1
|
Huang J, Yu T, Yuan B, Xiao J, Huang D. The Addition of Hermetia illucens to Feed: Influence on Nutritional Composition, Protein Digestion Characteristics, and Antioxidant Activity of Acheta domesticus. Foods 2025; 14:1140. [PMID: 40238263 PMCID: PMC11988907 DOI: 10.3390/foods14071140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2025] [Revised: 03/21/2025] [Accepted: 03/24/2025] [Indexed: 04/18/2025] Open
Abstract
As sales have increased in recent years, enhancing production processes and quality has emerged as a significant challenge for the cricket industry. In this study, we investigated the impact of supplementing feed with black soldier fly larvae (BSFL) on the yield, nutritional characteristics, and protein digestibility of Acheta domesticus. In addition, the bioactivity of house cricket proteins was compared. The results demonstrated that incorporating BSFL into feed improved the yield and nutritional characteristics of house cricket, such as crude protein levels and total phenolic content. Alterations in amino acid and fatty acid profiles also enhanced their nutritional value. In addition, 5% BSFL and 10% BSFL were more readily digested, and the protein hydrolysate of the groups fed BSFL demonstrated stronger antioxidant activity. The findings of this study can offer valuable insights into house cricket farming, protein processing, and the development of new food products.
Collapse
Affiliation(s)
| | | | | | - Jinhua Xiao
- College of Life Sciences, Nankai University, Tianjin 300071, China; (J.H.); (T.Y.); (B.Y.)
| | - Dawei Huang
- College of Life Sciences, Nankai University, Tianjin 300071, China; (J.H.); (T.Y.); (B.Y.)
| |
Collapse
|
2
|
Chen M, Li Y, Liu X. A review of the role of bioactive components in legumes in the prevention and treatment of cardiovascular diseases. Food Funct 2025; 16:797-814. [PMID: 39785824 DOI: 10.1039/d4fo04969a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2025]
Abstract
Cardiovascular diseases (CVD) represent a primary global health challenge. Poor dietary choices and lifestyle factors significantly increase the risk of developing CVD. Legumes, recognized as functional foods, contain various bioactive components such as active peptides, protease inhibitors, saponins, isoflavones, lectins, phytates, and tannins. Studies have demonstrated that several of these compounds are associated with the prevention and treatment of cardiovascular diseases, notably active peptides, saponins, isoflavones, and tannins. This review aims to analyze and summarize the relationship between bioactive compounds in legumes and cardiovascular health. It elaborates on the mechanisms through which active ingredients in legumes interact with risk factors for cardiovascular diseases, such as hypertension, hypercholesterolemia, endothelial dysfunction, and atherosclerosis. These mechanisms include, but are not limited to, lowering blood pressure, regulating lipid levels, promoting anticoagulation, enhancing endothelial function, and modulating TLR4 and NF-κB signaling pathways. Together, these mechanisms emphasize the potential of legumes in improving cardiovascular health. Additionally, the limitations of bioactive components in legumes and their practical applications, with the goal of fostering further advancements in this area were discussed.
Collapse
Affiliation(s)
- Mengqian Chen
- China Food Flavor and Nutrition Health Innovation Center, Beijing Technology and Business University; National Soybean Processing Industry Technology Innovation Center, Beijing Technology and Business University, Beijing 100048, China.
| | - You Li
- China Food Flavor and Nutrition Health Innovation Center, Beijing Technology and Business University; National Soybean Processing Industry Technology Innovation Center, Beijing Technology and Business University, Beijing 100048, China.
| | - Xinqi Liu
- China Food Flavor and Nutrition Health Innovation Center, Beijing Technology and Business University; National Soybean Processing Industry Technology Innovation Center, Beijing Technology and Business University, Beijing 100048, China.
| |
Collapse
|
3
|
Qiao K, Huang Q, Sun T, Chen B, Huang W, Su Y, Lin H, Liu Z. Preparation and Efficacy Evaluation of Antihyperuricemic Peptides from Marine Sources. Nutrients 2024; 16:4301. [PMID: 39770922 PMCID: PMC11678060 DOI: 10.3390/nu16244301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2024] [Revised: 11/27/2024] [Accepted: 12/10/2024] [Indexed: 01/11/2025] Open
Abstract
Marine-derived foods, often called blue foods, are promising sustainable alternatives to conventional food sources owing to their abundant amino acids and high protein content. Current treatments for hyperuricemia, a chronic condition attributed to purine metabolism disorders, are associated with various side effects. Novel peptide xanthine oxidase inhibitors have been discovered in the hydrolyzed products of marine fish and invertebrate proteins, which have demonstrated promising therapeutic potential by reducing uric acid levels in vitro and in vivo. This review explores the potential therapeutic effects of xanthine oxidase inhibitors derived from marine fish and invertebrates, summarizes the methods for extracting bioactive peptides from marine organisms, and emphasizes the impact of different proteases on the structure-activity relationship of bioactive peptides. The hypouricemic effects of these bioactive peptides warrant further verification. There is consensus on the in vitro chemical methods used to verify the xanthine oxidase inhibitory effects of these peptides. Considering several cell and animal model development strategies, this review summarizes several highly recognized modeling methods, proposes strategies to improve the bioavailability of bioactive peptides, and advocates for a diversified evaluation system. Although the screening and evaluation methods for antihyperuricemic peptides have been shown to be feasible across numerous studies, they are not optimal. This review examines the deficiencies in bioavailability, synthesis efficiency, and evaluation mechanisms in terms of their future development and proposes potential solutions to address these issues. This review provides a novel perspective for the exploration and application of marine-derived hypouricemic bioactive peptides.
Collapse
Affiliation(s)
- Kun Qiao
- Engineering Research Center of Fujian and Taiwan Characteristic Marine Food Processing and Nutrition and Health, Ministry of Education, College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (K.Q.); (Q.H.); (H.L.)
- Key Laboratory of Cultivation and High-Value Utilization of Marine Organisms in Fujian Province, National and Local Joint Engineering Research Center for Marine Biological Seed Industry Technology, Fisheries Research Institute of Fujian, Xiamen 361013, China; (B.C.); (Y.S.)
| | - Qiongmei Huang
- Engineering Research Center of Fujian and Taiwan Characteristic Marine Food Processing and Nutrition and Health, Ministry of Education, College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (K.Q.); (Q.H.); (H.L.)
- Key Laboratory of Cultivation and High-Value Utilization of Marine Organisms in Fujian Province, National and Local Joint Engineering Research Center for Marine Biological Seed Industry Technology, Fisheries Research Institute of Fujian, Xiamen 361013, China; (B.C.); (Y.S.)
| | - Tongtong Sun
- College of Food Sciences & Technology, Shanghai Ocean University, Shanghai 201306, China;
| | - Bei Chen
- Key Laboratory of Cultivation and High-Value Utilization of Marine Organisms in Fujian Province, National and Local Joint Engineering Research Center for Marine Biological Seed Industry Technology, Fisheries Research Institute of Fujian, Xiamen 361013, China; (B.C.); (Y.S.)
| | - Wenmei Huang
- Xiamen Daozhiyuan Biological Technology Co., Ltd., Xiamen 361024, China;
| | - Yongchang Su
- Key Laboratory of Cultivation and High-Value Utilization of Marine Organisms in Fujian Province, National and Local Joint Engineering Research Center for Marine Biological Seed Industry Technology, Fisheries Research Institute of Fujian, Xiamen 361013, China; (B.C.); (Y.S.)
| | - Hetong Lin
- Engineering Research Center of Fujian and Taiwan Characteristic Marine Food Processing and Nutrition and Health, Ministry of Education, College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (K.Q.); (Q.H.); (H.L.)
| | - Zhiyu Liu
- Engineering Research Center of Fujian and Taiwan Characteristic Marine Food Processing and Nutrition and Health, Ministry of Education, College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (K.Q.); (Q.H.); (H.L.)
- Key Laboratory of Cultivation and High-Value Utilization of Marine Organisms in Fujian Province, National and Local Joint Engineering Research Center for Marine Biological Seed Industry Technology, Fisheries Research Institute of Fujian, Xiamen 361013, China; (B.C.); (Y.S.)
| |
Collapse
|
4
|
Liang Y, Zu XY, Zhao YN, Li YQ, Wang CY, Zhao XZ, Wang H. Research on the Synergistic Inhibition of Angiotensin-Converting Enzyme (ACE) by the Gastrointestinal Digestion Products of the ACE Inhibitory Peptide FPPDVA. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:24463-24475. [PMID: 39436688 DOI: 10.1021/acs.jafc.4c05518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/23/2024]
Abstract
To gain a deeper understanding of the ACE inhibition effect, the inhibitory effect of ACE-inhibiting peptide (ACEIP) FPPDVA's digestive products on ACE was further investigated. Two novel peptides, PD (IC50 = 161.1 ± 1.10 μM) and DV (IC50 = 66.51 ± 0.99 μM) were identified in the digestive products of FPPDVA using LC-MS/MS. The Peptide Mix (FPPDVA, PD, and DV) exhibited a remarkable synergistic effect on ACE inhibition by significantly enhancing it by up to 508% compared to the individual peptides alone. Furthermore, theoretical simulations suggest that the Peptide Mix synergistically inhibits ACE activity by forming more stable complexes with the active site of ACE, facilitated by an increased number of hydrogen bonds. Additionally, Lineweaver-Burk plot analysis and spectroscopic studies further verified the presence of these stable complexes. ITC results show that the combination of Peptides Mix and ACE is a spontaneous exothermic process driven by entropy. The study showed that FPPDVA has a stronger inhibitory effect on ACE after digestion, making it suitable as an antihypertensive peptide in functional foods.
Collapse
Affiliation(s)
- Yan Liang
- School of Food Sciences and Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, Shandong 250353, China
| | - Xin-Yu Zu
- School of Food Sciences and Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, Shandong 250353, China
| | - Ya-Nan Zhao
- School of Food Sciences and Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, Shandong 250353, China
| | - Ying-Qiu Li
- School of Food Sciences and Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, Shandong 250353, China
| | - Chen-Ying Wang
- School of Food Sciences and Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, Shandong 250353, China
| | - Xiang-Zhong Zhao
- School of Food Sciences and Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, Shandong 250353, China
| | - Hua Wang
- School of Materials Science and Engineering, Shandong University, Jinan, Shandong 250061, China
| |
Collapse
|
5
|
Ji J, Yi X, Gao X, Wang B, Zhang X, Shen X, Xia G. Synergistic effects of tilapia head protein hydrolysate and walnut protein hydrolysate on the amelioration of cognitive impairment in mice. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2024; 104:5419-5434. [PMID: 38334319 DOI: 10.1002/jsfa.13369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Revised: 01/25/2024] [Accepted: 02/09/2024] [Indexed: 02/10/2024]
Abstract
BACKGROUND Cognitive impairment (CI) is a significant public health concern, and bioactive peptides have shown potential as therapeutic agents. However, information about their synergistic effects on cognitive function is still limited. Here, we investigated the synergistic effects of tilapia head protein hydrolysate (THPH) and walnut protein hydrolysate (WPH) in mitigating CI induced by scopolamine in mice. RESULTS The results showed that the combined supplementation of THPH and WPH (mass ratio, 1:1) was superior to either individual supplement in enhancing spatial memory and object recognition abilities in CI mice, and significantly lessened brain injury in CI mice by alleviating neuronal damage, reducing oxidative stress and stabilizing the cholinergic system. In addition, the combined supplementation was found to be more conducive to remodeling the gut microbiota structure in CI mice by not only remarkably reducing the ratio of Firmicutes to Bacteroidota, but also specifically enriching the genus Roseburia. On the other hand, the combined supplementation regulated the disorders of sphingolipid and amino acid metabolism in CI mice, particularly upregulating glutathione and histidine metabolism, and displayed a stronger ability to increase the expression of genes and proteins related to the brain-derived neurotrophic factor (BDNF)/TrkB/CrEB signaling pathway in the brain. CONCLUSION These findings demonstrate that tilapia head and walnut-derived protein hydrolysates exerted synergistic effects in ameliorating CI, which was achieved through modulation of gut microbiota, serum metabolic pathways and BDNF signaling pathways. © 2024 Society of Chemical Industry.
Collapse
Affiliation(s)
- Jun Ji
- College of Food Science and Technology, Hainan Tropical Ocean University, Sanya, China
- Hainan Provincial Engineering Research Center of Aquatic Resources Efficient Utilization in the South China Sea, College of Food Science and Technology, Hainan University, Haikou, China
- Univ. Lyon, University Claude Bernard Lyon 1, CNRS, LAGEPP UMR 5007, Villeurbanne, France
| | - Xiangzhou Yi
- Hainan Provincial Engineering Research Center of Aquatic Resources Efficient Utilization in the South China Sea, College of Food Science and Technology, Hainan University, Haikou, China
| | - Xia Gao
- Hainan Provincial Engineering Research Center of Aquatic Resources Efficient Utilization in the South China Sea, College of Food Science and Technology, Hainan University, Haikou, China
| | - Bohui Wang
- Hainan Provincial Engineering Research Center of Aquatic Resources Efficient Utilization in the South China Sea, College of Food Science and Technology, Hainan University, Haikou, China
| | - Xueying Zhang
- Hainan Provincial Engineering Research Center of Aquatic Resources Efficient Utilization in the South China Sea, College of Food Science and Technology, Hainan University, Haikou, China
| | - Xuanri Shen
- College of Food Science and Technology, Hainan Tropical Ocean University, Sanya, China
- Hainan Provincial Engineering Research Center of Aquatic Resources Efficient Utilization in the South China Sea, College of Food Science and Technology, Hainan University, Haikou, China
| | - Guanghua Xia
- Hainan Provincial Engineering Research Center of Aquatic Resources Efficient Utilization in the South China Sea, College of Food Science and Technology, Hainan University, Haikou, China
| |
Collapse
|
6
|
Zhang Y, Zhu Y, Bao X, Dai Z, Shen Q, Wang L, Xue Y. Mining Bovine Milk Proteins for DPP-4 Inhibitory Peptides Using Machine Learning and Virtual Proteolysis. RESEARCH (WASHINGTON, D.C.) 2024; 7:0391. [PMID: 38887277 PMCID: PMC11182572 DOI: 10.34133/research.0391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Accepted: 04/26/2024] [Indexed: 06/20/2024]
Abstract
Dipeptidyl peptidase-IV (DPP-4) enzyme inhibitors are a promising category of diabetes medications. Bioactive peptides, particularly those derived from bovine milk proteins, play crucial roles in inhibiting the DPP-4 enzyme. This study describes a comprehensive strategy for DPP-4 inhibitory peptide discovery and validation that combines machine learning and virtual proteolysis techniques. Five machine learning models, including GBDT, XGBoost, LightGBM, CatBoost, and RF, were trained. Notably, LightGBM demonstrated superior performance with an AUC value of 0.92 ± 0.01. Subsequently, LightGBM was employed to forecast the DPP-4 inhibitory potential of peptides generated through virtual proteolysis of milk proteins. Through a series of in silico screening process and in vitro experiments, GPVRGPF and HPHPHL were found to exhibit good DPP-4 inhibitory activity. Molecular docking and molecular dynamics simulations further confirmed the inhibitory mechanisms of these peptides. Through retracing the virtual proteolysis steps, it was found that GPVRGPF can be obtained from β-casein through enzymatic hydrolysis by chymotrypsin, while HPHPHL can be obtained from κ-casein through enzymatic hydrolysis by stem bromelain or papain. In summary, the integration of machine learning and virtual proteolysis techniques can aid in the preliminary determination of key hydrolysis parameters and facilitate the efficient screening of bioactive peptides.
Collapse
Affiliation(s)
- Yiyun Zhang
- National Engineering and Technology Research Center for Fruits and Vegetables, College of Food Science and Nutritional Engineering,
China Agricultural University, Beijing 100083, P.R. China
| | - Yiqing Zhu
- National Engineering and Technology Research Center for Fruits and Vegetables, College of Food Science and Nutritional Engineering,
China Agricultural University, Beijing 100083, P.R. China
| | - Xin Bao
- National Engineering and Technology Research Center for Fruits and Vegetables, College of Food Science and Nutritional Engineering,
China Agricultural University, Beijing 100083, P.R. China
| | - Zijian Dai
- National Engineering and Technology Research Center for Fruits and Vegetables, College of Food Science and Nutritional Engineering,
China Agricultural University, Beijing 100083, P.R. China
| | - Qun Shen
- National Engineering and Technology Research Center for Fruits and Vegetables, College of Food Science and Nutritional Engineering,
China Agricultural University, Beijing 100083, P.R. China
- National Center of Technology Innovation (Deep Processing of Highland Barley) in Food Industry,
China Agricultural University, Haidian District, Beijing 100083, P.R. China
| | - Liyang Wang
- National Engineering and Technology Research Center for Fruits and Vegetables, College of Food Science and Nutritional Engineering,
China Agricultural University, Beijing 100083, P.R. China
- School of Clinical Medicine,
Tsinghua University, Beijing 100084, P.R. China
| | - Yong Xue
- National Engineering and Technology Research Center for Fruits and Vegetables, College of Food Science and Nutritional Engineering,
China Agricultural University, Beijing 100083, P.R. China
- National Center of Technology Innovation (Deep Processing of Highland Barley) in Food Industry,
China Agricultural University, Haidian District, Beijing 100083, P.R. China
| |
Collapse
|
7
|
Olvera-Rosales LB, Pérez-Escalante E, Castañeda-Ovando A, Contreras-López E, Cruz-Guerrero AE, Regal-López P, Cardelle-Cobas A, González-Olivares LG. ACE-Inhibitory Activity of Whey Proteins Fractions Derived of Fermentation by Lacticaseibacillus rhamnosus GG and Streptococcus thermophilus SY-102. Foods 2023; 12:2416. [PMID: 37372627 DOI: 10.3390/foods12122416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 06/12/2023] [Accepted: 06/19/2023] [Indexed: 06/29/2023] Open
Abstract
Many studies have reported the benefits of probiotic microorganisms and the production of angiotensin-converting enzyme (ACE) inhibitors. Determining the proteolytic and ACE inhibition capacities during whey fermentation was the goal of the study. Lacticaseibacillus rhamnosus GG, Streptococcus thermophilus SY-102, and both bacteria together were initially inoculated into whey, reaching an initial concentration of 108 CFU per milliliter in each fermentation system. Through the use of TNBS, SDS-PAGE, and SEC-HPLC methods, the proteolytic profile was examined. An in vitro investigation was performed to test the ACE inhibition capacity. With S. thermophilus, the logarithmic phase of microbial development was shorter than with L. rhamnosus (6 and 12 h, respectively). The logarithmic phase in the co-culture fermentation, however, was extended to 24 h. There were no significant differences in pH between the fermentations. However, the co-culture had a greater concentration of protein hydrolysis (453 ± 0.06 μg/mL), as indicated by the amount of free amino groups. Similarly, this fermentation produced more low molecular weight peptides. The higher inhibition activity, which increased at the conclusion of the fermentation with the co-culture and reached 53.42%, was influenced by the higher peptide synthesis. These findings highlighted the significance of creating useful co-culture products.
Collapse
Affiliation(s)
- Laura Berenice Olvera-Rosales
- Área Académica de Química, Ciudad del Conocimiento, Universidad Autónoma del Estado de Hidalgo, Mineral de la Reforma, Hidalgo 420390, Mexico
| | - Emmanuel Pérez-Escalante
- Área Académica de Química, Ciudad del Conocimiento, Universidad Autónoma del Estado de Hidalgo, Mineral de la Reforma, Hidalgo 420390, Mexico
| | - Araceli Castañeda-Ovando
- Área Académica de Química, Ciudad del Conocimiento, Universidad Autónoma del Estado de Hidalgo, Mineral de la Reforma, Hidalgo 420390, Mexico
| | - Elizabeth Contreras-López
- Área Académica de Química, Ciudad del Conocimiento, Universidad Autónoma del Estado de Hidalgo, Mineral de la Reforma, Hidalgo 420390, Mexico
| | - Alma Elizabeth Cruz-Guerrero
- Departamento de Biotecnología, División de Ciencias Biológicas y de la Salud, Unidad Iztapalapa, Universidad Autónoma Metropolitana, Ciudad de México 09340, Mexico
| | - Patricia Regal-López
- Laboratorio de Higiene, Inspección y Control de Alimentos, Departamento de Química Analítica, Nutrición y Bromatología, Campus Terra, Universidade da Santiago de Compostela, 27002 Lugo, Spain
| | - Alejandra Cardelle-Cobas
- Laboratorio de Higiene, Inspección y Control de Alimentos, Departamento de Química Analítica, Nutrición y Bromatología, Campus Terra, Universidade da Santiago de Compostela, 27002 Lugo, Spain
| | - Luis Guillermo González-Olivares
- Área Académica de Química, Ciudad del Conocimiento, Universidad Autónoma del Estado de Hidalgo, Mineral de la Reforma, Hidalgo 420390, Mexico
| |
Collapse
|
8
|
Wen L, Yang L, Chen C, Li J, Fu J, Liu G, Kan Q, Ho CT, Huang Q, Lan Y, Cao Y. Applications of multi-omics techniques to unravel the fermentation process and the flavor formation mechanism in fermented foods. Crit Rev Food Sci Nutr 2023; 64:8367-8383. [PMID: 37068005 DOI: 10.1080/10408398.2023.2199425] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/18/2023]
Abstract
Fermented foods are important components of the human diet. There is increasing awareness of abundant nutritional and functional properties present in fermented foods that arise from the transformation of substrates by microbial communities. Thus, it is significant to unravel the microbial communities and mechanisms of characteristic flavor formation occurring during fermentation. There has been rapid development of high-throughput and other omics technologies, such as metaproteomics and metabolomics, and as a result, there is growing recognition of the importance of integrating these approaches. The successful applications of multi-omics approaches and bioinformatics analyses have provided a solid foundation for exploring the fermentation process. Compared with single-omics, multi-omics analyses more accurately delineate microbial and molecular features, thus they are more apt to reveal the mechanisms of fermentation. This review introduces fermented foods and an overview of single-omics technologies - including metagenomics, metatranscriptomics, metaproteomics, and metabolomics. We also discuss integrated multi-omics and bioinformatic analyses and their role in recent research progress related to fermented foods, as well as summarize the main potential pathways involved in certain fermented foods. In the future, multilayered analyses of multi-omics data should be conducted to enable better understanding of flavor formation mechanisms in fermented foods.
Collapse
Affiliation(s)
- Linfeng Wen
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Science, South China Agricultural University, Guangzhou, China
| | - Lixin Yang
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Science, South China Agricultural University, Guangzhou, China
| | - Cong Chen
- Guangdong Eco-engineering Polytechnic, Guangzhou, China
| | - Jun Li
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Science, South China Agricultural University, Guangzhou, China
- Guangdong Meiweixian Flavoring Foods Co., Ltd, Zhongshan, China
| | - Jiangyan Fu
- Guangdong Meiweixian Flavoring Foods Co., Ltd, Zhongshan, China
| | - Guo Liu
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Science, South China Agricultural University, Guangzhou, China
| | - Qixin Kan
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Science, South China Agricultural University, Guangzhou, China
| | - Chi-Tang Ho
- Department of Food Science, Rutgers University, New Brunswick, New Jersey, USA
| | - Qingrong Huang
- Department of Food Science, Rutgers University, New Brunswick, New Jersey, USA
| | - Yaqi Lan
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Science, South China Agricultural University, Guangzhou, China
| | - Yong Cao
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Science, South China Agricultural University, Guangzhou, China
| |
Collapse
|
9
|
Peptidomics as a tool to analyze endogenous peptides in milk and milk-related peptides. FOOD BIOSCI 2022. [DOI: 10.1016/j.fbio.2022.102199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
|
10
|
Olvera-Rosales LB, Cruz-Guerrero AE, García-Garibay JM, Gómez-Ruíz LC, Contreras-López E, Guzmán-Rodríguez F, González-Olivares LG. Bioactive peptides of whey: obtaining, activity, mechanism of action, and further applications. Crit Rev Food Sci Nutr 2022; 63:10351-10381. [PMID: 35612490 DOI: 10.1080/10408398.2022.2079113] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Bioactive peptides derived from diverse food proteins have been part of diverse investigations. Whey is a rich source of proteins and components related to biological activity. It is known that proteins have effects that promote health benefits. Peptides derived from whey proteins are currently widely studied. These bioactive peptides are amino acid sequences that are encrypted within the first structure of proteins, which required hydrolysis for their release. The hydrolysis could be through in vitro or in vivo enzymatic digestion and using microorganisms in fermented systems. The biological activities associated with bio-peptides include immunomodulatory properties, antibacterial, antihypertensive, antioxidant and opioid, etc. These functions are related to general conditions of health or reduced risk of certain chronic illnesses. To determine the suitability of these peptides/ingredients for applications in food technology, clinical studies are required to evaluate their bioavailability, health claims, and safety of them. This review aimed to describe the biological importance of whey proteins according to the incidence in human health, their role as bioactive peptides source, describing methods, and obtaining technics. In addition, the paper exposes biochemical mechanisms during the activity exerted by biopeptides of whey, and their application trends.
Collapse
Affiliation(s)
- L B Olvera-Rosales
- Universidad Autónoma del Estado de Hidalgo, Área Académica de Química, Ciudad del Conocimiento, Mineral de la Reforma, Hidalgo, México
| | - A E Cruz-Guerrero
- Departamento de Biotecnología, Universidad Autónoma Metropolitana, Unidad Iztapalapa. División de Ciencias Biológicas y de la Salud, Colonia Vicentina, Ciudad de México, México
| | - J M García-Garibay
- Departamento de Biotecnología, Universidad Autónoma Metropolitana, Unidad Iztapalapa. División de Ciencias Biológicas y de la Salud, Colonia Vicentina, Ciudad de México, México
- Departamento de Ciencias de la Alimentación Lerma de Villada, Universidad Autónoma Metropolitana-Lerma, Edo. de México, México
| | - L C Gómez-Ruíz
- Departamento de Biotecnología, Universidad Autónoma Metropolitana, Unidad Iztapalapa. División de Ciencias Biológicas y de la Salud, Colonia Vicentina, Ciudad de México, México
| | - E Contreras-López
- Universidad Autónoma del Estado de Hidalgo, Área Académica de Química, Ciudad del Conocimiento, Mineral de la Reforma, Hidalgo, México
| | - F Guzmán-Rodríguez
- Departamento de Biotecnología, Universidad Autónoma Metropolitana, Unidad Iztapalapa. División de Ciencias Biológicas y de la Salud, Colonia Vicentina, Ciudad de México, México
| | - L G González-Olivares
- Universidad Autónoma del Estado de Hidalgo, Área Académica de Química, Ciudad del Conocimiento, Mineral de la Reforma, Hidalgo, México
| |
Collapse
|
11
|
Romero-Garay MG, Montalvo-González E, Hernández-González C, Soto-Domínguez A, Becerra-Verdín EM, De Lourdes García-Magaña M. Bioactivity of peptides obtained from poultry by-products: A review. Food Chem X 2022; 13:100181. [PMID: 35498958 PMCID: PMC9039914 DOI: 10.1016/j.fochx.2021.100181] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Revised: 12/02/2021] [Accepted: 12/03/2021] [Indexed: 10/26/2022] Open
Abstract
The production and consumption of poultry products (chicken, duck, and turkey) are continually growing throughout the world, leading to the generation of thousands of tons of organic by-products, which may be important sources of bioactive peptides. The bioactive peptides isolated from poultry by-products have biological properties that can be useful in the prevention of different metabolic diseases and hence, their consumption could be beneficial for human health. Such peptides can be used as nutraceuticals, and their inclusion as active components of functional food products is increasingly gaining attention. The aim of this review was to present the investigations of the biological effect of the peptides obtained from different poultry by-products and the possible mechanisms of action underlying these effects.
Collapse
Affiliation(s)
- Martha Guillermina Romero-Garay
- Integral Research Laboratory Food, Instituto Tecnológico de Tepic, Av. Tecnológico 2595, Col. Lagos del Country 63175, Tepic, Nayarit, Mexico
| | - Efigenia Montalvo-González
- Integral Research Laboratory Food, Instituto Tecnológico de Tepic, Av. Tecnológico 2595, Col. Lagos del Country 63175, Tepic, Nayarit, Mexico
| | - Crisantema Hernández-González
- Centro de Investigación en Alimentación y Desarrollo, A. C., Unidad Mazatlán, Av. Sábalo Cerritos s/n. Mazatlán, Sinaloa 89010, Mexico
| | - Adolfo Soto-Domínguez
- Histology Department, Facultad de Medicina, Universidad Autónoma de Nuevo León, Madero y E. Aguirre Pequeño SN, C.P. 64460. Monterrey, Nuevo León, Mexico
| | - Eduardo Mendeleev Becerra-Verdín
- Clinical Research and Histology Laboratory, Universidad Autónoma de Nayarit, Ciudad de la Cultura Amado Nervo S/N, 63155 Tepic, Nayarit, Mexico
| | - María De Lourdes García-Magaña
- Integral Research Laboratory Food, Instituto Tecnológico de Tepic, Av. Tecnológico 2595, Col. Lagos del Country 63175, Tepic, Nayarit, Mexico
| |
Collapse
|
12
|
Singh PP, Gupta V, Prakash B. Recent advancement in functional properties and toxicity assessment of plant-derived bioactive peptides using bioinformatic approaches. Crit Rev Food Sci Nutr 2021:1-19. [PMID: 34783283 DOI: 10.1080/10408398.2021.2002807] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Nowadays, biopeptides have gained considerable interest by the food industries, given their potent biological effect on health. BPs, when released from the sequence of their precursors by proteolytic enzymes, improved the various physiological functions of the body. Diabetic and hypertension are the two most common life-threatening diseases linked to dietary patterns. Angiotensin-converting enzyme (ACE) (hypertension-responsible glycoprotein) and dipeptidyl peptidase IV (DPP-IV) (proline-specific dimeric aminopeptidase) have been widely used as molecular target sites of action of bioactive compounds possessing antihypertensive and antidiabetic effects. Although, BPs possess considerable biological properties (antioxidant, antimicrobial, antiviral, immunomodulating, antiproliferative, antidiabetic, and antihypertensive effects), most of them possess inherent lacunae such as toxicity, allergenicity, bitterness, and lack of detailed mechanistic investigation, limiting their commercial application. The present review provides an overview on various sources of bioactive peptides, conventional and modern methods of extraction, and challenges that need to be addressed before its commercial application. In addition, bioinformatics' role in exploring the functional properties of biopeptides (ACE and DPP-IV inhibitory effects) toxicity, the target site of action with special reference to plant-based peptides, and recent burgeoning proficiencies in biopeptide research have been discussed.
Collapse
Affiliation(s)
- Prem Pratap Singh
- Centre of Advanced Study in Botany, Institute of Science, Banaras Hindu University, Varanasi, India
| | - Vishal Gupta
- Centre of Advanced Study in Botany, Institute of Science, Banaras Hindu University, Varanasi, India
| | - Bhanu Prakash
- Centre of Advanced Study in Botany, Institute of Science, Banaras Hindu University, Varanasi, India
| |
Collapse
|
13
|
Yu Z, Xue W, Zhou M, Wang L, Wu S, Zhao W, Ding L. Potential Antihypertensive Mechanisms of the Egg White-Derived Peptide QIGLF in Spontaneously Hypertensive Rats Revealed Using Untargeted Serum Metabolomics. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:12063-12071. [PMID: 34581184 DOI: 10.1021/acs.jafc.1c05599] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
The angiotensin-converting enzyme (ACE) inhibitory peptide QIGLF derived from egg white was shown to have significant in vivo antihypertensive effects in our previous study, but the intervention mechanisms at the metabolic level are still unclear. The UPLC-QTOF/MS-based untargeted metabolomics approach was used to clarify the potential antihypertensive mechanisms of QIGLF in the serum of spontaneously hypertensive rats (SHRs). Multivariate statistical analysis showed a clear difference in the metabolite profiles between the QIGLF and model groups. The results suggested that eight potential biomarkers were identified, that is, adrenic acid, ursodeoxycholic acid, glycocholic acid, taurocholic acid, tryptophan, acetylindoxyl, tyrosine, and 2-phenylethanol, which were mainly involved in aromatic amino acid biosynthesis and metabolism, biosynthesis of bile acid, and biosynthesis of unsaturated fatty acids. QIGLF might exert antihypertensive effects by improving endothelial dysfunction. This study provides a theoretical basis for future research and application of ACE inhibitory peptides in the prevention and improvement of hypertension.
Collapse
Affiliation(s)
- Zhipeng Yu
- College of Food Science and Engineering, Bohai University, Jinzhou 121013, P. R. China
| | - Wenjun Xue
- College of Food Science and Engineering, Bohai University, Jinzhou 121013, P. R. China
| | - Mingjie Zhou
- College of Food Science and Engineering, Bohai University, Jinzhou 121013, P. R. China
| | - Li Wang
- College of Food Science and Engineering, Bohai University, Jinzhou 121013, P. R. China
| | - Sijia Wu
- Lab of Nutrition and Functional Food, Jilin University, Changchun 130062, P. R. China
| | - Wenzhu Zhao
- College of Food Science and Engineering, Bohai University, Jinzhou 121013, P. R. China
| | - Long Ding
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, P. R. China
| |
Collapse
|
14
|
Measuring the oral bioavailability of protein hydrolysates derived from food sources: A critical review of current bioassays. Biomed Pharmacother 2021; 144:112275. [PMID: 34628165 DOI: 10.1016/j.biopha.2021.112275] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 09/21/2021] [Accepted: 09/28/2021] [Indexed: 01/13/2023] Open
Abstract
BACKGROUND Food proteins are a source of hydrolysates with potentially useful biological attributes. Bioactive peptides from food-derived proteins are released from hydrolysates using exogenous industrial processes or endogenous intestinal enzymes. Current in vitro permeability assays have limitations in predicting the oral bioavailability (BA) of bioactive peptides in humans. There are also difficulties in relating the low blood levels of food-derived bioactive peptides detected in preclinical in vivo models to pharmacodynamic read-outs relevant for humans. SCOPE AND APPROACH In this review, we describe in vitro assays of digestion, permeation, and metabolism as indirect predictors of the potential oral BA of hydrolysates and their constituent bioactive peptides. We discuss the relationship between industrial hydrolysis processes and the oral BA of hydrolysates and their peptide by-products. KEY FINDINGS Hydrolysates are challenging for analytical detection methods due to capacity for enzymatic generation of peptides with novel sequences and also new modifications of these peptides during digestion. Mass spectrometry and peptidomics can improve the capacity to detect individual peptides released from complex hydrolysates in biological milieu.
Collapse
|
15
|
Onuh JO, Qiu H. Metabolic Profiling and Metabolites Fingerprints in Human Hypertension: Discovery and Potential. Metabolites 2021; 11:687. [PMID: 34677402 PMCID: PMC8539280 DOI: 10.3390/metabo11100687] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 09/28/2021] [Accepted: 10/05/2021] [Indexed: 12/12/2022] Open
Abstract
Early detection of pathogenesis through biomarkers holds the key to controlling hypertension and preventing cardiovascular complications. Metabolomics profiling acts as a potent and high throughput tool offering new insights on disease pathogenesis and potential in the early diagnosis of clinical hypertension with a tremendous translational promise. This review summarizes the latest progress of metabolomics and metabolites fingerprints and mainly discusses the current trends in the application in clinical hypertension. We also discussed the associated mechanisms and pathways involved in hypertension's pathogenesis and explored related research challenges and future perspectives. The information will improve our understanding of the development of hypertension and inspire the clinical application of metabolomics in hypertension and its associated cardiovascular complications.
Collapse
Affiliation(s)
| | - Hongyu Qiu
- Center for Molecular and Translational Medicine, Institute of Biomedical Sciences, Georgia State University, Atlanta, GA 30303, USA;
| |
Collapse
|
16
|
Yu P, Du J, Cao C, Cai G, Sun J, Wu D, Lu J. Development of a novel multi-strain wheat Qu with high enzyme activities for Huangjiu fermentation. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2021; 101:4808-4817. [PMID: 33502765 DOI: 10.1002/jsfa.11127] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Revised: 01/17/2021] [Accepted: 01/27/2021] [Indexed: 06/12/2023]
Abstract
BACKGROUND Wheat Qu has long been used as a fermentation starter to produce Huangjiu. Wheat Qu quality depends on its microbial community structure and the hydrolytic enzymes generated by the micro-organisms. RESULTS Strain YF1 and YF2 were successfully screened as they exhibited high acidic protease (231.9 ± 1.4 U g-1 ) and cellulase (7.1 ± 0.6 U g-1 ) activities. Based on a morphological and sequence analysis of the internal transcribed spacer (ITS) gene, YF1 and YF2 were identified as Rhizopus oryzae and Aspergillus niger, respectively. Cooked wheat Qu was produced using mixed fungal starter fermentations with Aspergillus oryzae SU-16, YF1, and YF2. For Qu-making, the optimized conditions for fermentation time, water content, and inoculum size were 47.8 h, 69.4%, and 6.1%, respectively. Under these conditions, compared with single-strain cooked wheat Qu, enzyme activities of amylase, acidic protease, and cellulase increased by 27.4%, 657.1%, and 1276.2%, respectively. Short peptides and free amino acids contents increased by 19.6% and 131.8%, respectively. This wheat Qu was used for Huangjiu brewing, and the alcohol content increased by approximately 14.6% because of the increased starch hydrolysis efficiency mainly attributed to its high enzyme activity. CONCLUSION Using mixed fungal strains as starter cultures may be an efficient strategy to improve wheat Qu quality, with great potential for application in industrial Huangjiu production. © 2021 Society of Chemical Industry.
Collapse
Affiliation(s)
- Peibin Yu
- National Engineering Laboratory for Cereal Fermentation Technology (NELCF), Jiangnan University, Wuxi, P. R. China
- Jiangsu Provincial Research Center for Bioactive Product Processing Technology, Jiangnan University, Wuxi, P. R. China
| | - Jing Du
- Department of Technologies, Jiangsu Yiming Biological Co., Ltd, Taizhou, P. R. China
| | - Chunlei Cao
- National Engineering Laboratory for Cereal Fermentation Technology (NELCF), Jiangnan University, Wuxi, P. R. China
- Jiangsu Provincial Research Center for Bioactive Product Processing Technology, Jiangnan University, Wuxi, P. R. China
| | - Guolin Cai
- National Engineering Laboratory for Cereal Fermentation Technology (NELCF), Jiangnan University, Wuxi, P. R. China
| | - Junyong Sun
- National Engineering Laboratory for Cereal Fermentation Technology (NELCF), Jiangnan University, Wuxi, P. R. China
| | - Dianhui Wu
- National Engineering Laboratory for Cereal Fermentation Technology (NELCF), Jiangnan University, Wuxi, P. R. China
- Jiangsu Provincial Research Center for Bioactive Product Processing Technology, Jiangnan University, Wuxi, P. R. China
| | - Jian Lu
- National Engineering Laboratory for Cereal Fermentation Technology (NELCF), Jiangnan University, Wuxi, P. R. China
- Jiangsu Provincial Research Center for Bioactive Product Processing Technology, Jiangnan University, Wuxi, P. R. China
| |
Collapse
|
17
|
Balkir P, Kemahlioglu K, Yucel U. Foodomics: A new approach in food quality and safety. Trends Food Sci Technol 2021. [DOI: 10.1016/j.tifs.2020.11.028] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
18
|
Angiotensin-I converting enzyme inhibitory peptide derived from the shiitake mushroom ( Lentinula edodes). Journal of Food Science and Technology 2021; 58:85-97. [PMID: 33505054 DOI: 10.1007/s13197-020-04517-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Revised: 03/21/2020] [Accepted: 05/08/2020] [Indexed: 12/24/2022]
Abstract
Abstract Angiotensin-I converting enzyme (ACE) inhibitors are widely used to control hypertension. In this study, protein hydrolysates from shiitake mushroom were hydrolyzed to prepare ACE-inhibitory peptides. Optimum process conditions for the hydrolysis of shiitake mushrooms using Alcalase were optimized using response surface methodology. Monitoring was conducted to check the degree of hydrolysis (DH) and ACE inhibitory activity. In the results, the optimum condition with the highest DH value of 28.88% was 50.2 °C, 3-h hydrolysis time, and 1.16 enzyme/substrate ratios. The highest ACE inhibitory activity (IC50 of 0.33 μg/mL) was under 47 °C, 3 h 28 min hydrolysis time, and 0.59 enzyme/substrate ratios. The highest activity was fractionated into 5 ranges of molecular weight, and the fraction below 0.65 kDa showed the highest activity with IC50 of 0.23 μg/mL. This fraction underwent purification using RP-HPLC, meanwhile the peak which offered a retention time of about 37 min showed high ACE inhibitory activity. Mass spectrometry identified the amino acid sequence of this peak as Lys-Ile-Gly-Ser-Arg-Ser-Arg-Phe-Asp-Val-Thr (KIGSRSRFDVT), with a molecular weight of 1265.43 Da. The synthesized variant of this peptide produced an ACE inhibitory activity (IC50) of 37.14 μM. The peptide KIGSRSRFDVT was shown to serve as a non-competitive inhibitor according to the Lineweaver-Burk plot findings. A molecular docking study was performed, which showed that the peptide binding occurred at an ACE non-active site. The findings suggest that peptides derived from shiitake mushrooms could serve either as useful components in pharmaceutical products, or in functional foods for the purpose of treating hypertension. Graphic abstract
Collapse
|
19
|
Onuh JO, Aliani M. Metabolomics profiling in hypertension and blood pressure regulation: a review. Clin Hypertens 2020; 26:23. [PMID: 33292736 PMCID: PMC7666763 DOI: 10.1186/s40885-020-00157-9] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Accepted: 10/19/2020] [Indexed: 02/08/2023] Open
Abstract
Hypertension is a chronic health condition in which blood pressure is usually elevated beyond normal levels. It can progress with serious complications if left undetected and untreated. Incidence of hypertension is on the increase worldwide with debilitating consequences on the health systems of many countries. It is a multifactorial disorder that requires a multi-pronged approach to address it. One such approach is the use of metabolomics or metabolite profiling to understand its underlying cause and possibly control it. Changes in metabolites profiles have been used to accurately predict so many disease conditions in addition to identifying possible biomarkers and pathways associated in their pathogenicity. This will enable their early detection, diagnosis and treatment as well as likely complications that may arise and also assist in development of biomarkers for clinical uses. The objective of this review therefore is to present some of the current knowledge on the application of metabolomics profiling in hypertension and blood pressure control.
Collapse
Affiliation(s)
- John O Onuh
- Center for Molecular and Translational Medicine, Georgia State University, 100 Piedmont Ave SE, Atlanta, GA, 30303, USA
| | - Michel Aliani
- Department of Food and Human Nutritional Sciences, University of Manitoba, Winnipeg, MB, R3T 2N2, Canada. .,St. Boniface Hospital Research Centre, 351 Tache Ave, Winnipeg, MB, R2H 2A6, Canada.
| |
Collapse
|
20
|
Perchuk I, Shelenga T, Gurkina M, Miroshnichenko E, Burlyaeva M. Composition of Primary and Secondary Metabolite Compounds in Seeds and Pods of Asparagus Bean ( Vigna unguiculata (L.) Walp.) from China. Molecules 2020; 25:molecules25173778. [PMID: 32825166 PMCID: PMC7503259 DOI: 10.3390/molecules25173778] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 08/16/2020] [Accepted: 08/18/2020] [Indexed: 12/12/2022] Open
Abstract
Asparagus bean immature pods and seeds are popular as food products for healthy and functional nutrition. Gas chromatography with mass spectrometry was used to compare metabolomic profiles of seeds and pods yielded by old Chinese landraces and the modern cultivars ‘Yunanskaya’ and ‘Sibirskiy razmer’. About 120 compounds were identified. The content of a majority among groups of compounds was higher in pods than in seeds. The amount of free amino acids in pods was 47 times higher, polyols and phytosterols 5 times higher, phenolics 4 times higher, and organic acids and saponins 3 times higher than in seeds. Differences were found in the relative content of compounds. Among phenolic compounds, the dominant one for seeds was protocatechuic acid, and for pods 4-hydroxycinnamic acid. Only polyols were identified in seeds, but pods additionally contained ethanolamine, phytol, and phytosphingosine. The ratio for nonsaturated/saturated fatty acids was 2.2 in seeds and 1.4 in pods. Seeds contained more stigmasterol, and pods more β-sitosterol. Aglycones of saponins were identified: cycloartenol in seeds, α- and β-amyrins in pods. Oligosaccharides dominated in both seeds and pods. Landraces manifested higher protein content in pods, while modern cultivars had pods with higher contents of organic acids, polyols, monosaccharides, and fatty acids. The results obtained confirm the high nutritional value of asparagus bean seeds and pods, and the prospects of their use in various diets.
Collapse
Affiliation(s)
- Irina Perchuk
- N.I. Vavilov All-Russian Institute of Plant Genetic Resources 42,44, B. Morskaya Street, 190000 Saint-Petersburg, Russia; (T.S.); (M.B.)
- Correspondence:
| | - Tatyana Shelenga
- N.I. Vavilov All-Russian Institute of Plant Genetic Resources 42,44, B. Morskaya Street, 190000 Saint-Petersburg, Russia; (T.S.); (M.B.)
| | - Maria Gurkina
- Astrakhan Experiment Breeding Station, Branch of N.I. Vavilov All-Russian Institute of Plant Genetic Resources, village Yaksatovo, 416162 Astrakhan Region, Russia; (M.G.); (E.M.)
| | - Elena Miroshnichenko
- Astrakhan Experiment Breeding Station, Branch of N.I. Vavilov All-Russian Institute of Plant Genetic Resources, village Yaksatovo, 416162 Astrakhan Region, Russia; (M.G.); (E.M.)
| | - Marina Burlyaeva
- N.I. Vavilov All-Russian Institute of Plant Genetic Resources 42,44, B. Morskaya Street, 190000 Saint-Petersburg, Russia; (T.S.); (M.B.)
| |
Collapse
|
21
|
Bai H, Bao F, Fan X, Han S, Zheng W, Sun L, Yan N, Du H, Zhao H, Yang Z. Metabolomics study of different parts of licorice from different geographical origins and their anti-inflammatory activities. J Sep Sci 2020; 43:1593-1602. [PMID: 32032980 DOI: 10.1002/jssc.201901013] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2019] [Revised: 01/07/2020] [Accepted: 02/04/2020] [Indexed: 01/04/2023]
Abstract
Glycyrrhiza uralensis Fisch., known as licorice, is one of the most famous traditional Chinese medicines. In this study, we perform a metabolome analysis using liquid chromatography-tandem mass spectrometry to assign bioactive components in different parts of licorice from different geographical origins in Gansu province of China. Sixteen potential biomarkers of taproots from different geographical origins were annotated, such as glycycoumarin, gancaonin Z, licoricone, and dihydroxy kanzonol H mainly exist in the sample of Jiuquan; neoliquiritin, 6'-acetylliquiritin, licochalcone B, isolicoflavonol, glycyrol, and methylated uralenin mainly exist in Glycyrrhiza uralensis from Lanzhou; gancaonin L, uralenin, and glycybridin I mainly exist in licorice from Wuwei for the first time.
Collapse
Affiliation(s)
- Haiying Bai
- School of Pharmacy, Lanzhou University, Lanzhou, P. R. China
| | - Fang Bao
- School of Pharmacy, Lanzhou University, Lanzhou, P. R. China
| | - Xiaorui Fan
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, P. R. China
| | - Shu Han
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, P. R. China
| | - Wenhui Zheng
- School of Pharmacy, Lanzhou University, Lanzhou, P. R. China
| | - Lili Sun
- School of Pharmacy, Lanzhou University, Lanzhou, P. R. China
| | - Na Yan
- School of Pharmacy, Lanzhou University, Lanzhou, P. R. China
| | - Hong Du
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, P. R. China
| | - Haiyu Zhao
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, P. R. China
| | - Zhigang Yang
- School of Pharmacy, Lanzhou University, Lanzhou, P. R. China
| |
Collapse
|