1
|
Cao R, Brunner P, Chakravarthula PN, Wahlstrom KL, Inman C, Smith EH, Li X, Mamelak AN, Brandmeir NJ, Rutishauser U, Willie JT, Wang S. A neuronal code for object representation and memory in the human amygdala and hippocampus. Nat Commun 2025; 16:1510. [PMID: 39929825 PMCID: PMC11811184 DOI: 10.1038/s41467-025-56793-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Accepted: 01/29/2025] [Indexed: 02/13/2025] Open
Abstract
How the brain encodes, recognizes, and memorizes general visual objects is a fundamental question in neuroscience. Here, we investigated the neural processes underlying visual object perception and memory by recording from 3173 single neurons in the human amygdala and hippocampus across four experiments. We employed both passive-viewing and recognition memory tasks involving a diverse range of naturalistic object stimuli. Our findings reveal a region-based feature code for general objects, where neurons exhibit receptive fields in the high-level visual feature space. This code can be validated by independent new stimuli and replicated across all experiments, including fixation-based analyses with large natural scenes. This region code explains the long-standing visual category selectivity, preferentially enhances memory of encoded stimuli, predicts memory performance, encodes image memorability, and exhibits intricate interplay with memory contexts. Together, region-based feature coding provides an important mechanism for visual object processing in the human brain.
Collapse
Affiliation(s)
- Runnan Cao
- Department of Radiology, Washington University in St. Louis, St. Louis, MO, USA.
| | - Peter Brunner
- Department of Neurosurgery, Washington University in St. Louis, St. Louis, MO, USA
| | | | | | - Cory Inman
- Department of Psychology, University of Utah, Salt Lake City, UT, USA
| | - Elliot H Smith
- Department of Neurosurgery, University of Utah, Salt Lake City, UT, USA
| | - Xin Li
- Department of Computer Science, University at Albany, Albany, NY, USA
| | - Adam N Mamelak
- Department of Neurosurgery, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | | | - Ueli Rutishauser
- Department of Neurosurgery, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Jon T Willie
- Department of Neurosurgery, Washington University in St. Louis, St. Louis, MO, USA.
| | - Shuo Wang
- Department of Radiology, Washington University in St. Louis, St. Louis, MO, USA.
- Department of Neurosurgery, Washington University in St. Louis, St. Louis, MO, USA.
| |
Collapse
|
2
|
Dubinsky JM, Hamid AA. The neuroscience of active learning and direct instruction. Neurosci Biobehav Rev 2024; 163:105737. [PMID: 38796122 DOI: 10.1016/j.neubiorev.2024.105737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 05/13/2024] [Accepted: 05/20/2024] [Indexed: 05/28/2024]
Abstract
Throughout the educational system, students experiencing active learning pedagogy perform better and fail less than those taught through direct instruction. Can this be ascribed to differences in learning from a neuroscientific perspective? This review examines mechanistic, neuroscientific evidence that might explain differences in cognitive engagement contributing to learning outcomes between these instructional approaches. In classrooms, direct instruction comprehensively describes academic content, while active learning provides structured opportunities for learners to explore, apply, and manipulate content. Synaptic plasticity and its modulation by arousal or novelty are central to all learning and both approaches. As a form of social learning, direct instruction relies upon working memory. The reinforcement learning circuit, associated agency, curiosity, and peer-to-peer social interactions combine to enhance motivation, improve retention, and build higher-order-thinking skills in active learning environments. When working memory becomes overwhelmed, additionally engaging the reinforcement learning circuit improves retention, providing an explanation for the benefits of active learning. This analysis provides a mechanistic examination of how emerging neuroscience principles might inform pedagogical choices at all educational levels.
Collapse
Affiliation(s)
- Janet M Dubinsky
- Department of Neuroscience, University of Minnesota, Minneapolis, MN, USA.
| | - Arif A Hamid
- Department of Neuroscience, University of Minnesota, Minneapolis, MN, USA
| |
Collapse
|
3
|
Rolls ET, Treves A. A theory of hippocampal function: New developments. Prog Neurobiol 2024; 238:102636. [PMID: 38834132 DOI: 10.1016/j.pneurobio.2024.102636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Revised: 04/15/2024] [Accepted: 05/30/2024] [Indexed: 06/06/2024]
Abstract
We develop further here the only quantitative theory of the storage of information in the hippocampal episodic memory system and its recall back to the neocortex. The theory is upgraded to account for a revolution in understanding of spatial representations in the primate, including human, hippocampus, that go beyond the place where the individual is located, to the location being viewed in a scene. This is fundamental to much primate episodic memory and navigation: functions supported in humans by pathways that build 'where' spatial view representations by feature combinations in a ventromedial visual cortical stream, separate from those for 'what' object and face information to the inferior temporal visual cortex, and for reward information from the orbitofrontal cortex. Key new computational developments include the capacity of the CA3 attractor network for storing whole charts of space; how the correlations inherent in self-organizing continuous spatial representations impact the storage capacity; how the CA3 network can combine continuous spatial and discrete object and reward representations; the roles of the rewards that reach the hippocampus in the later consolidation into long-term memory in part via cholinergic pathways from the orbitofrontal cortex; and new ways of analysing neocortical information storage using Potts networks.
Collapse
Affiliation(s)
- Edmund T Rolls
- Oxford Centre for Computational Neuroscience, Oxford, UK; Department of Computer Science, University of Warwick, Coventry CV4 7AL, UK.
| | | |
Collapse
|
4
|
Elliott BL, Mohyee RA, Ballard IC, Olson IR, Ellman LM, Murty VP. In vivo structural connectivity of the reward system along the hippocampal long axis. Hippocampus 2024; 34:327-341. [PMID: 38700259 DOI: 10.1002/hipo.23608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 03/11/2024] [Accepted: 04/18/2024] [Indexed: 05/05/2024]
Abstract
Recent work has identified a critical role for the hippocampus in reward-sensitive behaviors, including motivated memory, reinforcement learning, and decision-making. Animal histology and human functional neuroimaging have shown that brain regions involved in reward processing and motivation are more interconnected with the ventral/anterior hippocampus. However, direct evidence examining gradients of structural connectivity between reward regions and the hippocampus in humans is lacking. The present study used diffusion MRI (dMRI) and probabilistic tractography to quantify the structural connectivity of the hippocampus with key reward processing regions in vivo. Using a large sample of subjects (N = 628) from the human connectome dMRI data release, we found that connectivity profiles with the hippocampus varied widely between different regions of the reward circuit. While the dopaminergic midbrain (ventral tegmental area) showed stronger connectivity with the anterior versus posterior hippocampus, the ventromedial prefrontal cortex showed stronger connectivity with the posterior hippocampus. The limbic (ventral) striatum demonstrated a more homogeneous connectivity profile along the hippocampal long axis. This is the first study to generate a probabilistic atlas of the hippocampal structural connectivity with reward-related networks, which is essential to investigating how these circuits contribute to normative adaptive behavior and maladaptive behaviors in psychiatric illness. These findings describe nuanced structural connectivity that sets the foundation to better understand how the hippocampus influences reward-guided behavior in humans.
Collapse
Affiliation(s)
- Blake L Elliott
- Department of Psychology and Neuroscience, Temple University, Philadelphia, Pennsylvania, USA
| | - Raana A Mohyee
- Department of Psychology and Neuroscience, Temple University, Philadelphia, Pennsylvania, USA
| | - Ian C Ballard
- Department of Psychology, University of California, Riverside, California, USA
| | - Ingrid R Olson
- Department of Psychology and Neuroscience, Temple University, Philadelphia, Pennsylvania, USA
| | - Lauren M Ellman
- Department of Psychology and Neuroscience, Temple University, Philadelphia, Pennsylvania, USA
| | - Vishnu P Murty
- Department of Psychology and Neuroscience, Temple University, Philadelphia, Pennsylvania, USA
| |
Collapse
|
5
|
Keles U, Dubois J, Le KJM, Tyszka JM, Kahn DA, Reed CM, Chung JM, Mamelak AN, Adolphs R, Rutishauser U. Multimodal single-neuron, intracranial EEG, and fMRI brain responses during movie watching in human patients. Sci Data 2024; 11:214. [PMID: 38365977 PMCID: PMC10873379 DOI: 10.1038/s41597-024-03029-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Accepted: 01/31/2024] [Indexed: 02/18/2024] Open
Abstract
We present a multimodal dataset of intracranial recordings, fMRI, and eye tracking in 20 participants during movie watching. Recordings consist of single neurons, local field potential, and intracranial EEG activity acquired from depth electrodes targeting the amygdala, hippocampus, and medial frontal cortex implanted for monitoring of epileptic seizures. Participants watched an 8-min long excerpt from the video "Bang! You're Dead" and performed a recognition memory test for movie content. 3 T fMRI activity was recorded prior to surgery in 11 of these participants while performing the same task. This NWB- and BIDS-formatted dataset includes spike times, field potential activity, behavior, eye tracking, electrode locations, demographics, and functional and structural MRI scans. For technical validation, we provide signal quality metrics, assess eye tracking quality, behavior, the tuning of cells and high-frequency broadband power field potentials to familiarity and event boundaries, and show brain-wide inter-subject correlations for fMRI. This dataset will facilitate the investigation of brain activity during movie watching, recognition memory, and the neural basis of the fMRI-BOLD signal.
Collapse
Affiliation(s)
- Umit Keles
- Department of Neurosurgery, Cedars-Sinai Medical Center, Los Angeles, CA, USA
- Division of the Humanities and Social Sciences, California Institute of Technology, Pasadena, CA, USA
| | - Julien Dubois
- Department of Neurosurgery, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Kevin J M Le
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA
| | - J Michael Tyszka
- Division of the Humanities and Social Sciences, California Institute of Technology, Pasadena, CA, USA
| | - David A Kahn
- Division of the Humanities and Social Sciences, California Institute of Technology, Pasadena, CA, USA
| | - Chrystal M Reed
- Department of Neurology, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Jeffrey M Chung
- Department of Neurology, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Adam N Mamelak
- Department of Neurosurgery, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Ralph Adolphs
- Division of the Humanities and Social Sciences, California Institute of Technology, Pasadena, CA, USA.
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA.
| | - Ueli Rutishauser
- Department of Neurosurgery, Cedars-Sinai Medical Center, Los Angeles, CA, USA.
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA.
- Department of Neurology, Cedars-Sinai Medical Center, Los Angeles, CA, USA.
- Center for Neural Science and Medicine, Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA, USA.
| |
Collapse
|
6
|
Reber TP, Mackay S, Bausch M, Kehl MS, Borger V, Surges R, Mormann F. Single-neuron mechanisms of neural adaptation in the human temporal lobe. Nat Commun 2023; 14:2496. [PMID: 37120437 PMCID: PMC10148801 DOI: 10.1038/s41467-023-38190-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Accepted: 04/13/2023] [Indexed: 05/01/2023] Open
Abstract
A central function of the human brain is to adapt to new situations based on past experience. Adaptation is reflected behaviorally by shorter reaction times to repeating or similar stimuli, and neurophysiologically by reduced neural activity in bulk-tissue measurements with fMRI or EEG. Several potential single-neuron mechanisms have been hypothesized to cause this reduction of activity at the macroscopic level. We here explore these mechanisms using an adaptation paradigm with visual stimuli bearing abstract semantic similarity. We recorded intracranial EEG (iEEG) simultaneously with spiking activity of single neurons in the medial temporal lobes of 25 neurosurgical patients. Recording from 4917 single neurons, we demonstrate that reduced event-related potentials in the macroscopic iEEG signal are associated with a sharpening of single-neuron tuning curves in the amygdala, but with an overall reduction of single-neuron activity in the hippocampus, entorhinal cortex, and parahippocampal cortex, consistent with fatiguing in these areas.
Collapse
Affiliation(s)
- Thomas P Reber
- Faculty of Psychology, UniDistance Suisse, Brig, Switzerland.
- Department of Epileptology, University of Bonn Medical Centre, Bonn, Germany.
| | - Sina Mackay
- Department of Epileptology, University of Bonn Medical Centre, Bonn, Germany
| | - Marcel Bausch
- Department of Epileptology, University of Bonn Medical Centre, Bonn, Germany
| | - Marcel S Kehl
- Department of Epileptology, University of Bonn Medical Centre, Bonn, Germany
| | - Valeri Borger
- Department of Neurosurgery, University of Bonn Medical Centre, Bonn, Germany
| | - Rainer Surges
- Department of Epileptology, University of Bonn Medical Centre, Bonn, Germany
| | - Florian Mormann
- Department of Epileptology, University of Bonn Medical Centre, Bonn, Germany
| |
Collapse
|
7
|
Kim H. Neural correlates of paired associate recollection: A neuroimaging meta-analysis. Brain Res 2023; 1801:148200. [PMID: 36513138 DOI: 10.1016/j.brainres.2022.148200] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 11/26/2022] [Accepted: 12/07/2022] [Indexed: 12/14/2022]
Abstract
Functional neuroimaging data on paired associate recollection have expanded over the years, raising the need for an integrative understanding of the literature. The present study performed a quantitative meta-analysis of the data to fulfill that need. The meta-analysis focused on the three most widely used types of activation contrast: Hit > Miss, Intact > Rearranged, and Memory > Perception. The major results were as follows. First, the Hit > Miss contrast mainly involved regions in the default mode network (DMN)/medial temporal lobe (MTL), likely reflecting a greater amount of retrieved information during the Hit than Miss trials. Second, the Intact > Rearranged contrast mainly involved regions in the DMN/MTL, supporting the view that rejecting recombination foils is based on familiarity with the component parts in the absence of recollection. Third, the Memory > Perception contrast primarily involved regions in the frontoparietal control network, likely reflecting the greater demands on controlled processing during Memory than Perception conditions. Fourth, the subcortical clusters included the amygdala, caudate nucleus/putamen, and mediodorsal thalamus regions, suggesting that these regions are components of the neural circuits supporting associative recollection. Finally, comparisons with previous meta-analyses suggested that associative recollection involves the DMN regions more strongly than source recollection but less strongly than subjective recollection. In conclusion, this study contributes uniquely to the growing literature on paired associate recollection by clarifying the convergent findings and differences among studies.
Collapse
Affiliation(s)
- Hongkeun Kim
- Department of Rehabilitation Psychology, Daegu University, 201 Daegudae-ro, Gyeongsan-si, Gyeongsangbuk-do 38453, Republic of Korea.
| |
Collapse
|
8
|
Jablonowski J, Rose M. The functional dissociation of posterior parietal regions during multimodal memory formation. Hum Brain Mapp 2022; 43:3469-3485. [PMID: 35397137 PMCID: PMC9248313 DOI: 10.1002/hbm.25861] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Revised: 03/14/2022] [Accepted: 03/22/2022] [Indexed: 01/15/2023] Open
Abstract
The incidental acquisition of multimodal associations is a key memory function for everyday life. While the posterior parietal cortex has been frequently shown to be involved for these memory functions, ventral and dorsal regions revealed differences in their functional recruitment and the precise difference in multimodal memory processing with respect to the associative process has not been differentiated. Using an incidental multimodal learning task, we isolated the associative process during multimodal learning and recollection. The result of the present functional magnetic resonance imaging (fMRI) study demonstrated that during both learning and recollection a clear functional differentiation between ventral and dorsal posterior parietal regions was found and can be related directly to the associative process. The recruitment of a ventral region, the angular gyrus, was specific for learning and recollection of multimodal associations. In contrast, a dorsal region, the superior parietal lobule, could be attributed to memory guided attentional processing. Independent of the memory stage, we assumed a general role for the angular gyrus in the generation of associative representations and updating of fixed association, episodic memory.
Collapse
Affiliation(s)
- Julia Jablonowski
- NeuroImage Nord, Department for Systems Neuroscience, University Medical Center Hamburg Eppendorf, Hamburg, Germany
| | - Michael Rose
- NeuroImage Nord, Department for Systems Neuroscience, University Medical Center Hamburg Eppendorf, Hamburg, Germany
| |
Collapse
|
9
|
Zheng J, Schjetnan AGP, Yebra M, Gomes BA, Mosher CP, Kalia SK, Valiante TA, Mamelak AN, Kreiman G, Rutishauser U. Neurons detect cognitive boundaries to structure episodic memories in humans. Nat Neurosci 2022; 25:358-368. [PMID: 35260859 PMCID: PMC8966433 DOI: 10.1038/s41593-022-01020-w] [Citation(s) in RCA: 48] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Accepted: 01/19/2022] [Indexed: 11/11/2022]
Abstract
While experience is continuous, memories are organized as discrete events. Cognitive boundaries are thought to segment experience and structure memory, but how this process is implemented remains unclear. We recorded the activity of single neurons in the human medial temporal lobe during the formation and retrieval of memories with complex narratives. Here we show that neurons responded to abstract cognitive boundaries between different episodes. Boundary-induced neural state changes during encoding predicted subsequent recognition accuracy but impaired event order memory, mirroring a fundamental behavioral tradeoff between content and time memory. Furthermore, the neural state following boundaries was reinstated during both successful retrieval and false memories. These findings reveal a neuronal substrate for detecting cognitive boundaries that transform experience into mnemonic episodes and structure mental time travel during retrieval.
Collapse
Affiliation(s)
- Jie Zheng
- Department of Ophthalmology, Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Andrea G P Schjetnan
- Krembil Brain Institute and Division of Neurosurgery, University Health Network (UHN), University of Toronto, Toronto, Ontario, Canada
| | - Mar Yebra
- Department of Neurosurgery, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Bernard A Gomes
- Department of Neurosurgery, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Clayton P Mosher
- Department of Neurosurgery, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Suneil K Kalia
- Krembil Brain Institute and Division of Neurosurgery, University Health Network (UHN), University of Toronto, Toronto, Ontario, Canada
| | - Taufik A Valiante
- Krembil Brain Institute and Division of Neurosurgery, University Health Network (UHN), University of Toronto, Toronto, Ontario, Canada.,Department of Surgery (Neurosurgery), Institute of Biomedical Engineering, and Electrical and Computer Engineering, University of Toronto, Toronto, Ontario, Canada.,Max Planck-University of Toronto Center for Neural Science and Technology, University of Toronto, Toronto, Ontario, Canada.,Center for Advancing Neurotechnological Innovation to Application, University Health Network, University of Toronto, Toronto, Ontario, Canada
| | - Adam N Mamelak
- Department of Neurosurgery, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Gabriel Kreiman
- Department of Ophthalmology, Children's Hospital, Harvard Medical School, Boston, MA, USA. .,Center for Brains, Minds and Machines, Cambridge, MA, USA.
| | - Ueli Rutishauser
- Department of Neurosurgery, Cedars-Sinai Medical Center, Los Angeles, CA, USA. .,Department of Neurology, Cedars-Sinai Medical Center, Los Angeles, CA, USA. .,Center for Neural Science and Medicine, Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA, USA. .,Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA.
| |
Collapse
|
10
|
Shi L, Yuan T, Fan S, Zheng J, Diao Y, Qin G, Liu D, Zhu G, Qin K, Liu H, Zhang H, Yang A, Meng F, Zhang J. Comparison of cognitive performance between patients with Parkinson's disease and dystonia using an intraoperative recognition memory test. Sci Rep 2021; 11:20724. [PMID: 34671073 PMCID: PMC8528828 DOI: 10.1038/s41598-021-99317-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2021] [Accepted: 09/21/2021] [Indexed: 11/09/2022] Open
Abstract
Neuroscientific studies on the function of the basal ganglia often examine the behavioral performance of patients with movement disorders, such as Parkinson’s disease (PD) and dystonia (DT), while simultaneously examining the underlying electrophysiological activity during deep brain stimulation surgery. Nevertheless, to date, there have been no studies comparing the cognitive performance of PD and DT patients during surgery. In this study, we assessed the memory function of PD and DT patients with the Montreal Cognitive Assessment (MoCA) and the Mini-Mental State Examination (MMSE). We also tested their cognitive performance during the surgery using a continuous recognition memory test. The results of the MoCA and MMSE failed to reveal significant differences between the PD and DT patients. Additionally, no significant difference was detected by the intraoperative memory test between the PD and DT patients. The intraoperative memory test scores were highly correlated with the MMSE scores and MoCA scores. Our data suggest that DT patients perform similarly to PD patients in cognitive tests during surgery, and intraoperative memory tests can be used as a quick memory assessment tool during surgery.
Collapse
Affiliation(s)
- Lin Shi
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.,Department of Functional Neurosurgery, Beijing Neurosurgical Institute, Capital Medical University, Beijing, China
| | - Tianshuo Yuan
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Shiying Fan
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Jie Zheng
- Department of Ophthalmology, Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Yu Diao
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Guofan Qin
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Defeng Liu
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Guanyu Zhu
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Kai Qin
- Alpha Omega Engineering Ltd., Nazareth, Israel
| | - Huanguang Liu
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Hua Zhang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Anchao Yang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Fangang Meng
- Department of Functional Neurosurgery, Beijing Neurosurgical Institute, Capital Medical University, Beijing, China.
| | - Jianguo Zhang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.
| |
Collapse
|
11
|
Lee SJ, Beam DE, Schjetnan AGP, Paul LK, Chandravadia N, Reed CM, Chung JM, Ross IB, Valiante TA, Mamelak AN, Rutishauser U. Single-neuron correlate of epilepsy-related cognitive deficits in visual recognition memory in right mesial temporal lobe. Epilepsia 2021; 62:2082-2093. [PMID: 34289113 PMCID: PMC8403636 DOI: 10.1111/epi.17010] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2021] [Revised: 07/06/2021] [Accepted: 07/06/2021] [Indexed: 11/28/2022]
Abstract
OBJECTIVE Impaired memory is a common comorbidity of refractory temporal lobe epilepsy (TLE) and often perceived by patients as more problematic than the seizures themselves. The objective of this study is to understand what the relationship of these behavioral impairments is to the underlying pathophysiology, as there are currently no treatments for these deficits, and it remains unknown what circuits are affected. METHODS We recorded single neurons in the medial temporal lobes (MTLs) of 62 patients (37 with refractory TLE) who performed a visual recognition memory task to characterize the relationship between behavior, tuning, and anatomical location of memory selective and visually selective neurons. RESULTS Subjects with a seizure onset zone (SOZ) in the right but not left MTL demonstrated impaired ability to recollect as indicated by the degree of asymmetry of the receiver operating characteristic curve. Of the 1973 recorded neurons, 159 were memory selective (MS) and 366 were visually selective (VS) category cells. The responses of MS neurons located within right but not left MTL SOZs were impaired during high-confidence retrieval trials, mirroring the behavioral deficit seen both in our task and in standardized neuropsychological tests. In contrast, responses of VS neurons were unimpaired in both left and right MTL SOZs. Our findings show that neuronal dysfunction within SOZs in the MTL was specific to a functional cell type and behavior, whereas other cell types respond normally even within the SOZ. We show behavioral metrics that detect right MTL SOZ-related deficits and identify a neuronal correlate of this impairment. SIGNIFICANCE Together, these findings show that single-cell responses can be used to assess the causal effects of local circuit disruption by an SOZ in the MTL, and establish a neural correlate of cognitive impairment due to epilepsy that can be used as a biomarker to assess the efficacy of novel treatments.
Collapse
Affiliation(s)
- Seung J Lee
- Department of Neurosurgery, Cedars-Sinai Medical Center, Los Angeles, CA, USA.,Department of Neurologic Surgery, Mayo Clinic, Jacksonville, FLA, USA
| | - Danielle E Beam
- Department of Neurosurgery, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | | | - Lynn K Paul
- Division of Humanities and Social Sciences, California Institute of Technology, Pasadena, CA, USA
| | - Nand Chandravadia
- Department of Neurosurgery, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Chrystal M Reed
- Department of Neurology, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Jeffrey M Chung
- Department of Neurology, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Ian B Ross
- Department of Neurosurgery, Huntington Memorial Hospital, Pasadena, CA, USA
| | - Taufik A Valiante
- Krembil Neuroscience Centre, University Health Network, Toronto, ON, Canada.,Division of Neurosurgery, Department of Surgery, University of Toronto, Toronto, ON, Canada
| | - Adam N Mamelak
- Department of Neurosurgery, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Ueli Rutishauser
- Department of Neurosurgery, Cedars-Sinai Medical Center, Los Angeles, CA, USA.,Department of Neurology, Cedars-Sinai Medical Center, Los Angeles, CA, USA.,Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA.,Center for Neural Science and Medicine, Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| |
Collapse
|
12
|
Elliott BL, D'Ardenne K, Mukherjee P, Schweitzer JB, McClure SM. Limbic and Executive Meso- and Nigrostriatal Tracts Predict Impulsivity Differences in Attention-Deficit/Hyperactivity Disorder. BIOLOGICAL PSYCHIATRY: COGNITIVE NEUROSCIENCE AND NEUROIMAGING 2021; 7:415-423. [PMID: 34051394 DOI: 10.1016/j.bpsc.2021.05.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Revised: 04/22/2021] [Accepted: 05/17/2021] [Indexed: 11/27/2022]
Abstract
BACKGROUND Impulsivity is a defining characteristic of attention-deficit/hyperactivity disorder (ADHD), which has been associated with substance use disorders, higher accident rates, and lower educational and occupational outcomes. The meso- and nigrostriatal pathways of the dopamine system are hypothesized to be functionally heterogeneous, supporting diverse cognitive functions and impairments, including those associated with ADHD. We tested whether human midbrain pathways (where dopaminergic cell bodies originate) between the substantia nigra (SN) and ventral tegmental area (VTA) and the striatum differed between participants with ADHD and typically developing adolescent and young adult participants. We also assessed whether pathway connectivity predicted impulsivity regardless of diagnosis. METHODS Diffusion tensor imaging data were used to predict impulsivity (parent and self-report ratings, task-based behavioral measures) from participants with ADHD and typically developing adolescent and young adult participants (n = 155; 86 male, 69 female). Using probabilistic tractography, we mapped these pathways and divided the tracts into limbic, executive, and sensorimotor based on frontostriatal connectivity. ADHD and typically developing participants differed on all behavioral measures of impulsivity. We used correlation and machine learning analyses to test for a relationship between tract probabilities and impulsivity regardless of diagnosis. RESULTS Participants with ADHD had stronger structural connectivity between SN/VTA regions and the limbic striatum, weaker connectivity with the executive striatum, and no significant differences in sensorimotor tracts. Increased tract integrity between the limbic striatal and SN/VTA regions predicted greater impulsivity, while increased integrity between executive striatal and SN/VTA regions predicted reduced impulsivity. CONCLUSIONS These findings support the theory that functional diversity in the dopamine system is an important consideration for understanding dysfunction in ADHD.
Collapse
Affiliation(s)
- Blake L Elliott
- Department of Psychology, Arizona State University, Tempe, Arizona.
| | | | - Prerona Mukherjee
- Department of Psychiatry and Behavioral Sciences, University of California, Davis, Sacramento, California; MIND Institute, University of California, Davis, Sacramento, California
| | - Julie B Schweitzer
- Department of Psychiatry and Behavioral Sciences, University of California, Davis, Sacramento, California; MIND Institute, University of California, Davis, Sacramento, California
| | - Samuel M McClure
- Department of Psychology, Arizona State University, Tempe, Arizona
| |
Collapse
|
13
|
Quian Quiroga R. No Pattern Separation in the Human Hippocampus. Trends Cogn Sci 2020; 24:994-1007. [DOI: 10.1016/j.tics.2020.09.012] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Revised: 09/28/2020] [Accepted: 09/28/2020] [Indexed: 11/26/2022]
|
14
|
The Architecture of Human Memory: Insights from Human Single-Neuron Recordings. J Neurosci 2020; 41:883-890. [PMID: 33257323 DOI: 10.1523/jneurosci.1648-20.2020] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 09/24/2020] [Accepted: 09/27/2020] [Indexed: 02/08/2023] Open
Abstract
Deciphering the mechanisms of human memory is a central goal of neuroscience, both from the point of view of the fundamental biology of memory and for its translational relevance. Here, we review some contributions that recordings from neurons in humans implanted with electrodes for clinical purposes have made toward this goal. Recordings from the medial temporal lobe, including the hippocampus, reveal the existence of two classes of cells: those encoding highly selective and invariant representations of abstract concepts, and memory-selective cells whose activity is related to familiarity and episodic retrieval. Insights derived from observing these cells in behaving humans include that semantic representations are activated before episodic representations, that memory content and memory strength are segregated, and that the activity of both types of cells is related to subjective awareness as expected from a substrate for declarative memory. Visually selective cells can remain persistently active for several seconds, thereby revealing a cellular substrate for working memory in humans. An overarching insight is that the neural code of human memory is interpretable at the single-neuron level. Jointly, intracranial recording studies are starting to reveal aspects of the building blocks of human memory at the single-cell level. This work establishes a bridge to cellular-level work in animals on the one hand, and the extensive literature on noninvasive imaging in humans on the other hand. More broadly, this work is a step toward a detailed mechanistic understanding of human memory that is needed to develop therapies for human memory disorders.
Collapse
|
15
|
Chen L, Cummings KA, Mau W, Zaki Y, Dong Z, Rabinowitz S, Clem RL, Shuman T, Cai DJ. The role of intrinsic excitability in the evolution of memory: Significance in memory allocation, consolidation, and updating. Neurobiol Learn Mem 2020; 173:107266. [PMID: 32512183 PMCID: PMC7429265 DOI: 10.1016/j.nlm.2020.107266] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Revised: 05/28/2020] [Accepted: 05/31/2020] [Indexed: 11/30/2022]
Abstract
Memory is a dynamic process that is continuously regulated by both synaptic and intrinsic neural mechanisms. While numerous studies have shown that synaptic plasticity is important in various types and phases of learning and memory, neuronal intrinsic excitability has received relatively less attention, especially regarding the dynamic nature of memory. In this review, we present evidence demonstrating the importance of intrinsic excitability in memory allocation, consolidation, and updating. We also consider the intricate interaction between intrinsic excitability and synaptic plasticity in shaping memory, supporting both memory stability and flexibility.
Collapse
Affiliation(s)
- Lingxuan Chen
- Icahn School of Medicine at Mount Sinai, Department of Neuroscience, New York, New York, 10029, United States
| | - Kirstie A Cummings
- Icahn School of Medicine at Mount Sinai, Department of Neuroscience, New York, New York, 10029, United States
| | - William Mau
- Icahn School of Medicine at Mount Sinai, Department of Neuroscience, New York, New York, 10029, United States
| | - Yosif Zaki
- Icahn School of Medicine at Mount Sinai, Department of Neuroscience, New York, New York, 10029, United States
| | - Zhe Dong
- Icahn School of Medicine at Mount Sinai, Department of Neuroscience, New York, New York, 10029, United States
| | - Sima Rabinowitz
- Icahn School of Medicine at Mount Sinai, Department of Neuroscience, New York, New York, 10029, United States
| | - Roger L Clem
- Icahn School of Medicine at Mount Sinai, Department of Neuroscience, New York, New York, 10029, United States
| | - Tristan Shuman
- Icahn School of Medicine at Mount Sinai, Department of Neuroscience, New York, New York, 10029, United States
| | - Denise J Cai
- Icahn School of Medicine at Mount Sinai, Department of Neuroscience, New York, New York, 10029, United States.
| |
Collapse
|
16
|
Derner M, Dehnen G, Chaieb L, Reber TP, Borger V, Surges R, Staresina BP, Mormann F, Fell J. Patterns of single-neuron activity during associative recognition memory in the human medial temporal lobe. Neuroimage 2020; 221:117214. [PMID: 32755669 DOI: 10.1016/j.neuroimage.2020.117214] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Revised: 07/23/2020] [Accepted: 07/27/2020] [Indexed: 10/23/2022] Open
Abstract
Electrophysiological activity in medial temporal lobe (MTL) structures is pivotal for declarative long-term memory. Single-neuron and microcircuit findings capitalizing on human microwire recordings from the medial temporal lobe are still fragmentary. In particular, it is an open question whether identical or different groups of neurons participate in different memory functions. Here, we investigated category-specific responses in the human MTL based on single-neuron recordings in presurgical epilepsy patients performing an associative long-term memory task. Additionally, auditory beat stimuli were presented during encoding and retrieval to modulate memory performance. We describe the proportion of neurons in amygdala, entorhinal cortex, hippocampus and parahippocampal cortex belonging to different response classes. These entail neurons coding stimulus-familiarity, neurons coding successful item memory, and neurons coding associated source memory, as well as the overlap between these classes. As major results we demonstrate that neurons responding to stimulus familiarity (old/new effect) can be identified in the MTL even when using previously known rather than entirely novel stimulus material (words). We observed a significant overlap between familiarity-related neurons and neurons coding item retrieval (remembered/forgotten effect). The largest fraction of familiarity-related neurons was found in the parahippocampal cortex, and a considerable fraction of all parahippocampal neurons was related to successful item retrieval. Neurons related to successful source retrieval were different from the neurons coding the associated information. Most importantly, there was no overlap between neurons coding item memory and those coding associated source memory strongly suggesting that these functions are facilitated by different sets of neurons.
Collapse
Affiliation(s)
- M Derner
- Department of Epileptology, University Hospital Bonn, Venusberg-Campus 1, 53127 Bonn, Germany
| | - G Dehnen
- Department of Epileptology, University Hospital Bonn, Venusberg-Campus 1, 53127 Bonn, Germany
| | - L Chaieb
- Department of Epileptology, University Hospital Bonn, Venusberg-Campus 1, 53127 Bonn, Germany
| | - T P Reber
- Department of Epileptology, University Hospital Bonn, Venusberg-Campus 1, 53127 Bonn, Germany; Faculty of Psychology, Swiss Distance University Institute, Ueberlandstr. 12, 3900 Brig, Switzerland
| | - V Borger
- Department of Neurosurgery, University Hospital Bonn, Venusberg-Campus 1, 53127 Bonn, Germany
| | - R Surges
- Department of Epileptology, University Hospital Bonn, Venusberg-Campus 1, 53127 Bonn, Germany
| | - B P Staresina
- School of Psychology & Centre for Human Brain Health, University of Birmingham, Birmingham, B15 2TT, United Kingdom
| | - F Mormann
- Department of Epileptology, University Hospital Bonn, Venusberg-Campus 1, 53127 Bonn, Germany
| | - J Fell
- Department of Epileptology, University Hospital Bonn, Venusberg-Campus 1, 53127 Bonn, Germany.
| |
Collapse
|
17
|
Elliott BL, McClure SM, Brewer GA. Individual differences in value-directed remembering. Cognition 2020; 201:104275. [DOI: 10.1016/j.cognition.2020.104275] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Revised: 03/23/2020] [Accepted: 03/23/2020] [Indexed: 10/24/2022]
|
18
|
A NWB-based dataset and processing pipeline of human single-neuron activity during a declarative memory task. Sci Data 2020; 7:78. [PMID: 32132545 PMCID: PMC7055261 DOI: 10.1038/s41597-020-0415-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Accepted: 02/07/2020] [Indexed: 11/21/2022] Open
Abstract
A challenge for data sharing in systems neuroscience is the multitude of different data formats used. Neurodata Without Borders: Neurophysiology 2.0 (NWB:N) has emerged as a standardized data format for the storage of cellular-level data together with meta-data, stimulus information, and behavior. A key next step to facilitate NWB:N adoption is to provide easy to use processing pipelines to import/export data from/to NWB:N. Here, we present a NWB-formatted dataset of 1863 single neurons recorded from the medial temporal lobes of 59 human subjects undergoing intracranial monitoring while they performed a recognition memory task. We provide code to analyze and export/import stimuli, behavior, and electrophysiological recordings to/from NWB in both MATLAB and Python. The data files are NWB:N compliant, which affords interoperability between programming languages and operating systems. This combined data and code release is a case study for how to utilize NWB:N for human single-neuron recordings and enables easy re-use of this hard-to-obtain data for both teaching and research on the mechanisms of human memory. Measurement(s) | medial temporal lobe • memory • amygdala • hippocampus | Technology Type(s) | single-unit recording | Factor Type(s) | confidence • remembered/forgotten • old/new • visual category • stimulus onset (visual) | Sample Characteristic - Organism | Homo sapiens |
Machine-accessible metadata file describing the reported data: 10.6084/m9.figshare.11835801
Collapse
|
19
|
Kamiński J, Rutishauser U. Between persistently active and activity-silent frameworks: novel vistas on the cellular basis of working memory. Ann N Y Acad Sci 2019; 1464:64-75. [PMID: 31407811 PMCID: PMC7015771 DOI: 10.1111/nyas.14213] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2019] [Revised: 07/09/2019] [Accepted: 07/18/2019] [Indexed: 12/25/2022]
Abstract
Recent work has revealed important new discoveries on the cellular mechanisms of working memory (WM). These findings have motivated several seemingly conflicting theories on the mechanisms of short‐term memory maintenance. Here, we summarize the key insights gained from these new experiments and critically evaluate them in light of three hypotheses: classical persistent activity, activity‐silent, and dynamic coding. The experiments discussed include the first direct demonstration of persistently active neurons in the human medial temporal lobe that form static attractors with relevance to WM, single‐neuron recordings in the macaque prefrontal cortex that show evidence for both persistent and more dynamic types of WM representations, and noninvasive neuroimaging in humans that argues for activity‐silent representations. A key insight that emerges from these new results is that there are several neural mechanisms that support the maintenance of information in WM. Finally, based on established cognitive theories of WM, we propose a coherent model that encompasses these seemingly contradictory results. We propose that the three neuronal mechanisms of persistent activity, activity‐silent, and dynamic coding map well onto the cognitive levels of information processing (within focus of attention, activated long‐term memory, and central executive) that Cowan's WM model proposes.
Collapse
Affiliation(s)
- Jan Kamiński
- Department of Neurosurgery, Cedars-Sinai Medical Center, Los Angeles, California.,Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, California
| | - Ueli Rutishauser
- Department of Neurosurgery, Cedars-Sinai Medical Center, Los Angeles, California.,Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, California.,Department of Neurology, Cedars-Sinai Medical Center, Los Angeles, California.,Center for Neural Science and Medicine, Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, California
| |
Collapse
|