1
|
Singer W. The Mind-Matter Dichotomy: A Persistent Challenge for Neuroscientific and Philosophical Theories. Eur J Neurosci 2025; 61:e70143. [PMID: 40384323 PMCID: PMC12086611 DOI: 10.1111/ejn.70143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 04/04/2025] [Accepted: 04/30/2025] [Indexed: 05/20/2025]
Abstract
Several areas of cognitive neuroscience tackle traditional philosophical questions. Among the range of problems, two closely related issues will be addressed in more detail from both neurobiological and philosophical perspectives: the relationship between mind and matter and the nature of perception. Neuropsychological and neurophysiological studies are reviewed that examine the connection between neuronal processes and consciousness. The most prominent theories on the neuronal correlates of consciousness (NCC) are then compared with philosophical attempts to address the epistemic gap between the material processes in the brain and mental phenomena. Before exploring whether neurobiological discoveries can help resolve philosophical problems, the epistemic challenges are discussed, stemming from the fact that perceptions are shaped by the brain's functional architecture. It is suggested that the 'hard problem of consciousness'-the challenge of explaining how the qualia of subjective experience can arise from neuronal processes-can be alleviated if two conditions are met: first, that perception depends on priors and, second, that some of these priors are formed through interactions with the immaterial realities of cultural concepts. Although this approach offers a coherent naturalistic explanation for the emergence of mental phenomena, it does not resolve the cognitive dissonance between our intuitions and scientific evidence regarding the relationship between matter and mind.
Collapse
Affiliation(s)
- Wolf Singer
- Ernst Strüngmann Institute for Neuroscience in Cooperation with Max Planck Society, Max Planck Institute for Brain Research, and Frankfurt Institute for Advanced StudiesFrankfurt am MainGermany
| |
Collapse
|
2
|
Evers K, Farisco M, Chatila R, Earp BD, Freire IT, Hamker F, Nemeth E, Verschure PFMJ, Khamassi M. Preliminaries to artificial consciousness: A multidimensional heuristic approach. Phys Life Rev 2025; 52:180-193. [PMID: 39787683 DOI: 10.1016/j.plrev.2025.01.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2025] [Accepted: 01/03/2025] [Indexed: 01/12/2025]
Abstract
The pursuit of artificial consciousness requires conceptual clarity to navigate its theoretical and empirical challenges. This paper introduces a composite, multilevel, and multidimensional model of consciousness as a heuristic framework to guide research in this field. Consciousness is treated as a complex phenomenon, with distinct constituents and dimensions that can be operationalized for study and for evaluating their replication. We argue that this model provides a balanced approach to artificial consciousness research by avoiding binary thinking (e.g., conscious vs. non-conscious) and offering a structured basis for testable hypotheses. To illustrate its utility, we focus on "awareness" as a case study, demonstrating how specific dimensions of consciousness can be pragmatically analyzed and targeted for potential artificial instantiation. By breaking down the conceptual intricacies of consciousness and aligning them with practical research goals, this paper lays the groundwork for a robust strategy to advance the scientific and technical understanding of artificial consciousness.
Collapse
Affiliation(s)
- K Evers
- Centre for Research Ethics and Bioethics, Uppsala University, Uppsala, Sweden
| | - M Farisco
- Centre for Research Ethics and Bioethics, Uppsala University, Uppsala, Sweden; Biogem Molecular Biology and Genetics Research Institute, Ariano Irpino, AV, Italy.
| | - R Chatila
- Institute of Intelligent Systems and Robotics, CNRS, Sorbonne University, Paris, France
| | - B D Earp
- Uehiro Centre for Practical Ethics, University of Oxford, Oxford, UK; Centre for Biomedical Ethics, National University of Singapore, Singapore
| | - I T Freire
- Institute of Intelligent Systems and Robotics, CNRS, Sorbonne University, Paris, France
| | - F Hamker
- Artificial Intelligence, Computer Science, Chemnitz University of Technology, Germany
| | - E Nemeth
- Institute of Intelligent Systems and Robotics, CNRS, Sorbonne University, Paris, France
| | - P F M J Verschure
- Alicante Institute of Neuroscience & Department of Health Psychology, Universidad Miguel Hernandez, Spain
| | - M Khamassi
- Institute of Intelligent Systems and Robotics, CNRS, Sorbonne University, Paris, France
| |
Collapse
|
3
|
Kataoka M, Niikawa T, Nagaishi N, Lee TL, Erler A, Savulescu J, Sawai T. Beyond consciousness: Ethical, legal, and social issues in human brain organoid research and application. Eur J Cell Biol 2025; 104:151470. [PMID: 39729735 DOI: 10.1016/j.ejcb.2024.151470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Revised: 11/09/2024] [Accepted: 12/15/2024] [Indexed: 12/29/2024] Open
Abstract
This study aims to provide a comprehensive review of the ethical, legal and social issues in human brain organoid research, with a view to different types of research and applications: in vitro research, transplantation into non-human animals, and biocomputing. Despite the academic and societal attention on the possibility that human brain organoids may be conscious, we have identified diverse issues in human brain organoid research and applications. To guide the complex terrain of human brain organoid research and applications, a multidisciplinary approach that integrates ethical, legal, and social perspectives is essential.
Collapse
Affiliation(s)
- Masanori Kataoka
- Uehiro Division for Applied Ethics, Graduate School of Humanities and Social Sciences, Hiroshima University, Hiroshima, Japan
| | - Takuya Niikawa
- Graduate School of Humanities, Kobe University, Hyogo, Japan
| | - Naoya Nagaishi
- Graduate School of Interdisciplinary Information Studies, The University of Tokyo, Tokyo, Japan
| | - Tsung-Ling Lee
- Graduate Institute of Health and Biotechnology Law, Taipei Medical University, Taipei, Taiwan
| | - Alexandre Erler
- Institute of Philosophy of Mind and Cognition, National Yang Ming Chiao Tung University, Taiwan
| | - Julian Savulescu
- Centre for Biomedical Ethics, Yong Loo Lin School of Medicine, National University of Singapore, Singapore; Oxford Uehiro Centre for Practical Ethics, Faculty of Philosophy, University of Oxford, Oxford, UK; Biomedical Ethics Research Group, Murdoch Children's Research Institute, Australia; Melbourne Law School, The University of Melbourne, Australia
| | - Tsutomu Sawai
- Uehiro Division for Applied Ethics, Graduate School of Humanities and Social Sciences, Hiroshima University, Hiroshima, Japan; Centre for Biomedical Ethics, Yong Loo Lin School of Medicine, National University of Singapore, Singapore; Graduate School of Humanities and Social Sciences, Hiroshima University, Hiroshima, Japan; Institute for the Advanced Study of Human Biology (ASHBi), Kyoto University, Kyoto, Japan.
| |
Collapse
|
4
|
Gassab L, Pusuluk O, Cattaneo M, Müstecaplıoğlu ÖE. Quantum Models of Consciousness from a Quantum Information Science Perspective. ENTROPY (BASEL, SWITZERLAND) 2025; 27:243. [PMID: 40149167 PMCID: PMC11941443 DOI: 10.3390/e27030243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2025] [Revised: 02/19/2025] [Accepted: 02/25/2025] [Indexed: 03/29/2025]
Abstract
This perspective explores various quantum models of consciousness from the viewpoint of quantum information science, offering potential ideas and insights. The models under consideration can be categorized into three distinct groups based on the level at which quantum mechanics might operate within the brain: those suggesting that consciousness arises from electron delocalization within microtubules inside neurons, those proposing it emerges from the electromagnetic field surrounding the entire neural network, and those positing it originates from the interactions between individual neurons governed by neurotransmitter molecules. Our focus is particularly on the Posner model of cognition, for which we provide preliminary calculations on the preservation of entanglement of phosphate molecules within the geometric structure of Posner clusters. These findings provide valuable insights into how quantum information theory can enhance our understanding of brain functions.
Collapse
Affiliation(s)
- Lea Gassab
- Department of Physics, Koç University, Istanbul 34450, Turkey;
- Department of Biology, University of Waterloo, Waterloo, ON N2L 3G1, Canada
| | - Onur Pusuluk
- Faculty of Engineering and Natural Sciences, Kadir Has University, Istanbul 34083, Turkey
| | - Marco Cattaneo
- QTF Centre of Excellence, Department of Physics, University of Helsinki, P.O. Box 43, FI-00014 Helsinki, Finland;
| | - Özgür E. Müstecaplıoğlu
- Department of Physics, Koç University, Istanbul 34450, Turkey;
- TÜBİTAK Research Institute for Fundamental Sciences, Gebze 41470, Turkey
- Faculty of Engineering and Natural Sciences, Sabanci University, Istanbul 34956, Turkey
| |
Collapse
|
5
|
Shin DA, Chang MC. Consciousness Research Through Pain. Healthcare (Basel) 2025; 13:332. [PMID: 39942521 PMCID: PMC11816597 DOI: 10.3390/healthcare13030332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2024] [Revised: 01/24/2025] [Accepted: 02/05/2025] [Indexed: 02/16/2025] Open
Abstract
Background/Objectives: Consciousness is a complex and elusive phenomenon encompassing self-awareness, sensory perception, emotions, and cognition. Despite significant advances in neuroscience, understanding the neural mechanisms underlying consciousness remains challenging. Pain, as a subjective and multifaceted experience, offers a unique lens for exploring consciousness by integrating sensory inputs with emotional and cognitive dimensions. This study examines the relationship between consciousness and pain, highlighting the potential of pain as a model for understanding the interplay between subjective experience and neural activity. Methods: Literature review. Results: Key theories of consciousness, such as the Global Workspace Theory and the Integrated Information Theory, provide diverse frameworks for interpreting the emergence of consciousness. Similarly, pain research emphasizes the role of subjective interpretation and emotional context in shaping sensory experiences, reflecting broader challenges in consciousness studies. The limitations of current methodologies, particularly the difficulty of objectively measuring subjective phenomena, like pain and consciousness, are also addressed. This highlights the importance of neural correlates, with a particular focus on brain regions, such as the anterior cingulate cortex and the insula, which bridge sensory and emotional experiences. By analyzing the shared attributes of pain and consciousness, this study underscores the potential for pain to serve as a measurable proxy in consciousness research. Conclusions: Ultimately, it contributes to unraveling the neural and philosophical underpinnings of consciousness, offering implications for mental health treatment and advancements in artificial intelligence. This study fills a critical gap by leveraging pain as a measurable and reproducible model for exploring the neural and subjective mechanisms of consciousness. By combining theoretical frameworks with empirical evidence, it offers novel insights into how consciousness emerges from neural processes.
Collapse
Affiliation(s)
- Dong Ah Shin
- Department of Neurosurgery, Spine and Spinal Cord Institute, Severance Hospital, Yonsei University College of Medicine, 50-1, Yonsei-ro, Seodaemun-gu, Seoul 03722, Republic of Korea;
| | - Min Cheol Chang
- Department of Physical Medicine and Rehabilitation, College of Medicine, Yeungnam University, 170 Hyeonchung-ro, Nam-gu, Daegu 42415, Republic of Korea
| |
Collapse
|
6
|
Frohlich J, Bayne T. Markers of consciousness in infants: Towards a 'cluster-based' approach. Acta Paediatr 2025; 114:285-291. [PMID: 39400909 PMCID: PMC11706756 DOI: 10.1111/apa.17449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Revised: 09/09/2024] [Accepted: 09/25/2024] [Indexed: 10/15/2024]
Abstract
As recently as the 1980s, it was not uncommon for paediatric surgeons to operate on infants without anaesthesia. Today, the same omission would be considered criminal malpractice, and there is an increased concern with the possibility of consciousness in the earliest stage of human infancy. This concern reflects a more general trend that has characterised science since the early 1990s of taking consciousness seriously. While this attitude shift has opened minds towards the possibility that our earliest experiences predate our first memories, convincing demonstrations of infant consciousness remain challenging given that infants cannot report on their experiences. Furthermore, while many behavioural and neural markers of consciousness that do not rely on language have been validated in adults, no one specific marker can be confidently translated to infancy. For this reason, we have proposed the 'cluster-based' approach, in which a consensus of evidence across many markers, all pointing towards the same developmental period, could be used to argue convincingly for the presence of consciousness. CONCLUSION: We review the most promising markers for early consciousness, arguing that consciousness is likely to be in place by 5 months of age if not earlier.
Collapse
Affiliation(s)
- Joel Frohlich
- IDM/fMEG Center of the Helmholtz Center Munich at the University of TübingenUniversity of TübingenTübingenGermany
- Institute for Advanced Consciousness StudiesSanta MonicaCaliforniaUSA
| | - Tim Bayne
- School of Philosophy, History, and Indigenous Studies (SOPHIS)Monash UniversityMelbourneVictoriaAustralia
- Brain, Mind and Consciousness ProgramCanadian Institute for Advanced ResearchTorontoCanada
- Monash Centre for Consciousness and Contemplative Studies (M3CS)Monash UniversityMelbourneAustralia
| |
Collapse
|
7
|
Peters MAK. Introspective psychophysics for the study of subjective experience. Cereb Cortex 2025; 35:49-57. [PMID: 39569467 DOI: 10.1093/cercor/bhae455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 11/01/2024] [Accepted: 11/04/2024] [Indexed: 11/22/2024] Open
Abstract
Studying subjective experience is hard. We believe that pain is not identical to nociception, nor pleasure a computational reward signal, nor fear the activation of "threat circuitry". Unfortunately, introspective self-reports offer our best bet for accessing subjective experience, but many still believe that introspection is "unreliable" and "unverifiable". But which of introspection's faults do we find most damning? Is it that introspection provides imperfect access to brain processes (e.g. perception, memory)? That subjective experience is not objectively verifiable? That it is hard to isolate from non-subjective processing capacity? Here, I argue none of these prevents us from building a meaningful, impactful psychophysical research program that treats subjective experience as a valid empirical target through precisely characterizing relationships among environmental variables, brain processes and behavior, and self-reported phenomenology. Following recent similar calls by Peters (Towards characterizing the canonical computations generating phenomenal experience. 2022. Neurosci Biobehav Rev: 142, 104903), Kammerer and Frankish (What forms could introspective systems take? A research programme. 2023. J Conscious Stud 30:13-48), and Fleming (Metacognitive psychophysics in humans, animals, and AI. 2023. J Conscious Stud 30:113-128), "introspective psychophysics" thus treats introspection's apparent faults as features, not bugs-just as the noise and distortions linking environment to behavior inspired Fechner's psychophysics over 150 years ago. This next generation of psychophysics will establish a powerful tool for building and testing precise explanatory models of phenomenology across many dimensions-urgency, emotion, clarity, vividness, confidence, and more.
Collapse
Affiliation(s)
- Megan A K Peters
- Department of Cognitive Sciences, University of California Irvine, Social & Behavioral Sciences Gateway Building, Irvine, CA 92697, United States
- Department of Logic and Philosophy of Science, University of California Irvine, Social & Behavioral Sciences Gateway Building, Irvine, CA 92697, United States
- Center for Theoretical Behavioral Sciences, University of California Irvine, Social & Behavioral Sciences Gateway Building, Irvine, CA 92697, United States
- Center for the Neurobiology of Learning and Memory, University of California Irvine, Qureshey Research Laboratory, Irvine, CA 92697, United States
- Brain, Mind, and Consciousness Program, Canadian Institute for Advanced Research, MaRS Centre, West Tower661 University Ave., Suite 505, Toronto, Ontario M5G 1M1, Canada
| |
Collapse
|
8
|
Farisco M, Evers K, Changeux JP. Is artificial consciousness achievable? Lessons from the human brain. Neural Netw 2024; 180:106714. [PMID: 39270349 DOI: 10.1016/j.neunet.2024.106714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 07/29/2024] [Accepted: 09/06/2024] [Indexed: 09/15/2024]
Abstract
We here analyse the question of developing artificial consciousness from an evolutionary perspective, taking the evolution of the human brain and its relation with consciousness as a reference model or as a benchmark. This kind of analysis reveals several structural and functional features of the human brain that appear to be key for reaching human-like complex conscious experience and that current research on Artificial Intelligence (AI) should take into account in its attempt to develop systems capable of human-like conscious processing. We argue that, even if AI is limited in its ability to emulate human consciousness for both intrinsic (i.e., structural and architectural) and extrinsic (i.e., related to the current stage of scientific and technological knowledge) reasons, taking inspiration from those characteristics of the brain that make human-like conscious processing possible and/or modulate it, is a potentially promising strategy towards developing conscious AI. Also, it cannot be theoretically excluded that AI research can develop partial or potentially alternative forms of consciousness that are qualitatively different from the human form, and that may be either more or less sophisticated depending on the perspectives. Therefore, we recommend neuroscience-inspired caution in talking about artificial consciousness: since the use of the same word "consciousness" for humans and AI becomes ambiguous and potentially misleading, we propose to clearly specify which level and/or type of consciousness AI research aims to develop, as well as what would be common versus differ in AI conscious processing compared to human conscious experience.
Collapse
Affiliation(s)
- Michele Farisco
- Centre for Research Ethics and Bioethics, Department of Public Health and Caring Sciences, Uppsala University, Uppsala, Sweden; Biogem, Biology and Molecular Genetics Institute, Ariano Irpino (AV), Italy.
| | - Kathinka Evers
- Centre for Research Ethics and Bioethics, Department of Public Health and Caring Sciences, Uppsala University, Uppsala, Sweden
| | | |
Collapse
|
9
|
Irwin LN. Symbolic representation by a two-dimensional matrix for profiling comparative animal behavior. Front Psychol 2024; 15:1450754. [PMID: 39649780 PMCID: PMC11621754 DOI: 10.3389/fpsyg.2024.1450754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Accepted: 11/12/2024] [Indexed: 12/11/2024] Open
Abstract
The growing view that consciousness is widespread, multimodal, and evolutionarily non-linear in complexity across the animal kingdom has given rise recently to a variety of strategies for representing the heterogeneous nature of animal phenomenology. While based on markers clearly associated with consciousness in humans, most of these strategies are theoretical constructs lacking empirical data and are based on metrics appropriate for humans but difficult to measure in most non-human species. I propose a novel symbolic profile based on readily observable behaviors that logically constitute subjective experience across the entire spectrum of animals that possess a centralized nervous system. Three modes (markers) of behavior displayed by all animals - volition, interaction, and self-direction - are quantified according to the frequency, variety, and dynamism of each mode. The resulting matrix of 3 modes x 3 metrics can be expressed as a bi-directional heatmap, allowing for quick and easy inter-species comparisons. The overall effect is to highlight both similarities and differences in the subjective experience of animals ranging from crustaceans to primates.
Collapse
Affiliation(s)
- Louis N Irwin
- Department of Biological Sciences, University of Texas at El Paso, El Paso, TX, United States
| |
Collapse
|
10
|
Gutfreund Y. Neuroscience of animal consciousness: still agnostic after all. Front Psychol 2024; 15:1456403. [PMID: 39444826 PMCID: PMC11496166 DOI: 10.3389/fpsyg.2024.1456403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Accepted: 09/27/2024] [Indexed: 10/25/2024] Open
Affiliation(s)
- Yoram Gutfreund
- Department of Neurobiology, Rappaport Research Institute and Faculty of Medicine, Technion, Haifa, Israel
| |
Collapse
|
11
|
Brown SAB, Paul ES, Birch J. To test the boundaries of consciousness, study animals. Trends Cogn Sci 2024; 28:874-875. [PMID: 39179424 DOI: 10.1016/j.tics.2024.06.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Accepted: 06/13/2024] [Indexed: 08/26/2024]
Affiliation(s)
- Simon A B Brown
- London School of Economics and Political Science, London, UK
| | | | - Jonathan Birch
- London School of Economics and Political Science, London, UK.
| |
Collapse
|
12
|
Bayne T, Seth A, Massimini M, Shepherd J, Cleeremans A, Fleming SM, Malach R, Mattingley JB, Menon DK, Owen AM, Peters MAK, Razi A, Mudrik L. Animals and the iterative natural kind strategy. Trends Cogn Sci 2024; 28:876-877. [PMID: 39179423 DOI: 10.1016/j.tics.2024.07.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Accepted: 07/29/2024] [Indexed: 08/26/2024]
Affiliation(s)
- Tim Bayne
- Department of Philosophy, Monash University, Melbourne, Victoria, Australia; Canadian Institute for Advanced Research, Brain Mind and Consciousness Program, Toronto, Canada.
| | - Anil Seth
- Canadian Institute for Advanced Research, Brain Mind and Consciousness Program, Toronto, Canada; Centre for Consciousness Science and School of Engineering and Informatics, University of Sussex, Sussex, UK
| | - Marcello Massimini
- Canadian Institute for Advanced Research, Brain Mind and Consciousness Program, Toronto, Canada; University of Milan, Milan, Italy
| | - Joshua Shepherd
- Canadian Institute for Advanced Research, Brain Mind and Consciousness Program, Toronto, Canada; ICREA/Universitat Autónoma de Barcelona, Barcelona, Spain
| | - Axel Cleeremans
- Canadian Institute for Advanced Research, Brain Mind and Consciousness Program, Toronto, Canada; Center for Research in Cognition & Neuroscience, ULB Institute of Neuroscience, Université libre de Bruxelles, Brussels, Belgium
| | - Stephen M Fleming
- Canadian Institute for Advanced Research, Brain Mind and Consciousness Program, Toronto, Canada; Department of Experimental Psychology, University College London, London, UK; Wellcome Centre for Human Neuroimaging, University College London, London, UK
| | - Rafael Malach
- Canadian Institute for Advanced Research, Brain Mind and Consciousness Program, Toronto, Canada; The Weizmann Institute, Rehovot, Israel
| | - Jason B Mattingley
- Canadian Institute for Advanced Research, Brain Mind and Consciousness Program, Toronto, Canada; Queensland Brain Institute & School of Psychology, The University of Queensland, St Lucia, Queensland, Australia
| | - David K Menon
- Canadian Institute for Advanced Research, Brain Mind and Consciousness Program, Toronto, Canada; Cambridge University, Cambridge, UK
| | - Adrian M Owen
- Canadian Institute for Advanced Research, Brain Mind and Consciousness Program, Toronto, Canada; University of Western Ontario, Ontario, Canada
| | - Megan A K Peters
- Canadian Institute for Advanced Research, Brain Mind and Consciousness Program, Toronto, Canada; University of California Irvine, Irvine, CA, USA
| | - Adeel Razi
- Canadian Institute for Advanced Research, Brain Mind and Consciousness Program, Toronto, Canada; Wellcome Centre for Human Neuroimaging, University College London, London, UK; Turner Institute for Brain and Mental Health, Monash University, Melbourne, Victoria, Australia
| | - Liad Mudrik
- Canadian Institute for Advanced Research, Brain Mind and Consciousness Program, Toronto, Canada; School of Psychological Sciences and Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
| |
Collapse
|
13
|
Vrettou CS, Kominis IK. Letter to the Editor for: "Covert Consciousness in Acute Brain Injury Revealed by Automated Pupillometry and Cognitive Paradigms". Neurocrit Care 2024; 41:314-315. [PMID: 38862710 DOI: 10.1007/s12028-024-02023-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Accepted: 05/23/2024] [Indexed: 06/13/2024]
Affiliation(s)
- Charikleia S Vrettou
- First Department of Critical Care Medicine, Evangelismos Hospital, Medical School, National & Kapodistrian University of Athens, 10676, Athens, Greece.
| | - Iannis K Kominis
- Department of Physics, University of Crete, 70013, Heraklion, Greece
| |
Collapse
|
14
|
Chis-Ciure R, Melloni L, Northoff G. A measure centrality index for systematic empirical comparison of consciousness theories. Neurosci Biobehav Rev 2024; 161:105670. [PMID: 38615851 DOI: 10.1016/j.neubiorev.2024.105670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2024] [Revised: 03/15/2024] [Accepted: 04/08/2024] [Indexed: 04/16/2024]
Abstract
Consciousness science is marred by disparate constructs and methodologies, making it challenging to systematically compare theories. This foundational crisis casts doubts on the scientific character of the field itself. Addressing it, we propose a framework for systematically comparing consciousness theories by introducing a novel inter-theory classification interface, the Measure Centrality Index (MCI). Recognizing its gradient distribution, the MCI assesses the degree of importance a specific empirical measure has for a given consciousness theory. We apply the MCI to probe how the empirical measures of the Global Neuronal Workspace Theory (GNW), Integrated Information Theory (IIT), and Temporospatial Theory of Consciousness (TTC) would fare within the context of the other two. We demonstrate that direct comparison of IIT, GNW, and TTC is meaningful and valid for some measures like Lempel-Ziv Complexity (LZC), Autocorrelation Window (ACW), and possibly Mutual Information (MI). In contrast, it is problematic for others like the anatomical and physiological neural correlates of consciousness (NCC) due to their MCI-based differential weightings within the structure of the theories. In sum, we introduce and provide proof-of-principle of a novel systematic method for direct inter-theory empirical comparisons, thereby addressing isolated evolution of theories and confirmatory bias issues in the state-of-the-art neuroscience of consciousness.
Collapse
Affiliation(s)
- Robert Chis-Ciure
- New York University (NYU), New York, USA; International Center for Neuroscience and Ethics (CINET), Tatiana Foundation, Madrid, Spain; Wolfram Physics Project, USA.
| | - Lucia Melloni
- Max Planck Institute for Empirical Aesthetics, Frankfurt am Main, Germany
| | - Georg Northoff
- University of Ottawa, Institute of Mental Health Research at the Royal Ottawa Hospital, Ottawa, Canada
| |
Collapse
|
15
|
Mudrik L, Hirschhorn R, Korisky U. Taking consciousness for real: Increasing the ecological validity of the study of conscious vs. unconscious processes. Neuron 2024; 112:1642-1656. [PMID: 38653247 PMCID: PMC11100345 DOI: 10.1016/j.neuron.2024.03.031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 03/23/2024] [Accepted: 03/29/2024] [Indexed: 04/25/2024]
Abstract
The study of consciousness has developed well-controlled, rigorous methods for manipulating and measuring consciousness. Yet, in the process, experimental paradigms grew farther away from everyday conscious and unconscious processes, which raises the concern of ecological validity. In this review, we suggest that the field can benefit from adopting a more ecological approach, akin to other fields of cognitive science. There, this approach challenged some existing hypotheses, yielded stronger effects, and enabled new research questions. We argue that such a move is critical for studying consciousness, where experimental paradigms tend to be artificial and small effect sizes are relatively prevalent. We identify three paths for doing so-changing the stimuli and experimental settings, changing the measures, and changing the research questions themselves-and review works that have already started implementing such approaches. While acknowledging the inherent challenges, we call for increasing ecological validity in consciousness studies.
Collapse
Affiliation(s)
- Liad Mudrik
- School of Psychological Sciences, Tel Aviv University, Tel Aviv, Israel; Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel.
| | - Rony Hirschhorn
- Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
| | - Uri Korisky
- School of Psychological Sciences, Tel Aviv University, Tel Aviv, Israel
| |
Collapse
|
16
|
Kaufmann A. All animals are conscious in their own way: comparing the markers hypothesis with the universal consciousness hypothesis. Front Psychol 2024; 15:1405394. [PMID: 38803831 PMCID: PMC11128545 DOI: 10.3389/fpsyg.2024.1405394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Accepted: 04/19/2024] [Indexed: 05/29/2024] Open
|