1
|
Kraus J, Mlynski C, Hartmann F, Clay G, Goschke T, Silani G, Job V. The pleasure of effort: Cognitive challenges trigger hedonic physiological responses. Ann N Y Acad Sci 2025; 1546:100-111. [PMID: 40126548 PMCID: PMC11998477 DOI: 10.1111/nyas.15323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/25/2025]
Abstract
Challenging prominent neuroscientific conceptions of effort as generally aversive, recent research suggests that people can learn to seek effort. Importantly, it is unknown whether people once they learn to value effort for its instrumentality, experience pleasure when engaging in effortful tasks. In this preregistered study (N = 194), we tested the hypothesis that effort-contingent rewards in a cognitive task will induce reward-related hedonic facial responses before, during, or after effortful engagement in a subsequent non-incentivized task. The results showed that effort-contingent reward enhanced participants' facial responses in the zygomaticus major (ZM) muscle after effort exertion (consumption phase) in the subsequent non-incentivized task, especially in high-difficulty trials. Electrical activity in the ZM was positively associated with subjective pleasure ratings in the experimental group when solving difficult trials, suggesting that it is implicitly tracking the hedonic value of effort. Our findings show that effort-contingent reward promotes effort-related reward experience, indicating that effort itself becomes intrinsically rewarding as experienced pleasure after effort exertion.
Collapse
Affiliation(s)
- Jakub Kraus
- Department of Occupational, Economic and Social Psychology, Faculty of PsychologyUniversity of ViennaViennaAustria
- Institute of General Psychology, Biopsychology and Methods of Psychology, Faculty of PsychologyTU DresdenDresdenGermany
- Department of Clinical and Health Psychology, Faculty of PsychologyUniversity of ViennaViennaAustria
| | - Christopher Mlynski
- Department of Occupational, Economic and Social Psychology, Faculty of PsychologyUniversity of ViennaViennaAustria
| | - Franziska Hartmann
- Department of Occupational, Economic and Social Psychology, Faculty of PsychologyUniversity of ViennaViennaAustria
| | - Georgia Clay
- Department of Occupational, Economic and Social Psychology, Faculty of PsychologyUniversity of ViennaViennaAustria
- Institute of General Psychology, Biopsychology and Methods of Psychology, Faculty of PsychologyTU DresdenDresdenGermany
| | - Thomas Goschke
- Institute of General Psychology, Biopsychology and Methods of Psychology, Faculty of PsychologyTU DresdenDresdenGermany
| | - Giorgia Silani
- Department of Clinical and Health Psychology, Faculty of PsychologyUniversity of ViennaViennaAustria
| | - Veronika Job
- Department of Occupational, Economic and Social Psychology, Faculty of PsychologyUniversity of ViennaViennaAustria
| |
Collapse
|
2
|
Murayama K, Jach H. Response to the critiques (and encouragements) on our critique of motivation constructs. Behav Brain Sci 2025; 48:e50. [PMID: 39886888 DOI: 10.1017/s0140525x24001353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2025]
Abstract
The target article argued that motivation constructs are treated as black boxes and called for work that specifies the mental computational processes underlying motivated behavior. In response to critical commentaries, we clarify our philosophical standpoint, elaborate on the meaning of mental computational processes and why past work was not sufficient, and discuss the opportunities to expand the scope of the framework.
Collapse
Affiliation(s)
- Kou Murayama
- Hector Research Institute of Education Sciences and Psychology, University of Tübingen, Tübingen, Germany ://motivationsciencelab.com/
- Research Institute, Kochi University of Technology, Kochi, Japan
| | - Hayley Jach
- Hector Research Institute of Education Sciences and Psychology, University of Tübingen, Tübingen, Germany ://motivationsciencelab.com/
- Melbourne School of Psychological Sciences, The University of Melbourne, Parkville, VIC, Australia
| |
Collapse
|
3
|
Abstract
The incentive-sensitization theory (IST) of addiction was first published in 1993, proposing that (a) brain mesolimbic dopamine systems mediate incentive motivation ("wanting") for addictive drugs and other rewards, but not their hedonic impact (liking) when consumed; and (b) some individuals are vulnerable to drug-induced long-lasting sensitization of mesolimbic systems, which selectively amplifies their "wanting" for drugs without increasing their liking of the same drugs. Here we describe the origins of IST and evaluate its status 30 years on. We compare IST to other theories of addiction, including opponent-process theories, habit theories of addiction, and prefrontal cortical dysfunction theories of impaired impulse control. We also address critiques of IST that have been raised over the years, such as whether craving is important in addiction and whether addiction can ever be characterized as compulsive. Finally, we discuss several contemporary phenomena, including the potential role of incentive sensitization in behavioral addictions, the emergence of addiction-like dopamine dysregulation syndrome in medicated Parkinson's patients, the role of attentional capture and approach tendencies, and the role of uncertainty in incentive motivation.
Collapse
Affiliation(s)
- Terry E Robinson
- Department of Psychology, University of Michigan, Ann Arbor, Michigan, USA; ,
| | - Kent C Berridge
- Department of Psychology, University of Michigan, Ann Arbor, Michigan, USA; ,
| |
Collapse
|
4
|
Kim KS, Lee YH, Yun JW, Kim YB, Song HY, Park JS, Jung SH, Sohn JW, Kim KW, Kim HR, Choi HJ. A normative framework dissociates need and motivation in hypothalamic neurons. SCIENCE ADVANCES 2024; 10:eado1820. [PMID: 39504367 PMCID: PMC11540019 DOI: 10.1126/sciadv.ado1820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Accepted: 10/01/2024] [Indexed: 11/08/2024]
Abstract
Physiological needs evoke motivational drives that produce natural behaviors for survival. In previous studies, the temporally intertwined dynamics of need and motivation have made it challenging to differentiate these two components. On the basis of classic homeostatic theories, we established a normative framework to derive computational models for need-encoding and motivation-encoding neurons. By combining the model-based predictions and naturalistic experimental paradigms, we demonstrated that agouti-related peptide (AgRP) and lateral hypothalamic leptin receptor (LHLepR) neuronal activities encode need and motivation, respectively. Our model further explains the difference in the dynamics of appetitive behaviors induced by optogenetic stimulation of AgRP or LHLepR neurons. Our study provides a normative modeling framework that explains how hypothalamic neurons separately encode need and motivation in the mammalian brain.
Collapse
Affiliation(s)
- Kyu Sik Kim
- Department of Biomedical Sciences, Seoul National University College of Medicine, 103 Daehak-ro, Jongno-gu, Seoul 03080, Republic of Korea
| | - Young Hee Lee
- Department of Anatomy and Cell Biology, Seoul National University College of Medicine, 103 Daehak-ro, Jongno-gu, Seoul 03080, Republic of Korea
- Neuroscience Research Institute, Seoul National University College of Medicine, 103 Daehak-ro, Jongno-gu, Seoul 03080, Republic of Korea
| | - Jong Won Yun
- Department of Intelligent Precision Healthcare Convergence, Sungkyunkwan University, Suwon 16419, Republic of Korea
- Center of Neuroscience Imaging Research, Institute for Basic Science (IBS), Suwon 16419, Republic of Korea
| | - Yu-Been Kim
- Department of Biomedical Sciences, Seoul National University College of Medicine, 103 Daehak-ro, Jongno-gu, Seoul 03080, Republic of Korea
| | - Ha Young Song
- Department of Biomedical Sciences, Seoul National University College of Medicine, 103 Daehak-ro, Jongno-gu, Seoul 03080, Republic of Korea
| | - Joon Seok Park
- Department of Biomedical Sciences, Seoul National University College of Medicine, 103 Daehak-ro, Jongno-gu, Seoul 03080, Republic of Korea
| | - Sang-Ho Jung
- Department of Brain and Cognitive Sciences, Seoul National University, Seoul, Republic of Korea
| | - Jong-Woo Sohn
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon 34141, South Korea
| | - Ki Woo Kim
- Division of Physiology, Departments of Oral Biology and Applied Life Science, BK21 FOUR, Yonsei University College of Dentistry, Seoul, Korea
| | - HyungGoo R. Kim
- Center of Neuroscience Imaging Research, Institute for Basic Science (IBS), Suwon 16419, Republic of Korea
- Department of Biomedical Engineering, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Hyung Jin Choi
- Department of Biomedical Sciences, Seoul National University College of Medicine, 103 Daehak-ro, Jongno-gu, Seoul 03080, Republic of Korea
- Department of Anatomy and Cell Biology, Seoul National University College of Medicine, 103 Daehak-ro, Jongno-gu, Seoul 03080, Republic of Korea
- Neuroscience Research Institute, Seoul National University College of Medicine, 103 Daehak-ro, Jongno-gu, Seoul 03080, Republic of Korea
- Department of Brain and Cognitive Sciences, Seoul National University, Seoul, Republic of Korea
- Wide River Institute of Immunology, Seoul National University, 101 Dabyeonbat-gil, Hwachon-myeon, Gangwon-do 25159, Republic of Korea
| |
Collapse
|
5
|
Kim YB, Lee YH, Park SJ, Choi HJ. A unified theoretical framework underlying the regulation of motivated behavior. Bioessays 2024; 46:e2400016. [PMID: 39221529 DOI: 10.1002/bies.202400016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 08/16/2024] [Accepted: 08/19/2024] [Indexed: 09/04/2024]
Abstract
To orchestrate behaviors for survival, multiple psychological components have evolved. The current theories do not clearly distinguish the distinct components. In this article, we provide a unified theoretical framework. To optimize survival, there should be four components; (1) "need", an alarm based on a predicted deficiency. (2) "motivation", a direct behavior driver. (3) "pleasure", a teacher based on immediate outcomes. (4) "utility", a teacher based on final delayed outcomes. For behavior stability, need should be accumulated into motivation to drive behavior. Based on the immediate outcome of the behavior, the pleasure should teach whether to continue the current behavior. Based on the final delay outcome, the utility should teach whether to increase future behavior by reshaping the other three components. We provide several neural substrate candidates in the food context. The proposed theoretical framework, in combination with appropriate experiments, will unravel the neural components responsible for each theoretical component.
Collapse
Affiliation(s)
- Yu-Been Kim
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, Republic of Korea
- Department of Anatomy and Cell Biology, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Young Hee Lee
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, Republic of Korea
- Department of Anatomy and Cell Biology, Seoul National University College of Medicine, Seoul, Republic of Korea
- Neuroscience Research Institute, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Shee-June Park
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, Republic of Korea
- Department of Brain and Cognitive Sciences, Seoul National University, Seoul, Republic of Korea
| | - Hyung Jin Choi
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, Republic of Korea
- Department of Anatomy and Cell Biology, Seoul National University College of Medicine, Seoul, Republic of Korea
- Neuroscience Research Institute, Seoul National University College of Medicine, Seoul, Republic of Korea
- Department of Brain and Cognitive Sciences, Seoul National University, Seoul, Republic of Korea
- Wide River Institute of Immunology, Seoul National University, Gangwon-do, Republic of Korea
| |
Collapse
|
6
|
Bosulu J, Pezzulo G, Hétu S. Needing: An Active Inference Process for Physiological Motivation. J Cogn Neurosci 2024; 36:2011-2028. [PMID: 38940737 DOI: 10.1162/jocn_a_02209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/29/2024]
Abstract
Need states are internal states that arise from deprivation of crucial biological stimuli. They direct motivation, independently of external learning. Despite their separate origin, they interact with reward processing systems that respond to external stimuli. This article aims to illuminate the functioning of the needing system through the lens of active inference, a framework for understanding brain and cognition. We propose that need states exert a pervasive influence on the organism, which in active inference terms translates to a "pervasive surprise"-a measure of the distance from the organism's preferred state. Crucially, we define needing as an active inference process that seeks to reduce this pervasive surprise. Through a series of simulations, we demonstrate that our proposal successfully captures key aspects of the phenomenology and neurobiology of needing. We show that as need states increase, the tendency to occupy preferred states strengthens, independently of external reward prediction. Furthermore, need states increase the precision of states (stimuli and actions) leading to preferred states, suggesting their ability to amplify the value of reward cues and rewards themselves. Collectively, our model and simulations provide valuable insights into the directional and underlying influence of need states, revealing how this influence amplifies the wanting or liking associated with relevant stimuli.
Collapse
Affiliation(s)
- Juvenal Bosulu
- Université de Montréal
- Centre interdisciplinaire de recherche sur le cerveau et l'apprentissage (CIRCA), Montréal, Québec, Canada
| | - Giovanni Pezzulo
- Institute of Cognitive Sciences and Technologies (ISTC-CNR), Rome, Italy
| | - Sébastien Hétu
- Université de Montréal
- Centre interdisciplinaire de recherche sur le cerveau et l'apprentissage (CIRCA), Montréal, Québec, Canada
| |
Collapse
|
7
|
Song MR, Lee SW. Rethinking dopamine-guided action sequence learning. Eur J Neurosci 2024; 60:3447-3465. [PMID: 38798086 DOI: 10.1111/ejn.16426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 04/21/2024] [Accepted: 05/08/2024] [Indexed: 05/29/2024]
Abstract
As opposed to those requiring a single action for reward acquisition, tasks necessitating action sequences demand that animals learn action elements and their sequential order and sustain the behaviour until the sequence is completed. With repeated learning, animals not only exhibit precise execution of these sequences but also demonstrate enhanced smoothness and efficiency. Previous research has demonstrated that midbrain dopamine and its major projection target, the striatum, play crucial roles in these processes. Recent studies have shown that dopamine from the substantia nigra pars compacta (SNc) and the ventral tegmental area (VTA) serve distinct functions in action sequence learning. The distinct contributions of dopamine also depend on the striatal subregions, namely the ventral, dorsomedial and dorsolateral striatum. Here, we have reviewed recent findings on the role of striatal dopamine in action sequence learning, with a focus on recent rodent studies.
Collapse
Affiliation(s)
- Minryung R Song
- Department of Brain and Cognitive Sciences, KAIST, Daejeon, South Korea
| | - Sang Wan Lee
- Department of Brain and Cognitive Sciences, KAIST, Daejeon, South Korea
- Kim Jaechul Graduate School of AI, KAIST, Daejeon, South Korea
- KI for Health Science and Technology, KAIST, Daejeon, South Korea
- Center for Neuroscience-inspired AI, KAIST, Daejeon, South Korea
| |
Collapse
|
8
|
Hunt A, Merola GP, Carpenter T, Jaeggi AV. Evolutionary perspectives on substance and behavioural addictions: Distinct and shared pathways to understanding, prediction and prevention. Neurosci Biobehav Rev 2024; 159:105603. [PMID: 38402919 DOI: 10.1016/j.neubiorev.2024.105603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 01/31/2024] [Accepted: 02/21/2024] [Indexed: 02/27/2024]
Abstract
Addiction poses significant social, health, and criminal issues. Its moderate heritability and early-life impact, affecting reproductive success, poses an evolutionary paradox: why are humans predisposed to addictive behaviours? This paper reviews biological and psychological mechanisms of substance and behavioural addictions, exploring evolutionary explanations for the origin and function of relevant systems. Ancestrally, addiction-related systems promoted fitness through reward-seeking, and possibly self-medication. Today, psychoactive substances disrupt these systems, leading individuals to neglect essential life goals for immediate satisfaction. Behavioural addictions (e.g. video games, social media) often emulate ancestrally beneficial behaviours, making them appealing yet often irrelevant to contemporary success. Evolutionary insights have implications for how addiction is criminalised and stigmatised, propose novel avenues for interventions, anticipate new sources of addiction from emerging technologies such as AI. The emerging potential of glucagon-like peptide 1 (GLP-1) agonists targeting obesity suggest the satiation system may be a natural counter to overactivation of the reward system.
Collapse
Affiliation(s)
- Adam Hunt
- Institute of Evolutionary Medicine, University of Zürich, Zürich, Switzerland.
| | | | - Tom Carpenter
- College of Medical, Veterinary & Life Sciences, University of Glasgow, Glasgow, UK
| | - Adrian V Jaeggi
- Institute of Evolutionary Medicine, University of Zürich, Zürich, Switzerland
| |
Collapse
|