1
|
Ng HM, Maggo J, Wall CL, Bayer SB, Mullaney JA, Cabrera D, Fraser K, Cooney JM, Günther CS, McNabb WC, Foster M, Frampton C, Gearry RB, Roy NC. Effects of defatted rice bran-fortified bread on gut microbiome, cardiovascular risk, gut discomfort, wellbeing and gut physiology in healthy adults with low dietary fibre intake. Clin Nutr ESPEN 2025; 67:362-376. [PMID: 40127766 DOI: 10.1016/j.clnesp.2025.03.045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2025] [Accepted: 03/18/2025] [Indexed: 03/26/2025]
Abstract
BACKGROUND & AIMS Inadequate dietary fibre (DF) intake is associated with suboptimal gut function and increased risk of several human diseases. Bread is commonly consumed and is ideal to incorporate cereal bran to increase DF content. No human studies have investigated the effects of defatted rice bran (DRB) in bread, which has triple the DF of white bread, purported hypo-allergenicity and a unique nutrient profile, as a dietary intervention in healthy adults. This study aims to assess the relative abundances of a composite of key faecal microbial genera and species involved in DF fermentation and metabolism following the habitual intake of DRB-fortified bread and its influence on other biological markers of host and microbial interactions, cardiovascular risk profile, patient-reported outcomes, total DF intake, and gut physiology in healthy adults with low baseline DF intake. METHODS Fifty-six healthy adults with low baseline DF intake (<18 g/day (females), <22 g/day (males)) completed a two-arm, placebo-controlled, double-blind, randomised, crossover study. Participants consumed three (females) or four (males) slices of DRB-fortified bread or control bread daily as part of their usual diet for four weeks, with the intervention periods separated by a two-week washout. Outcomes included faecal microbiota composite (primary outcome); relative abundances (taxa and gene); faecal moisture content and bile acid concentrations; plasma and faecal organic acid concentrations; cardiovascular risk profile; gut comfort, psychological wellbeing parameters; total DF intake; whole gut transit time, and were measured at baseline and following each intervention phase. Additionally, in a sub-study, 15 participants ingested gas-sensing capsules to assess whole and regional gut transit times, and total and regional colonic hydrogen and carbon dioxide concentrations at the same timepoints. RESULTS DRB-fortified bread consumption significantly increased total DF intake from 20.7 g/day to 43.4 g/day (p < 0.001). No significant differences were observed in the primary outcome, microbial taxa composite within and between groups (False Discovery Rate (FDR) correction, p > 0.10). As compared to control, the DRB group had increased relative abundances of Faecalibacterium prausnitzii (unadjusted p = 0.04), Bifidobacterium longum (unadjusted p = 0.12), and Bacteroides ovatus (unadjusted p = 0.10); lower relative abundances in Coprococcus genus (unadjusted p = 0.09), Roseburia faecis (unadjusted p = 0.02) and Prevotella copri species (unadjusted p = 0.05). However, no significant differences were observed in the relative abundances of these taxa within and between groups (FDR correction p > 0.10) and for most of the other outcomes between groups (p > 0.05). Only mean serum high-density lipoprotein (HDL) concentrations significantly increased (p = 0.006), and mean total cholesterol (TC) to HDL concentration ratio significantly lowered (p = 0.02) in the DRB group compared to the control group. CONCLUSION This is the first human study to show that a high-DF DRB-fortified bread improved DF intake, HDL cholesterol profiles, and may affect the gut microbiota composition in healthy adults with low DF intake. These findings support the substitution of white bread with DRB-fortified bread as an effective method to improve DF intake, which may have subsequent benefits on gut physiology and metabolic health.
Collapse
Affiliation(s)
- Hwei Min Ng
- Department of Medicine, University of Otago, Christchurch, New Zealand; High-Value Nutrition National Science Challenge, Auckland, New Zealand.
| | - Jasjot Maggo
- Department of Medicine, University of Otago, Christchurch, New Zealand; High-Value Nutrition National Science Challenge, Auckland, New Zealand.
| | - Catherine L Wall
- Department of Medicine, University of Otago, Christchurch, New Zealand; High-Value Nutrition National Science Challenge, Auckland, New Zealand.
| | - Simone B Bayer
- Department of Medicine, University of Otago, Christchurch, New Zealand; High-Value Nutrition National Science Challenge, Auckland, New Zealand.
| | - Jane A Mullaney
- High-Value Nutrition National Science Challenge, Auckland, New Zealand; Riddet Institute, Massey University, Palmerston North, New Zealand; AgResearch Grasslands, Palmerston North, New Zealand.
| | - Diana Cabrera
- High-Value Nutrition National Science Challenge, Auckland, New Zealand; AgResearch Grasslands, Palmerston North, New Zealand; Plant and Food Research, Palmerston North, New Zealand.
| | - Karl Fraser
- High-Value Nutrition National Science Challenge, Auckland, New Zealand; Riddet Institute, Massey University, Palmerston North, New Zealand; AgResearch Grasslands, Palmerston North, New Zealand.
| | - Janine M Cooney
- High-Value Nutrition National Science Challenge, Auckland, New Zealand; Plant and Food Research, Ruakura Research Centre, Hamilton, New Zealand.
| | - Catrin S Günther
- High-Value Nutrition National Science Challenge, Auckland, New Zealand; Plant and Food Research, Ruakura Research Centre, Hamilton, New Zealand.
| | - Warren C McNabb
- High-Value Nutrition National Science Challenge, Auckland, New Zealand; Riddet Institute, Massey University, Palmerston North, New Zealand.
| | - Meika Foster
- High-Value Nutrition National Science Challenge, Auckland, New Zealand; Riddet Institute, Massey University, Palmerston North, New Zealand; Edible Research Limited, Ohoka, New Zealand.
| | - Chris Frampton
- Biostatistics and Computational Biology Unit, University of Otago, Christchurch, New Zealand.
| | - Richard B Gearry
- Department of Medicine, University of Otago, Christchurch, New Zealand; High-Value Nutrition National Science Challenge, Auckland, New Zealand.
| | - Nicole C Roy
- High-Value Nutrition National Science Challenge, Auckland, New Zealand; Riddet Institute, Massey University, Palmerston North, New Zealand; Department of Human Nutrition, University of Otago, Dunedin, New Zealand.
| |
Collapse
|
2
|
Lu Y, Jiang Q, Dong Y, Ji R, Xiao Y, Zhu D, Gao B. Characterization of a GH43 Bifunctional Glycosidase from Endophytic Chaetomium globosum and Its Potential Application in the Biotransformation of Ginsenosides. BIOTECH 2025; 14:18. [PMID: 40227340 PMCID: PMC11940195 DOI: 10.3390/biotech14010018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2025] [Revised: 03/03/2025] [Accepted: 03/07/2025] [Indexed: 04/15/2025] Open
Abstract
The GH43 family of glycosidases represents an important class of industrial enzymes that are widely utilized across the food, pharmaceutical, and various other sectors. In this study, we identified a GH43 family glycoside hydrolytic enzyme, Xyaf313, derived from the plant endophytic fungus Chaetomium globosum DX-THS3, which is capable of transforming several common ginsenosides. The enzyme function analysis reveals that Xyaf313 exhibits dual functionality, displaying both α-L-arabinofuranosidase and β-D-xylosidase activity. When acting as an α-L-arabinofuranosidase, Xyaf313 achieves optimal enzyme activity of 23.96 U/mg at a temperature of 50 °C and a pH of 7. In contrast, its β-D-xylosidase activity results in a slight reduction in enzyme activity to 23.24 U/mg, with similar optimal temperature and pH conditions to those observed for the α-L-arabinofuranosidase activity. Furthermore, Xyaf313 demonstrates considerable resistance to most metal ions and common chemical reagents. Notably, while the maximum enzyme activity of Xyaf313 occurs at 50 °C, it maintains high activity at room temperature (30 °C), with relative enzyme activity exceeding 90%. Measurements of ginsenoside transformation show that Xyaf313 can convert common ginsenosides Rc, Rb1, Rb2, and Rb3 into Rd, underscoring its potential for pharmaceutical applications. Overall, our findings contribute to the identification of a new class of bifunctional GH43 glycoside hydrolases, highlight the significance of plant endophytic fungi as a promising resource for the screening of carbohydrate-decomposing enzymes, and present new candidate enzymes for the biotransformation of ginsenosides.
Collapse
Affiliation(s)
- Yao Lu
- Key Laboratory of Natural Microbial Medicine Research of Jiangxi Province, Jiangxi Science and Technology Normal University, Nanchang 330013, China
| | - Qiang Jiang
- Key Laboratory of Natural Microbial Medicine Research of Jiangxi Province, Jiangxi Science and Technology Normal University, Nanchang 330013, China
| | - Yamin Dong
- Key Laboratory of Natural Microbial Medicine Research of Jiangxi Province, Jiangxi Science and Technology Normal University, Nanchang 330013, China
| | - Runzhen Ji
- Key Laboratory of Natural Microbial Medicine Research of Jiangxi Province, Jiangxi Science and Technology Normal University, Nanchang 330013, China
| | - Yiwen Xiao
- Key Laboratory of Natural Microbial Medicine Research of Jiangxi Province, Jiangxi Science and Technology Normal University, Nanchang 330013, China
- Key Laboratory of Microbial Resources and Metabolism of Nanchang City, Jiangxi Science and Technology Normal University, Nanchang 330013, China
| | - Du Zhu
- Key Laboratory of Natural Microbial Medicine Research of Jiangxi Province, Jiangxi Science and Technology Normal University, Nanchang 330013, China
- Key Laboratory of Microbial Resources and Metabolism of Nanchang City, Jiangxi Science and Technology Normal University, Nanchang 330013, China
- Jiangxi Province Key Laboratory of Biodiversity Conservation and Bioresource Utilization, Nanchang 330022, China
| | - Boliang Gao
- Key Laboratory of Natural Microbial Medicine Research of Jiangxi Province, Jiangxi Science and Technology Normal University, Nanchang 330013, China
- Key Laboratory of Microbial Resources and Metabolism of Nanchang City, Jiangxi Science and Technology Normal University, Nanchang 330013, China
| |
Collapse
|
3
|
Niziołek K, Słota D, Sobczak-Kupiec A. Polysaccharide-Based Composite Systems in Bone Tissue Engineering: A Review. MATERIALS (BASEL, SWITZERLAND) 2024; 17:4220. [PMID: 39274610 PMCID: PMC11396420 DOI: 10.3390/ma17174220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 08/13/2024] [Accepted: 08/18/2024] [Indexed: 09/16/2024]
Abstract
In recent years, a growing demand for biomaterials has been observed, particularly for applications in bone regenerative medicine. Bone tissue engineering (BTE) aims to develop innovative materials and strategies for repairing and regenerating bone defects and injuries. Polysaccharides, due to their biocompatibility, biodegradability as well as bioactivity, have emerged as promising candidates for scaffolds or composite systems in BTE. Polymers combined with bioactive ceramics can support osteointegration. Calcium phosphate (CaP) ceramics can be a broad choice as an inorganic phase that stimulates the formation of new apatite layers. This review provides a comprehensive analysis of composite systems based on selected polysaccharides used in bone tissue engineering, highlighting their synthesis, properties and applications. Moreover, the applicability of the produced biocomposites has been analyzed, as well as new trends in modifying biomaterials and endowing them with new functionalizations. The effects of these composites on the mechanical properties, biocompatibility and osteoconductivity were critically analyzed. This article summarizes the latest manufacturing methods as well as new developments in polysaccharide-based biomaterials for bone and cartilage regeneration applications.
Collapse
Affiliation(s)
- Karina Niziołek
- Cracow University of Technology, CUT Doctoral School, Faculty of Materials Engineering and Physics, Department of Materials Science, 37 Jana Pawła II Av., 31-864 Krakow, Poland
| | - Dagmara Słota
- Cracow University of Technology, CUT Doctoral School, Faculty of Materials Engineering and Physics, Department of Materials Science, 37 Jana Pawła II Av., 31-864 Krakow, Poland
| | - Agnieszka Sobczak-Kupiec
- Cracow University of Technology, Faculty of Materials Engineering and Physics, Department of Materials Science, 37 Jana Pawła II Av., 31-864 Krakow, Poland
| |
Collapse
|
4
|
Odriozola A, González A, Odriozola I, Álvarez-Herms J, Corbi F. Microbiome-based precision nutrition: Prebiotics, probiotics and postbiotics. ADVANCES IN GENETICS 2024; 111:237-310. [PMID: 38908901 DOI: 10.1016/bs.adgen.2024.04.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/24/2024]
Abstract
Microorganisms have been used in nutrition and medicine for thousands of years worldwide, long before humanity knew of their existence. It is now known that the gut microbiota plays a key role in regulating inflammatory, metabolic, immune and neurobiological processes. This text discusses the importance of microbiota-based precision nutrition in gut permeability, as well as the main advances and current limitations of traditional probiotics, new-generation probiotics, psychobiotic probiotics with an effect on emotional health, probiotic foods, prebiotics, and postbiotics such as short-chain fatty acids, neurotransmitters and vitamins. The aim is to provide a theoretical context built on current scientific evidence for the practical application of microbiota-based precision nutrition in specific health fields and in improving health, quality of life and physiological performance.
Collapse
Affiliation(s)
- Adrián Odriozola
- Department of Genetics, Physical Anthropology and Animal Physiology, University of the Basque Country (UPV/EHU), Leioa, Spain.
| | - Adriana González
- Department of Genetics, Physical Anthropology and Animal Physiology, University of the Basque Country (UPV/EHU), Leioa, Spain
| | - Iñaki Odriozola
- Health Department of Basque Government, Donostia-San Sebastián, Spain
| | - Jesús Álvarez-Herms
- Phymo® Lab, Physiology, and Molecular Laboratory, Collado Hermoso, Segovia, Spain
| | - Francesc Corbi
- Institut Nacional d'Educació Física de Catalunya (INEFC), Centre de Lleida, Universitat de Lleida (UdL), Lleida, Spain
| |
Collapse
|
5
|
Javaid T, Bhattarai M, Venkataraghavan A, Held M, Faik A. Specific protein interactions between rice members of the GT43 and GT47 families form various central cores of putative xylan synthase complexes. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024; 118:856-878. [PMID: 38261531 DOI: 10.1111/tpj.16640] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 01/04/2024] [Accepted: 01/08/2024] [Indexed: 01/25/2024]
Abstract
Members of the glycosyltransferase (GT)43 and GT47 families have been associated with heteroxylan synthesis in both dicots and monocots and are thought to assemble into central cores of putative xylan synthase complexes (XSCs). Currently, it is unknown whether protein-protein interactions within these central cores are specific, how many such complexes exist, and whether these complexes are functionally redundant. Here, we used gene association network and co-expression approaches in rice to identify four OsGT43s and four OsGT47s that assemble into different GT43/GT47 complexes. Using two independent methods, we showed that (i) these GTs assemble into at least six unique complexes through specific protein-protein interactions and (ii) the proteins interact directly in vitro. Confocal microscopy showed that, when alone, all OsGT43s were retained in the endoplasmic reticulum (ER), while all OsGT47s were localized in the Golgi. co-expression of OsGT43s and OsGT47s displayed complexes that form in the ER but accumulate in Golgi. ER-to-Golgi trafficking appears to require interactions between OsGT43s and OsGT47s. Comparison of the central cores of the three putative rice OsXSCs to wheat, asparagus, and Arabidopsis XSCs, showed great variation in GT43/GT47 combinations, which makes the identification of orthologous central cores between grasses and dicots challenging. However, the emerging picture is that all central cores from these species seem to have at least one member of the IRX10/IRX10-L clade in the GT47 family in common, suggesting greater functional importance for this family in xylan synthesis. Our findings provide a new framework for future investigation of heteroxylan biosynthesis and function in monocots.
Collapse
Affiliation(s)
- Tasleem Javaid
- Department of Environmental and Plant Biology, Ohio University, Athens, Ohio, 45701, USA
| | - Matrika Bhattarai
- Department of Environmental and Plant Biology, Ohio University, Athens, Ohio, 45701, USA
| | | | - Michael Held
- Department of Chemistry and Biochemistry, Ohio University, Athens, Ohio, 45701, USA
| | - Ahmed Faik
- Department of Environmental and Plant Biology, Ohio University, Athens, Ohio, 45701, USA
| |
Collapse
|
6
|
Paesani C, Lammers TCGL, Sciarini LS, Moiraghi M, Pérez GT, Fabi JP. Effect of chemical, thermal, and enzymatic processing of wheat bran on the solubilization, technological and biological properties of non-starch polysaccharides. Carbohydr Polym 2024; 328:121747. [PMID: 38220355 DOI: 10.1016/j.carbpol.2023.121747] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 12/20/2023] [Accepted: 12/26/2023] [Indexed: 01/16/2024]
Abstract
Wheat bran is a low-cost by-product with significant nutritional value, but it is primarily utilized in animal feed applications. This study sought to investigate chemical methodologies for modifying the wheat bran's structure, enhancing non-starch polysaccharides solubility in water, and assessing alterations in functional and biological attributes. Chemical modifications were conducted under aqueous, alkaline, acid, and oxidizing conditions. Parameters such as yield, monosaccharides, arabinoxylans, β-glucan and phenolic content, molecular weight, functional properties, and prebiotic in vitro capacity were examined. The samples exhibited higher yields than the control, particularly in alkaline and acidic extractions. Notably, all soluble polysaccharide fractions (SPF) displayed a reduced molecular weight (<25KDa). β-glucan contents were raised in alkaline and acid extractions compared to the control, despite only in alkaline extraction were observed increase in arabinoxylans, confirmed by enzymatic-driven linkage analyses. Phenolic compounds and their antioxidant activities were low across all SPF. The samples showed heightened solubility, minimal foaming, and reduced water absorption properties. An alkaline extraction demonstrated a potential high prebiotic effect. Most samples showed positive relative growth and prebiotic activity for Lactobacillus and Bifidobacterium. This study suggests that an alkaline extraction of wheat by-product could enhance its value by increasing β-glucan content, arabinoxylans release, and prebiotic potential.
Collapse
Affiliation(s)
- Candela Paesani
- University of São Paulo, Department of Food and Experimental Nutrition, Faculty of Pharmaceutical Sciences, Av. Prof. Lineu Prestes 580, São Paulo, SP, Brazil; ICYTA (Instituto de Ciencia y Tecnología de los alimentos Córdoba), UNC-CONICET, Av. Filloy s/n, Cuidad Universitaria, Córdoba, Argentina.
| | - Tamy C G L Lammers
- University of São Paulo, Department of Food and Experimental Nutrition, Faculty of Pharmaceutical Sciences, Av. Prof. Lineu Prestes 580, São Paulo, SP, Brazil
| | - Lorena S Sciarini
- ICYTA (Instituto de Ciencia y Tecnología de los alimentos Córdoba), UNC-CONICET, Av. Filloy s/n, Cuidad Universitaria, Córdoba, Argentina.
| | - Malena Moiraghi
- ICYTA (Instituto de Ciencia y Tecnología de los alimentos Córdoba), UNC-CONICET, Av. Filloy s/n, Cuidad Universitaria, Córdoba, Argentina.
| | - Gabriela T Pérez
- ICYTA (Instituto de Ciencia y Tecnología de los alimentos Córdoba), UNC-CONICET, Av. Filloy s/n, Cuidad Universitaria, Córdoba, Argentina.
| | - João Paulo Fabi
- University of São Paulo, Department of Food and Experimental Nutrition, Faculty of Pharmaceutical Sciences, Av. Prof. Lineu Prestes 580, São Paulo, SP, Brazil; Food Research Center (FoRC), CEPID-FAPESP, Research Innovation and Dissemination Centers, São Paulo Research Foundation, Rua do Lago, 250, São Paulo, SP, Brazil; Food and Nutrition Research Center (NAPAN), University of São Paulo, São Paulo, SP, Brazil.
| |
Collapse
|
7
|
Rudjito RC, Matute AC, Jiménez-Quero A, Olsson L, Stringer MA, Krogh KBRM, Eklöf J, Vilaplana F. Integration of subcritical water extraction and treatment with xylanases and feruloyl esterases maximises release of feruloylated arabinoxylans from wheat bran. BIORESOURCE TECHNOLOGY 2024; 395:130387. [PMID: 38295956 DOI: 10.1016/j.biortech.2024.130387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Revised: 01/23/2024] [Accepted: 01/24/2024] [Indexed: 02/05/2024]
Abstract
Wheat bran is an abundant and low valued agricultural feedstock rich in valuable biomolecules as arabinoxylans (AX) and ferulic acid with important functional and biological properties. An integrated bioprocess combining subcritical water extraction (SWE) and enzymatic treatments has been developed for maximised recovery of feruloylated arabinoxylans and oligosaccharides from wheat bran. A minimal enzymatic cocktail was developed combining one xylanase from different glycosyl hydrolase families and a feruloyl esterase. The incorporation of xylanolytic enzymes in the integrated SWE bioprocess increased the AX yields up to 75%, higher than traditional alkaline extraction, and SWE or enzymatic treatment alone. The process isolated AX with tailored molecular structures in terms of substitution, molar mass, and ferulic acid, which can be used for structural biomedical applications, food ingredients and prebiotics. This study demonstrates the use of hydrothermal and enzyme technologies for upcycling agricultural side streams into functional bioproducts, contributing to a circular food system.
Collapse
Affiliation(s)
- Reskandi C Rudjito
- Division of Glycoscience, Department of Chemistry, KTH Royal Institute of Technology, AlbaNova University Centre, SE-106 91 Stockholm, Sweden
| | - Alvaro C Matute
- Division of Glycoscience, Department of Chemistry, KTH Royal Institute of Technology, AlbaNova University Centre, SE-106 91 Stockholm, Sweden
| | - Amparo Jiménez-Quero
- Division of Glycoscience, Department of Chemistry, KTH Royal Institute of Technology, AlbaNova University Centre, SE-106 91 Stockholm, Sweden
| | - Lisbeth Olsson
- Division of Industrial Biotechnology, Department of Biology and Biological Engineering, Chalmers University of Technology, Kemivägen 10, 412 96 Gothenburg, Sweden; Wallenberg Wood Science Center, Chalmers University of Technology, Kemigården 4, 412 96 Gothenburg, Sweden
| | | | | | - Jens Eklöf
- Novozymes A/S, Krogshøjvej 36, 2880 Bagsværd, Denmark
| | - Francisco Vilaplana
- Division of Glycoscience, Department of Chemistry, KTH Royal Institute of Technology, AlbaNova University Centre, SE-106 91 Stockholm, Sweden; Wallenberg Wood Science Centre, KTH Royal Institute of Technology, Teknikringen 56-58, SE-100 44 Stockholm, Sweden.
| |
Collapse
|
8
|
Ma JX, Wang H, Jin C, Ye YF, Tang LX, Si J, Song J. Whole genome sequencing and annotation of Daedaleopsis sinensis, a wood-decaying fungus significantly degrading lignocellulose. Front Bioeng Biotechnol 2024; 11:1325088. [PMID: 38292304 PMCID: PMC10826855 DOI: 10.3389/fbioe.2023.1325088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Accepted: 12/15/2023] [Indexed: 02/01/2024] Open
Abstract
Daedaleopsis sinensis is a fungus that grows on wood and secretes a series of enzymes to degrade cellulose, hemicellulose, and lignin and cause wood rot decay. Wood-decaying fungi have ecological, economic, edible, and medicinal functions. Furthermore, the use of microorganisms to biodegrade lignocellulose has high application value. Genome sequencing has allowed microorganisms to be analyzed from the aspects of genome characteristics, genome function annotation, metabolic pathways, and comparative genomics. Subsequently, the relevant information regarding lignocellulosic degradation has been mined by bioinformatics. Here, we sequenced and analyzed the genome of D. sinensis for the first time. A 51.67-Mb genome sequence was assembled to 24 contigs, which led to the prediction of 12,153 protein-coding genes. Kyoto Encyclopedia of Genes and Genomes database analysis of the D. sinensis data revealed that 3,831 genes are involved in almost 120 metabolic pathways. According to the Carbohydrate-Active Enzyme database, 481 enzymes are found in D. sinensis, of which glycoside hydrolases are the most abundant. The genome sequence of D. sinensis provides insights into its lignocellulosic degradation and subsequent applications.
Collapse
Affiliation(s)
- Jin-Xin Ma
- Institute of Microbiology, School of Ecology and Nature Conservation, Beijing Forestry University, Beijing, China
| | - Hao Wang
- Institute of Microbiology, School of Ecology and Nature Conservation, Beijing Forestry University, Beijing, China
| | - Can Jin
- Institute of Microbiology, School of Ecology and Nature Conservation, Beijing Forestry University, Beijing, China
| | - Yi-Fan Ye
- Institute of Microbiology, School of Ecology and Nature Conservation, Beijing Forestry University, Beijing, China
| | - Lu-Xin Tang
- Institute of Microbiology, School of Ecology and Nature Conservation, Beijing Forestry University, Beijing, China
| | - Jing Si
- Institute of Microbiology, School of Ecology and Nature Conservation, Beijing Forestry University, Beijing, China
| | - Jie Song
- Department of Horticulture and Food, Guangdong Eco-Engineering Polytechnic, Guangzhou, China
| |
Collapse
|
9
|
Friess L, Bottacini F, McAuliffe FM, O’Neill IJ, Cotter PD, Lee C, Munoz-Munoz J, van Sinderen D. Two extracellular α-arabinofuranosidases are required for cereal-derived arabinoxylan metabolism by Bifidobacterium longum subsp. longum. Gut Microbes 2024; 16:2353229. [PMID: 38752423 PMCID: PMC11318964 DOI: 10.1080/19490976.2024.2353229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Accepted: 05/03/2024] [Indexed: 08/11/2024] Open
Abstract
Members of the genus Bifidobacterium are commonly found in the human gut and are known to utilize complex carbohydrates that are indigestible by the human host. Members of the Bifidobacterium longum subsp. longum taxon can metabolize various plant-derived carbohydrates common to the human diet. To metabolize such polysaccharides, which include arabinoxylan, bifidobacteria need to encode appropriate carbohydrate-active enzymes in their genome. In the current study, we describe two GH43 family enzymes, denoted here as AxuA and AxuB, which are encoded by B. longum subsp. longum NCIMB 8809 and are shown to be required for cereal-derived arabinoxylan metabolism by this strain. Based on the observed hydrolytic activity of AxuA and AxuB, assessed by employing various synthetic and natural substrates, and based on in silico analyses, it is proposed that both AxuA and AxuB represent extracellular α-L-arabinofuranosidases with distinct substrate preferences. The variable presence of the axuA and axuB genes and other genes previously described to be involved in the metabolism of arabinose-containing glycans can in the majority cases explain the (in)ability of individual B. longum subsp. longum strains to grow on cereal-derived arabinoxylans and arabinan.
Collapse
Affiliation(s)
- Lisa Friess
- APC Microbiome Ireland, University College Cork, Cork, Ireland
- School of Microbiology, University College Cork, Cork, Ireland
| | - Francesca Bottacini
- APC Microbiome Ireland, University College Cork, Cork, Ireland
- Biological Sciences, Munster Technological University, Cork, Ireland
| | - Fionnuala M. McAuliffe
- UCD Perinatal Research Centre, School of Medicine, University College Dublin, Dublin, Ireland
| | - Ian J. O’Neill
- APC Microbiome Ireland, University College Cork, Cork, Ireland
- School of Microbiology, University College Cork, Cork, Ireland
| | - Paul D. Cotter
- APC Microbiome Ireland, University College Cork, Cork, Ireland
- APC Microbiome Ireland, Teagasc Food Research Centre, Cork, Ireland
| | - Ciaran Lee
- APC Microbiome Ireland, University College Cork, Cork, Ireland
- School of Biochemistry and Cell Biology, University College Cork, Cork, Ireland
| | - Jose Munoz-Munoz
- Department of Applied Sciences, Northumbria University, Newcastle Upon Tyne, UK
| | - Douwe van Sinderen
- APC Microbiome Ireland, University College Cork, Cork, Ireland
- School of Microbiology, University College Cork, Cork, Ireland
| |
Collapse
|
10
|
Steiner J, Kupetz M, Becker T. Influence of Hydrothermal Treatment of Brewer's Spent Grain on the Concentration and Molecular Weight Distribution of 1,3-1,4-β-D-Glucan and Arabinoxylan. Foods 2023; 12:3778. [PMID: 37893671 PMCID: PMC10606534 DOI: 10.3390/foods12203778] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 10/03/2023] [Accepted: 10/10/2023] [Indexed: 10/29/2023] Open
Abstract
Brewer's spent grain (BSG) is the most abundant residual in the brewing process. Non-starch polysaccharides such as 1,3-1,4-β-D-glucan (β-glucan) and arabinoxylan (AX) with proven beneficial effects on human health remain in this by-product in high amounts. Incorporating the valuable dietary fiber into the food industry could contribute to a healthy diet. However, a major challenge is extracting these dietary fibers (i.e., β-glucan and AX) from the solid residue. In this study, hydrothermal treatment (HT) was applied to dissolve the remaining water-insoluble carbohydrates from BSG with the aim to extract high amounts of β-glucan and AX. Particular focus was placed on the molecular weight (MW) range above 50 kDa and 20 kDa, respectively, as these are considered to have health-promoting effects. Different treatment temperatures, reaction times, and internal reactor pressures were tested to determine the best process settings to achieve high yields of β-glucan and AX and to examine the influence on their molecular weight distribution (MWD). Overall, 85.1% β-glucan and 77.3% AX were extracted corresponding to 6.3 g per kg BSG at 160 °C and 178.3 g kg-1 at 170 °C, respectively. However, less than 20% of both fiber substances were in the desirable MW range above 50 kDa and 20 kDa, respectively. When lower temperatures of 140 and 150 °C were applied, yields of only 3.0 g kg-1 β-glucan and 128.8 g kg-1 AX were obtained, whereby the proportion of desirable fiber fractions increased up to 45%. Further investigations focused on the heat-induced degradation of monosaccharides and the formation of undesirable by-products (i.e., HMF and furfural) that might pose a health risk.
Collapse
Affiliation(s)
- Julia Steiner
- Research Group Beverage and Cereal Biotechnology, Institute of Brewing and Beverage Technology, Technical University of Munich, 85354 Freising, Germany
| | | | | |
Collapse
|
11
|
Weng V, Cardeira M, Bento-Silva A, Serra AT, Brazinha C, Bronze MR. Arabinoxylan from Corn Fiber Obtained through Alkaline Extraction and Membrane Purification: Relating Bioactivities with the Phenolic Compounds. Molecules 2023; 28:5621. [PMID: 37570593 PMCID: PMC10420191 DOI: 10.3390/molecules28155621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 07/18/2023] [Accepted: 07/20/2023] [Indexed: 08/13/2023] Open
Abstract
Arabinoxylan has prebiotic properties, as it is able to resist digestion in the small intestine and undergoes fermentation in the large intestine. In this work, arabinoxylan was extracted from corn fiber using an alkaline solution and further purified with membrane processing. It was found that the extracts were mainly composed of xylose (50-52%), arabinose (37-39%), galactose (9%) and glucose (1-4%), with an A/X ratio of 0.72-0.77. All the extracts were composed of phenolic compounds, including ferulic acid derivatives such as dimers, trimers and tetramers. The purified extract had a lower concentration of ferulic and p-coumaric acid (0.004 and 0.02 mg/mgdry_weight, respectively) when compared to raw extract (19.30 and 2.74 mg/mgdry_weight, respectively). The same effect was observed for the antioxidant activity, with purified extracts having a lower value (0.17 ± 0.02 µmol TEAC/mg) when compared to the raw extract (2.20 ± 0.35 µmol TEAC/mg). The purified extract showed a greater antiproliferative effect against the HT29 cell line with EC50 = 0.12 ± 0.02 mg/mL when compared to the raw extract (EC50 = 5.60 ± 1.6 mg/mL). Both raw and purified extracts did not show any cytotoxicity to the Caco-2 cell line in the maximum concentration tested (10 mg/mL).
Collapse
Affiliation(s)
- Verónica Weng
- LAQV-Requimte, Department of Chemistry, NOVA School of Science and Technology, NOVA University of Lisbon, 2829-516 Caparica, Portugal;
| | - Martim Cardeira
- ITQB NOVA, Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Avenida da República, 2780-157 Oeiras, Portugal; (M.C.); (M.R.B.)
- iBET, Instituto de Biologia Experimental e Tecnológica, Avenida da República, Quinta-do-Marquês, Estação Agronómica Nacional, Apartado 12, 2780-157 Oeiras, Portugal
| | - Andreia Bento-Silva
- FFULisboa, Faculdade de Farmácia, Universidade de Lisboa, Avenida das Forças Armadas, 1649-019 Lisboa, Portugal;
| | - Ana Teresa Serra
- ITQB NOVA, Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Avenida da República, 2780-157 Oeiras, Portugal; (M.C.); (M.R.B.)
- iBET, Instituto de Biologia Experimental e Tecnológica, Avenida da República, Quinta-do-Marquês, Estação Agronómica Nacional, Apartado 12, 2780-157 Oeiras, Portugal
| | - Carla Brazinha
- LAQV-Requimte, Department of Chemistry, NOVA School of Science and Technology, NOVA University of Lisbon, 2829-516 Caparica, Portugal;
| | - Maria Rosário Bronze
- ITQB NOVA, Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Avenida da República, 2780-157 Oeiras, Portugal; (M.C.); (M.R.B.)
- iBET, Instituto de Biologia Experimental e Tecnológica, Avenida da República, Quinta-do-Marquês, Estação Agronómica Nacional, Apartado 12, 2780-157 Oeiras, Portugal
- iMed.ULisboa, Instituto de Investigação do Medicamento, Faculdade de Farmácia, Universidade de Lisboa, Avenida Professor Gama Pinto, 1649-003 Lisboa, Portugal
| |
Collapse
|
12
|
Schupfer E, Ooi SL, Jeffries TC, Wang S, Micalos PS, Pak SC. Changes in the Human Gut Microbiome during Dietary Supplementation with Modified Rice Bran Arabinoxylan Compound. Molecules 2023; 28:5400. [PMID: 37513272 PMCID: PMC10385627 DOI: 10.3390/molecules28145400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 06/29/2023] [Accepted: 07/11/2023] [Indexed: 07/30/2023] Open
Abstract
This study investigated the effects of a modified rice bran arabinoxylan compound (RBAC) as a dietary supplement on the gut microbiota of healthy adults. Ten volunteers supplemented their diet with 1 g of RBAC for six weeks and 3 g of RBAC for another six weeks, with a three-week washout period. Faecal samples were collected every 3 weeks over 21 weeks. Microbiota from faecal samples were profiled using 16S rRNA sequencing. Assessment of alpha and beta microbiota diversity was performed using the QIIME2 platform. The results revealed that alpha and beta diversity were not associated with the experimental phase, interventional period, RBAC dosage, or time. However, the statistical significance of the participant was detected in alpha (p < 0.002) and beta (weighted unifrac, p = 0.001) diversity. Explanatory factors, including diet and lifestyle, were significantly associated with alpha (p < 0.05) and beta (p < 0.01) diversity. The individual beta diversity of six participants significantly changed (p < 0.05) during the interventional period. Seven participants showed statistically significant taxonomic changes (ANCOM W ≥ 5). These results classified four participants as responders to RBAC supplementation, with a further two participants as likely responders. In conclusion, the gut microbiome is highly individualised and modulated by RBAC as a dietary supplement, dependent on lifestyle and dietary intake.
Collapse
Affiliation(s)
- Emily Schupfer
- School of Dentistry and Medical Sciences, Charles Sturt University, Bathurst, NSW 2795, Australia
| | - Soo Liang Ooi
- School of Dentistry and Medical Sciences, Charles Sturt University, Bathurst, NSW 2795, Australia
| | - Thomas C Jeffries
- School of Science, Western Sydney University, Penrith, NSW 2751, Australia
| | - Shaoyu Wang
- School of Dentistry and Medical Sciences, Charles Sturt University, Orange, NSW 2800, Australia
- Ageing Well Research Group, Charles Sturt University, Orange, NSW 2800, Australia
| | - Peter S Micalos
- School of Dentistry and Medical Sciences, Charles Sturt University, Port Macquarie, NSW 2444, Australia
| | - Sok Cheon Pak
- School of Dentistry and Medical Sciences, Charles Sturt University, Bathurst, NSW 2795, Australia
| |
Collapse
|
13
|
Recent Developments in Molecular Characterization, Bioactivity, and Application of Arabinoxylans from Different Sources. Polymers (Basel) 2023; 15:polym15010225. [PMID: 36616574 PMCID: PMC9824288 DOI: 10.3390/polym15010225] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 12/26/2022] [Accepted: 12/27/2022] [Indexed: 01/04/2023] Open
Abstract
Arabinoxylan (AX) is a polysaccharide composed of arabinose, xylose, and a small number of other carbohydrates. AX comes from a wide range of sources, and its physicochemical properties and physiological functions are closely related to its molecular characterization, such as branched chains, relative molecular masses, and substituents. In addition, AX also has antioxidant, hypoglycemic, antitumor, and proliferative abilities for intestinal probiotic flora, among other biological activities. AXs of various origins have different molecular characterizations in terms of molecular weight, degree of branching, and structure, with varying structures leading to diverse effects of the biological activity of AX. Therefore, this report describes the physical properties, biological activities, and applications of AX in diverse plants, aiming to provide a theoretical basis for future research on AX as well as provide more options for crop breeding.
Collapse
|
14
|
Recent advances in xylo-oligosaccharides production and applications: A comprehensive review and bibliometric analysis. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2023. [DOI: 10.1016/j.bcab.2023.102608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
15
|
Corn arabinoxylan has a repeating structure of subunits of high branch complexity with slow gut microbiota fermentation. Carbohydr Polym 2022; 289:119435. [DOI: 10.1016/j.carbpol.2022.119435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2021] [Revised: 03/25/2022] [Accepted: 03/29/2022] [Indexed: 11/17/2022]
|
16
|
Jiang K, Fu X, Huang R, Fan X, Ji L, Cai D, Liu X, Fu Y, Sun A, Feng C. Production of Prebiotic Xylooligosaccharides via Dilute Maleic Acid-Mediated Xylan Hydrolysis Using an RSM-Model-Based Optimization Strategy. Front Nutr 2022; 9:909283. [PMID: 35619949 PMCID: PMC9127663 DOI: 10.3389/fnut.2022.909283] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Accepted: 04/19/2022] [Indexed: 11/13/2022] Open
Abstract
Xylooligosaccharides (XOS) are functional feed additives that are attracting growing commercial interest owing to their excellent ability to modulate the composition of the gut microbiota. The acid hydrolysis-based processing of xylan-containing materials has been proposed to represent a cost-effective approach to XOS preparation, with organic acids being preferable in this context. As such, in the present study, maleic acid was selected as a mild, edible organic acid for use in the hydrolysis of xylan to produce XOS. A response surface methodology (RSM) approach with a central composite design was employed to optimize maleic acid-mediated XOS production, resulting in a yield of 50.3% following a 15 min treatment with 0.08% maleic acid at 168°C. Under these conditions, the desired XOS degree of polymerization (2-3) was successfully achieved, demonstrating the viability of this using a low acid dose and a high reaction temperature to expedite the production of desired functional products. Moreover, as maleic acid is a relatively stable carboxylic acid, it has the potential to be recycled. These results suggest that dilute maleic acid-based thermal treatment of corncob-derived xylan can achieve satisfactory XOS yields, highlighting a promising and cost-effective approach to XOS production.
Collapse
Affiliation(s)
- Kankan Jiang
- School of Basic Medical Sciences and Forensic Medicine, Hangzhou Medical College, Hangzhou, China
| | - Xiaoliang Fu
- School of Basic Medical Sciences and Forensic Medicine, Hangzhou Medical College, Hangzhou, China
| | - Rong Huang
- School of Basic Medical Sciences and Forensic Medicine, Hangzhou Medical College, Hangzhou, China
| | - Xingli Fan
- School of Basic Medical Sciences and Forensic Medicine, Hangzhou Medical College, Hangzhou, China
| | - Lei Ji
- School of Basic Medical Sciences and Forensic Medicine, Hangzhou Medical College, Hangzhou, China
| | - Damin Cai
- School of Basic Medical Sciences and Forensic Medicine, Hangzhou Medical College, Hangzhou, China
| | - Xiaoxiang Liu
- School of Basic Medical Sciences and Forensic Medicine, Hangzhou Medical College, Hangzhou, China
| | - Yixiu Fu
- School of Basic Medical Sciences and Forensic Medicine, Hangzhou Medical College, Hangzhou, China
| | - Aihua Sun
- School of Basic Medical Sciences and Forensic Medicine, Hangzhou Medical College, Hangzhou, China
| | - Chenzhuo Feng
- School of Basic Medical Sciences and Forensic Medicine, Hangzhou Medical College, Hangzhou, China
| |
Collapse
|
17
|
TIAN B, CHEN J, XU F. Effect of arabinoxylan addition in Chinese steamed bread. FOOD SCIENCE AND TECHNOLOGY 2022. [DOI: 10.1590/fst.77022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Affiliation(s)
| | - Jie CHEN
- Henan University of Technology, China
| | - Fei XU
- Henan University of Technology, China
| |
Collapse
|
18
|
He HJ, Qiao J, Liu Y, Guo Q, Ou X, Wang X. Isolation, Structural, Functional, and Bioactive Properties of Cereal Arabinoxylan─A Critical Review. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:15437-15457. [PMID: 34842436 DOI: 10.1021/acs.jafc.1c04506] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
Arabinoxylans (AXs) are widely distributed in various cereal grains, such as wheat, corn, rye, barley, rice, and oat. The AX molecule contains a linear (1,4)-β-D-xylp backbone substituted by α-L-araf units and occasionally t-xylp and t-glcpA through α-(1,2) and/or α-(1,3) glycosidic linkages. Arabinoxylan shows diversified functional and bioactive properties, influenced by their molecular mass, branching degree, ferulic acid (FA) content, and the substitution position and chain length of the side chains. This Review summarizes the extraction methods for various cereal sources, compares their structural features and functional/bioactive properties, and highlights the established structure-function/bioactivity relationships, intending to explore the potential functions of AXs and their industrial applications.
Collapse
Affiliation(s)
- Hong-Ju He
- School of Food Science, Henan Institute of Science and Technology, Xinxiang 453003, China
| | - Jinli Qiao
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Technology, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Yan Liu
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Technology, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Qingbin Guo
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Technology, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Xingqi Ou
- School of Life Science and Technology, Henan Institute of Science and Technology, Xinxiang 453003, China
| | - Xiaochan Wang
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Technology, Tianjin University of Science and Technology, Tianjin 300457, China
| |
Collapse
|
19
|
Schupfer E, Pak SC, Wang S, Micalos PS, Jeffries T, Ooi SL, Golombick T, Harris G, El-Omar E. The effects and benefits of arabinoxylans on human gut microbiota – A narrative review. FOOD BIOSCI 2021. [DOI: 10.1016/j.fbio.2021.101267] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
20
|
Recent advances in the enzymatic production and applications of xylooligosaccharides. World J Microbiol Biotechnol 2021; 37:169. [PMID: 34487266 DOI: 10.1007/s11274-021-03139-7] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Accepted: 08/30/2021] [Indexed: 12/20/2022]
Abstract
The majority of lignocellulosic biomass on the planet originates from plant cell walls, which are complex structures build up mainly by cellulose, hemicellulose and lignin. The largest part of hemicellulose, xylan, is a polymer with a β-(1→4)-linked xylose residues backbone decorated with α-D-glucopyranosyl uronic acids and/or L-arabinofuranose residues. Xylan is the second most abundant biopolymer in nature, which can be sustainably and efficiently degraded into decorated and undecorated xylooligosaccharides (XOS) using combinations of thermochemical pretreatments and enzymatic hydrolyses, that have broad applications in the food, feed, pharmaceutical and cosmetic industries. Endo-xylanases from different complex carbohydrate-active enzyme (CAZyme) families can be used to cleave the backbone of arabino(glucurono)xylans and xylooligosaccharides and degrade them into short XOS. It has been shown that XOS with a low degree of polymerization have enhanced prebiotic effects conferring health benefits to humans and animals. In this review we describe recent advances in the enzymatic production of XOS from lignocellulosic biomass arabino- and glucuronoxylans and their applications as food and feed additives and health-promoting ingredients. Comparative advantages of xylanases from different CAZy families in XOS production are discussed and potential health benefits of different XOS are presented.
Collapse
|
21
|
Bautil A, Buyse J, Goos P, Bedford MR, Courtin CM. Feed endoxylanase type and dose affect arabinoxylan hydrolysis and fermentation in ageing broilers. ANIMAL NUTRITION (ZHONGGUO XU MU SHOU YI XUE HUI) 2021; 7:787-800. [PMID: 34466683 PMCID: PMC8384776 DOI: 10.1016/j.aninu.2020.11.015] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Revised: 10/02/2020] [Accepted: 11/15/2020] [Indexed: 11/16/2022]
Abstract
Despite the general use of endoxylanases in poultry feed to improve broiler performance, the abundance of different endoxylanase products and the variable response to their application in the field prevent a clear understanding of endoxylanase functionality in vivo. To gain insight into this functionality, we investigated the impact of endoxylanase type (Belfeed from Bacillus subtilis versus Econase XT from Nonomuraea flexuosa) and dose (10, 100, 1,000 mg/kg) in combination with broiler age on arabinoxylan (AX) hydrolysis and fermentation in broilers (Ross 308) fed a wheat-soy based diet. In a digestibility trial and a performance trial, a total of 1,057 one-day-old chicks received the control diet or 1 of the 6 endoxylanase supplemented wheat-soy based diets with, respectively, 5 replicate cages and 8 replicate pens per dietary treatment per trial. The AX content and structure, the AX digestibility values and the short-chain fatty acids produced were analysed at the level of the ileum, caeca and excreta at d 11 and 36. Endoxylanase supplementation resulted in a more extensive solubilisation of wheat AX and a reduction in the intestinal viscosity compared to the control (P < 0.05). A high endoxylanase dose was, however, required to obtain increased hydrolysis of the dietary AX along the gastrointestinal tract against the control (P < 0.001). Depending on the type of endoxylanase, a pool of AX with distinct physicochemical properties was created. The B. subtilis endoxylanase created a large pool of soluble AX in the ileum, thereby increasing ileal viscosity compared to broilers fed an endoxylanase from N. flexuosa (P < 0.001). The N. flexuosa endoxylanase mainly triggered caecal AX fermentation in young broilers, by delivering easily fermentable AX substrates with a low degree of polymerisation (P = 0.03). The effects were particularly present in young broilers (d 11). From this study, it is clear that the type and dose of endoxylanase added to wheat-soy based diets determine the nature of AX substrates formed. These, in turn, affect the intestinal viscosity and the interplay between the dietary AX compounds and microbiota, hence dictating AX digestion at young broiler ages and performance outcomes towards slaughter age.
Collapse
Affiliation(s)
- An Bautil
- Laboratory of Food Chemistry and Biochemistry, Department of Microbial and Molecular Systems (MS), KU Leuven, 3001, Leuven, Belgium
| | - Johan Buyse
- Laboratory of Livestock Physiology, Department of Biosystems, KU Leuven, 3001, Leuven, Belgium
| | - Peter Goos
- MeBioS Division, Department of Biosystems, KU Leuven, 3001, Leuven, Belgium
| | | | - Christophe M. Courtin
- Laboratory of Food Chemistry and Biochemistry, Department of Microbial and Molecular Systems (MS), KU Leuven, 3001, Leuven, Belgium
| |
Collapse
|
22
|
Cellulases, Hemicellulases, and Pectinases: Applications in the Food and Beverage Industry. FOOD BIOPROCESS TECH 2021. [DOI: 10.1007/s11947-021-02678-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
23
|
In Vitro Fecal Fermentation Patterns of Arabinoxylan from Rice Bran on Fecal Microbiota from Normal-Weight and Overweight/Obese Subjects. Nutrients 2021; 13:nu13062052. [PMID: 34203983 PMCID: PMC8232586 DOI: 10.3390/nu13062052] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Revised: 06/01/2021] [Accepted: 06/10/2021] [Indexed: 01/01/2023] Open
Abstract
Arabinoxylan (AX) is a structural polysaccharide found in wheat, rice and other cereal grains. Diets high in AX-containing fiber may promote gut health in obesity through prebiotic function. Thus, the impact of soluble AX isolated from rice bran fiber on human gut microbiota phylogenetic composition and short-chain fatty acid (SCFA) production patterns from normal-weight and overweight/obese subjects was investigated through in vitro fecal fermentation. Results showed that rice bran arabinoxylan modified the microbiota in fecal samples from both weight classes compared to control, significantly increasing Collinsella, Blautia and Bifidobacterium, and decreasing Sutterella, Bilophila and Parabacteroides. Rice bran AX also significantly increased total and individual SCFA contents (p < 0.05). This study suggests that rice bran AX may beneficially impact gut health in obesity through prebiotic activities.
Collapse
|
24
|
Petry AL, Patience JF, Huntley NF, Koester LR, Bedford MR, Schmitz-Esser S. Xylanase Supplementation Modulates the Microbiota of the Large Intestine of Pigs Fed Corn-Based Fiber by Means of a Stimbiotic Mechanism of Action. Front Microbiol 2021; 12:619970. [PMID: 33841350 PMCID: PMC8024495 DOI: 10.3389/fmicb.2021.619970] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Accepted: 03/04/2021] [Indexed: 01/22/2023] Open
Abstract
This research tested the hypothesis that xylanase modulates microbial communities within the large intestine of growing pigs fed corn-based fiber through a stimbiotic mechanism(s) of action (MOA). Sixty gilts were blocked by initial body weight, individually housed, and randomly assigned to one of four dietary treatments (n = 15): a low-fiber (LF) control, a high-fiber (HF) control containing 30% corn bran, HF+100 mg/kg xylanase (HF+XY), and HF+50 mg/kg arabinoxylan-oligosaccharide (HF+AX). Pigs were fed dietary treatments for 46 days. On day 46, pigs were euthanized, and mucosa and lumen contents were collected from the cecum and the colon. The V4 region of 16S rRNA genes was sequenced and clustered into 5,889, 4,657, 2,822, and 4,516 operational taxonomic units (OTUs), in the cecal contents and mucosa and colonic contents and mucosa, respectively. In cecal contents, HF+XY increased measures of α-diversity compared to LF (p < 0.001). Relative to LF, HF increased the prevalence of 44, 36, 26, and 8, and decreased 19, 9, 21, and 10, of the 200 most abundant OTUs from the cecal contents and mucosa and colonic contents and mucosa, respectively (Q < 0.05). Compared to LF, HF increased the abundance of OTUs from the Treponema_2, Ruminococcus_1 genera, from the Lachnospiraceae, Ruminococcaceae, and Prevotellaceae families. In contrast, relative to LF, HF decreased Turicibacter and Lactobacillus in the cecal contents, and Megasphaera and Streptococcus in the mucosa. Relative to HF, HF+XY increased 32, 16, 29, and 19 and decreased 27, 11, 15, and 10 of the 200 most abundant OTUs from the cecal contents and mucosa and colonic contents and mucosa, respectively (Q < 0.05). The addition of xylanase to HF further increased the abundance of OTUs from the Lachnospiraceae and Ruminococcaceae families across the large intestine. Compared to HF, HF+XY increased the abundance of Lactobacillus, Bifidobacterium, and Faecalibacterium among all locations (Q < 0.05). However, HF+AX did not increase the prevalence of these genera in the large intestine. Supplementing xylanase to HF increased hidden-state predictions of microbial enzymes associated with arabinoxylan degradation, xylose metabolism, and short-chain fatty acid production. These data suggest xylanase elicits a stimbiotic MOA in the large intestine of pigs fed corn-based fiber.
Collapse
Affiliation(s)
- Amy L Petry
- Department of Animal Science, Iowa State University, Ames, IA, United States
| | - John F Patience
- Department of Animal Science, Iowa State University, Ames, IA, United States.,Iowa Pork Industry Center, Iowa State University, Ames, IA, United States
| | - Nichole F Huntley
- Department of Animal Science, Iowa State University, Ames, IA, United States
| | - Lucas R Koester
- Department of Veterinary Microbiology and Preventive Medicine, Iowa State University, Ames, IA, United States
| | | | | |
Collapse
|
25
|
Rational protein engineering of α-L-arabinofuranosidase from Aspergillus niger for improved catalytic hydrolysis efficiency on kenaf hemicellulose. Process Biochem 2021. [DOI: 10.1016/j.procbio.2020.12.012] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
26
|
Evaluation of Xylooligosaccharides Production for a Specific Degree of Polymerization by Liquid Hot Water Treatment of Tropical Hardwood. Foods 2021; 10:foods10020463. [PMID: 33672511 PMCID: PMC7923788 DOI: 10.3390/foods10020463] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 02/12/2021] [Accepted: 02/13/2021] [Indexed: 11/25/2022] Open
Abstract
Eucalyptus pellita is known as attractive biomass, and it has been utilized for eucalyptus oil, furniture, and pulp and paper production that causes a significant amount of byproducts. Liquid hot water treatment depending on combined severity factor (CSF) was subjected to isolate hemicellulose fraction from E. pellita and to produce xylooligosaccharides (XOS). The xylan extraction ratio based on the initial xylan content of the feedstock was maximized up to 77.6% at 170 °C for 50 min condition (CSF: 1.0), which had accounted for XOS purity of 76.5% based on the total sugar content of the liquid hydrolysate. In this condition, the sum of xylobiose, xylotriose, and xylotetraose which has a low degree of polymerization (DP) of 2 to 4 was determined as 80.6% of the total XOS. The highest XOS production score established using parameters including the xylan extraction ratio, XOS purity, and low DP XOS ratio was 5.7 at CSF 1.0 condition. XOS production score evaluated using the CSF is expected to be used as a productivity indicator of XOS in the industry (R-squared value: 0.92).
Collapse
|
27
|
Petry AL, Patience JF, Koester LR, Huntley NF, Bedford MR, Schmitz-Esser S. Xylanase modulates the microbiota of ileal mucosa and digesta of pigs fed corn-based arabinoxylans likely through both a stimbiotic and prebiotic mechanism. PLoS One 2021; 16:e0246144. [PMID: 33503052 PMCID: PMC7840016 DOI: 10.1371/journal.pone.0246144] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Accepted: 01/14/2021] [Indexed: 01/03/2023] Open
Abstract
The experimental objective was to characterize the impact of insoluble corn-based fiber, xylanase, and an arabinoxylan-oligosaccharide on ileal digesta and mucosa microbiome of pigs. Three replicates of 20 gilts were blocked by initial body weight, individually-housed, and assigned to 1 of 4 dietary treatments: a low-fiber control (LF), a 30% corn bran high-fiber control (HF), HF+100 mg/kg xylanase (HF+XY), and HF+50 mg/kg arabinoxylan oligosaccharide (HF+AX). Gilts were fed their respective treatments for 46 days. On day 46, pigs were euthanized and ileal digesta and mucosa were collected. The V4 region of the 16S rRNA was amplified and sequenced, generating a total of 2,413,572 and 1,739,013 high-quality sequences from the digesta and mucosa, respectively. Sequences were classified into 1,538 mucosa and 2,495 digesta operational taxonomic units (OTU). Hidden-state predictions of 25 enzymes were made using Phylogenetic Investigation of Communities by Reconstruction of Unobserved States 2 (PICRUST2). Compared to LF, HF increased Erysipelotrichaceae_UCG-002, and Turicibacter in the digesta, Lachnospiraceae_unclassified in the mucosa, and decreased Actinobacillus in both (Q<0.05). Relative to HF, HF+XY increased 19 and 14 of the 100 most abundant OTUs characterized from digesta and mucosa, respectively (Q<0.05). Notably, HF+XY increased the OTU_23_Faecalibacterium by nearly 6 log2-fold change, compared to HF. Relative to HF, HF+XY increased genera Bifidobacterium, and Lactobacillus, and decreased Streptococcus and Turicibacter in digesta (Q<0.05), and increased Bifidobacterium and decreased Escherichia-Shigella in the mucosa (Q<0.05). Compared to HF, HF+AX increased 5 and 6 of the 100 most abundant OTUs characterized from digesta and mucosa, respectively, (Q<0.05), but HF+AX did not modulate similar taxa as HF+XY. The PICRUST2 predictions revealed HF+XY increased gene-predictions for enzymes associated with arabinoxylan degradation and xylose metabolism in the digesta, and increased enzymes related to short-chain fatty acid production in the mucosa. Collectively, these data suggest xylanase elicits a stimbiotic and prebiotic mechanism.
Collapse
Affiliation(s)
- Amy L Petry
- Department of Animal Science, Iowa State University, Ames, Iowa, United States of America
| | - John F Patience
- Department of Animal Science, Iowa State University, Ames, Iowa, United States of America.,Iowa Pork Industry Center, Iowa State University, Ames, Iowa, United States of America
| | - Lucas R Koester
- Department of Veterinary Microbiology and Preventive Medicine, Iowa State University, Ames, Iowa, United States of America
| | - Nichole F Huntley
- Department of Animal Science, Iowa State University, Ames, Iowa, United States of America
| | | | - Stephan Schmitz-Esser
- Department of Animal Science, Iowa State University, Ames, Iowa, United States of America
| |
Collapse
|
28
|
Ciudad-Mulero M, Matallana-González MC, Cámara M, Fernández-Ruiz V, Morales P. Antioxidant Phytochemicals in Pulses and their Relation to Human Health: A Review. Curr Pharm Des 2020; 26:1880-1897. [PMID: 32013818 DOI: 10.2174/1381612826666200203130150] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Accepted: 12/30/2019] [Indexed: 01/22/2023]
Abstract
Pulses are a staple food cultivated since ancient times, which play an important role in the human diet. From a nutritional point of view, pulses are very interesting foods as they are rich in proteins, carbohydrates and dietary fibre. Dietary antioxidants are a complex mixture of hydrophilic and lipophilic compounds usually present in foods of plant origin, including pulses. In the present study, the phytochemical composition of selected pulses (common beans, fava beans, lentils, chickpeas, peas and lupins) has been reviewed in terms of their content of antioxidant compounds. The content of hydrosoluble antioxidants (organic acids, phenolic compounds), liposoluble antioxidants (tocopherols, carotenoids) and other compounds which exert antioxidant properties, such as dietary fibre and minerals (zinc, selenium), has been studied, reporting that pulses are an interesting source of these compounds, which have important health benefits, including a preventing role in cardiovascular diseases, anticarcinogenic or neuroprotective properties. It is important to take into account that pulses are not usually consumed raw, but they must be processed before consumption in order to improve their nutritional quality and their palatability, therefore, the effect of different technological and heat treatments (germination, cooking, boiling, extrusion) on the antioxidant compounds present in pulses has been also reviewed. In this regard, it has been observed that as a consequence of processing, the content of phytochemicals with antioxidant properties is usually decreased, but processed pulses maintain relevant amounts of these compounds, preserving their beneficial health effect.
Collapse
Affiliation(s)
- María Ciudad-Mulero
- Department of Nutrition and Food Science, Faculty of Pharmacy, Complutense University of Madrid, Pza Ramon y Cajal, s/n. E- 28040 Madrid, Spain
| | - Mª Cruz Matallana-González
- Department of Nutrition and Food Science, Faculty of Pharmacy, Complutense University of Madrid, Pza Ramon y Cajal, s/n. E- 28040 Madrid, Spain
| | - Montaña Cámara
- Department of Nutrition and Food Science, Faculty of Pharmacy, Complutense University of Madrid, Pza Ramon y Cajal, s/n. E- 28040 Madrid, Spain
| | - Virginia Fernández-Ruiz
- Department of Nutrition and Food Science, Faculty of Pharmacy, Complutense University of Madrid, Pza Ramon y Cajal, s/n. E- 28040 Madrid, Spain
| | - Patricia Morales
- Department of Nutrition and Food Science, Faculty of Pharmacy, Complutense University of Madrid, Pza Ramon y Cajal, s/n. E- 28040 Madrid, Spain
| |
Collapse
|
29
|
Leyva-López N, Lizárraga-Velázquez CE, Hernández C, Sánchez-Gutiérrez EY. Exploitation of Agro-Industrial Waste as Potential Source of Bioactive Compounds for Aquaculture. Foods 2020; 9:E843. [PMID: 32605275 PMCID: PMC7404778 DOI: 10.3390/foods9070843] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Revised: 06/16/2020] [Accepted: 06/18/2020] [Indexed: 02/07/2023] Open
Abstract
The agroindustry generates a large amount of waste. In postharvest, food losses can reach up to 50%. This waste represents a source of contamination of soil, air, and bodies of water. This represents a problem for the environment as well as for public health. However, this waste is an important source of bioactive compounds, such as phenolic compounds, terpenes, and β-glucans, among others. Several biological activities have been attributed to these compounds; for example, antioxidant, antimicrobial, gut microbiota, and immune system modulators. These properties have been associated with improvements in health. Recently, the approach of using these bioactive compounds as food additives for aquaculture have been addressed, where it is sought that organisms, in addition to growing, preserve their health and become disease resistant. The exploitation of agro-industrial waste as a source of bioactive compounds for aquaculture has a triple objective-to provide added value to production chains, reduce pollution, and improve the well-being of organisms through nutrition. However, to make use of the waste, it is necessary to revalue them, mainly by determining their biological effects in aquaculture organisms. The composition of bioactive compounds of agro-industrial wastes, their biological properties, and their application in aquaculture will be addressed here.
Collapse
Affiliation(s)
- Nayely Leyva-López
- Cátedras CONACYT-Centro de Investigación en Alimentación y Desarrollo, A.C. (Food and Development Research Center), Unidad Mazatlán. Av. Sábalo Cerritos S/N, Mazatlán 82112, Sinaloa, Mexico;
- Centro de Investigación en Alimentación y Desarrollo, A.C. (Food and Development Research Center), Unidad Mazatlán. Av. Sábalo Cerritos S/N, Mazatlán 82112, Sinaloa, Mexico; (C.E.L.-V.); (E.Y.S.-G.)
| | - Cynthia E. Lizárraga-Velázquez
- Centro de Investigación en Alimentación y Desarrollo, A.C. (Food and Development Research Center), Unidad Mazatlán. Av. Sábalo Cerritos S/N, Mazatlán 82112, Sinaloa, Mexico; (C.E.L.-V.); (E.Y.S.-G.)
| | - Crisantema Hernández
- Centro de Investigación en Alimentación y Desarrollo, A.C. (Food and Development Research Center), Unidad Mazatlán. Av. Sábalo Cerritos S/N, Mazatlán 82112, Sinaloa, Mexico; (C.E.L.-V.); (E.Y.S.-G.)
| | - Erika Y. Sánchez-Gutiérrez
- Centro de Investigación en Alimentación y Desarrollo, A.C. (Food and Development Research Center), Unidad Mazatlán. Av. Sábalo Cerritos S/N, Mazatlán 82112, Sinaloa, Mexico; (C.E.L.-V.); (E.Y.S.-G.)
| |
Collapse
|
30
|
Utilization of xylan-type polysaccharides in co-culture fermentations of Bifidobacterium and Bacteroides species. Carbohydr Polym 2020; 236:116076. [DOI: 10.1016/j.carbpol.2020.116076] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Revised: 02/25/2020] [Accepted: 02/25/2020] [Indexed: 12/16/2022]
|
31
|
Liu H, Xie M, Nie S. Recent trends and applications of polysaccharides for microencapsulation of probiotics. FOOD FRONTIERS 2020. [DOI: 10.1002/fft2.11] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Affiliation(s)
- Huan Liu
- State Key Laboratory of Food Science and Technology China–Canada Joint Lab of Food Science and Technology (Nanchang) Nanchang University Nanchang China
| | - Mingyong Xie
- State Key Laboratory of Food Science and Technology China–Canada Joint Lab of Food Science and Technology (Nanchang) Nanchang University Nanchang China
| | - Shaoping Nie
- State Key Laboratory of Food Science and Technology China–Canada Joint Lab of Food Science and Technology (Nanchang) Nanchang University Nanchang China
| |
Collapse
|
32
|
Implications of two different methods for analyzing total dietary fiber in foods for food composition databases. J Food Compost Anal 2019. [DOI: 10.1016/j.jfca.2019.103253] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
33
|
Sechovcová H, Kulhavá L, Fliegerová K, Trundová M, Morais D, Mrázek J, Kopečný J. Comparison of enzymatic activities and proteomic profiles of Butyrivibrio fibrisolvens grown on different carbon sources. Proteome Sci 2019; 17:2. [PMID: 31168299 PMCID: PMC6545216 DOI: 10.1186/s12953-019-0150-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Accepted: 05/15/2019] [Indexed: 01/12/2023] Open
Abstract
Background The rumen microbiota is one of the most complex consortia of anaerobes, involving archaea, bacteria, protozoa, fungi and phages. They are very effective at utilizing plant polysaccharides, especially cellulose and hemicelluloses. The most important hemicellulose decomposers are clustered with the genus Butyrivibrio. As the related species differ in their range of hydrolytic activities and substrate preferences, Butyrivibrio fibrisolvens was selected as one of the most effective isolates and thus suitable for proteomic studies on substrate comparisons in the extracellular fraction. The B. fibrisolvens genome is the biggest in the butyrivibria cluster and is focused on “environmental information processing” and “carbohydrate metabolism”. Methods The study of the effect of carbon source on B. fibrisolvens 3071 was based on cultures grown on four substrates: xylose, glucose, xylan, xylan with 25% glucose. The enzymatic activities were studied by spectrophotometric and zymogram methods. Proteomic study was based on genomics, 2D electrophoresis and nLC/MS (Bruker Daltonics) analysis. Results Extracellular β-endoxylanase as well as xylan β-xylosidase activities were induced with xylan. The presence of the xylan polymer induced hemicellulolytic enzymes and increased the protein fraction in the interval from 40 to 80 kDa. 2D electrophoresis with nLC/MS analysis of extracellular B. fibrisolvens 3071 proteins found 14 diverse proteins with significantly different expression on the tested substrates. Conclusion The comparison of four carbon sources resulted in the main significant changes in B. fibrisolvens proteome occurring outside the fibrolytic cluster of proteins. The affected proteins mainly belonged to the glycolysis and protein synthesis cluster. Electronic supplementary material The online version of this article (10.1186/s12953-019-0150-3) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Hana Sechovcová
- 1Institute of Animal Physiology and Genetics, CAS, v.v.i., Vídeňská 1083, 142 20 Prague, Czech Republic.,5Department of Biochemistry and Microbiology, Faculty of Food and Biochemical Technology, University of Chemistry and Technology, Technická 5, 166 286 Prague, Czech Republic
| | - Lucie Kulhavá
- 2Institute of Physiology, CAS, v.v.i., Vídeňská 1083, 142 20 Prague, Czech Republic.,4Department of Analytical Chemistry, Faculty of Science, Charles University in Prague, Hlavova 8, 12843 Prague 2, Czech Republic
| | - Kateřina Fliegerová
- 1Institute of Animal Physiology and Genetics, CAS, v.v.i., Vídeňská 1083, 142 20 Prague, Czech Republic
| | - Mária Trundová
- 3Institute of Biotechnology, CAS, v.v.i., Průmyslová 595, 252 50 Vestec, Czech Republic
| | - Daniel Morais
- 6Institute of Microbiology, CAS, v.v.i., Vídeňská 1083, 142 20 Prague, Czech Republic
| | - Jakub Mrázek
- 1Institute of Animal Physiology and Genetics, CAS, v.v.i., Vídeňská 1083, 142 20 Prague, Czech Republic
| | - Jan Kopečný
- 1Institute of Animal Physiology and Genetics, CAS, v.v.i., Vídeňská 1083, 142 20 Prague, Czech Republic
| |
Collapse
|
34
|
Ciudad-Mulero M, Fernández-Ruiz V, Matallana-González MC, Morales P. Dietary fiber sources and human benefits: The case study of cereal and pseudocereals. ADVANCES IN FOOD AND NUTRITION RESEARCH 2019; 90:83-134. [PMID: 31445601 DOI: 10.1016/bs.afnr.2019.02.002] [Citation(s) in RCA: 63] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Dietary fiber (DF) includes the remnants of the edible part of plants and analogous carbohydrates that are resistant to digestion and absorption in the human small intestine with complete or partial fermentation in the human large intestine. DF can be classified into two main groups according to its solubility, namely insoluble dietary fiber (IDF) that mainly consists on cell wall components, including cellulose, some hemicelluloses, lignin and resistant starch, and soluble dietary fiber (SDF) that consists of non-cellulosic polysaccharides as non-digestible oligosaccharides, arabinoxylans (AX), β-glucans, some hemicelluloses, pectins, gums, mucilages and inulin. The intake of DF is associated with health benefits. IDF can contribute to the normal function of the intestinal tract and it has an important role in the prevention of colonic diverticulosis and constipation. SDF is extensively fermented by gut microbiota and it is associated with carbohydrate and lipid metabolism, with important health benefits due to its hypocholesterolemic properties. Due to these nutritional and health properties, DF is widely used as functional ingredients in food industry, being whole grain cereals, pulses, fruits and vegetables the main sources of DF. Also some synthetic sources are employed, namely polydextrose, hydroxypropyl methylcellulose or cyclodextrins. The DF content of cereals varies depending on cultivars, their botanical components (pericarp, emdosperm and germ) and the processing conditions they have undergone (baking, extrusion, etc.). In cereal grains, AX are the predominant non-cellulose DF polysaccharides followed by cellulose and β-glucans, while in pseudocereals, pectins are quantitatively predominant.
Collapse
Affiliation(s)
- María Ciudad-Mulero
- Department of Nutrition and Food Science, Faculty of Pharmacy, Complutense University of Madrid, Madrid, Spain
| | - Virginia Fernández-Ruiz
- Department of Nutrition and Food Science, Faculty of Pharmacy, Complutense University of Madrid, Madrid, Spain
| | - Mª Cruz Matallana-González
- Department of Nutrition and Food Science, Faculty of Pharmacy, Complutense University of Madrid, Madrid, Spain
| | - Patricia Morales
- Department of Nutrition and Food Science, Faculty of Pharmacy, Complutense University of Madrid, Madrid, Spain.
| |
Collapse
|
35
|
Oat bran, but not its isolated bioactive β-glucans or polyphenols, have a bifidogenic effect in an in vitro fermentation model of the gut microbiota. Br J Nutr 2019; 121:549-559. [PMID: 30688188 DOI: 10.1017/s0007114518003501] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Wholegrain oats are known to modulate the human gut microbiota and have prebiotic properties (increase the growth of some health-promoting bacterial genera within the colon). Research to date mainly attributes these effects to the fibre content; however, oat is also a rich dietary source of polyphenols, which may contribute to the positive modulation of gut microbiota. In vitro anaerobic batch-culture experiments were performed over 24 h to evaluate the impact of two different doses (1 and 3 % (w/v)) of oat bran, matched concentrations of β-glucan extract or polyphenol mix, on the human faecal microbiota composition using 16S RNA gene sequencing and SCFA analysis. Supplementation with oats increased the abundance of Proteobacteria (P <0·01) at 10 h, Bacteroidetes (P <0·05) at 24 h and concentrations of acetic and propionic acid increased at 10 and 24 h compared with the NC. Fermentation of the 1 % (w/v) oat bran resulted in significant increase in SCFA production at 24 h (86 (sd 27) v. 28 (sd 5) mm; P <0·05) and a bifidogenic effect, increasing the relative abundance of Bifidobacterium unassigned at 10 h and Bifidobacterium adolescentis (P <0·05) at 10 and 24 h compared with NC. Considering the β-glucan treatment induced an increase in the phylum Bacteroidetes at 24 h, it explains the Bacteriodetes effects of oats as a food matrix. The polyphenol mix induced an increase in Enterobacteriaceae family at 24 h. In conclusion, in this study, we found that oats increased bifidobacteria, acetic acid and propionic acid, and this is mediated by the synergy of all oat compounds within the complex food matrix, rather than its main bioactive β-glucan or polyphenols. Thus, oats as a whole food led to the greatest impact on the microbiota.
Collapse
|
36
|
Paesani C, Salvucci E, Moiraghi M, Fernandez Canigia L, Pérez GT. Arabinoxylan from Argentinian whole wheat flour promote the growth of Lactobacillus reuteri and Bifidobacterium breve. Lett Appl Microbiol 2019; 68:142-148. [PMID: 30444534 DOI: 10.1111/lam.13097] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2018] [Revised: 11/03/2018] [Accepted: 11/05/2018] [Indexed: 12/30/2022]
Abstract
Arabinoxylans are part of dietary fibre and have received attention given their emergent prebiotic character. Four arabinoxylans extracts were obtained from Argentinian soft and hard wheat. In vitro assays were performed to describe the extent to which the extracts from whole wheat flour support selective growth of Bifidobacterium breve and probiotic Lactobacillus reuteri ATCC23272 in a defined media. The prebiotic effect was evaluated by three quantitative scores: relative growth, prebiotic activity score and prebiotic index. For prebiotic index equation the growth of Bacteroides and Clostridium strains was compared to that of bifidobacteria and lactic acid bacteria. All the arabinoxylans extracts supported the growth of Lactobacillus and Bifidobacterium, reaching higher prebiotic activity score values than inulin (0·37 and 0·36 for Lactobacillus and Bifidobacterium respectively). AX2 from soft wheat and AX4 from hard showed similar prebiotic index value to commercial inulin (2·64, 2·52 and 2·22 respectively), and AX3 extract presented higher prebiotic index value (4·09) than the positive control and other prebiotic index reported for arabinoxylans. These extracts could be used as prebiotic, synbiotic compositions or novel food prototypes to treat dysbiosis associated with many diseases. SIGNIFICANCE AND IMPACT OF THE STUDY: The present work demonstrates that AX extracts from Argentinian soft and hard wheat promote efficiently the growth of probiotic strain L. reuteri ATCC23272 and B. breve 286, validated with three different parameters that consider the growth of representative strains of Bacteria genera found in the gut. The evaluation of AX extracts as a food supplement in a murine model could confirm their ability to modulate the microbiome. Novel food prototypes including AX and probiotics could relieve local symptoms and may act as psychobiotics with a beneficial effect on microbiome-brain axis.
Collapse
Affiliation(s)
- C Paesani
- Instituto de Ciencia y Tecnología en Alimentos Córdoba, (ICYTAC-CONICET-UNC), Córdoba, Argentina.,Laboratorio de Microbiología y Biotecnología, Facultad de Ciencias Exactas, Físicas y Naturales, Universidad Nacional de Córdoba, (FCEFYN-UNC), Cordoba, Argentina.,Facultad de Ciencias Agropecuarias, Universidad Nacional de Córdoba, (FCA-UNC), Cordoba, Argentina
| | - E Salvucci
- Instituto de Ciencia y Tecnología en Alimentos Córdoba, (ICYTAC-CONICET-UNC), Córdoba, Argentina.,Laboratorio de Microbiología y Biotecnología, Facultad de Ciencias Exactas, Físicas y Naturales, Universidad Nacional de Córdoba, (FCEFYN-UNC), Cordoba, Argentina.,Facultad de Ciencias Agropecuarias, Universidad Nacional de Córdoba, (FCA-UNC), Cordoba, Argentina
| | - M Moiraghi
- Instituto de Ciencia y Tecnología en Alimentos Córdoba, (ICYTAC-CONICET-UNC), Córdoba, Argentina.,Facultad de Ciencias Agropecuarias, Universidad Nacional de Córdoba, (FCA-UNC), Cordoba, Argentina
| | - L Fernandez Canigia
- Sección de Microbiología, Laboratorio Central, Hospital Alemán, Buenos Aires, Argentina
| | - G T Pérez
- Instituto de Ciencia y Tecnología en Alimentos Córdoba, (ICYTAC-CONICET-UNC), Córdoba, Argentina.,Facultad de Ciencias Agropecuarias, Universidad Nacional de Córdoba, (FCA-UNC), Cordoba, Argentina
| |
Collapse
|
37
|
Arana-Cuenca A, Tovar-Jiménez X, Favela-Torres E, Perraud-Gaime I, González-Becerra AE, Martínez A, Moss-Acosta CL, Mercado-Flores Y, Téllez-Jurado A. Use of water hyacinth as a substrate for the production of filamentous fungal hydrolytic enzymes in solid-state fermentation. 3 Biotech 2019; 9:21. [PMID: 30622859 DOI: 10.1007/s13205-018-1529-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2017] [Accepted: 12/05/2018] [Indexed: 11/29/2022] Open
Abstract
The objective of the present work was to evaluate the water hyacinth (WH) as a substrate for the production of hydrolytic enzymes (cellulases and hemicellulases) of 100 strains of filamentous fungi under conditions of solid growth. Five fungal strains, identified as Trichoderma harzianum, Trichoderma atroviride, Penicillium griseofulvum, Penicillium commune and Aspergillus versicolor, were selected and studied for their ability to grow on water hyacinth as a substrate and carbon source only, evaluating hydrolytic enzymatic activities (α-l-arabinofuranosidase, cellulase, xylanase and β-d-xylopyranosidase) and extracellular protein per g of water hyacinth dry matter (gdm). The five strains selected were able to produce the four enzymes studied; however, T. harzianum strain PBCA produces the highest xylanase (149.3 ± 14.3 IU/gdm at 108 h), cellulase (16.4 ± 0.6 IU/gdm at 84 h) and β-d-xylopyranosidase (127.7 ± 14.8 IU/gdm at 48 h). In contrast, the fungus with the highest α-l-arabinofuranosidase activity was A. versicolor, with 129.8 ± 13.3 IU/gdm after 108 h. In conclusion, T. harzianum showed the best production of the hydrolytic enzymes studied, using as a matrix and carbon source, water hyacinth. In addition, catalytic activities of arabinofuranosidase and xylopyranosidase were reported for the first time in T. versicolor and T. harzianum.
Collapse
Affiliation(s)
- Ainhoa Arana-Cuenca
- 1Universidad Politécnica de Pachuca, Carretera Pachuca-Ciudad Sahagún, km 20, 43830 Zempoala, Hidalgo Mexico
| | - Xochitl Tovar-Jiménez
- 1Universidad Politécnica de Pachuca, Carretera Pachuca-Ciudad Sahagún, km 20, 43830 Zempoala, Hidalgo Mexico
| | - Ernesto Favela-Torres
- 2Departamento de Biotecnología, Universidad Autónoma Metropolitana-Iztapalapa, Avenida San Rafael Atlixco 186, Colonia Vicentina, 09340 México City, Mexico
| | - Isabel Perraud-Gaime
- 3Institut Méditerranéen d'Ecologie et de Paléoécologie, UMR CNRS/IRD 193, IMEP Case 441, FST Saint Jérôme, Université Paul Cézanne, Av. Escadrille Normandie-Niemen, 13397 Marselle Cedex 20, France
| | - Aldo E González-Becerra
- Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Biológicas, C/ Nicolás Cabrera nº1, Campus de la Universidad Autónoma de Madrid, 28049 Madrid, Spain
| | - Alfredo Martínez
- 5Departamento de Ingeniería Celular y Biocatálisis. Instituto de Biotecnología, Universidad Nacional Autónoma de México, A.P. 510-3, 62250 Cuernavaca, Morelos Mexico
| | - Cessna L Moss-Acosta
- 5Departamento de Ingeniería Celular y Biocatálisis. Instituto de Biotecnología, Universidad Nacional Autónoma de México, A.P. 510-3, 62250 Cuernavaca, Morelos Mexico
| | - Yuridia Mercado-Flores
- 1Universidad Politécnica de Pachuca, Carretera Pachuca-Ciudad Sahagún, km 20, 43830 Zempoala, Hidalgo Mexico
| | - Alejandro Téllez-Jurado
- 1Universidad Politécnica de Pachuca, Carretera Pachuca-Ciudad Sahagún, km 20, 43830 Zempoala, Hidalgo Mexico
| |
Collapse
|
38
|
α-l-Arabinofuranosidase: A Potential Enzyme for the Food Industry. ENERGY, ENVIRONMENT, AND SUSTAINABILITY 2019. [DOI: 10.1007/978-981-13-3263-0_12] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
39
|
Cooper-Bribiesca B, Navarro-Ocaña A, Díaz-Ruiz G, Aguilar-Osorio G, Rodríguez-Sanoja R, Wacher C. Lactic Acid Fermentation of Arabinoxylan From Nejayote by Streptococcus infantarius ssp. infantarius 25124 Isolated From Pozol. Front Microbiol 2018; 9:3061. [PMID: 30619147 PMCID: PMC6305286 DOI: 10.3389/fmicb.2018.03061] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2018] [Accepted: 11/27/2018] [Indexed: 01/01/2023] Open
Abstract
Streptococcus infantarius ssp. infantarius 25124 (Sii-25124) is a lactic acid bacterium (LAB) isolated from pozol, a refreshing beverage prepared by suspending fermented nixtamal (a thermal and alkali-treated maize dough) in water. Although Lactobacillus are the predominant strains in fermented doughs, such as sourdoughs, and non-nixtamalized fermented maize foods, the pozol microbiota is markedly different. This may be the result of the nixtamalization process, which could act as a selective force of some strains. Sii-25124 has been reported as the main amylolytic LAB in pozol; starch is the primary carbon source on nixtamal since monosaccharides and disaccharides are lost during nixtamalization; however, non-amylolytic LAB counts are higher than amylolytic LAB in pozol after 24-h fermentation suggesting that another carbon source is being used by the former bacteria. Hemicellulose (arabinoxylan in maize) becomes available via nixtamalization and is subsequently metabolized by LAB. The aim of this work was to determine whether this bacterium is able to use arabinoxylan as the only carbon source in a defined medium containing arabinoxylan extracted from either nejayote (wash water produced during nixtamal preparation), or beechwood xylan. Xylanase activity in the presence of nejayote arabinoxylan (135.8 ± 48.7 IU/mg protein) was higher than that of beechwood (62.5 ± 19.8 IU/mg protein). Other enzymatic activities, such as arabinofuranosidase and acetyl esterase, were also detected, suggesting the adaptation of the bacterium studied to nixtamal dough. It was concluded that Streptococcus infantarius 25124 isolated from pozol was able to use arabinoxylans, which are present in nixtamal dough, so fermentation does not depend exclusively on free sugars and starch.
Collapse
Affiliation(s)
- Barbara Cooper-Bribiesca
- Departamento de Alimentos y Biotecnología, Facultad de Química, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Arturo Navarro-Ocaña
- Departamento de Alimentos y Biotecnología, Facultad de Química, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Gloria Díaz-Ruiz
- Departamento de Alimentos y Biotecnología, Facultad de Química, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Guillermo Aguilar-Osorio
- Departamento de Alimentos y Biotecnología, Facultad de Química, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Romina Rodríguez-Sanoja
- Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Carmen Wacher
- Departamento de Alimentos y Biotecnología, Facultad de Química, Universidad Nacional Autónoma de México, Mexico City, Mexico
| |
Collapse
|
40
|
Conceptual design of integrated production of arabinoxylan products using bioethanol pinch analysis. FOOD AND BIOPRODUCTS PROCESSING 2018. [DOI: 10.1016/j.fbp.2018.08.005] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
41
|
Fadel A, Ashworth J, Plunkett A, Mahmoud AM, Ranneh Y, Li W. Improving the extractability of arabinoxylans and the molecular weight of wheat endosperm using extrusion processing. J Cereal Sci 2018; 84:55-61. [DOI: 10.1016/j.jcs.2018.09.009] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
42
|
Wang Y, Cao X, Zhang R, Xiao L, Yuan T, Shi Q, Sun R. Evaluation of xylooligosaccharide production from residual hemicelluloses of dissolving pulp by acid and enzymatic hydrolysis. RSC Adv 2018; 8:35211-35217. [PMID: 35547053 PMCID: PMC9087475 DOI: 10.1039/c8ra07140c] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2018] [Accepted: 10/09/2018] [Indexed: 11/21/2022] Open
Abstract
Xylooligosaccharides (XOS) are useful food and pharmaceutical additives, which can be produced from various xylans. However, the XOS prepared from lignocellulosic materials are difficult to purify due to the complexity of the degradation products. Thus, hemicelluloses with a high-purity will be the preferred feedstock for XOS production. In this work, acid hydrolysis and enzymatic hydrolysis were applied to prepare XOS from the residual hemicelluloses of the dissolving pulp. The results showed that the highest XOS yield (45.18%) obtained from the acid hydrolysis was achieved with 1% sulfuric acid at 120 °C for 60 min, and xylohexaose accounted for 47% of the XOS. For enzymatic hydrolysis, under optimal conditions, the highest XOS yield of 42.96% was observed, and xylobiose and xylotriose comprised 90.5% of the XOS. It is suggested that the distribution of the XOS could be controlled significantly according to the enzymatic or acid hydrolysis conditions used.
Collapse
Affiliation(s)
- Yuanyuan Wang
- Beijing Key Laboratory of Lignocellulosic Chemistry, Beijing Forestry University Beijing 100083 China
| | - Xuefei Cao
- Beijing Key Laboratory of Lignocellulosic Chemistry, Beijing Forestry University Beijing 100083 China
| | - Ruochen Zhang
- Beijing Key Laboratory of Lignocellulosic Chemistry, Beijing Forestry University Beijing 100083 China
| | - Lin Xiao
- Shandong Longlive Bio-Technology Co., Ltd. Shandong 251200 China
| | - Tongqi Yuan
- Beijing Key Laboratory of Lignocellulosic Chemistry, Beijing Forestry University Beijing 100083 China
| | - Quentin Shi
- Jining Mingsheng New Materials Co., Ltd., Xinglong Industrial Park Yanzhou District Jining City Shandong Province 272101 China
| | - Runcang Sun
- Beijing Key Laboratory of Lignocellulosic Chemistry, Beijing Forestry University Beijing 100083 China
| |
Collapse
|
43
|
NMR and ESI–MS spectrometry characterization of autohydrolysis xylo-oligosaccharides separated by gel permeation chromatography. Carbohydr Polym 2018; 195:303-310. [DOI: 10.1016/j.carbpol.2018.04.088] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2018] [Revised: 03/29/2018] [Accepted: 04/23/2018] [Indexed: 11/23/2022]
|
44
|
Kim HB, Lee KT, Kim MJ, Lee JS, Kim KS. Identification and characterization of a novel KG42 xylanase (GH10 family) isolated from the black goat rumen-derived metagenomic library. Carbohydr Res 2018; 469:1-9. [PMID: 30170217 DOI: 10.1016/j.carres.2018.08.010] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2018] [Revised: 08/14/2018] [Accepted: 08/17/2018] [Indexed: 11/18/2022]
Abstract
This study was conducted to isolate and functionally characterize a novel xylan-degrading enzyme from the microbial metagenomes of black goat rumens. A novel gene, KG42, was isolated from one of the 17 xylan-degrading metagenomic fosmid clones obtained from black goat rumens. The KG42 gene, comprising a 1107 bp open reading frame, encodes a protein composed of 368 amino acids (41 kDa) with a glycosyl hydrolase family 10 (GH10) domain, consisting of a "salad-bowl" shaped tertiary structure (a typical 8-fold α/β barrel (α/β)8) and two catalytic residues. KG42 xylanase protein has at best 40% sequence identity with other homologous GH10 xylanase proteins. The enzyme displayed its optimum activity at pH 5.0 and 50 °C. The enzyme was thermally stable at pH and temperature ranges of 5.0-10.0 and 20-60 °C, respectively. Substrate specificity and hydrolytic patterns implied that the KG42 xylanase functions as an endo-β-1,4-xylanase (EC 3.2.1.8). The KG42 xylanase was also used for the preparation of bifidogenic xylan hydrolysates, demonstrating its potential applications toward preparing prebiotic xylooligosaccharides.
Collapse
Affiliation(s)
- Hye-Bin Kim
- Department of Food Science and Technology, Chung-Ang University, Ansung, 456-756, South Korea
| | - Kyung-Tai Lee
- Animal Genomics and Bioinformatics Division, National Institute of Animal Science, Rural Development Administration, Wanju, 565-851, South Korea
| | - Min-Ju Kim
- Department of Food Science and Technology, Chung-Ang University, Ansung, 456-756, South Korea
| | - Jin-Sung Lee
- Department of Biological Sciences, Kyonggi University, Suwon, 442-760, South Korea
| | - Keun-Sung Kim
- Department of Food Science and Technology, Chung-Ang University, Ansung, 456-756, South Korea.
| |
Collapse
|
45
|
Mendez-Encinas MA, Carvajal-Millan E, Rascon-Chu A, Astiazaran-Garcia HF, Valencia-Rivera DE. Ferulated Arabinoxylans and Their Gels: Functional Properties and Potential Application as Antioxidant and Anticancer Agent. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2018; 2018:2314759. [PMID: 30186541 PMCID: PMC6116397 DOI: 10.1155/2018/2314759] [Citation(s) in RCA: 60] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/12/2017] [Revised: 05/19/2018] [Accepted: 07/02/2018] [Indexed: 12/29/2022]
Abstract
In the last years, biomedical research has focused its efforts in the development of new oral delivery systems for the treatment of different diseases. Ferulated arabinoxylans are polysaccharides from cereals that have been gaining attention in the pharmaceutical field due to their prebiotic, antioxidant, and anticancer properties. The antioxidant and anticancer properties of these polysaccharides make them attractive compounds for the treatment of cancer, particularly colon cancer. In addition, ferulated arabinoxylans can form covalent gels through the cross-linking of their ferulic acids. Due to their particular characteristics, ferulated arabinoxylan gels represent an excellent alternative as colon-targeted drug delivery systems. The aim of the present work is to review the physicochemical and functional properties of ferulated arabinoxylans and their gels and to present the future perspectives for potential application as antioxidant and anticancer agents.
Collapse
Affiliation(s)
- Mayra Alejandra Mendez-Encinas
- Biopolymers, Research Center for Food and Development, CIAD, A.C. Carretera a La Victoria Km. 0.6, 83304 Hermosillo, SON, Mexico
| | - Elizabeth Carvajal-Millan
- Biopolymers, Research Center for Food and Development, CIAD, A.C. Carretera a La Victoria Km. 0.6, 83304 Hermosillo, SON, Mexico
| | - Agustín Rascon-Chu
- Biotechnology, Research Center for Food and Development, CIAD, A.C. Carretera a La Victoria Km. 0.6, 83304 Hermosillo, SON, Mexico
| | | | - Dora Edith Valencia-Rivera
- Department of Chemical Biological and Agropecuary Sciences, University of Sonora, Avenida Universidad e Irigoyen, 83621 Caborca, SON, Mexico
| |
Collapse
|
46
|
Scarpellini E, Deloose E, Vos R, Francois I, Delcour JA, Broekaert WF, Verbeke K, Tack J. The effect of arabinoxylooligosaccharides on upper gastroduodenal motility and hunger ratings in humans. Neurogastroenterol Motil 2018; 30:e13306. [PMID: 29436142 DOI: 10.1111/nmo.13306] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/04/2017] [Accepted: 01/09/2018] [Indexed: 02/08/2023]
Abstract
BACKGROUND AND AIMS Prebiotics such as Arabinoxylooligosaccharides (AXOS) are non-digestible, fermentable food ingredients stimulating growth/activity of colonic bacteria with enhanced carbohydrates fermentation (CF) in humans. The migrating motor complex (MMC) of the gastrointestinal tract has been recently identified as an important hunger signal, but no data are available yet on the role of acute CF on MMC activity and related hunger ratings. Thus, we aimed to study the effect of acute AXOS CF on MMC and hunger in humans. METHODS A total of 13 healthy volunteers were randomized in a single-blind crossover placebo-controlled study where 9.4 g of AXOS or 10 g of maltodextrin and 1 g of unlabelled lactose ureide (LU) were given 12 hours prior to the study and, in the next morning, together with a pancake containing 500 mg of 13 C-LU. In 10 hours after the meal, 13 CO2 and hydrogen excretion were determined every 15 minutes while hunger/appetite ratings every 2 minutes through a VAS questionnaire. Five hours after the meal, antroduodenal motility was measured using HRM. KEY RESULTS AXOS significantly increased CF (158 ± 81 vs 840 ± 464 H2 ppm*minute, placebo vs AXOS, P < .05) without affecting the orocecal transit time (OCTT). AXOS had no significant effect on the occurrence, origin, and duration of phase III and on the total number, origin, and duration of phases I and II. Hunger and appetite scores prior and after phase III were not affected by AXOS. CONCLUSIONS AXOS acutely increases colonic fermentation, but this neither affects OCTT, activity of the MMC, nor interdigestive hunger scores in man.
Collapse
Affiliation(s)
- E Scarpellini
- Division of Gastroenterology, Department of Internal Medicine, TARGID, University Hospital Gasthuisberg, Leuven, Belgium
| | - E Deloose
- Division of Gastroenterology, Department of Internal Medicine, TARGID, University Hospital Gasthuisberg, Leuven, Belgium
| | - R Vos
- Division of Gastroenterology, Department of Internal Medicine, TARGID, University Hospital Gasthuisberg, Leuven, Belgium
| | - I Francois
- Laboratory of Food Chemistry and Biochemistry & Leuven Food Science and Nutrition Research Centre (LFoRCe), Catholic University of Leuven, Leuven, Belgium
| | - J A Delcour
- FUGEIA NV, Arenberg Science Park, Leuven, Belgium
| | | | - K Verbeke
- Division of Gastroenterology, Department of Internal Medicine, TARGID, University Hospital Gasthuisberg, Leuven, Belgium
| | - J Tack
- Division of Gastroenterology, Department of Internal Medicine, TARGID, University Hospital Gasthuisberg, Leuven, Belgium
| |
Collapse
|
47
|
GH43 endo-arabinanase from Bacillus licheniformis: Structure, activity and unexpected synergistic effect on cellulose enzymatic hydrolysis. Int J Biol Macromol 2018; 117:7-16. [PMID: 29800670 DOI: 10.1016/j.ijbiomac.2018.05.157] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2018] [Revised: 05/19/2018] [Accepted: 05/22/2018] [Indexed: 01/30/2023]
Abstract
The hydrolysis of the plant biomass provides many interesting opportunities for the generation of building blocks for the green chemistry industrial applications. An important progress has been made for the hydrolysis of the cellulosic component of the biomass while, for the hemicellulosic components, the advances are less straightforward. Here, we describe the cloning, expression and biochemical and structural characterization of BlAbn1, a GH43 arabinanase from Bacillus licheniformis. This enzyme is selective for linear arabinan and efficiently hydrolyzes this substrate, with a specific activity of 127 U/mg. The enzyme has optimal conditions for activity at pH 8.0 and 45 °C and its activity is only partially dependent of a bound calcium ion since 70% of the maximal activity is preserved even when 1 mM EDTA is added to the reaction medium. BlAbn1 crystal structure revealed a typical GH43 fold and narrow active site, which explains the selectivity for linear substrates. Unexpectedly, the enzyme showed a synergic effect with the commercial cocktail Accellerase 1500 on cellulose hydrolysis. Scanning Electron Microscopy, Solid-State NMR and relaxometry data indicate that the enzyme weakens the interaction between cellulose fibers in filter paper, thus providing an increased access to the cellulases of the cocktail.
Collapse
|
48
|
Steiner J, Franke K, Kießling M, Fischer S, Töpfl S, Heinz V, Becker T. Influence of hydrothermal treatment on the structural modification of spent grain specific carbohydrates and the formation of degradation products using model compounds. Carbohydr Polym 2018; 184:315-322. [DOI: 10.1016/j.carbpol.2017.12.038] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2017] [Revised: 12/01/2017] [Accepted: 12/14/2017] [Indexed: 10/18/2022]
|
49
|
Van den Abbeele P, Taminiau B, Pinheiro I, Duysburgh C, Jacobs H, Pijls L, Marzorati M. Arabinoxylo-Oligosaccharides and Inulin Impact Inter-Individual Variation on Microbial Metabolism and Composition, Which Immunomodulates Human Cells. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2018; 66:1121-1130. [PMID: 29363966 DOI: 10.1021/acs.jafc.7b04611] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Fecal batch fermentations coupled to cocultures of epithelial cells and macrophages were used to compare how arabinoxylo-oligosaccharides (AXOS) and inulin modulate gut microbial activity and composition of three different human donors and subsequently the epithelial permeability and immune response. Both inulin and AXOS decreased the pH during incubation (-1.5 pH units), leading to increased productions of acetate, propionate, and butyrate. Differences in terms of metabolites production could be linked to specific microbial alterations at genus level upon inulin/AXOS supplementation (i.e., Bifidobacterium, Bacteroides, Prevotella and unclassified Erysipelotrichaceae), as shown by 16S-targeted Illumina sequencing. Both products stimulated gut barrier and immune function with increases in TEER, NF-KB, IL-10, and IL-6. Ingredients with different structures selectively modulate the microbiota of a specific donor leading to differential changes at metabolic level. The extent of this effect is donor specific and is linked to a final specific modulation of the host's immune system.
Collapse
Affiliation(s)
| | - Bernard Taminiau
- Department of Food Science, University of Liège (ULG) , Quartier Vallée 2, Avenue de Cureghem 10, 4000 Liège, Belgium
| | - Iris Pinheiro
- ProDigest bvba , Technologiepark 3, 9052 Ghent, Belgium
| | | | - Heidi Jacobs
- Cosucra-Groupe Warcoing S.A. , Rue de la Sucrerie 1, 7740 Pecq, Belgium
| | - Loek Pijls
- Cosucra-Groupe Warcoing S.A. , Rue de la Sucrerie 1, 7740 Pecq, Belgium
| | - Massimo Marzorati
- Center of Microbial Ecology and Technology (CMET), Ghent University , Coupure Links 653, 9000 Ghent, Belgium
| |
Collapse
|
50
|
Courtin CM, Broekaert WF, Swennen K, Aerts G, Van Craeyveld V, Delcour JA. Occurrence of Arabinoxylo-Oligosaccharides and Arabinogalactan Peptides in Beer. JOURNAL OF THE AMERICAN SOCIETY OF BREWING CHEMISTS 2018. [DOI: 10.1094/asbcj-2009-0323-01] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Affiliation(s)
- Christophe M. Courtin
- Laboratory of Food Chemistry and Biochemistry and Leuven Food Science and Nutrition Research Center (LFORCE), K. U. Leuven, Leuven, Belgium
| | - Willem F. Broekaert
- Laboratory of Food Chemistry and Biochemistry and Leuven Food Science and Nutrition Research Center (LFORCE), K. U. Leuven, Leuven, Belgium
| | - Katrien Swennen
- Laboratory of Food Chemistry and Biochemistry and Leuven Food Science and Nutrition Research Center (LFORCE), K. U. Leuven, Leuven, Belgium
| | - Guido Aerts
- Laboratory of Enzyme and Brewing Technology, KaHo St.-Lieven, Gent, Belgium
| | - Valerie Van Craeyveld
- Laboratory of Food Chemistry and Biochemistry and LFORCE, K. U. Leuven, Leuven, Belgium
| | - Jan A. Delcour
- Laboratory of Food Chemistry and Biochemistry and LFORCE, K. U. Leuven, Leuven, Belgium
| |
Collapse
|