1
|
Das S, Rajeswari VD, Venkatraman G, Ramanathan G. Phytochemicals in Parkinson's Disease: a Pathway to Neuroprotection and Personalized Medicine. Cell Biochem Biophys 2025; 83:1427-1443. [PMID: 39537915 DOI: 10.1007/s12013-024-01607-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/29/2024] [Indexed: 11/16/2024]
Abstract
Parkinson's disease (PD) is a complex neurodegenerative disorder marked by the progressive loss of dopaminergic neurons in the substantia nigra. While current treatments primarily manage symptoms, there is increasing interest in alternative approaches, particularly the use of phytochemicals from medicinal plants. These natural compounds have demonstrated promising neuroprotective potential in preclinical studies by targeting key pathological mechanisms such as oxidative stress, neuroinflammation, and protein aggregation. However, the clinical translation of these phytochemicals is limited due to a lack of robust clinical trials evaluating their safety, efficacy, and pharmacokinetics. This review provides a comprehensive overview of the neuroprotective potential of phytochemicals in PD management, examining the mechanisms underlying PD pathogenesis and emphasizing neuroprotection. It explores the historical and current research on medicinal plants like Mucuna pruriens, Curcuma longa, and Ginkgo biloba, and discusses the challenges in clinical translation, including ethical and practical considerations and the integration with conventional therapies. It further underscores the need for future research to elucidate mechanisms of action, optimize drug delivery, and conduct rigorous clinical trials to establish the safety and efficacy of phytochemicals, aiming to shape future neuroprotective strategies and develop more effective, personalized treatments for PD.
Collapse
Affiliation(s)
- Soumik Das
- Department of Biomedical Sciences, School of Biosciences and Technology, Vellore Institute of Technology, Vellore, 632014, India
| | - V Devi Rajeswari
- Department of Biomedical Sciences, School of Biosciences and Technology, Vellore Institute of Technology, Vellore, 632014, India
| | - Ganesh Venkatraman
- Department of Biomedical Sciences, School of Biosciences and Technology, Vellore Institute of Technology, Vellore, 632014, India
| | - Gnanasambandan Ramanathan
- Department of Biomedical Sciences, School of Biosciences and Technology, Vellore Institute of Technology, Vellore, 632014, India.
| |
Collapse
|
2
|
Zeng W, Li H, Liu S, Luo Z, Chen J, Zhou J. Biosynthesis and bioactivities of triterpenoids from Centella asiatica: Challenges and opportunities. Biotechnol Adv 2025; 80:108541. [PMID: 39978422 DOI: 10.1016/j.biotechadv.2025.108541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2024] [Revised: 02/17/2025] [Accepted: 02/17/2025] [Indexed: 02/22/2025]
Abstract
Centella asiatica (L.) Urban is an herbaceous perennial plant that has long been widely used in traditional medicine, due to its diverse wound-healing, neuroprotection, antioxidant and anti-inflammatory properties. The major functional bioactive secondary metabolites are the triterpenoids asiatic acid, madecassic acid, asiaticoside and madecassoside, collectively known as centellosides. Current extraction methods for C. asiatica are unable to meet market demand for extracts and pure functional components. Biotechnological approaches based on synthetic biology and microbial cell factories are a promising alternative. This review summarises the major secondary metabolites and their biological activities, and the biosynthetic pathway of functional triterpenoids in C. asiatica. Biotechnological production of centellosides is also described, including in vitro plant cultures and construction of microbial cell factories. Finally, current challenges and future perspectives for sustainable production of centellosides are discussed, and guidelines for future engineering are proposed.
Collapse
Affiliation(s)
- Weizhu Zeng
- Science Center for Future Foods, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China; School of Biotechnology and Key Laboratory of Industrial Biotechnology of Ministry of Education, Jiangnan University, Wuxi 214122, China; State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China; Jiangsu Province Engineering Research Center of Food Synthetic Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Hongbiao Li
- Science Center for Future Foods, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China; School of Biotechnology and Key Laboratory of Industrial Biotechnology of Ministry of Education, Jiangnan University, Wuxi 214122, China; State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China
| | - Shike Liu
- Science Center for Future Foods, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China; School of Biotechnology and Key Laboratory of Industrial Biotechnology of Ministry of Education, Jiangnan University, Wuxi 214122, China; State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China
| | - Zhengshan Luo
- School of Biotechnology and Key Laboratory of Industrial Biotechnology of Ministry of Education, Jiangnan University, Wuxi 214122, China
| | - Jian Chen
- Science Center for Future Foods, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China; School of Biotechnology and Key Laboratory of Industrial Biotechnology of Ministry of Education, Jiangnan University, Wuxi 214122, China; State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China; Jiangsu Province Engineering Research Center of Food Synthetic Biotechnology, Jiangnan University, Wuxi 214122, China.
| | - Jingwen Zhou
- Science Center for Future Foods, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China; School of Biotechnology and Key Laboratory of Industrial Biotechnology of Ministry of Education, Jiangnan University, Wuxi 214122, China; State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China; Jiangsu Province Engineering Research Center of Food Synthetic Biotechnology, Jiangnan University, Wuxi 214122, China.
| |
Collapse
|
3
|
Wang Y, Huang D, Luo J, Yao S, Chen J, Li L, Geng J, Mo Y, Ming R, Liu J. The chromosome-level genome of Centella asiatica provides insights into triterpenoid biosynthesis. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2025; 222:109710. [PMID: 40054110 DOI: 10.1016/j.plaphy.2025.109710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Revised: 02/19/2025] [Accepted: 02/24/2025] [Indexed: 05/07/2025]
Abstract
Centella asiatica is a well-known herbal plant that makes a significant contribution to the treatment of various chronic ailments. Triterpenoid saponins are the main active components extracted from C. asiatica, which have rich pharmacological activity. However, only a few studies have systematically elucidated the molecular mechanism underlying the biosynthesis of triterpenoid saponins in C. asiatica. Here, we report a chromosome-level reference genome of C. asiatica, by using Illumina, PacBio HiFi, and Hi-C technologies. The assembled genome exhibits high quality with a size of 455 Mb and a contig N50 of 36 Mb. A total of 26,479 protein-coding genes were predicted. Comparative genomic analysis revealed that the gene families involved in triterpenoid saponin biosynthesis, including squalene synthase (SS) and farnesyl diphosphate synthase (FPS), rapidly expanded in the C. asiatica genome. In particular, we have discovered two whole-genome duplication events in C. asiatica genomes. A further comprehensive analysis of the metabolome and transcriptome was performed using different tissues of C. asiatica in order to identify the key genes associated with triterpenoid saponin biosynthesis. Consequently, seven enzyme genes were considered to play important roles in triterpenoid biosynthesis. Subsequent functional characterization of CaOSC4 demonstrated that it is responsible for the biosynthesis of three ursane-type triterpenoids in C. asiatica. Our research establishes a genomic data platform that can be employed in the excavation of genes and precision breeding in C. asiatica. Additionally, the results offer new insights into the biosynthesis of triterpenoid saponins.
Collapse
Affiliation(s)
- Yue Wang
- College of Pharmacy, Guangxi University of Chinese Medicine, Nanning, 530200, China; National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, College of Horticulture and Forestry Science, Huazhong Agricultural University, Wuhan, 430070, China
| | - Ding Huang
- College of Pharmacy, Guangxi University of Chinese Medicine, Nanning, 530200, China
| | - Jiajia Luo
- College of Pharmacy, Guangxi University of Chinese Medicine, Nanning, 530200, China
| | - Shaochang Yao
- College of Pharmacy, Guangxi University of Chinese Medicine, Nanning, 530200, China
| | - Jianhua Chen
- College of Pharmacy, Guangxi University of Chinese Medicine, Nanning, 530200, China
| | - Liangbo Li
- College of Pharmacy, Guangxi University of Chinese Medicine, Nanning, 530200, China
| | - Jingjing Geng
- National Engineering Research Center for Agriculture in Northern Mountainous Areas/College of Horticulture, Hebei Agricultural University, Baoding, 071000, China
| | - Yanlan Mo
- Guilin Yiyuansheng, Modern Biotechnology Co., Ltd, Guilin, 541004, China
| | - Ruhong Ming
- College of Pharmacy, Guangxi University of Chinese Medicine, Nanning, 530200, China.
| | - Jihong Liu
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, College of Horticulture and Forestry Science, Huazhong Agricultural University, Wuhan, 430070, China.
| |
Collapse
|
4
|
Neiheisel S, Uchenik D, Marney L, Maier CS, Gray NE, Soumyanath A, Rakotondraibe HL. Development of a Proton Spin Network Fingerprint Library to Support Mass Spectrometry-Based Identification of Pharmacophore-Bearing Constituents in the Botanical Supplement Centella asiatica. JOURNAL OF NATURAL PRODUCTS 2025; 88:975-984. [PMID: 40152679 PMCID: PMC12060121 DOI: 10.1021/acs.jnatprod.4c01486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/29/2025]
Abstract
Centella asiatica (L.) Urban (Apiaceae) has been utilized for centuries in traditional medicine systems in Southeast Asia and Southern Africa, including Madagascar. Previous studies have reported evidence of the therapeutic potential of C. asiatica formulations in models of Alzheimer's Disease and other dementias. Caffeoylquinic acids (CQAs) have been identified to be among the pharmacologically relevant metabolites contributing to the botanical's cognitive enhancement and neuroprotective effects. Isomers of CQAs are, however, difficult to differentiate by commonly used LC-MS techniques, making the characterization, standardization, and batch-to-batch consistency of these formulations challenging. Individual CQAs have unique proton Spin Network Fingerprints (pSNFs) that can be used to distinguish between CQA regioisomers within complex extracts. This work describes the development of a CQA-focused pSNF library that can be used to complement LC-MS methods for the accurate metabolite identification and characterization of bioactive C. asiatica fractions and extracts. The isolation of two new (1 and 2) and four known (3-6) CQAs and CQA analogues from C. asiatica and their contribution to the pSNF library are also discussed herein.
Collapse
Affiliation(s)
- Sara Neiheisel
- Division of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, The Ohio State University, Columbus, OH 43210, United States
| | - Dmitriy Uchenik
- College of Pharmacy Shared Instrumentation Facility, The Ohio State University, Columbus, OH 43210, United States
| | - Luke Marney
- Department of Chemistry, Oregon State University, Corvallis, OR 97331, United States
- BENFRA Botanical Dietary Supplements Research Center, Oregon Health & Science University, Portland, OR 97239, United States
| | - Claudia S. Maier
- Department of Chemistry, Oregon State University, Corvallis, OR 97331, United States
- BENFRA Botanical Dietary Supplements Research Center, Oregon Health & Science University, Portland, OR 97239, United States
- Linus Pauling Institute, Oregon State University, Corvallis, OR 97331, United States
| | - Nora E. Gray
- BENFRA Botanical Dietary Supplements Research Center, Oregon Health & Science University, Portland, OR 97239, United States
- Department of Neurology, Oregon Health & Science University, Portland, OR 97239, United States
| | - Amala Soumyanath
- BENFRA Botanical Dietary Supplements Research Center, Oregon Health & Science University, Portland, OR 97239, United States
- Department of Neurology, Oregon Health & Science University, Portland, OR 97239, United States
| | - Harinantenaina L. Rakotondraibe
- Division of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, The Ohio State University, Columbus, OH 43210, United States
| |
Collapse
|
5
|
Dang YY, Liu T, Liu YD, Li JY, Jing Y, Yang MJ, Zhang H, Jiang MM, Wu HH, Yang WZ, Li N, Zhang P. Anti-photoaging activity of triterpenoids isolated from Centella asiatica. PHYTOCHEMISTRY 2024; 228:114246. [PMID: 39163914 DOI: 10.1016/j.phytochem.2024.114246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 08/06/2024] [Accepted: 08/08/2024] [Indexed: 08/22/2024]
Abstract
Centella asiatica (L.) Urban is a medical plant rich in triterpenoids, frequently used in Asia to treat skin conditions such as acne. To search for anti-photoaging agents, 16 known triterpenoids and five undescribed triterpenoids, including three ursane, one oleanane and one nor-ursane were isolated from the whole herb of C. asiatica. The structures and relative stereochemistry of these compounds were elucidated by detailed NMR spectra and HRESIMS. Compounds 1 and 2 were isomers of ursane-type and oleane-type triterpenes with rare aldehyde groups on C-23. Compound 4 was a unique example of a nor-ursane type triterpenoid. The Ultraviolet B (UVB) induced HaCaT cell damage model was used to measure the in vitro anti-photoaging activity of all 21 compounds. Twenty compounds significantly increased HaCaT viability and inhibited lactate dehydrogenase (LDH) release after UVB exposure. These findings highlight the protective effects of C. asiatica-derived triterpenoids against UVB damage and indicate their potential as natural agents that can protect the skin against photoaging.
Collapse
Affiliation(s)
- Yi-Yun Dang
- National Key Laboratory of Chinese Medicine Modernization, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Tianjin 301617, China; Key Laboratory of Pharmacology of Traditional Chinese Medicine Formulae, Ministry of Education, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Tianjin 301617, China
| | - Tao Liu
- National Key Laboratory of Chinese Medicine Modernization, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Tianjin 301617, China
| | - Yu-Die Liu
- National Key Laboratory of Chinese Medicine Modernization, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Tianjin 301617, China; Key Laboratory of Pharmacology of Traditional Chinese Medicine Formulae, Ministry of Education, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Tianjin 301617, China
| | - Jia-Yi Li
- National Key Laboratory of Chinese Medicine Modernization, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Tianjin 301617, China; Key Laboratory of Pharmacology of Traditional Chinese Medicine Formulae, Ministry of Education, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Tianjin 301617, China
| | - Yi Jing
- National Key Laboratory of Chinese Medicine Modernization, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Tianjin 301617, China; Key Laboratory of Pharmacology of Traditional Chinese Medicine Formulae, Ministry of Education, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Tianjin 301617, China
| | - Miao-Jie Yang
- National Key Laboratory of Chinese Medicine Modernization, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Tianjin 301617, China; Key Laboratory of Pharmacology of Traditional Chinese Medicine Formulae, Ministry of Education, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Tianjin 301617, China
| | - Han Zhang
- National Key Laboratory of Chinese Medicine Modernization, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Tianjin 301617, China; Haihe Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Tianjin 301617, China
| | - Miao-Miao Jiang
- National Key Laboratory of Chinese Medicine Modernization, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Tianjin 301617, China; Key Laboratory of Pharmacology of Traditional Chinese Medicine Formulae, Ministry of Education, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Tianjin 301617, China
| | - Hong-Hua Wu
- National Key Laboratory of Chinese Medicine Modernization, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Tianjin 301617, China; Key Laboratory of Pharmacology of Traditional Chinese Medicine Formulae, Ministry of Education, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Tianjin 301617, China
| | - Wen-Zhi Yang
- National Key Laboratory of Chinese Medicine Modernization, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Tianjin 301617, China; Key Laboratory of Pharmacology of Traditional Chinese Medicine Formulae, Ministry of Education, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Tianjin 301617, China
| | - Nan Li
- National Key Laboratory of Chinese Medicine Modernization, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Tianjin 301617, China; Key Laboratory of Pharmacology of Traditional Chinese Medicine Formulae, Ministry of Education, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Tianjin 301617, China.
| | - Peng Zhang
- National Key Laboratory of Chinese Medicine Modernization, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Tianjin 301617, China; Key Laboratory of Pharmacology of Traditional Chinese Medicine Formulae, Ministry of Education, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Tianjin 301617, China.
| |
Collapse
|
6
|
Pramanik R, Dey A, Chakrabarty AK, Banerjee D, Narwaria A, Sharma S, Rai RK, Katiyar CK, Dubey SK. Diabetes mellitus and Alzheimer's disease: Understanding disease mechanisms, their correlation, and promising dual activity of selected herbs. JOURNAL OF ETHNOPHARMACOLOGY 2024; 333:118402. [PMID: 38821139 DOI: 10.1016/j.jep.2024.118402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 05/12/2024] [Accepted: 05/27/2024] [Indexed: 06/02/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE This review explores the link between Type 2 Diabetes Mellitus (T2DM) and diabetes-induced Alzheimer's disease (AD). It emphasizes the shared pathophysiological links and mechanisms between the two conditions, focusing on reduced insulin levels and receptors, impaired glucose metabolism, insulin resistance, mitochondrial dysfunction, and oxidative damage in AD-affected brains-paralleling aspects of T2DM. The review suggests AD as a "diabetes of the brain," supported by cognitive enhancement through antidiabetic interventions. It focuses on the traditionally used Indian herbs as a means to manage both conditions while addressing developmental challenges. AIM OF THE STUDY This study explores the DM-AD connection, reviewing medicinal herbs with protective potential for both ailments, considering traditional uses and developmental challenges. MATERIALS AND METHODS Studied research, reviews, and ethnobotanical and scientific data from electronic databases and traditional books. RESULTS The study analyzes the pathophysiological links between DM and AD, emphasizing their interconnected factors. Eight Ayurvedic plants with dual protective effects against T2DM and AD are thoroughly reviewed with preclinical/clinical evidence. Historical context, phytoconstituents, and traditional applications are explored. Innovative formulations using these plants are examined. Challenges stemming from phytoconstituents' physicochemical properties are highlighted, prompting novel formulation development, including nanotechnology-based delivery systems. The study uncovers obstacles in formulating treatments for these diseases. CONCLUSION The review showcases the dual potential of chosen medicinal herbs against both diseases, along with their traditional applications, endorsing their use. It addresses formulation obstacles, proposing innovative delivery technologies for herbal therapies, while acknowledging their constraints. The review suggests the need for heightened investment and research in this area.
Collapse
Affiliation(s)
- Rima Pramanik
- R&D Healthcare Division, Emami Ltd, 13, BT Road, Belgharia, Kolkata, 700056, India
| | - Anuradha Dey
- R&D Healthcare Division, Emami Ltd, 13, BT Road, Belgharia, Kolkata, 700056, India
| | | | - Dipankar Banerjee
- R&D Healthcare Division, Emami Ltd, 13, BT Road, Belgharia, Kolkata, 700056, India
| | - Avinash Narwaria
- R&D Healthcare Division, Emami Ltd, 13, BT Road, Belgharia, Kolkata, 700056, India
| | - Swapnil Sharma
- Department of Pharmacy, Banasthali Vidyapith, Banasthali, 304022, Rajasthan, India
| | - Rajiva Kumar Rai
- R&D Healthcare Division, Emami Ltd, 13, BT Road, Belgharia, Kolkata, 700056, India
| | - Chandra Kant Katiyar
- R&D Healthcare Division, Emami Ltd, 13, BT Road, Belgharia, Kolkata, 700056, India
| | - Sunil Kumar Dubey
- R&D Healthcare Division, Emami Ltd, 13, BT Road, Belgharia, Kolkata, 700056, India.
| |
Collapse
|
7
|
Rowe K, Gray NE, Zweig JA, Law A, Techen N, Maier CS, Soumyanath A, Kretzschmar D. Centella asiatica and its caffeoylquinic acid and triterpene constituents increase dendritic arborization of mouse primary hippocampal neurons and improve age-related locomotion deficits in Drosophila. FRONTIERS IN AGING 2024; 5:1374905. [PMID: 39055970 PMCID: PMC11269084 DOI: 10.3389/fragi.2024.1374905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Accepted: 06/12/2024] [Indexed: 07/28/2024]
Abstract
Introduction Centella asiatica (CA) is known in Ayurvedic medicine as a rejuvenating herb with particular benefits in the nervous system. Two groups of specialized metabolites found in CA and purported to contribute to its beneficial effects are triterpenes (TTs) and caffeoylquinic acids (CQAs). In order to evaluate the role and interactions of TTs and CQAs in the effects of CA, we examined the neurotrophic effects of a water extract of CA (CAW) and combinations of its TT and CQA components in mouse primary hippocampal neurons in vitro and in Drosophila melanogaster flies in vivo. Methods Primary hippocampal neurons were isolated from mouse embryos and exposed in vitro for 5 days to CAW (50 μg/mL), mixtures of TTs, CQAs or TT + CQA components or to 4 TTs or 8 individual CQA compounds of CAW. Dendritic arborization was evaluated using Sholl analysis. Drosophila flies were aged to 28 days and treated for 2 weeks with CAW (10 mg/mL) in the food, mixtures of TTs, CQAs or TT + CQA and individual TT and CQA compounds. TTs and CQAs were tested at concentrations matching their levels in the CAW treatment used. After 2 weeks of treatment, Drosophila aged 42 days were evaluated for phototaxis responses. Results In mouse primary hippocampal neurons, CAW (50 μg/mL), the TT mix, CQA mix, all individual TTs and most CQAs significantly increased dendritic arborization to greater than control levels. However, the TT + CQA combination significantly decreased dendritic arborization. In Drosophila, a marked age-related decline in fast phototaxis response was observed in both males and females over a 60 days period. However, resilience to this decline was afforded in both male and female flies by treatment from 28 days onwards with CAW (10 mg/mL), or equivalent concentrations of mixed TTs, mixed CQAs and a TT + CQA mix. Of all the individual compounds, only 1,5-diCQA slowed age-related decline in phototaxis in male and female flies. Discussion This study confirmed the ability of CAW to increase mouse neuronal dendritic arborization, and to provide resilience to age-related neurological decline in Drosophila. The TT and CQA components both contribute to these effects but do not have a synergistic effect. While individual TTs and most individual CQAs increased dendritic arborization at CAW equivalent concentrations, in the Drosophila model, only 1,5-diCQA was able to slow down the age-related decline in phototaxis. This suggests that combinations (or potentially higher concentrations) of the other compounds are needed to provide resilience in this model.
Collapse
Affiliation(s)
- Karon Rowe
- BENFRA Botanical Dietary Supplements Research Center, Oregon Health and Science University, Portland, OR, United States
- Oregon Institute of Occupational Health Sciences, Oregon Health and Science University, Portland, OR, United States
| | - Nora E. Gray
- BENFRA Botanical Dietary Supplements Research Center, Oregon Health and Science University, Portland, OR, United States
- Department of Neurology, Oregon Health and Science University, Portland, OR, United States
| | - Jonathan A. Zweig
- BENFRA Botanical Dietary Supplements Research Center, Oregon Health and Science University, Portland, OR, United States
- Department of Neurology, Oregon Health and Science University, Portland, OR, United States
| | - Alexander Law
- BENFRA Botanical Dietary Supplements Research Center, Oregon Health and Science University, Portland, OR, United States
- Oregon Institute of Occupational Health Sciences, Oregon Health and Science University, Portland, OR, United States
| | - Natascha Techen
- BENFRA Botanical Dietary Supplements Research Center, Oregon Health and Science University, Portland, OR, United States
- National Center for Natural Products Research, University of Mississippi, Oxford, MS, United States
| | - Claudia S. Maier
- BENFRA Botanical Dietary Supplements Research Center, Oregon Health and Science University, Portland, OR, United States
- Department of Chemistry, Oregon State University, Corvallis, OR, United States
- Linus Pauling Institute, Oregon State University, Corvallis, OR, United States
| | - Amala Soumyanath
- BENFRA Botanical Dietary Supplements Research Center, Oregon Health and Science University, Portland, OR, United States
- Department of Neurology, Oregon Health and Science University, Portland, OR, United States
| | - Doris Kretzschmar
- BENFRA Botanical Dietary Supplements Research Center, Oregon Health and Science University, Portland, OR, United States
- Oregon Institute of Occupational Health Sciences, Oregon Health and Science University, Portland, OR, United States
| |
Collapse
|
8
|
Junsai T, Tangpanithandee S, Srimangkornkaew P, Suknuntha K, Vivithanaporn P, Khemawoot P. Sub-chronic oral toxicity of a water-soluble extract of Centella asiatica (Centell-S) in Wistar rats. Food Chem Toxicol 2024; 185:114509. [PMID: 38336016 DOI: 10.1016/j.fct.2024.114509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 02/05/2024] [Accepted: 02/06/2024] [Indexed: 02/12/2024]
Abstract
BACKGROUND Centell-S, a water-soluble extract from Centella asiatica, is predominantly composed of madecassoside and asiaticoside, exceeding 80% w/w. Pursuing its development as an herbal medicinal product, Centell-S underwent sub-chronic toxicity assessment adhering to OECD GLP 408 standards. METHODS In a study involving 100 Wistar rats, varying doses of Centell-S (50, 200, or 800 mg/kg/day) or a vehicle control were administered orally over 90 days. To evaluate Centell-S's safety profile, assessments included clinical observations, health examinations, clinical biochemistry analyses, and detailed anatomical pathology evaluations were conducted. RESULTS Over the 90 days of treatment, the administration of Centell-S did not lead to any fatalities in the test animals. Clinical observations did not reveal any signs indicative of toxic effects. Notably, an increase in total white blood cell and lymphocyte counts was observed in both sexes, yet these levels returned to normal following a two-week discontinuation period post-treatment. CONCLUSIONS Under the specific conditions of the OECD GLP 408, Repeated Dose 90-day Oral Toxicity Study in Rodents, the no observed adverse effect level (NOAEL) of Centell-S was 800 mg/kg/day. These findings are promising for the continued development of Centell-S as a phytopharmaceutical for clinical applications.
Collapse
Affiliation(s)
- Thammaporn Junsai
- Chakri Naruebodindra Medical Institute, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Samutprakarn, Thailand
| | - Supawit Tangpanithandee
- Chakri Naruebodindra Medical Institute, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Samutprakarn, Thailand
| | | | - Kran Suknuntha
- Chakri Naruebodindra Medical Institute, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Samutprakarn, Thailand
| | - Pornpun Vivithanaporn
- Chakri Naruebodindra Medical Institute, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Samutprakarn, Thailand
| | - Phisit Khemawoot
- Chakri Naruebodindra Medical Institute, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Samutprakarn, Thailand.
| |
Collapse
|
9
|
Alcázar Magaña A, Vaswani A, Brown KS, Jiang Y, Alam MN, Caruso M, Lak P, Cheong P, Gray NE, Quinn JF, Soumyanath A, Stevens JF, Maier CS. Integrating High-Resolution Mass Spectral Data, Bioassays and Computational Models to Annotate Bioactives in Botanical Extracts: Case Study Analysis of C. asiatica Extract Associates Dicaffeoylquinic Acids with Protection against Amyloid-β Toxicity. Molecules 2024; 29:838. [PMID: 38398590 PMCID: PMC10892090 DOI: 10.3390/molecules29040838] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Revised: 02/07/2024] [Accepted: 02/12/2024] [Indexed: 02/25/2024] Open
Abstract
Rapid screening of botanical extracts for the discovery of bioactive natural products was performed using a fractionation approach in conjunction with flow-injection high-resolution mass spectrometry for obtaining chemical fingerprints of each fraction, enabling the correlation of the relative abundance of molecular features (representing individual phytochemicals) with the read-outs of bioassays. We applied this strategy for discovering and identifying constituents of Centella asiatica (C. asiatica) that protect against Aβ cytotoxicity in vitro. C. asiatica has been associated with improving mental health and cognitive function, with potential use in Alzheimer's disease. Human neuroblastoma MC65 cells were exposed to subfractions of an aqueous extract of C. asiatica to evaluate the protective benefit derived from these subfractions against amyloid β-cytotoxicity. The % viability score of the cells exposed to each subfraction was used in conjunction with the intensity of the molecular features in two computational models, namely Elastic Net and selectivity ratio, to determine the relationship of the peak intensity of molecular features with % viability. Finally, the correlation of mass spectral features with MC65 protection and their abundance in different sub-fractions were visualized using GNPS molecular networking. Both computational methods unequivocally identified dicaffeoylquinic acids as providing strong protection against Aβ-toxicity in MC65 cells, in agreement with the protective effects observed for these compounds in previous preclinical model studies.
Collapse
Affiliation(s)
- Armando Alcázar Magaña
- Department of Chemistry, Oregon State University, Corvallis, OR 97331, USA; (A.A.M.); (A.V.); (M.N.A.); (P.L.); (P.C.)
- BENFRA Botanical Dietary Supplements Research Center, Oregon Health & Science University, Portland, OR 97239, USA; (N.E.G.); (A.S.); (J.F.S.)
- Life Sciences Institute, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - Ashish Vaswani
- Department of Chemistry, Oregon State University, Corvallis, OR 97331, USA; (A.A.M.); (A.V.); (M.N.A.); (P.L.); (P.C.)
| | - Kevin S. Brown
- Department of Pharmaceutical Sciences, Oregon State University, Corvallis, OR 97331, USA;
- School of Chemical, Biological, and Environmental Engineering, Oregon State University, 116 Johnson Hall, 105 SW 26th Street, Corvallis, OR 97331, USA
| | - Yuan Jiang
- Department of Statistics, Oregon State University, Corvallis, OR 97331, USA;
| | - Md Nure Alam
- Department of Chemistry, Oregon State University, Corvallis, OR 97331, USA; (A.A.M.); (A.V.); (M.N.A.); (P.L.); (P.C.)
| | - Maya Caruso
- Department of Neurology, Oregon Health & Science University, Portland, OR 97239, USA; (M.C.); (J.F.Q.)
| | - Parnian Lak
- Department of Chemistry, Oregon State University, Corvallis, OR 97331, USA; (A.A.M.); (A.V.); (M.N.A.); (P.L.); (P.C.)
| | - Paul Cheong
- Department of Chemistry, Oregon State University, Corvallis, OR 97331, USA; (A.A.M.); (A.V.); (M.N.A.); (P.L.); (P.C.)
| | - Nora E. Gray
- BENFRA Botanical Dietary Supplements Research Center, Oregon Health & Science University, Portland, OR 97239, USA; (N.E.G.); (A.S.); (J.F.S.)
- Department of Neurology, Oregon Health & Science University, Portland, OR 97239, USA; (M.C.); (J.F.Q.)
| | - Joseph F. Quinn
- Department of Neurology, Oregon Health & Science University, Portland, OR 97239, USA; (M.C.); (J.F.Q.)
- Parkinson’s Disease Research Education and Clinical Care Center, Veterans’ Administration Portland Health Care System, Portland, OR 97239, USA
| | - Amala Soumyanath
- BENFRA Botanical Dietary Supplements Research Center, Oregon Health & Science University, Portland, OR 97239, USA; (N.E.G.); (A.S.); (J.F.S.)
- Department of Neurology, Oregon Health & Science University, Portland, OR 97239, USA; (M.C.); (J.F.Q.)
| | - Jan F. Stevens
- BENFRA Botanical Dietary Supplements Research Center, Oregon Health & Science University, Portland, OR 97239, USA; (N.E.G.); (A.S.); (J.F.S.)
- Department of Pharmaceutical Sciences, Oregon State University, Corvallis, OR 97331, USA;
- Linus Pauling Institute, Oregon State University, Corvallis, OR 97331, USA
| | - Claudia S. Maier
- Department of Chemistry, Oregon State University, Corvallis, OR 97331, USA; (A.A.M.); (A.V.); (M.N.A.); (P.L.); (P.C.)
- BENFRA Botanical Dietary Supplements Research Center, Oregon Health & Science University, Portland, OR 97239, USA; (N.E.G.); (A.S.); (J.F.S.)
- Linus Pauling Institute, Oregon State University, Corvallis, OR 97331, USA
| |
Collapse
|
10
|
P V, Mohanan M, U K S, E Pa S, U C A J. Graph Attention Network based mapping of knowledge relations between chemical spaces of Nuclear factor kappa B and Centella asiatica. Comput Biol Chem 2023; 107:107955. [PMID: 37734134 DOI: 10.1016/j.compbiolchem.2023.107955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 08/02/2023] [Accepted: 09/07/2023] [Indexed: 09/23/2023]
Abstract
The confounding nature of the innate immunity target Nuclear Factor kappa B (NF-κB) and its interaction with Centella asiatica (CA) molecules necessitate the intervention of advanced technologies, such as deep learning methods. The integration of chemical space concepts with deep learning technologies is a new way of knowledge mapping used to explore drug-target interactions, especially in molecular libraries derived from traditional medicine based molecular sources. The current constraint of virtual screening for mechanistic target hunting is the use of a binary classification model that includes active and inactive molecules from in vitro experiments to explore drug-target interaction. This study aims to explore the regulatory nature of the molecules from the inhibition and activation of the NF-κB bioassay data set and map this information for a knowledge-based analysis against the molecules of CA, a low-growing tropical plant. This finding has led to a new direction in the field, transitioning from the conventional active-inactive framework to a more comprehensive active-inactive-regulatory model. This approach can be thoroughly explored by leveraging a graph-based deep learning system. The study presents an innovative approach using a Graph Attention Network (GAT) to rank CA molecules in chemical space based on their similarity with NF-κB bioassay molecules, enabling the efficient analysis of complex relationships between molecules and their regulatory function. Graph Attention Network (GAT) overcomes the limitations of traditional deep learning models such as Convolutional Neural Network (CNN) and Recurrent Neural Network (RNN) in handling non-Euclidean graph data and allows for a more precise understanding of similarity ranking by utilizing molecular graphs and attention behavior. By measuring similarity and arranging a matrix of similarity ranking based on GAT, deep neural ranking-based algorithms confirmed the regulatory behaviour of an innate immunity target NF-κB with the support of underlying inverse mapping in the surjective chemical spaces of NF-κB bioassays and CA molecular spaces. Overall, the study introduces new techniques for exploring the regulatory behaviour of complex targets like NF-κB. We then used t-SNE for clustering in chemical space and scaffold hunting for scaffold property analysis and identified nine CA molecules that exhibit regulatory behavior of NF-κB target and are recommended for further investigation.
Collapse
Affiliation(s)
- Vivek P
- UL Research Center, UL Cyber Park Calicut, India
| | | | | | - Sandesh E Pa
- UL Research Center, UL Cyber Park Calicut, India
| | - Jaleel U C A
- OSPF-NIAS Drug DIscovery Lab, National Institute of Advanced Studies, Indian Institute of Science Campus, Bengaluru, India
| |
Collapse
|
11
|
Sabaragamuwa R, Perera CO. Total Triterpenes, Polyphenols, Flavonoids, and Antioxidant Activity of Bioactive Phytochemicals of Centella asiatica by Different Extraction Techniques. Foods 2023; 12:3972. [PMID: 37959090 PMCID: PMC10647812 DOI: 10.3390/foods12213972] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Revised: 10/27/2023] [Accepted: 10/28/2023] [Indexed: 11/15/2023] Open
Abstract
Obtaining phytochemical-rich plant extracts from natural products where the active ingredients are present in comparatively low levels in the tissue matrix is the critical initial step of any chemical analysis or bioactivity testing. The plant C. asiatica is rich in various phytochemicals, the major constituents being triterpenes and flavonoids, as well as other polyphenols, leading to a number of bioactivities. In this study, an attempt was made to achieve several green technology principles, while optimizing the extraction method for the efficient extraction of bioactive compounds from C. asiatica. Soxhlet extraction (SE), ultrasound-assisted extraction (UAE) with low-frequency sonication, microwave-assisted extraction (MAE) using a closed-vessel microwave digestion system, and subcritical water extraction (SWE) in a high-pressure reactor were employed to extract the bioactive compounds. The solvent system, extraction time, and solid-to-solvent ratio were varied to optimize the extraction. UAE gave the best extraction yield, while MAE gave similar results, with a solid-to-liquid ratio of 1:25, a binary solvent system of 9:1 methanol to water (v/v), and a 20 min extraction time for the extraction of triterpenes, including madecassoside, asiaticoside, madicassic acid, and asiatic acid. Investigation of different solvent systems based on water and methanol also revealed information on the extraction behavior of total triterpene content (TTC), total polyphenolic content (TPC), total flavonoid content (TFC), and the variations in the antioxidant capacity of the extracts. In this study, it was evident that UAE and MAE offer more efficient and effective extraction of bioactive compounds in terms of extraction yield, time, and minimal solvent and energy use. Furthermore, the results showed that the different solvent ratios in the extraction mixture will affect the extraction of bioactive compounds, and a binary solvent system with a combination of methanol and water was the most efficient for the studied compounds in Centella asiatica.
Collapse
Affiliation(s)
- Rasangani Sabaragamuwa
- Food Science Programme, School of Chemical Sciences, University of Auckland, Private Bag 92019, Auckland 1142, New Zealand;
- Department of Food Science and Microbiology, School of Science, Auckland University of Technology, Auckland 1142, New Zealand
| | - Conrad O. Perera
- Food Science Programme, School of Chemical Sciences, University of Auckland, Private Bag 92019, Auckland 1142, New Zealand;
| |
Collapse
|
12
|
Alcalde MA, Palazon J, Bonfill M, Hidalgo-Martinez D. Enhancing Centelloside Production in Centella asiatica Hairy Root Lines through Metabolic Engineering of Triterpene Biosynthetic Pathway Early Genes. PLANTS (BASEL, SWITZERLAND) 2023; 12:3363. [PMID: 37836103 PMCID: PMC10574710 DOI: 10.3390/plants12193363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 09/20/2023] [Accepted: 09/22/2023] [Indexed: 10/15/2023]
Abstract
Centella asiatica is a medicinal plant with a rich tradition of use for its therapeutic properties. Among its bioactive compounds are centellosides, a group of triterpenoid secondary metabolites whose potent pharmacological activities have attracted significant attention. Metabolic engineering has emerged as a powerful biotechnological tool to enhance the production of target compounds. In this study, we explored the effects of overexpressing the squalene synthase (SQS) gene and transcription factor TSAR2 on various aspects of C. asiatica hairy root lines: the expression level of centelloside biosynthetic genes, morphological traits, as well as squalene, phytosterol, and centelloside content. Three distinct categories of transformed lines were obtained: LS, harboring At-SQS; LT, overexpressing TSAR2; and LST, simultaneously carrying both transgenes. These lines displayed noticeable alterations in morphological traits, including changes in branching rate and biomass production. Furthermore, we observed that the expression of T-DNA genes, particularly aux2 and rolC genes, significantly modulated the expression of pivotal genes involved in centelloside biosynthesis. Notably, the LS lines boasted an elevated centelloside content but concurrently displayed reduced phytosterol content, a finding that underscores the intriguing antagonistic relationship between phytosterol and triterpene pathways. Additionally, the inverse correlation between the centelloside content and morphological growth values observed in LS lines was countered by the action of TSAR2 in the LST and LT lines. This difference could be attributed to the simultaneous increase in the phytosterol content in the TSAR2-expressing lines, as these compounds are closely linked to root development. Overall, these discoveries offer valuable information for the biotechnological application of C. asiatica hairy roots and their potential to increase centelloside production.
Collapse
Affiliation(s)
- Miguel Angel Alcalde
- Department of Biology, Healthcare and the Environment, Faculty of Pharmacy and Food Sciences, University of Barcelona, 08028 Barcelona, Spain; (M.A.A.); (M.B.)
- Biotechnology, Health and Education Research Group, Posgraduate School, Cesar Vallejo University, Trujillo 13001, Peru
| | - Javier Palazon
- Department of Biology, Healthcare and the Environment, Faculty of Pharmacy and Food Sciences, University of Barcelona, 08028 Barcelona, Spain; (M.A.A.); (M.B.)
| | - Mercedes Bonfill
- Department of Biology, Healthcare and the Environment, Faculty of Pharmacy and Food Sciences, University of Barcelona, 08028 Barcelona, Spain; (M.A.A.); (M.B.)
| | - Diego Hidalgo-Martinez
- Department of Biology, Healthcare and the Environment, Faculty of Pharmacy and Food Sciences, University of Barcelona, 08028 Barcelona, Spain; (M.A.A.); (M.B.)
| |
Collapse
|
13
|
Theerawitaya C, Praseartkul P, Taota K, Tisarum R, Samphumphuang T, Singh HP, Cha-Um S. Investigating high throughput phenotyping based morpho-physiological and biochemical adaptations of indian pennywort (Centella asiatica L. urban) in response to different irrigation regimes. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2023; 202:107927. [PMID: 37544120 DOI: 10.1016/j.plaphy.2023.107927] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 07/03/2023] [Accepted: 08/01/2023] [Indexed: 08/08/2023]
Abstract
Indian pennywort (Centella asiatica L. Urban; Apiaceae) is a herbaceous plant used as traditional medicine in several regions worldwide. An adequate supply of fresh water in accordance with crop requirements is an important tool for maintaining the productivity and quality of medicinal plants. The objective of this study was to find a suitable irrigation schedule for improving the morphological and physiological characteristics, and crop productivity of Indian pennywort using high-throughput phenotyping. Four treatments were considered based on irrigation schedules (100, 75, 50, and 25% of field capacity denoted by I100 [control], I75, I50, and I25, respectively). The number of leaves, plant perimeter, plant volume, and shoot dry weight were sustained in I75 irrigated plants, whereas adverse effects on plant growth parameters were observed when plants were subjected to I25 irrigation for 21 days. Leaf temperature (Tleaf) was also retained in I75 irrigated plants, when compared with control. An increase of 2.0 °C temperature was detected in the Tleaf of plants under I25 irrigation treatment when compared with control. The increase in Tleaf was attributed to a decreased transpiration rate (R2 = 0.93), leading to an elevated crop water stress index. Green reflectance and leaf greenness remained unchanged in plants under I75 irrigation, while significantly decreased under I50 and I25 irrigation. These decreases were attributed to declined leaf osmotic potential, increased non-photochemical quenching, and inhibition of net photosynthetic rate (Pn). The asiatic acid and total centellosides in the leaf tissues, and centellosides yield of plants under I75 irrigation were retained when compared with control, while these parameters were regulated to maximal when exposed to I50 irrigation. Based on the results, I75 irrigation treatment was identified as the optimum irrigation schedule for Indian pennywort in terms of sustained biomass and a stable total centellosides. However, further validation in the field trials at multiple locations and involving different crop rotations is recommended to confirm these findings.
Collapse
Affiliation(s)
- Cattarin Theerawitaya
- National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), Khlong Luang, Pathum Thani, 12120, Thailand
| | - Patchara Praseartkul
- National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), Khlong Luang, Pathum Thani, 12120, Thailand
| | - Kanyarat Taota
- National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), Khlong Luang, Pathum Thani, 12120, Thailand
| | - Rujira Tisarum
- National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), Khlong Luang, Pathum Thani, 12120, Thailand
| | - Thapanee Samphumphuang
- National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), Khlong Luang, Pathum Thani, 12120, Thailand
| | - Harminder Pal Singh
- Department of Environment Studies, Faculty of Science, Panjab University, Chandigarh, 160014, India
| | - Suriyan Cha-Um
- National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), Khlong Luang, Pathum Thani, 12120, Thailand.
| |
Collapse
|
14
|
Jo H, Lim K, Ibal JC, Kim MC, Kim HB, Baek C, Heo YM, Lee H, Kang S, Lee DG, Shin JH. Growth Increase in the Herbaceous Plant Centella asiatica by the Plant Growth-Promoting Rhizobacteria Priestia megaterium HyangYak-01. PLANTS (BASEL, SWITZERLAND) 2023; 12:2398. [PMID: 37446960 DOI: 10.3390/plants12132398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 06/13/2023] [Accepted: 06/15/2023] [Indexed: 07/15/2023]
Abstract
Centella asiatica is a traditional herbaceous plant with numerous beneficial effects, widely known for its medicinal and cosmetic applications. Maximizing its growth can lead to beneficial effects, by focusing on the use of its active compounds. The use of plant growth-promoting rhizobacteria (PGPR) is known to be an alternative to chemical fertilizers. In this study, we used the PGPR Priestia megaterium HY-01 to increase the yield of C. asiatica. In vitro assays showed that HY-01 exhibited plant growth-promoting activities (IAA production, denitrification, phosphate solubilization, and urease activity). Genomic analyses also showed that the strain has plant growth-promoting-related genes that corroborate with the different PGP activities found in the assays. This strain was subsequently used in field experiments to test its effectiveness on the growth of C. asiatica. After four months of application, leaf and root samples were collected to measure the plant growth rate. Moreover, we checked the rhizosphere microbiome between the treated and non-treated plots. Our results suggest that treatment with Hyang-yak-01 not only improved the growth of C. asiatica (leaf length, leaf weight, leaf width, root length, root width, and chlorophyll content) but also influenced the rhizosphere microbiome. Biodiversity was higher in the treated group, and the bacterial composition was also different from the control group.
Collapse
Affiliation(s)
- HyungWoo Jo
- COSMAX BTI, R&I Center, Seongnam 13486, Republic of Korea
- Department of Microbiology, Dankook University, Cheonan 31116, Republic of Korea
| | - Kyeongmo Lim
- Department of Applied Biosciences, Kyungpook National University, Daehak-ro 80, Daegu 41566, Republic of Korea
| | - Jerald Conrad Ibal
- NGS Core Facility, Kyungpook National University, Daehak-ro 80, Daegu 41566, Republic of Korea
| | - Min-Chul Kim
- NGS Core Facility, Kyungpook National University, Daehak-ro 80, Daegu 41566, Republic of Korea
| | - Hye-Been Kim
- COSMAX BTI, R&I Center, Seongnam 13486, Republic of Korea
| | - Chaeyun Baek
- COSMAX BTI, R&I Center, Seongnam 13486, Republic of Korea
| | - Young Mok Heo
- COSMAX BTI, R&I Center, Seongnam 13486, Republic of Korea
| | - Haeun Lee
- COSMAX BTI, R&I Center, Seongnam 13486, Republic of Korea
| | - Seunghyun Kang
- COSMAX BTI, R&I Center, Seongnam 13486, Republic of Korea
| | - Dong-Geol Lee
- COSMAX BTI, R&I Center, Seongnam 13486, Republic of Korea
- Department of Microbiology, Dankook University, Cheonan 31116, Republic of Korea
| | - Jae-Ho Shin
- Department of Applied Biosciences, Kyungpook National University, Daehak-ro 80, Daegu 41566, Republic of Korea
- NGS Core Facility, Kyungpook National University, Daehak-ro 80, Daegu 41566, Republic of Korea
- Department of Integrative Biotechnology, Kyungpook National University, Daehak-ro 80, Daegu 41566, Republic of Korea
| |
Collapse
|
15
|
Zhang X, Chen B, Xie Y, Hu Y, Niu Z, He Z, Wang L, Zhang G, Wang M, Hu W, Li F. Phenolic compounds from the flowers of Rosa hugonis Hemsl. and their neuroprotective effects. PHYTOCHEMISTRY 2023; 208:113589. [PMID: 36669693 DOI: 10.1016/j.phytochem.2023.113589] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 01/16/2023] [Accepted: 01/16/2023] [Indexed: 06/17/2023]
Abstract
The fragrant flowers of Rosa hugonis Hemsl. Contain abundant valuable rose oil and carotenoids. However, phytochemical investigation of this resource rich in phenolics with neuroprotective activity in vitro has been rarely reported. Purification of the 70% ethanol extracts from the flowers of R. hugonis by various chromatographic methods resulted in the isolation and characterization of five undescribed acylated flavonoid glycosides (Hugonisflavonoid A-E) together with forty known phenolics. The chemical structures of the undescribed compounds were elucidated by extensive analysis of their spectroscopic data and chemical methods. All the isolates were found from R. hugonis for the first time and evaluated for their neuroprotective effects on 6-OHDA induced injury in PC12 cells. Seventeen compounds displayed remarkable protective effects at concentrations of 10 μM. Hugonisflavonoid E can reduce excessive reactive oxygen species and up-regulate mRNA expression levels of superoxide dismutase 1 and catalase. Additionally, hugonisflavonoid E activated the phosphorylated proteins such as PDK1, Akt and GSk-3β. These findings suggested that R. hugonis could be a potential source for neuroprotective agents.
Collapse
Affiliation(s)
- Xia Zhang
- Natural Products Research Center, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, 610041, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Bin Chen
- Natural Products Research Center, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, 610041, China
| | - Yuan Xie
- Jiangsu Collaborative Innovation Center of Regional Modern Agriculture & Environmental Protection/Jiangsu Key Laboratory for Eco-Agricultural Biotechnology Around Hongze Lake, Huaiyin Normal University, Huaian, 223300, China
| | - Yeye Hu
- Jiangsu Collaborative Innovation Center of Regional Modern Agriculture & Environmental Protection/Jiangsu Key Laboratory for Eco-Agricultural Biotechnology Around Hongze Lake, Huaiyin Normal University, Huaian, 223300, China
| | - Zhiqiang Niu
- Jiangsu Collaborative Innovation Center of Regional Modern Agriculture & Environmental Protection/Jiangsu Key Laboratory for Eco-Agricultural Biotechnology Around Hongze Lake, Huaiyin Normal University, Huaian, 223300, China
| | - Ziliang He
- Jiangsu Collaborative Innovation Center of Regional Modern Agriculture & Environmental Protection/Jiangsu Key Laboratory for Eco-Agricultural Biotechnology Around Hongze Lake, Huaiyin Normal University, Huaian, 223300, China
| | - Lun Wang
- Natural Products Research Center, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, 610041, China
| | - Guolin Zhang
- Natural Products Research Center, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, 610041, China
| | - Mingkui Wang
- Natural Products Research Center, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, 610041, China
| | - Weicheng Hu
- Medical College, Yangzhou University, Yangzhou, 225001, China.
| | - Fu Li
- Natural Products Research Center, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, 610041, China.
| |
Collapse
|
16
|
Biotechnological and endophytic-mediated production of centellosides in Centella asiatica. Appl Microbiol Biotechnol 2023; 107:473-489. [PMID: 36481800 DOI: 10.1007/s00253-022-12316-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 11/23/2022] [Accepted: 11/24/2022] [Indexed: 12/13/2022]
Abstract
In vitro culture of a plant cell, tissue and organ is a marvellous, eco-friendly biotechnological strategy for the production of phytochemicals. With the emergence of recent biotechnological tools, genetic engineering is now widely practiced enhancing the quality and quantity of plant metabolites. Triterpenoid saponins especially asiaticoside and madecassoside of Centella asiatica (L.) Urb. are popularly known for their neuroprotective activity. It has become necessary to increase the production of asiaticoside and madecassoside because of their high pharmaceutical and industrial demand. Thus, the review aims to provide efficient biotechnological tools along with proper strategies. This review also included a comparative analysis of various carbon sources and biotic and abiotic elicitors. The vital roles of a variety of plant growth regulators and their combinations have also been evaluated at different in vitro growth stages of Centella asiatica. Selection of explants, direct and callus-mediated organogenesis, root organogenesis, somatic embryogenesis, synthetic seed production etc. are also highlighted in this study. In a nutshell, this review will present the research outcomes of different biotechnological interventions used to increase the yield of triterpenoid saponins in C. asiatica. KEY POINTS: • Critical and updated assessment on in vitro biotechnology in C. asiatica. • In vitro propagation of C. asiatica and elicitation of triterpenoid saponins production. • Methods for mass producing C. asiatica.
Collapse
|
17
|
Bioenhancing effects of piperine and curcumin on triterpenoid pharmacokinetics and neurodegenerative metabolomes from Centella asiatica extract in beagle dogs. Sci Rep 2022; 12:20789. [PMID: 36456663 PMCID: PMC9715946 DOI: 10.1038/s41598-022-24935-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Accepted: 11/22/2022] [Indexed: 12/02/2022] Open
Abstract
Centell-S is a water-soluble extract of Centella asiatica containing more than 80% w/w triterpenoid glycosides. Madecassoside and asiaticoside are two major components of the extract and can be converted into active metabolites, triterpenic acids in large mammal species. In this study, the pharmacokinetic profiles and metabolomic changes generated by the bioactive triterpenoids of Centell-S alone, and in combination with the bioenhancers piperine and curcumin, were investigated in beagle dogs. The test substances were orally administered over multiple doses for 7 consecutive days. At day 1 and 7 after receiving the test compounds, the level of major bioactive triterpenoids and related metabolites were measured using triple quadrupole and high-resolution accurate mass orbitrap models of LCMS to determine pharmacokinetic and metabolomic profiles, respectively. Centell-S was well tolerated, alone and in all combination groups. The combination of Centell-S and piperine significantly increased (p < 0.05) the systemic exposure of madecassoside on day 1 and asiatic acid on day 7, by approximately 1.5 to 3.0-fold of Cmax and AUC values as compared to the Centell-S alone, while the addition of curcumin did not provide a significant improvement. Several metabolomic changes were observed from pre-dose to 4 h post-dose, with some biomarkers of neurodegenerative diseases including L-glutamine, lysophosphatidylcholine (17:0), taurochenodeoxycholic acid, uric acid, stearic acid, palmitic acid, and lactic acid showing good correlation with the systemic exposure of the bioactive triterpenoids (asiatic acid). Thus, the combining of piperine to Centell-S exhibits the improvement of bioactive triterpenoids which are related to the biomarkers of neurodegenerative diseases. These promising results might be useful for the development of this standardised extract to become a more effective phytomedicine for neurodegenerative diseases.
Collapse
|
18
|
Paemanee A, Rattanabunyong S, Ketngamkum Y, Siriwaseree J, Pongpamorn P, Romyanon K, Tangphatsornruang S, Kuaprasert B, Choowongkomon K. Mass spectrometry and synchrotron-FTIR microspectroscopy reveal the anti-inflammatory activity of Bua Bok extracts. PHYTOCHEMICAL ANALYSIS : PCA 2022; 33:1086-1098. [PMID: 35790045 DOI: 10.1002/pca.3161] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2022] [Revised: 06/15/2022] [Accepted: 06/16/2022] [Indexed: 06/15/2023]
Abstract
INTRODUCTION Bua Bok or Centella asiatica (CA) is an Asian vegetable with anti-inflammatory benefits. Asiaticoside, asiatic acid, madecassoside and madecassic have been characterised as major active ingredients with a wide range of pharmacological advantages. In manufacturing processes, high-performance liquid chromatography (HPLC) and liquid chromatography-mass spectrometry (LCMS) are used to routinely determine the active compounds in raw materials. OBJECTIVES This research aims to explore anti-inflammatory properties, characterise metabolites and observe the biochemical changes of the inflammatory induced macrophages after pretreatment with the potential extracted fractions. METHODS Bua Bok leaf extracts were prepared. Macrophages were pretreated with non-toxic fractions to determine the anti-inflammatory action. Tentative metabolites of effective fractions were identified by LC-MS. Synchrotron fourier-transform infrared (S-FTIR) microspectroscopy was utilised to observe the biochemical change of the lipopolysaccharide (LPS)-induced cells after pretreatment with potential fractions. RESULTS Fractions of ethyl acetate, 30% and 100% ethanol highly increased the nitrile scavenging and suppressed the function of phospholipase A2 . Fractions of 70% and 100% ethanol strongly decreased nitric oxide production. The comparison of 39 chemical compounds was presented. The change of proteins was improved after pretreatment of macrophages with fraction 70% ethanol. Fraction of 100% ethanol revealed the lipid accumulation was lower than 70% ethanol and diclofenac. CONCLUSION While the anti-inflammatory actions of 70% and 100% ethanol were similar. S-FTIR expressed they inhibited inflammatory response with the distinct features of biomolecules. The S-FTIR, LC-MS and biological assay confidently provided the efficient strategies to inform the advantage of herbal extract on cellular organisation instead of a single compound.
Collapse
Affiliation(s)
- Atchara Paemanee
- National Omics Centre, National Science and Technology Development Agency (NSTDA), Pathum Thani, Thailand
| | | | - Yanisa Ketngamkum
- National Omics Centre, National Science and Technology Development Agency (NSTDA), Pathum Thani, Thailand
| | | | - Ponkanok Pongpamorn
- National Omics Centre, National Science and Technology Development Agency (NSTDA), Pathum Thani, Thailand
| | - Kanokwan Romyanon
- National Centre for Genetic Engineering and Biotechnology, National Science and Technology Development Agency (NSTDA), Pathum Thani, Thailand
| | | | - Buabarn Kuaprasert
- Research Facility Department, Synchrotron Light Research Institute (Public Organisation), Nakhon Ratchasima, Thailand
| | - Kiattawee Choowongkomon
- Department of Biochemistry, Faculty of Science, Kasetsart University, Bangkok, Thailand
- Centre for Advanced Studies in Nanotechnology for Chemical, Food and Agricultural Industries, KU Institute for Advanced Studies, Kasetsart University, Bangkok, Thailand
| |
Collapse
|
19
|
Recent trends in extraction, identification and quantification methods of Centella asiatica phytochemicals with potential applications in food industry and therapeutic relevance: A review. FOOD BIOSCI 2022. [DOI: 10.1016/j.fbio.2022.101864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
20
|
Choi YJ, Fan M, Wedamulla NE, Tang Y, Bae SM, Hwang JY, Kim EK. Inhibitory effects of Centella asiatica (L.) Urban on enlarged prostate through androgen receptor and PI3K/Akt signaling pathways. Food Funct 2022; 13:10235-10247. [PMID: 36124918 DOI: 10.1039/d2fo00841f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Centella asiatica (L.) Urban (C. asiatica) is a traditional herbal medicine that has been used for wound healing and anti-inflammation since ancient times. Various biological effects of C. asiatica ethanolic extract (CAE) were previously reported. However, in our previous study, C. asiatica aqueous extract (CAA) exhibited higher inhibitory activity on benign prostatic hyperplasia (BPH) than CAE. Therefore, the aim of this study was to investigate the effect of CAA on BPH, and elucidate the inhibitory mechanism through in vitro and in vivo experiments as well as metabolite analysis of CAA. A BPH rat model was induced by daily subcutaneous injection of testosterone propionate (TP, 3 mg kg-1) dissolved in corn oil for 4 weeks after castration. The experimental group, the CAA treatment group, was orally administered CAA (100 mg kg-1) for 4 weeks while inducing prostatic hyperplasia. Saw palmetto extract (Saw, 100 mg kg-1) and Finasteride (Fi, 1 mg kg-1) were used as positive controls and were administered orally for 4 weeks. CAA significantly inhibited androgen receptor signaling related factors overexpressed by dihydrotestosterone (DHT) treatment in prostate cell lines. Afterwards, the testosterone-induced BPH model was used to verify the alleviation efficacy of CAA in prostatic hyperplasia. Prostate size and the thickness of the prostate tissue epithelium were significantly decreased in the group treated with CAA compared to those in the BPH group. The results of protein expression in the prostate tissue confirmed that CAA inhibited androgen receptor signaling in BPH and decreased the expression of growth factors. Moreover, CAA suppressed the expression of the PI3K/Akt pathway and cell proliferation-related factors compared to the BPH group. Taken together, these results indicate that CAA improves the inhibitory efficacy of BPH by inhibiting the androgen receptor and PI3K/Akt pathways, suggesting that CAA may be a promising candidate for biopharmaceutical formulations of BPH.
Collapse
Affiliation(s)
- Young-Jin Choi
- Department of Food Science and Nutrition, Dong-A University, Busan 49315, Republic of Korea. .,Center for Silver-targeted Biomaterials, Brain Busan 21 Plus Program, Dong-A University, Busan 49315, Republic of Korea.,Department of Health Sciences, the Graduate School of Dong-A University, Busan 49315, Republic of Korea
| | - Meiqi Fan
- Division of Food Bioscience, College of Biomedical and Health Sciences, Konkuk University, Chungju 27478, Republic of Korea
| | - Nishala Erandi Wedamulla
- Department of Food Science and Nutrition, Dong-A University, Busan 49315, Republic of Korea. .,Center for Silver-targeted Biomaterials, Brain Busan 21 Plus Program, Dong-A University, Busan 49315, Republic of Korea.,Department of Health Sciences, the Graduate School of Dong-A University, Busan 49315, Republic of Korea.,Department of Export Agriculture, Faculty of Animal Science and Export Agriculture, Uva Wellassa University, Badulla 90000, Sri Lanka
| | - Yujiao Tang
- School of Bio-Science and Food Engineering, Changchun University of Science and Technology, Changchun 130600, China
| | - Sung Mun Bae
- Gyeongnam Agricultural Research and Extension Services, Jinju 52733, Korea
| | - Ji-Young Hwang
- Department of Food Science & Technology, Dong-Eui University, Busan 47340, Korea
| | - Eun-Kyung Kim
- Department of Food Science and Nutrition, Dong-A University, Busan 49315, Republic of Korea. .,Center for Silver-targeted Biomaterials, Brain Busan 21 Plus Program, Dong-A University, Busan 49315, Republic of Korea.,Department of Health Sciences, the Graduate School of Dong-A University, Busan 49315, Republic of Korea.,Center for Food & Bio Innovation, Dong-A University, Busan 49315, Korea
| |
Collapse
|
21
|
Ahmed IA, Mikail MA, Zamakshshari NH, Mustafa MR, Hashim NM, Othman R. Trends and challenges in phytotherapy and phytocosmetics for skin aging. Saudi J Biol Sci 2022; 29:103363. [PMID: 35813113 PMCID: PMC9260296 DOI: 10.1016/j.sjbs.2022.103363] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 05/23/2022] [Accepted: 06/20/2022] [Indexed: 11/26/2022] Open
Abstract
Free radicals, oxidative stress, and inflammation contribute to the etiology of most chronic diseases. Natural products can be incorporated into cosmetics, cosmeceuticals, and nutricosmetics to tackle inflammation-related diseases. The use of alternative green extraction solvents such as natural deep eutectic solvents and electrochemically reduced water is trending. Delivery systems are important for the enhancement of the bioavailability, stability, solubility, and controlled release profile of the bioactives.
Oxidative stress and inflammation mostly contribute to aging and age-related conditions including skin aging. The potential of natural products in the form of naturally-derived cosmetics, cosmeceuticals, and nutricosmetics have, however, not been fully harnessed. This review, thus, critically analyzes the potential roles of natural products in inflammation-related skin aging diseases due to the increasing consumers’ concerns and demands for efficacious, safe, natural, sustainable, and religiously permitted alternatives to synthetic products. The information and data were collated from various resources and literature databases such as PubMed, Science Direct, Wiley, Springer, Taylor and Francis, Scopus, Inflibnet, Google, and Google Scholar using relevant keywords and Medical Subject Headings (MeSH). The role of green extraction solvents as promising alternatives is also elucidated. The potential enhancements of the bioavailability, stability, solubility and controlled release profile of the bioactives using different delivery systems are also presented. The current potential global market value, motivators, drivers, trends, challenges, halal, and other regulatory certifications for cosmeceuticals and nutricosmetics are equally discussed. The adoption of the suggested extractions and delivery systems would enhance the stability, bioavailability, and target delivery of the bioactives.
Collapse
|
22
|
Srivastava V, Mathur D, Rout S, Mishra BK, Pannu V, Anand A, Anand A. Ayurvedic Herbal Therapies: A Review of Treatment and Management of Dementia. Curr Alzheimer Res 2022; 19:568-584. [PMID: 35929620 DOI: 10.2174/1567205019666220805100008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2021] [Revised: 04/18/2022] [Accepted: 04/26/2022] [Indexed: 01/27/2023]
Abstract
Dementia has been characterized by atypical neurological syndromes and several cognitive deficits, such as extended memory loss, strange behavior, unusual thinking, impaired judgment, impotence, and difficulty with daily living activities. Dementia is not a disease, but it is caused by several neurodegenerative diseases, such as Alzheimer's, Parkinson's, and Lewy's bodies. Several drugs and remedies are indicated for alleviating unusual cognitive decline, but no effective pharmacological treatment regimens are available without side effects. Herbal drugs or traditional medicines like Ayurveda have been known for facilitating and corroborating the balance between mind, brain, body, and environment. Ayurvedic therapy comprises 600 herbal formulas, 250 single plant remedies, and natural and holistic health-giving treatments that relieve dementia in patients and increase vitality. Ayurvedic Rasayana herbs [rejuvenating elements] strengthen the brain cells, enhance memory, and decrease stress. The current medicine scenario in the treatment of dementia has prompted the shift in exploring the efficacy of ayurvedic medicine, its safety, and its efficiency. This review presents the literature on several herbal treatments for improving dementia symptomatology and patients' quality of life.
Collapse
Affiliation(s)
- Vinod Srivastava
- College of Health and Behavioral Sciences, Fort Hays State University, Hays, Kansas 67601, USA
| | - Deepali Mathur
- Department of Neurology, Apollo Hospitals, Bhubaneswar, Odisha, India
| | - Soumyashree Rout
- Department of Neurology, Apollo Hospitals, Bhubaneswar, Odisha, India
| | | | - Viraaj Pannu
- Department of Internal Medicine, Jersey Shore University Medical Center, Neptune, New Jersey, USA
| | - Akshay Anand
- Neuroscience Research Lab, Department of Neurology, Postgraduate Institute of Medical Education and Research (PGIMER), Chandigarh, India
| | - Akshay Anand
- Neuroscience Research Lab, Department of Neurology, PGIMER, Chandigarh, India
| |
Collapse
|
23
|
Improved coverage of plant metabolites using powder laser desorption/ionization coupled with Fourier-transform ion cyclotron mass spectrometry. Food Chem 2022; 373:131541. [PMID: 34810014 DOI: 10.1016/j.foodchem.2021.131541] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2021] [Revised: 10/27/2021] [Accepted: 11/04/2021] [Indexed: 11/21/2022]
Abstract
In this study, the effectiveness of powder laser desorption/ionization (LDI) coupled with Fourier-transform ion cyclotron mass spectrometry (FT-ICR MS) was evaluated for the improved coverage of plant metabolites. Ground plant (powder) was fixed on a metal plate using double-sided tape. Compared with the conventional approach involving liquid extraction, which is followed by electrospray ionization MS analysis, a smaller amount of sample (∼200 µg) was required in the proposed method. Additionally, the laborious steps of liquid extraction, concentration, and solid-phase extraction were avoided. Employing the proposed method in Centella asiatica leaves analysis, higher number of reproducible molecular formulas (>5000) and metabolites (>650) were obtained than the conventional methods. Flavonoids, phenolic acids, xanthones, lipids, carbohydrates, terpenoids, and alkaloids compounds were detected from leaves, stems, and roots of C. asiatica. This study indicates that LDI FT-ICR MS is a quick and effective tool for enhanced plant metabolite profiling in the solid phase.
Collapse
|
24
|
Buapratoom A, Wanasuntronwong A, Khongsombat O, Tantisira MH. Anti-nociceptive effects of ECa 233 a standardized extract of Centella asiatica (L.) Urban on chronic neuropathic orofacial pain in mice. JOURNAL OF ETHNOPHARMACOLOGY 2022; 283:114737. [PMID: 34648902 DOI: 10.1016/j.jep.2021.114737] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2021] [Revised: 09/30/2021] [Accepted: 10/09/2021] [Indexed: 06/13/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE ECa 233 is a standardized extract of Centella asiatica (L.) Urban, a herb traditionally used to treat a number of diseases including neurological disorders. Accordingly, ECa 233 showed benefits on animal models of cognitive deficits, chronic stress and Parkinson's disease. Analgesic activity of ECa 233 was shown in Tail's flick test in rodent and relieving aphthous ulcer pain in man. Moreover, acute and sub-chronic toxicity testing in rodents and pharmacokinetic study in healthy volunteers, clinical trial phase I demonstrated good safety profiles of ECa 233. AIM OF THE STUDY This study aims to evaluate the anti-nociceptive effects of ECa 233 and its synergistic effect with gabapentin on chronic neuropathic orofacial pain after 3 weeks infraorbital nerve chronic constriction injury in mice. The peripheral and central nociceptive activities are also examined. MATERIALS AND METHODS Chronic neuropathic orofacial pain was induced by 3 weeks infraorbital nerve chronic constriction injury. Mice were treated with ECa 233 (30, 100 and 300 mg/kg) and gabapentin (10 mg/kg) by oral gavage starting on day 21 and going on for 14 consecutive days. Mechanical hyperalgesia and allodynia were measured on day 7, 14, 21, 28 and 35 after infraorbital nerve chronic constriction injury. At the end of the experiment, mice were observed for the sedative effect using the locomotor activity, the calcitonin gen-related peptide in trigeminal ganglion and c-fos expression in trigeminal nucleus caudalis were investigated after euthanasia. RESULTS Infraorbital nerve chronic constriction injury gradually induced marked ipsilateral mechanical hyperalgesia and allodynia. The maximum hyperalgesia and allodynia response presented on day 21 and the response was remained constant until day 35. Treatment with either 300 mg/kg ECa 233 or 10 mg/kg gabapentin were able to attenuate mechanical hyperalgesia and allodynia. The downregulation of calcitonin gen-related peptide on ipsilateral trigeminal ganglion were observed in ECa 233 at 100 and 300 mg/kg and 10 mg/kg gabapentin-treated groups. The c-fos expression on ipsilateral trigeminal nucleus caudalis was also decreased in 300 mg/kg ECa 233 and 10 mg/kg gabapentin-treated groups. CONCLUSION ECa 233 reduced hyperalgesia and allodynia by modulating the peripheral calcitonin gen-related peptide expression consequently alleviate the nociceptive activity in trigeminal nucleus caudalis. Further clinical trial to proof ECa 233's efficacy in neuropathic pain in man as well as possible attributable mechanism of action should be further investigated.
Collapse
Affiliation(s)
- Ananya Buapratoom
- Department of Physiology, Faculty of Medical Science, Naresuan University, Phitsanulok, Thailand.
| | - Aree Wanasuntronwong
- Department of Oral Biology, Faculty of Dentistry, Mahidol University, Bangkok, Thailand.
| | - Onrawee Khongsombat
- Department of Physiology, Faculty of Medical Science, Naresuan University, Phitsanulok, Thailand; The Center of Excellence for Innovation in Chemistry (PERCH-CIC), Ministry of Higher Education, Science, Research and Innovation, Thailand.
| | - Mayuree H Tantisira
- Division of Pharmacology, Faculty of Pharmaceutical Sciences, Burapha University, Chonburi, Thailand.
| |
Collapse
|
25
|
Rajeshkumar RR, Kumar BK, Parasuraman P, Panneerselvam T, Sundar K, Ammunje DN, Ram Kumar Pandian S, Murugesan S, Kabilan SJ, Kunjiappan S. Graph theoretical network analysis, in silico exploration, and validation of bioactive compounds from Cynodon dactylon as potential neuroprotective agents against α-synuclein. BIOIMPACTS : BI 2022; 12:487-499. [PMID: 36644543 PMCID: PMC9809135 DOI: 10.34172/bi.2022.24113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 03/13/2022] [Accepted: 05/10/2022] [Indexed: 11/06/2022]
Abstract
Introduction: Parkinson's disease (PD) is a chronic, devastating neurodegenerative disorder marked by the death of dopaminergic neurons in the midbrain's substantia nigra pars compacta (Snpc). In alpha-synuclein (α-Syn) self-aggregation, the existence of intracytoplasmic inclusion bodies called Lewy bodies (LBs) and Lewy neurites (LNs) causes PD, which is a cause of neuronal death. Methods: The present study is aimed at finding potential bioactive compounds from Cynodon dectylon that can degrade α-Syn aggregation in the brain, through in silico molecular docking investigations. Graph theoretical network analysis was used to identify the bioactive compounds that target α-Syn and decipher their network as a graph. From the data repository, twenty-nine bioactive chemicals from C. dactylon were chosen and their structures were retrieved from Pubchem. On the basis of their docking scores and binding energies, significant compounds were chosen for future investigation. The in silico prediction of chosen compounds, and their pharmacokinetic and physicochemical parameters were utilized to confirm their drug-likeness profile. Results: During molecular docking investigation the bioactive compounds vitexin (-7.3 kcal.mol-1) and homoorientin (-7.1 kcal.mol-1) showed significant binding energy against the α-Syn target protein. A computer investigation of molecular dynamics simulation study verifies the stability of the α-Syn-ligand complex. The intermolecular interactions assessed by the dynamic conditions indicate that the bioactive compound vitexin has the potency to prevent α-Syn aggregation. Conclusion: Interestingly, the observed results indicate that vitexin is a potential lead compound against α-Syn aggregation, and in vitro and in vivo studies are warranted to confirm the promising therapeutic capability.
Collapse
Affiliation(s)
- Raja Rajeswari Rajeshkumar
- Department of Biotechnology, Kalasalingam Academy of Research and Education, Krishnankoil-626126, Tamil Nadu, India
| | - Banoth Karan Kumar
- Medicinal Chemistry Research Laboratory, Department of Pharmacy, Birla Institute of Technology & Science Pilani, Pilani Campus, Vidya Vihar, Pilani-333031, Rajasthan, India
| | - Pavadai Parasuraman
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, M.S. Ramaiah University of Applied Sciences, M S R Nagar, Bengaluru-560054, Karnataka, India
| | - Theivendren Panneerselvam
- Department of Pharmaceutical Chemistry, Swamy Vivekanandha College of Pharmacy, Elayampalayam, Tiruchengodu-637205, Tamil Nadu, India
| | - Krishnan Sundar
- Department of Biotechnology, Kalasalingam Academy of Research and Education, Krishnankoil-626126, Tamil Nadu, India
| | - Damodar Nayak Ammunje
- Department of Pharmacology, Faculty of Pharmacy, M.S. Ramaiah University of Applied Sciences, M S R Nagar, Bengaluru-560054, Karnataka, India
| | - Sureshbabu Ram Kumar Pandian
- Department of Biotechnology, Kalasalingam Academy of Research and Education, Krishnankoil-626126, Tamil Nadu, India
| | - Sankaranarayanan Murugesan
- Medicinal Chemistry Research Laboratory, Department of Pharmacy, Birla Institute of Technology & Science Pilani, Pilani Campus, Vidya Vihar, Pilani-333031, Rajasthan, India
| | | | - Selvaraj Kunjiappan
- Department of Biotechnology, Kalasalingam Academy of Research and Education, Krishnankoil-626126, Tamil Nadu, India
,Corresponding author: Selvaraj Kunjiappan,
| |
Collapse
|
26
|
Halder S, Anand U, Nandy S, Oleksak P, Qusti S, Alshammari EM, El-Saber Batiha G, Koshy EP, Dey A. Herbal drugs and natural bioactive products as potential therapeutics: A review on pro-cognitives and brain boosters perspectives. Saudi Pharm J 2021; 29:879-907. [PMID: 34408548 PMCID: PMC8363108 DOI: 10.1016/j.jsps.2021.07.003] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2021] [Accepted: 07/04/2021] [Indexed: 12/25/2022] Open
Abstract
Memory, one of the most vital aspects of the human brain, is necessary for the effective survival of an individual. 'Memory' can be defined in various ways but in an overall view, memory is the retention of the information that the brain grasps. Different factors are responsible for the disbalance in the brain's hippocampus region and the acetylcholine level, which masters the memory and cognitive functions. Plants are a source of pharmacologically potent drug molecules of high efficacy. Recently herbal medicine has evolved rapidly, gaining great acceptance worldwide due to their natural origin and fewer side effects. In this review, the authors have discussed the mechanisms and pharmacological action of herbal bioactive compounds to boost memory. Moreover, this review presents an update of different herbs and natural products that could act as memory enhancers and how they can be potentially utilized in the near future for the treatment of severe brain disorders. In addition, the authors also discuss the differences in biological activity of the same herb and emphasize the requirement for a higher standardization in cultivation methods and plant processing. The demand for further studies evaluating the interactions of herbal drugs is mentioned.
Collapse
Affiliation(s)
- Swati Halder
- Department of Life Sciences, Presidency University, 86/1 College Street, Kolkata 700073, West Bengal, India
| | - Uttpal Anand
- Department of Molecular and Cellular Engineering, Jacob Institute of Biotechnology and Bioengineering, Sam Higginbottom University of Agriculture, Technology and Sciences, Prayagraj 211007, Uttar Pradesh, India
| | - Samapika Nandy
- Department of Life Sciences, Presidency University, 86/1 College Street, Kolkata 700073, West Bengal, India
| | - Patrik Oleksak
- Department of Chemistry, Faculty of Science, University of Hradec Kralove, 50003 Hradec Kralove, Czech Republic
| | - Safaa Qusti
- Biochemistry Department, Faculty of Science, king Abdulaziz University, Jeddah, Saudi Arabia
| | - Eida M. Alshammari
- Department of Chemistry, College of Sciences, University of Ha’il, Ha’il, Saudi Arabia
| | - Gaber El-Saber Batiha
- Department of Pharmacology and Therapeutics, Faculty of Veterinary Medicine, Damanhour University, Damanhour 22511, AlBeheira, Egypt
| | - Eapen P. Koshy
- Department of Molecular and Cellular Engineering, Jacob Institute of Biotechnology and Bioengineering, Sam Higginbottom University of Agriculture, Technology and Sciences, Prayagraj 211007, Uttar Pradesh, India
| | - Abhijit Dey
- Department of Life Sciences, Presidency University, 86/1 College Street, Kolkata 700073, West Bengal, India
| |
Collapse
|
27
|
Wong JH, Barron AM, Abdullah JM. Mitoprotective Effects of Centella asiatica (L.) Urb.: Anti-Inflammatory and Neuroprotective Opportunities in Neurodegenerative Disease. Front Pharmacol 2021; 12:687935. [PMID: 34267660 PMCID: PMC8275827 DOI: 10.3389/fphar.2021.687935] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Accepted: 06/17/2021] [Indexed: 11/13/2022] Open
Abstract
Natural products remain a crucial source of drug discovery for accessible and affordable solutions for healthy aging. Centella asiatica (L.) Urb. (CA) is an important medicinal plant with a wide range of ethnomedicinal uses. Past in vivo and in vitro studies have shown that the plant extract and its key components, such as asiatic acid, asiaticoside, madecassic acid and madecassoside, exhibit a range of anti-inflammatory, neuroprotective, and cognitive benefits mechanistically linked to mitoprotective and antioxidant properties of the plant. Mitochondrial dysfunction and oxidative stress are key drivers of aging and neurodegenerative disease, including Alzheimer’s disease and Parkinson’s disease. Here we appraise the growing body of evidence that the mitoprotective and antioxidative effects of CA may potentially be harnessed for the treatment of brain aging and neurodegenerative disease.
Collapse
Affiliation(s)
- Jia Hui Wong
- Neurobiology of Aging and Disease Laboratory, Lee Kong Chian School of Medicine, Nanyang Technological University Singapore, Singapore
| | - Anna M Barron
- Neurobiology of Aging and Disease Laboratory, Lee Kong Chian School of Medicine, Nanyang Technological University Singapore, Singapore
| | - Jafri Malin Abdullah
- Department of Neurosciences, School of Medical Sciences, Universiti Sains Malaysia, Kota Bharu, Malaysia.,Brain & Behaviour Cluster and Department of Neurosciences, School of Medical Sciences, Universiti Sains Malaysia, Kota Bharu, Malaysia
| |
Collapse
|
28
|
Venkatasubbaiah R, Jha PK, Sanjay KR. Centella asiatica crop residue fabricated silver nanoparticles as potent antioxidant agents in photo-catalytic degradation of hazardous dyes. CHEM ENG COMMUN 2021. [DOI: 10.1080/00986445.2021.1931146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Affiliation(s)
- Rashmi Venkatasubbaiah
- Department of Biotechnology, Sri Jayachamarajendra College of Engineering, JSS Science and Technology University, Mysuru, Karnataka, India
| | - Prakash Kumar Jha
- Department of Biotechnology, Sri Jayachamarajendra College of Engineering, JSS Science and Technology University, Mysuru, Karnataka, India
| | - Konasur Rajesh Sanjay
- Department of Biotechnology, Sri Jayachamarajendra College of Engineering, JSS Science and Technology University, Mysuru, Karnataka, India
| |
Collapse
|
29
|
Idris FN, Mohd Nadzir M. Comparative Studies on Different Extraction Methods of Centella asiatica and Extracts Bioactive Compounds Effects on Antimicrobial Activities. Antibiotics (Basel) 2021; 10:antibiotics10040457. [PMID: 33920563 PMCID: PMC8073564 DOI: 10.3390/antibiotics10040457] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Revised: 04/07/2021] [Accepted: 04/16/2021] [Indexed: 11/16/2022] Open
Abstract
The interest of consumers in using products containing phytochemicals derived from plants is growing day by day due to the shift of consumers' preferences from convenience to environmental sustainability. One plant utilized in many products is Centella asiatica, a herb commonly used in folk medicine, health supplements, and beauty products. Extraction of bioactive compounds from C. asiatica was performed using conventional methods and modern methods (e.g., microwave or ultrasound-assisted and subcritical water extraction). This review summarizes the variety of methods used to extract active compounds from C. asiatica, their influence on the bioactive compounds and antimicrobial activity in vitro and in vivo, and the safety and toxicology of C. asiatica extract.
Collapse
|
30
|
Lawal OM, Wakel F, Dekker M. Consumption of fresh Centella asiatica improves short term alertness and contentedness in healthy females. J Funct Foods 2021. [DOI: 10.1016/j.jff.2020.104337] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
|
31
|
Wu ZW, Li WB, Zhou J, Liu X, Wang L, Chen B, Wang MK, Ji L, Hu WC, Li F. Oleanane- and Ursane-Type Triterpene Saponins from Centella asiatica Exhibit Neuroprotective Effects. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:6977-6986. [PMID: 32502339 DOI: 10.1021/acs.jafc.0c01476] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Six new pentacyclic triterpenoid saponins, centelloside F (1), centelloside G (2), 11-oxo-asiaticoside B (3), 11-oxo-madecassoside (4), 11(β)-methoxy asiaticoside B (5), and 11(β)-methoxy madecassoside (6), along with seven known ones, asiaticoside (7), asiaticoside B (8), madecassoside (9), centellasaponin A (10), isoasiaticoside (11), scheffoleoside A (12), and centelloside E (13), were separated from the 80% MeOH extract of the whole plant of Centella asiatica, which has been used as a medicinal plant and is now commercially available as a diatery supplement in many countries. Compounds 1 and 2, 3 and 4, and 5 and 6 are three pairs of isomers with oleanane- or ursane-type triterpenes as aglycones. The chemical structures of the new triterpene saponins were fully characterized by extensive analysis of their nuclear magnetic resonance and high-resolution electrospray ionization mass spectrometry data. The protective effects of compounds 1-13 on PC12 cells induced by 6-OHDA were screened, and compound 3 displayed the best neuroprotective effect, with 91.75% cell viability at the concentration of 100 μM. Moreover, compound 3 also attenuated cell apoptosis and increased the mRNA expression of antioxidant enzymes, including superoxide dismutase and catalase. Additionally, compound 3 activated the phosphatidylinositol 3-kinase/Akt pathway, including PDK1, Akt, and GSK-3β. These findings suggested that triterpene saponins from C. asiatica were worthy of further biological research to develop new neuroprotective agents.
Collapse
Affiliation(s)
- Zhou-Wei Wu
- Natural Products Research Center, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, Sichuan 610041, People's Republic of China
| | - Wei-Bo Li
- Jiangsu Collaborative Innovation Center of Regional Modern Agriculture & Environmental Protection/Jiangsu Key Laboratory for Eco-Agricultural Biotechnology around Hongze Lake, Huaiyin Normal University, Huai'an, Jiangsu 223300, People's Republic of China
| | - Jing Zhou
- Jiangsu Collaborative Innovation Center of Regional Modern Agriculture & Environmental Protection/Jiangsu Key Laboratory for Eco-Agricultural Biotechnology around Hongze Lake, Huaiyin Normal University, Huai'an, Jiangsu 223300, People's Republic of China
| | - Xin Liu
- Technical Center of Beijing Customs District, Beijing 100026, People's Republic of China
| | - Lun Wang
- Natural Products Research Center, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, Sichuan 610041, People's Republic of China
| | - Bin Chen
- Natural Products Research Center, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, Sichuan 610041, People's Republic of China
| | - Ming-Kui Wang
- Natural Products Research Center, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, Sichuan 610041, People's Republic of China
| | - Lilian Ji
- Jiangsu Collaborative Innovation Center of Regional Modern Agriculture & Environmental Protection/Jiangsu Key Laboratory for Eco-Agricultural Biotechnology around Hongze Lake, Huaiyin Normal University, Huai'an, Jiangsu 223300, People's Republic of China
| | - Wei-Cheng Hu
- Jiangsu Collaborative Innovation Center of Regional Modern Agriculture & Environmental Protection/Jiangsu Key Laboratory for Eco-Agricultural Biotechnology around Hongze Lake, Huaiyin Normal University, Huai'an, Jiangsu 223300, People's Republic of China
| | - Fu Li
- Natural Products Research Center, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, Sichuan 610041, People's Republic of China
| |
Collapse
|
32
|
Mohammad Azmin SNH, Mat Nor MS. Chemical fingerprint of Centella Asiatica’s bioactive compounds in the ethanolic and aqueous extracts. ADVANCES IN BIOMARKER SCIENCES AND TECHNOLOGY 2020. [DOI: 10.1016/j.abst.2020.10.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
|
33
|
Choudhary N, Singh V. Insights about multi-targeting and synergistic neuromodulators in Ayurvedic herbs against epilepsy: integrated computational studies on drug-target and protein-protein interaction networks. Sci Rep 2019; 9:10565. [PMID: 31332210 PMCID: PMC6646331 DOI: 10.1038/s41598-019-46715-6] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2019] [Accepted: 07/03/2019] [Indexed: 12/24/2022] Open
Abstract
Epilepsy, that comprises a wide spectrum of neuronal disorders and accounts for about one percent of global disease burden affecting people of all age groups, is recognised as apasmara in the traditional medicinal system of Indian antiquity commonly known as Ayurveda. Towards exploring the molecular level complex regulatory mechanisms of 63 anti-epileptic Ayurvedic herbs and thoroughly examining the multi-targeting and synergistic potential of 349 drug-like phytochemicals (DPCs) found therein, in this study, we develop an integrated computational framework comprising of network pharmacology and molecular docking studies. Neuromodulatory prospects of anti-epileptic herbs are probed and, as a special case study, DPCs that can regulate metabotropic glutamate receptors (mGluRs) are inspected. A novel methodology to screen and systematically analyse the DPCs having similar neuromodulatory potential vis-à-vis DrugBank compounds (NeuMoDs) is developed and 11 NeuMoDs are reported. A repertoire of 74 DPCs having poly-pharmacological similarity with anti-epileptic DrugBank compounds and those under clinical trials is also reported. Further, high-confidence PPI-network specific to epileptic protein-targets is developed and the potential of DPCs to regulate its functional modules is investigated. We believe that the presented schema can open-up exhaustive explorations of indigenous herbs towards meticulous identification of clinically relevant DPCs against various diseases and disorders.
Collapse
Affiliation(s)
- Neha Choudhary
- Centre for Computational Biology and Bioinformatics, School of Life Sciences, Central University of Himachal Pradesh, Dharamshala, 176206, India
| | - Vikram Singh
- Centre for Computational Biology and Bioinformatics, School of Life Sciences, Central University of Himachal Pradesh, Dharamshala, 176206, India.
| |
Collapse
|
34
|
Mandal V, Sen K, Singh Chouhan K, Tandey R, Mehta R. Impact of microwaves on the extraction yield of phenolics, flavonoids, and triterpenoids from centella leaves: An approach toward digitized robust botanical extraction. Pharmacogn Mag 2019. [DOI: 10.4103/pm.pm_99_19] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
|