1
|
Chen J, Fang Z, Zhang X, Zheng Y, Chen Z. How Fear Memory is Updated: From Reconsolidation to Extinction? Neurosci Bull 2025:10.1007/s12264-025-01367-7. [PMID: 40205305 DOI: 10.1007/s12264-025-01367-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2024] [Accepted: 12/21/2024] [Indexed: 04/11/2025] Open
Abstract
Post-traumatic stress disorder (PTSD) is a psychiatric disorder caused by traumatic past experiences, rooted in the neurocircuits of fear memory formation. Memory processes include encoding, storing, and recalling to forgetting, suggesting the potential to erase fear memories through timely interventions. Conventional strategies such as medications or electroconvulsive therapy often fail to provide permanent relief and come with significant side-effects. This review explores how fear memory may be erased, particularly focusing on the mnemonic phases of reconsolidation and extinction. Reconsolidation strengthens memory, while extinction weakens it. Interfering with memory reconsolidation could diminish the fear response. Alternatively, the extinction of acquired memory could reduce the fear memory response. This review summarizes experimental animal models of PTSD, examines the nature and epidemiology of reconsolidation to extinction, and discusses current behavioral therapy aimed at transforming fear memories to treat PTSD. In sum, understanding how fear memory updates holds significant promise for PTSD treatment.
Collapse
Affiliation(s)
- Jiahui Chen
- Zhejiang Key Laboratory of Neuropsychopharmacology, Institute of Pharmacology & Toxicology, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Zhuowen Fang
- Zhejiang Key Laboratory of Neuropsychopharmacology, Institute of Pharmacology & Toxicology, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Xiaolan Zhang
- Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Yanrong Zheng
- Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, 310053, China.
| | - Zhong Chen
- Zhejiang Key Laboratory of Neuropsychopharmacology, Institute of Pharmacology & Toxicology, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China.
- Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, 310053, China.
| |
Collapse
|
2
|
Morrow E, Shepardson S, Hamann S. Enhanced recognition memory for emotional nonverbal sounds. Memory 2025; 33:461-473. [PMID: 40040552 DOI: 10.1080/09658211.2025.2472969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Accepted: 02/18/2025] [Indexed: 03/06/2025]
Abstract
Emotion often enhances memory for emotional stimuli relative to neutral stimuli. This emotional memory enhancement effect has been studied extensively with visual and verbal stimuli, yet little is known regarding emotion's effects on memory for nonverbal (or environmental) sounds, such as dog snarls and infant cries. Additionally, emotion's enhancing effects on recognition for visual and verbal stimuli are selective to recollection (recognition with contextual retrieval) rather than familiarity (recognition based on memory strength), but whether this is also the case for nonverbal sounds is unknown. We examined recognition memory for negative and neutral nonverbal sounds, predicting that memory would be enhanced for negative sounds and this enhancement would be specific to recollection. Participants incidentally encoded negative and neutral sounds, and memory was tested with a remember-familiar recognition memory task after a 15-minute delay. As predicted, recognition memory was enhanced for negative sounds, was better for higher versus lower arousal negative sounds, and was specific to recollection. These findings suggest that key aspects of the emotional enhancement effect also extend to nonverbal sounds. We discuss how current theories of emotional memory which focus on memory for visual and verbal stimuli can be extended to accommodate findings with nonverbal emotional auditory stimuli.
Collapse
Affiliation(s)
- Erin Morrow
- Department of Psychology, University of California, Los Angeles, CA, USA
| | | | - Stephan Hamann
- Department of Psychology, Emory University, Atlanta, GA, USA
| |
Collapse
|
3
|
Saccaro LF, Delavari F, Meuleman B, Perroud N, Van De Ville D, Piguet C. Limbic-Sensorimotor Tug of War for the Hippocampus: Dynamic Functional Connectivity as a Transdiagnostic Vulnerability Marker in Offspring of Emotion Dysregulation Patients. BIOLOGICAL PSYCHIATRY. COGNITIVE NEUROSCIENCE AND NEUROIMAGING 2025:S2451-9022(25)00120-X. [PMID: 40158696 DOI: 10.1016/j.bpsc.2025.03.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2025] [Revised: 02/21/2025] [Accepted: 03/15/2025] [Indexed: 04/02/2025]
Abstract
BACKGROUND Emotion dysregulation (ED) is a key transdiagnostic symptom in several psychiatric disorders such as borderline personality disorder (BPD), bipolar disorder (BD), and attention-deficit/hyperactivity disorder (ADHD). These disorders, here defined as ED disorders (EDD), share similarities in symptoms, comorbidity, and heritability, emphasizing the importance of a transdiagnostic approach to identify markers of vulnerability to EDD in high-risk populations, such as EDD patients' offspring (EDDoff). The hippocampus, central to ED, exhibits alterations across EDD. METHODS We employed a state-of-the-art approach (micro-co-activation patterns, μCAPs) to study the transdiagnostic dynamic functional connectivity (dFC) of hippocampal subregions from resting-state functional MRI of 201 participants (74 EDD patients, 57 EDDoff, 70 controls). μCAPs provide a data-driven differentiation within the seed region. RESULTS DFC between the sensorimotor network (SMN) and the hippocampal body was lower in EDD patients (pFDR=0.0002) and EDDoff (pFDR=0.01) compared to controls, with EDDoff displaying an intermediate pattern between EDD patients and controls. dFC between the limbic network (LN) and the hippocampal head was higher in EDD patients than in controls (pFDR=0.01) and in EDDoff (pFDR=0.01). A negative correlation was found between ED and SMN (pFDR=0.01), suggesting increasing ED with decreasing SMN dFC with the hippocampus. CONCLUSIONS Increased dFC between the hippocampal head and the LN, at the expense of the SMN, may represent a marker of disease in EDD patients. Lower dFC between the SMN and the hippocampal body may represent a marker of vulnerability to EDD in EDDoff, correlating with ED. Such a transdiagnostic construct represents a clinically relevant target for early interventions aimed at reducing vulnerability to EDD in high-risk populations.
Collapse
Affiliation(s)
- Luigi F Saccaro
- Psychiatry Department, Faculty of Medicine, University of Geneva, Switzerland; Psychiatry Department, Geneva University Hospital, Switzerland; Department of Radiology and Medical Informatics, Faculty of Medicine, University of Geneva, Geneva, Switzerland.
| | - Farnaz Delavari
- Developmental Imaging and Psychopathology Laboratory, University of Geneva School of Medicine, Geneva, Switzerland; Medical Image Processing Laboratory, Neuro-X Institute, École Polytechnique Fédérale de Lausanne, Geneva, Switzerland
| | - Ben Meuleman
- Psychiatry Department, Faculty of Medicine, University of Geneva, Switzerland; Swiss Center for Affective Sciences, University of Geneva, Geneva, Switzerland
| | - Nader Perroud
- Psychiatry Department, Faculty of Medicine, University of Geneva, Switzerland; Psychiatry Department, Geneva University Hospital, Switzerland
| | - Dimitri Van De Ville
- Medical Image Processing Laboratory, Neuro-X Institute, École Polytechnique Fédérale de Lausanne, Geneva, Switzerland; Department of Radiology and Medical Informatics, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Camille Piguet
- Psychiatry Department, Faculty of Medicine, University of Geneva, Switzerland; General Pediatric Division, Geneva University Hospital, Switzerland
| |
Collapse
|
4
|
Chen X, Liu L, Jiang W, Hu Y, Zou W, Zhang P, Wang B. Hydrogen Sulfide Inhibits Ferritinophagy-Mediated Ferroptosis in the Hippocampus of Rotenone-Exposed Rats. JOURNAL OF PHYSIOLOGICAL INVESTIGATION 2025; 68:91-99. [PMID: 40103451 DOI: 10.4103/ejpi.ejpi-d-24-00099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2024] [Accepted: 02/03/2025] [Indexed: 03/20/2025]
Abstract
ABSTRACT Our previous research has established that hydrogen sulfide (H 2 S) exerts an antagonistic effect against the hippocampal neurotoxicity induced by Rotenone (ROT). However, the underlying mechanisms are so far poorly understood. Substantial evidence corroborates the involvement of ferroptosis in ROT-induced neurotoxicity. To elucidate the protective mechanism of H 2 S against ROT-induced hippocampal neurotoxicity, this study explores its regulatory role in ferroptosis and its underlying mechanisms. We used Fluoro-Jade B staining to detect dead neurons. The levels of ferrous ions and glutathione (GSH) were measured by a kit. The ferroptosis-related proteins, including light-chain subunit (xCT), GSH peroxidase 4(GPX4), ferroptosis marker acyl-CoA synthetase long-chain family member 4(ACSL4), and ferritinophagy-related protein, including ferritin heavy chain 1 (FTH1), sequestosome 1 (p62), ferritinophagy markers autophagosome marker light-chain I/II (LC3I/II), and nuclear receptor coactivator 4 (NCOA4), were measured by Western blot. Our findings indicate that H 2 S reduces hippocampal neuron deaths in ROT-exposed rats. Meanwhile, H 2 S reverses the downregulations of xCT and GPX4, and the upregulations of ferrous ion and ACSL4 in the hippocampus induced by ROT. Furthermore, H 2 S reverses the upregulations of LC3I/II and NCOA4, and the downregulations of P62 and FTH1. Based on these findings, we concluded that the protective role of H 2 S against ROT-induced hippocampal neuronal death involves inhibiting ferroptosis triggered by ferritinophagy.
Collapse
Affiliation(s)
- Xi Chen
- Department of Neurology, The Affiliated Nanhua Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Li Liu
- Department of Neurology, The Affiliated Nanhua Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Wu Jiang
- Department of Neurology, The Affiliated Nanhua Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Yu Hu
- Institute of Clinical Laboratory, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Wei Zou
- Department of Neurology, The Affiliated Nanhua Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Ping Zhang
- Department of Neurology, The Affiliated Nanhua Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan, China
- Institute of Neuroscience, Hengyang Key Laboratory of Neurodegeneration and Cognitive Impairment, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Bo Wang
- Department of Anesthesiology, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyan, Hunan, China
| |
Collapse
|
5
|
Li Z, Ma J, Bai H, Deng B, Lin J, Wang W. Brain local structural connectomes and the subtypes of the medial temporal lobe parcellations. Front Neurosci 2025; 19:1529123. [PMID: 40012681 PMCID: PMC11861214 DOI: 10.3389/fnins.2025.1529123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2024] [Accepted: 01/27/2025] [Indexed: 02/28/2025] Open
Abstract
Objective To investigate the quantitative characteristics and major subtypes of local structural connectomes for medial temporal lobe (MTL) parcellations. Methods The Q-Space Diffeomorphic Reconstruction (QSDR) method was used to track white matter fibers for the ROIs within MTL based on the integrating high-resolution T1 structural MR imaging and diffusion MR imaging of 100 adult Chinese individuals. Graph theoretical analysis was employed to construct the local structural connectome models for ROIs within MTL and acquire the network parameters. These connectivity matrices of these connectomes were classified into major subtypes undergoing hierarchical clustering. Results (1) In the local brain connectomes, the overall network features exhibited a low characteristic path length paired with moderate to high global efficiency, suggesting the effectiveness of the local brain connectome construction. The amygdala connectomes exhibited longer characteristic path length and weaker global efficiency than the ipsilateral hippocampus and parahippocampal connectomes. (2) The hubs of the amygdala connectomes were dispersed across the ventral frontal, olfactory area, limbic, parietal regions and subcortical nuclei, and the hubs the hippocampal connectomes were mainly situated within the limbic, parietal, and subcortical regions. The hubs distribution of the parahippocampal connectomes resembled the hippocampal structural connectomes, but lacking interhemispheric connections and connectivity with subcortical nuclei. (3) The subtypes of the brain local structural connectomes for each ROI were classified by hierarchical clustering, The subtypes of the bilateral amygdala connectomes were the amygdala-prefrontal connectome; the amygdala-ipsilateral or contralateral limbic connectome and the amygdala-posterior connectome. The subtypes of the bilateral hippocampal connectomes primarily included the hippocampus-ipsilateral or contralateral limbic connectome and the anterior temporal-hippocampus-ventral temporal-occipital connectome in the domain hemisphere. The subtypes of the parahippocampal connectomes exhibited resemblances to those of the hippocampus. Conclusion We have constructed the brain local connectomes of the MTL parcellations and acquired the network parameters to delineate the hubs distribution through graph theory analysis. The connectomes can be classified into different major subtypes, which were closely related to the functional connectivity.
Collapse
Affiliation(s)
- Zhensheng Li
- Department of Neurology, General Hospital of Southern Theater Command, Guangzhou, China
| | - Jie Ma
- Department of Neurosurgery, Chinese PLA General Hospital, Beijing, China
| | - Hongmin Bai
- Department of Neurosurgery, General Hospital of Southern Theater Command, Guangzhou, China
| | - Bingmei Deng
- Department of Neurology, General Hospital of Southern Theater Command, Guangzhou, China
| | - Jian Lin
- Department of Neurosurgery, General Hospital of Southern Theater Command, Guangzhou, China
| | - Weimin Wang
- Department of Neurosurgery, General Hospital of Southern Theater Command, Guangzhou, China
| |
Collapse
|
6
|
Talmi D, Palombo DJ. Emotional time travel: the role of emotion in temporal memory. Cogn Emot 2025; 39:1-17. [PMID: 40009765 DOI: 10.1080/02699931.2024.2421395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2024] [Accepted: 10/21/2024] [Indexed: 02/28/2025]
Abstract
Remembering when emotional experiences occurred can be adaptive, yet there is no consensus on how emotion influences temporal aspects of memory. Temporal memory, a type of associative memory, refers to the capacity to encode, store, and retrieve information about the sequence and timing of events. This Special Issue presents evidence on how emotion affects three aspects of temporal memory: temporal-order, temporal source, and event segmentation. The contributions suggest that emotion often increases temporal-order memory, a result that is harder to reconcile with some dominant emotional memory theories, including the Object-Based Framework, the Dual Representation Account or other trade-off models, but may fit with Arousal-Biased Competition theory. The contributions also suggest that emotion can act as a boundary between events, although only under some experimental set-ups. Findings regarding its effect on temporal source memory were less clear. We discuss the diversity of findings in light of theories of emotional associative memory and methodological factors, such as the direction of the shift in emotional experience and discrepancies between temporal-order and temporal distance measures as indices of event boundaries. We provide a roadmap for future studies aimed at understanding how emotion shapes the fate of our memories as they unfold in time.
Collapse
Affiliation(s)
- Deborah Talmi
- Department of Psychology, University of Cambridge, Cambridge, UK
| | - Daniela J Palombo
- Department of Psychology, University of British Columbia, Vancouver, Canada
| |
Collapse
|
7
|
Wang J, Lapate RC. Emotional state dynamics impacts temporal memory. Cogn Emot 2025; 39:136-155. [PMID: 38898587 PMCID: PMC11655710 DOI: 10.1080/02699931.2024.2349326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 02/02/2024] [Accepted: 02/13/2024] [Indexed: 06/21/2024]
Abstract
Emotional fluctuations are ubiquitous in everyday life, but precisely how they sculpt the temporal organisation of memories remains unclear. Here, we designed a novel task - the Emotion Boundary Task - wherein participants viewed sequences of negative and neutral images surrounded by a colour border. We manipulated perceptual context (border colour), emotional-picture valence, as well as the direction of emotional-valence shifts (i.e., shifts from neutral-to-negative and negative-to-neutral events) to create events with a shared perceptual and/or emotional context. We measured memory for temporal order and temporal distances for images processed within and across events. Negative images processed within events were remembered as closer in time compared to neutral ones. In contrast, temporal distances were remembered as longer for images spanning neutral-to-negative shifts - suggesting temporal dilation in memory with the onset of a negative event following a previously-neutral state. The extent of negative-picture induced temporal dilation in memory correlated with dispositional negativity across individuals. Lastly, temporal order memory was enhanced for recently-presented negative (versus neutral) images. These findings suggest that emotional-state dynamics matters when considering emotion-temporal memory interactions: While persistent negative events may compress subjectively remembered time, dynamic shifts from neutral-to-negative events produce temporal dilation in memory, with implications for adaptive emotional functioning.
Collapse
Affiliation(s)
- Jingyi Wang
- Department of Psychological & Brain Sciences, University of California, Santa Barbara, Santa Barbara, CA, USA
| | - Regina C Lapate
- Department of Psychological & Brain Sciences, University of California, Santa Barbara, Santa Barbara, CA, USA
| |
Collapse
|
8
|
Riegel M, Granja D, Amer T, Vuilleumier P, Rimmele U. Opposite effects of emotion and event segmentation on temporal order memory and object-context binding. Cogn Emot 2025; 39:117-135. [PMID: 37882239 DOI: 10.1080/02699931.2023.2270195] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 09/01/2023] [Accepted: 09/04/2023] [Indexed: 10/27/2023]
Abstract
Our daily lives unfold continuously, yet our memories are organised into distinct events, situated in a specific context of space and time, and chunked when this context changes (at event boundaries). Previous research showed that this process, termed event segmentation, enhances object-context binding but impairs temporal order memory. Physiologically, peaks in pupil dilation index event segmentation, similar to emotion-induced bursts of autonomic arousal. Emotional arousal also modulates object-context binding and temporal order memory. Yet, these two critical factors have not been systematically studied together. To address this gap, we ran a behavioural experiment using a paradigm validated to study event segmentation and extended it with emotion manipulation. During encoding, we sequentially presented greyscale objects embedded in coloured frames (colour changes defining events), with a neutral or aversive sound. During retrieval, we tested participants' memory of temporal order memory and object-colour binding. We found opposite effects of emotion and event segmentation on episodic memory. While event segmentation enhanced object-context binding, emotion impaired it. On the contrary, event segmentation impaired temporal order memory, but emotion enhanced it. These findings increase our understanding of episodic memory organisation in laboratory settings, and potentially in real life with perceptual changes and emotion fluctuations constantly interacting.
Collapse
Affiliation(s)
- Monika Riegel
- Emotion and Memory Laboratory, Faculty of Psychology and Educational Sciences, University of Geneva, Geneva, Switzerland
- Swiss Center of Affective Sciences (CISA), University of Geneva, Geneva, Switzerland
- Center for Interdisciplinary Study of Gerontology and Vulnerability (CIGEV), University of Geneva, Geneva, Switzerland
- Laboratory for Behavioral Neurology and Imaging of Cognition, Department of Basic Neurosciences, University of Geneva, Geneva, Switzerland
| | - Daniel Granja
- Emotion and Memory Laboratory, Faculty of Psychology and Educational Sciences, University of Geneva, Geneva, Switzerland
- Center for Interdisciplinary Study of Gerontology and Vulnerability (CIGEV), University of Geneva, Geneva, Switzerland
- Neurocenter, University of Geneva, Geneva, Switzerland
| | - Tarek Amer
- Psychology Department, University of Victoria, BC, Victoria, Canada
| | - Patrik Vuilleumier
- Swiss Center of Affective Sciences (CISA), University of Geneva, Geneva, Switzerland
- Laboratory for Behavioral Neurology and Imaging of Cognition, Department of Basic Neurosciences, University of Geneva, Geneva, Switzerland
- Neurocenter, University of Geneva, Geneva, Switzerland
| | - Ulrike Rimmele
- Emotion and Memory Laboratory, Faculty of Psychology and Educational Sciences, University of Geneva, Geneva, Switzerland
- Swiss Center of Affective Sciences (CISA), University of Geneva, Geneva, Switzerland
- Center for Interdisciplinary Study of Gerontology and Vulnerability (CIGEV), University of Geneva, Geneva, Switzerland
- Laboratory for Behavioral Neurology and Imaging of Cognition, Department of Basic Neurosciences, University of Geneva, Geneva, Switzerland
| |
Collapse
|
9
|
John YJ, Wang J, Bullock D, Barbas H. Amygdalar Excitation of Hippocampal Interneurons Can Lead to Emotion-driven Overgeneralization of Context. J Cogn Neurosci 2024; 36:2667-2686. [PMID: 38261402 DOI: 10.1162/jocn_a_02109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2024]
Abstract
Context is central to cognition: Detailed contextual representations enable flexible adjustment of behavior via comparison of the current situation with prior experience. Emotional experiences can greatly enhance contextual memory. However, sufficiently intense emotional signals can have the opposite effect, leading to weaker or less specific memories. How can emotional signals have such intensity-dependent effects? A plausible mechanistic account has emerged from recent anatomical data on the impact of the amygdala on the hippocampus in primates. In hippocampal CA3, the amygdala formed potent synapses on pyramidal neurons, calretinin (CR) interneurons, as well as parvalbumin (PV) interneurons. CR interneurons are known to disinhibit pyramidal neuron dendrites, whereas PV neurons provide strong perisomatic inhibition. This potentially counterintuitive connectivity, enabling amygdala to both enhance and inhibit CA3 activity, may provide a mechanism that can boost or suppress memory in an intensity-dependent way. To investigate this possibility, we simulated this connectivity pattern in a spiking network model. Our simulations revealed that moderate amygdala input can enrich CA3 representations of context through disinhibition via CR interneurons, but strong amygdalar input can impoverish CA3 activity through simultaneous excitation and feedforward inhibition via PV interneurons. Our model revealed an elegant circuit mechanism that mediates an affective "inverted U" phenomenon: There is an optimal level of amygdalar input that enriches hippocampal context representations, but on either side of this zone, representations are impoverished. This circuit mechanism helps explain why excessive emotional arousal can disrupt contextual memory and lead to overgeneralization, as seen in severe anxiety and posttraumatic stress disorder.
Collapse
|
10
|
Cortese A, Ohata R, Alemany-González M, Kitagawa N, Imamizu H, Koizumi A. Time-dependent neural arbitration between cue associative and episodic fear memories. Nat Commun 2024; 15:8706. [PMID: 39433735 PMCID: PMC11494204 DOI: 10.1038/s41467-024-52733-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Accepted: 09/16/2024] [Indexed: 10/23/2024] Open
Abstract
After traumatic events, simple cue-threat associative memories strengthen while episodic memories become incoherent. However, how the brain prioritises cue associations over episodic coding of traumatic events remains unclear. Here, we developed an original episodic threat conditioning paradigm in which participants concurrently form two memory representations: cue associations and episodic cue sequence. We discovered that these two distinct memories compete for physiological fear expression, reorganising overnight from an overgeneralised cue-based to a precise sequence-based expression. With multivariate fMRI, we track inter-area communication of the memory representations to reveal that a rebalancing between hippocampal- and prefrontal control of the fear regulatory circuit governs this memory maturation. Critically, this overnight re-organisation is altered with heightened trait anxiety. Together, we show the brain prioritises generalisable associative memories under recent traumatic stress but resorts to selective episodic memories 24 h later. Time-dependent memory competition may provide a unifying account for memory dysfunctions in post-traumatic stress disorders.
Collapse
Affiliation(s)
| | - Ryu Ohata
- Department of Psychology, Graduate School of Humanities and Sociology, The University of Tokyo, Tokyo, Japan
| | | | - Norimichi Kitagawa
- Yoshika Institute of Psychology, Shimane, Japan
- BKC Research Organization of Social Sciences, Ritsumeikan University, Shiga, Japan
| | - Hiroshi Imamizu
- Department of Psychology, Graduate School of Humanities and Sociology, The University of Tokyo, Tokyo, Japan.
- ATR Cognitive Mechanisms Laboratories, Kyoto, Japan.
- The Research into Artifacts, Center for Engineering, The University of Tokyo, Tokyo, Japan.
| | - Ai Koizumi
- Sony Computer Science Laboratories, Inc., Tokyo, Japan.
| |
Collapse
|
11
|
Meiering MS, Weigner D, Gärtner M, Carstens L, Keicher C, Hertrampf R, Beckmann CF, Mennes M, Wunder A, Weigand A, Grimm S. Functional activity and connectivity signatures of ketamine and lamotrigine during negative emotional processing: a double-blind randomized controlled fMRI study. Transl Psychiatry 2024; 14:436. [PMID: 39402015 PMCID: PMC11479267 DOI: 10.1038/s41398-024-03120-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 09/18/2024] [Accepted: 09/23/2024] [Indexed: 10/17/2024] Open
Abstract
Ketamine is a highly effective antidepressant (AD) that targets the glutamatergic system and exerts profound effects on brain circuits during negative emotional processing. Interestingly, the effects of ketamine on brain measures are sensitive to modulation by pretreatment with lamotrigine, which inhibits glutamate release. Examining the antagonistic effects of ketamine and lamotrigine on glutamate transmission holds promise to identify effects of ketamine that are mediated through changes in the glutamatergic system. Investigating this modulation in relation to both the acute and sustained effects of ketamine on functional activity and connectivity during negative emotional processing should therefore provide novel insights. 75 healthy subjects were investigated in a double-blind, single-dose, randomized, placebo-controlled, parallel-group study with three treatment conditions (ketamine, lamotrigine pre-treatment, placebo). Participants completed an emotional face viewing task during ketamine infusion and 24 h later. Acute ketamine administration decreased hippocampal and Default Mode Network (DMN) activity and increased fronto-limbic coupling during negative emotional processing. Furthermore, while lamotrigine abolished the ketamine-induced increase in functional connectivity, it had no acute effect on activity. Sustained (24 h later) effects of ketamine were only found for functional activity, with a significant reduction in the posterior DMN. This effect was blocked by pretreatment with lamotrigine. Our results suggest that both the acute increases in fronto-limbic coupling and the delayed decrease in posterior DMN activity, but not the attenuated limbic and DMN recruitment after ketamine, are mediated by altered glutamatergic transmission.
Collapse
Affiliation(s)
- Marvin S Meiering
- Medical School Berlin, Berlin, Germany.
- Department of Education and Psychology, Freie Universität Berlin, Berlin, Germany.
| | - David Weigner
- Medical School Berlin, Berlin, Germany
- Department of Education and Psychology, Freie Universität Berlin, Berlin, Germany
| | | | | | | | | | | | | | - Andreas Wunder
- Translational Medicine and Clinical Pharmacology, Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach an der Riss, Germany
| | | | - Simone Grimm
- Medical School Berlin, Berlin, Germany
- Department of Psychiatry and Psychotherapy, Charité, Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universitiät Zu Berlin, Berlin, Germany
- Department of Psychiatry, Psychotherapy and Psychosomatics, University Hospital of Psychiatry, University of Zurich, Zurich, Switzerland
| |
Collapse
|
12
|
Fetterhoff D, Costa M, Hellerstedt R, Johannessen R, Imbach L, Sarnthein J, Strange BA. Neuronal population representation of human emotional memory. Cell Rep 2024; 43:114071. [PMID: 38592973 PMCID: PMC11063625 DOI: 10.1016/j.celrep.2024.114071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 03/07/2024] [Accepted: 03/21/2024] [Indexed: 04/11/2024] Open
Abstract
Understanding how emotional processing modulates learning and memory is crucial for the treatment of neuropsychiatric disorders characterized by emotional memory dysfunction. We investigate how human medial temporal lobe (MTL) neurons support emotional memory by recording spiking activity from the hippocampus, amygdala, and entorhinal cortex during encoding and recognition sessions of an emotional memory task in patients with pharmaco-resistant epilepsy. Our findings reveal distinct representations for both remembered compared to forgotten and emotional compared to neutral scenes in single units and MTL population spiking activity. Additionally, we demonstrate that a distributed network of human MTL neurons exhibiting mixed selectivity on a single-unit level collectively processes emotion and memory as a network, with a small percentage of neurons responding conjointly to emotion and memory. Analyzing spiking activity enables a detailed understanding of the neurophysiological mechanisms underlying emotional memory and could provide insights into how emotion alters memory during healthy and maladaptive learning.
Collapse
Affiliation(s)
- Dustin Fetterhoff
- Laboratory for Clinical Neuroscience, Center for Biomedical Technology, Universidad Politécnica de Madrid, IdISSC, Madrid, Spain.
| | - Manuela Costa
- Laboratory for Clinical Neuroscience, Center for Biomedical Technology, Universidad Politécnica de Madrid, IdISSC, Madrid, Spain
| | - Robin Hellerstedt
- Laboratory for Clinical Neuroscience, Center for Biomedical Technology, Universidad Politécnica de Madrid, IdISSC, Madrid, Spain
| | - Rebecca Johannessen
- Swiss Epilepsy Center, Klinik Lengg, Zurich, Switzerland; Department of Psychology, University of Zurich, Switzerland
| | - Lukas Imbach
- Swiss Epilepsy Center, Klinik Lengg, Zurich, Switzerland; Neuroscience Center Zurich, University of Zurich and ETH Zurich, Zurich, Switzerland
| | - Johannes Sarnthein
- Neuroscience Center Zurich, University of Zurich and ETH Zurich, Zurich, Switzerland; Department of Neurosurgery, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Bryan A Strange
- Laboratory for Clinical Neuroscience, Center for Biomedical Technology, Universidad Politécnica de Madrid, IdISSC, Madrid, Spain; Reina Sofia Centre for Alzheimer's Research, Madrid, Spain
| |
Collapse
|
13
|
Wang J, Lapate RC. Emotional state dynamics impacts temporal memory. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.07.25.550412. [PMID: 38464043 PMCID: PMC10925226 DOI: 10.1101/2023.07.25.550412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/12/2024]
Abstract
Emotional fluctuations are ubiquitous in everyday life, but precisely how they sculpt the temporal organization of memories remains unclear. Here, we designed a novel task-the Emotion Boundary Task-wherein participants viewed sequences of negative and neutral images surrounded by a color border. We manipulated perceptual context (border color), emotional valence, as well as the direction of emotional-valence shifts (i.e., shifts from neutral-to-negative and negative-to-neutral events) to create encoding events comprised of image sequences with a shared perceptual and/or emotional context. We measured memory for temporal order and subjectively remembered temporal distances for images processed within and across events. Negative images processed within events were remembered as closer in time compared to neutral ones. In contrast, temporal distance was remembered as longer for images spanning neutral-to-negative shifts-suggesting temporal dilation in memory with the onset of a negative event following a previously-neutral state. The extent of this negative-picture induced temporal dilation in memory correlated with dispositional negativity across individuals. Lastly, temporal order memory was enhanced for recently presented negative (compared to neutral) images. These findings suggest that emotional-state dynamics matters when considering emotion-temporal memory interactions: While persistent negative events may compress subjectively remembered time, dynamic shifts from neutral to negative events produce temporal dilation in memory, which may be relevant for adaptive emotional functioning.
Collapse
|
14
|
Sladky R, Kargl D, Haubensak W, Lamm C. An active inference perspective for the amygdala complex. Trends Cogn Sci 2024; 28:223-236. [PMID: 38103984 DOI: 10.1016/j.tics.2023.11.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 11/14/2023] [Accepted: 11/16/2023] [Indexed: 12/19/2023]
Abstract
The amygdala is a heterogeneous network of subcortical nuclei with central importance in cognitive and clinical neuroscience. Various experimental designs in human psychology and animal model research have mapped multiple conceptual frameworks (e.g., valence/salience and decision making) to ever more refined amygdala circuitry. However, these predominantly bottom up-driven accounts often rely on interpretations tailored to a specific phenomenon, thus preventing comprehensive and integrative theories. We argue here that an active inference model of amygdala function could unify these fractionated approaches into an overarching framework for clearer empirical predictions and mechanistic interpretations. This framework embeds top-down predictive models, informed by prior knowledge and belief updating, within a dynamical system distributed across amygdala circuits in which self-regulation is implemented by continuously tracking environmental and homeostatic demands.
Collapse
Affiliation(s)
- Ronald Sladky
- Social, Cognitive, and Affective Neuroscience Unit, Department of Cognition, Emotion, and Methods in Psychology, Faculty of Psychology, University of Vienna, Liebiggasse 5, 1010 Vienna, Austria; Vienna Cognitive Science Hub, University of Vienna, 1010 Vienna, Austria.
| | - Dominic Kargl
- Department of Neuronal Cell Biology, Center for Brain Research, Medical University of Vienna, Spitalgasse 4, 1090 Vienna, Austria
| | - Wulf Haubensak
- Department of Neuronal Cell Biology, Center for Brain Research, Medical University of Vienna, Spitalgasse 4, 1090 Vienna, Austria; Research Institute of Molecular Pathology (IMP), Vienna Biocenter (VBC), Campus Vienna Biocenter 1, 1030 Vienna, Austria
| | - Claus Lamm
- Social, Cognitive, and Affective Neuroscience Unit, Department of Cognition, Emotion, and Methods in Psychology, Faculty of Psychology, University of Vienna, Liebiggasse 5, 1010 Vienna, Austria; Vienna Cognitive Science Hub, University of Vienna, 1010 Vienna, Austria
| |
Collapse
|
15
|
Sambuco N, Bradley MM. Amygdala and hippocampal activation in emotional imagery. Ann N Y Acad Sci 2024; 1532:7-9. [PMID: 38167778 DOI: 10.1111/nyas.15091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2024]
Affiliation(s)
- Nicola Sambuco
- Department of Translational Biomedicine and Neuroscience, University of Bari 'Aldo Moro', Bari, Italy
| | - Margaret M Bradley
- Department of Psychology, University of Florida, Gainesville, Florida, USA
| |
Collapse
|
16
|
Antony JW, Van Dam J, Massey JR, Barnett AJ, Bennion KA. Long-term, multi-event surprise correlates with enhanced autobiographical memory. Nat Hum Behav 2023; 7:2152-2168. [PMID: 37322234 DOI: 10.1038/s41562-023-01631-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Accepted: 05/16/2023] [Indexed: 06/17/2023]
Abstract
Neurobiological and psychological models of learning emphasize the importance of prediction errors (surprises) for memory formation. This relationship has been shown for individual momentary surprising events; however, it is less clear whether surprise that unfolds across multiple events and timescales is also linked with better memory of those events. We asked basketball fans about their most positive and negative autobiographical memories of individual plays, games and seasons, allowing surprise measurements spanning seconds, hours and months. We used advanced analytics on National Basketball Association play-by-play data and betting odds spanning 17 seasons, more than 22,000 games and more than 5.6 million plays to compute and align the estimated surprise value of each memory. We found that surprising events were associated with better recall of positive memories on the scale of seconds and months and negative memories across all three timescales. Game and season memories could not be explained by surprise at shorter timescales, suggesting that long-term, multi-event surprise correlates with memory. These results expand notions of surprise in models of learning and reinforce its relevance in real-world domains.
Collapse
Affiliation(s)
- James W Antony
- Department of Psychology and Child Development, California Polytechnic State University, San Luis Obispo, CA, USA.
| | - Jacob Van Dam
- Department of Psychology and Child Development, California Polytechnic State University, San Luis Obispo, CA, USA
| | - Jarett R Massey
- Department of Psychology and Child Development, California Polytechnic State University, San Luis Obispo, CA, USA
| | | | - Kelly A Bennion
- Department of Psychology and Child Development, California Polytechnic State University, San Luis Obispo, CA, USA
| |
Collapse
|
17
|
McClay M, Sachs ME, Clewett D. Dynamic emotional states shape the episodic structure of memory. Nat Commun 2023; 14:6533. [PMID: 37848429 PMCID: PMC10582075 DOI: 10.1038/s41467-023-42241-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Accepted: 10/04/2023] [Indexed: 10/19/2023] Open
Abstract
Human emotions fluctuate over time. However, it is unclear how these shifting emotional states influence the organization of episodic memory. Here, we examine how emotion dynamics transform experiences into memorable events. Using custom musical pieces and a dynamic emotion-tracking tool to elicit and measure temporal fluctuations in felt valence and arousal, our results demonstrate that memory is organized around emotional states. While listening to music, fluctuations between different emotional valences bias temporal encoding process toward memory integration or separation. Whereas a large absolute or negative shift in valence helps segment memories into episodes, a positive emotional shift binds sequential representations together. Both discrete and dynamic shifts in music-evoked valence and arousal also enhance delayed item and temporal source memory for concurrent neutral items, signaling the beginning of new emotional events. These findings are in line with the idea that the rise and fall of emotions can sculpt unfolding experiences into memories of meaningful events.
Collapse
Affiliation(s)
- Mason McClay
- University of California, Los Angeles, Department of Psychology, Los Angeles, CA, USA
| | - Matthew E Sachs
- Columbia University, Department of Psychology, New York City, NY, USA
- Columbia University, Center for Science and Society, New York City, NY, USA
| | - David Clewett
- University of California, Los Angeles, Department of Psychology, Los Angeles, CA, USA.
| |
Collapse
|