46
|
Katz CN, Patel K, Talakoub O, Groppe D, Hoffman K, Valiante TA. Differential Generation of Saccade, Fixation, and Image-Onset Event-Related Potentials in the Human Mesial Temporal Lobe. Cereb Cortex 2020; 30:5502-5516. [PMID: 32494805 PMCID: PMC7472212 DOI: 10.1093/cercor/bhaa132] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Revised: 04/17/2020] [Accepted: 04/21/2020] [Indexed: 11/23/2022] Open
Abstract
Event-related potentials (ERPs) are a commonly used electrophysiological signature for studying mesial temporal lobe (MTL) function during visual memory tasks. The ERPs associated with the onset of visual stimuli (image-onset) and eye movements (saccades and fixations) provide insights into the mechanisms of their generation. We hypothesized that since eye movements and image-onset provide MTL structures with salient visual information, perhaps they both engage similar neural mechanisms. To explore this question, we used intracranial electroencephalographic data from the MTLs of 11 patients with medically refractory epilepsy who participated in a visual search task. We characterized the electrophysiological responses of MTL structures to saccades, fixations, and image-onset. We demonstrated that the image-onset response is an evoked/additive response with a low-frequency power increase. In contrast, ERPs following eye movements appeared to arise from phase resetting of higher frequencies than the image-onset ERP. Intriguingly, this reset was associated with saccade onset and not termination (fixation), suggesting it is likely the MTL response to a corollary discharge, rather than a response to visual stimulation. We discuss the distinct mechanistic underpinnings of these responses which shed light on the underlying neural circuitry involved in visual memory processing.
Collapse
Affiliation(s)
- Chaim N Katz
- Krembil Research Institute, Toronto Western Hospital, Toronto, ON M5T 1M8, Canada.,Institute of Biomaterials and Biomedical Engineering, University of Toronto, Toronto, ON M5S 3G9, Canada
| | - Kramay Patel
- Krembil Research Institute, Toronto Western Hospital, Toronto, ON M5T 1M8, Canada.,Institute of Biomaterials and Biomedical Engineering, University of Toronto, Toronto, ON M5S 3G9, Canada.,Faculty of Medicine, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Omid Talakoub
- Krembil Research Institute, Toronto Western Hospital, Toronto, ON M5T 1M8, Canada.,Department of Psychology, Vanderbilt University, Nashville, TN 37240, USA
| | - David Groppe
- Krembil Research Institute, Toronto Western Hospital, Toronto, ON M5T 1M8, Canada
| | - Kari Hoffman
- Department of Psychology, Vanderbilt University, Nashville, TN 37240, USA
| | - Taufik A Valiante
- Krembil Research Institute, Toronto Western Hospital, Toronto, ON M5T 1M8, Canada.,Institute of Biomaterials and Biomedical Engineering, University of Toronto, Toronto, ON M5S 3G9, Canada.,Division of Neurosurgery, Department of Surgery, University of Toronto, Toronto, ON M5S 1A1, Canada.,Institute of Medical Sciences, University of Toronto, Toronto, ON M5S 1A8, Canada.,Electrical and Computer Engineering, University of Toronto, Toronto, ON M5S 3G4, Canada
| |
Collapse
|
47
|
Michon F, Sun JJ, Kim CY, Kloosterman F. A Dual Reward-Place Association Task to Study the Preferential Retention of Relevant Memories in Rats. Front Behav Neurosci 2020; 14:69. [PMID: 32477077 PMCID: PMC7240053 DOI: 10.3389/fnbeh.2020.00069] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Accepted: 04/17/2020] [Indexed: 01/02/2023] Open
Abstract
Memories of past events and common knowledge are critical to flexibly adjust one's future behavior based on prior experiences. The formation and the transformation of these memories into a long-lasting form are supported by a dialogue between populations of neurons in the cortex and the hippocampus. Not all experiences are remembered equally well or equally long. It has been demonstrated experimentally in humans that memory strength positively relates to the behavioral relevance of the associated experience. Behavioral paradigms that test the selective retention of memory in rodents would enable further investigation of the neuronal mechanisms at play. We developed a novel paradigm to follow the repeated acquisition and retrieval of two contextually distinct, yet concurrently learned, food-place associations in rats. We demonstrated the use of this paradigm by varying the amount of reward associated with the two locations. After delays of 2 h or 20 h, rats showed better memory performance for experience associated with large amount of reward. This effect depends on the level of spatial integration required to retrieve the associated location. Thus, this paradigm is suited to study the preferential retention of relevant experiences in rats.
Collapse
Affiliation(s)
- Frédéric Michon
- Neuroelectronics Research Flanders (NERF), Leuven, Belgium
- Brain and Cognition, KU Leuven, Leuven, Belgium
- VIB-KU Leuven Center for Brain & Disease Research, Leuven, Belgium
| | - Jyh-Jang Sun
- Neuroelectronics Research Flanders (NERF), Leuven, Belgium
- Interuniversity Microelectronics Centre (IMEC), Leuven, Belgium
| | - Chae Young Kim
- Neuroelectronics Research Flanders (NERF), Leuven, Belgium
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, South Korea
| | - Fabian Kloosterman
- Neuroelectronics Research Flanders (NERF), Leuven, Belgium
- Brain and Cognition, KU Leuven, Leuven, Belgium
- VIB-KU Leuven Center for Brain & Disease Research, Leuven, Belgium
- Interuniversity Microelectronics Centre (IMEC), Leuven, Belgium
| |
Collapse
|
48
|
Brain-wide resting-state connectivity regulation by the hippocampus and medial prefrontal cortex is associated with fluid intelligence. Brain Struct Funct 2020; 225:1587-1600. [PMID: 32333100 DOI: 10.1007/s00429-020-02077-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Accepted: 04/18/2020] [Indexed: 10/24/2022]
Abstract
The connectivity hub property of the hippocampus (HIP) and the medial prefrontal cortex (MPFC) is essential for their widespread involvement in cognition; however, the cooperation mechanism between them is far from clear. Herein, using resting-state functional MRI and Gaussian Bayesian network to describe the directed organizing architecture of the HIP-MPFC pathway with regions in the brain, we demonstrated that the HIP and the MPFC have central roles as the driving hub and aggregating hub, respectively. The status of the HIP and the MPFC is dominant in communications between the HIP and the default-mode network, between the HIP and core neurocognitive networks, including the default-mode, frontoparietal, and salience networks, and between brain-wide representative regions, suggesting a strong and robust central position of the two regions in regulating the dynamics of large-scale brain activity. Furthermore, we found that the directed connectivity and flow from the right HIP to the MPFC is significantly linked to fluid intelligence. Together, these results clarify the different roles of the HIP and the MPFC that jointly contribute to network dynamics and cognitive ability from a data-driven insight via the use of the directed connectivity method.
Collapse
|
49
|
Feld GB, Born J. Neurochemical mechanisms for memory processing during sleep: basic findings in humans and neuropsychiatric implications. Neuropsychopharmacology 2020; 45:31-44. [PMID: 31443105 PMCID: PMC6879745 DOI: 10.1038/s41386-019-0490-9] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Revised: 07/17/2019] [Accepted: 07/22/2019] [Indexed: 12/14/2022]
Abstract
Sleep is essential for memory formation. Active systems consolidation maintains that memory traces that are initially stored in a transient store such as the hippocampus are gradually redistributed towards more permanent storage sites such as the cortex during sleep replay. The complementary synaptic homeostasis theory posits that weak memory traces are erased during sleep through a competitive down-selection mechanism, ensuring the brain's capability to learn new information. We discuss evidence from neuropharmacological experiments in humans to show how major neurotransmitters and neuromodulators are implicated in these memory processes. As to the major excitatory neurotransmitter glutamate that plays a prominent role in inducing synaptic consolidation, we show that these processes, while strengthening cortical memory traces during sleep, are insufficient to explain the consolidation of hippocampus-dependent declarative memories. In the inhibitory GABAergic system, we will offer insights how drugs may alter the intricate interplay of sleep oscillations that have been identified to be crucial for strengthening memories during sleep. Regarding the dopaminergic reward system, we will show how it is engaged during sleep replay, but that dopaminergic neuromodulation likely plays a side role for enhancing relevant memories during sleep. Also, we briefly go into basic evidence on acetylcholine and cortisol whose low tone during slow wave sleep (SWS) is crucial in supporting hippocampal-to-neocortical memory transmission. Finally, we will outline how these insights can be used to improve treatment of neuropsychiatric disorders focusing mainly on anxiety disorders, depression, and addiction that are strongly related to memory processing.
Collapse
Affiliation(s)
- Gordon B Feld
- Department of Clinical Psychology, Central Institute of Mental Health, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany.
- Department of Addiction Behavior and Addiction Medicine, Central Institute of Mental Health, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany.
- Department of Psychiatry and Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany.
| | - Jan Born
- Institute of Medical Psychology and Behavioral Neurobiology, University of Tübingen, Tübingen, Germany
- Centre for Integrative Neuroscience, University of Tübingen, Tübingen, Germany
| |
Collapse
|
50
|
Gilad R, Shapiro C. Sleep and Development. Health (London) 2020. [DOI: 10.4236/health.2020.126049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|