1
|
Yang M, Xie Y, Zhu L, Wang R, Zheng J, Xu W. Aptamer-based biosensors for biogenic amines detection. ADVANCED SENSOR AND ENERGY MATERIALS 2025; 4:100135. [DOI: 10.1016/j.asems.2025.100135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2025]
|
2
|
Wang M, Liu Q, Li L, Wang D, Zou Y, Hu J, Xiao Y, Lan Y, Yang Y, Guo X, Wang M, Gao D. Construction of carbazole-conjugated dual-emission fluorescent covalent organic framework for distinguishing p-nitroaniline/p-nitrophenol and adsorbing nitroanilines/nitrophenols. JOURNAL OF HAZARDOUS MATERIALS 2025; 483:136631. [PMID: 39591937 DOI: 10.1016/j.jhazmat.2024.136631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 11/16/2024] [Accepted: 11/21/2024] [Indexed: 11/28/2024]
Abstract
Nitroanilines (NAs) and nitrophenols (NPs), crucial industrial raw materials, are extensively utilized across various sectors. However, the environmental pollution and health hazards stemming from their usage are significant, necessitating urgent monitoring and removal to address environmental and safety concerns. The challenge is further compounded by the presence of NAs/NPs isomers, making the selective analysis of specific isomers crucial. In response, a new post-modified fluorescent covalent organic framework (COF) termed COF@CB, exhibiting dual-emission fluorescence, was synthesized. This synthesis involved coupling a high-crystallinity fluorescent COF (COF-TTDB) with carbazole-9-ethanol (CB) via a "Williamson" reaction. COF@CB featured exceptional dual-emission fluorescence, a high specific surface area (919.4 m2·g-1), superior thermal stability, and abundant active sites. These attributes enabled COF@CB to function as a ratiometric fluorescence sensor capable of simultaneous detection and adsorption. The distinct number and arrangement of hydrogen bond sites in NAs/NPs isomers influenced the intramolecular charge transfer (ICT) effects on COF@CB, thereby enabling the COF@CB-ratiometric fluorescence sensor to distinguish and selectively detect p-NA/p-NP from isomers. Analysis of actual water samples further underscored the sensor's effectiveness in detecting p-NA/p-NP. Furthermore, the presence of multiple active sites on the COF@CB-ratiometric fluorescence sensor facilitated the adsorption of NAs/NPs, promoting the removal of them from actual samples.
Collapse
Affiliation(s)
- Mingyue Wang
- School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, China
| | - Qiuyi Liu
- School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, China
| | - Lingling Li
- School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, China
| | - Dandan Wang
- School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, China
| | - Yuemeng Zou
- School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, China
| | - Jiaqi Hu
- School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, China
| | - Yuqiang Xiao
- School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, China
| | - Yue Lan
- School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, China
| | - Yulian Yang
- School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, China
| | - Xiurong Guo
- School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, China
| | - Min Wang
- Department of Pharmacy, The Affiliated Hospital of Southwest Medical University, Luzhou, China.
| | - Die Gao
- School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, China.
| |
Collapse
|
3
|
López JG, Muñoz M, Arias V, García V, Calvo PC, Ondo-Méndez AO, Rodríguez-Burbano DC, Fonthal F. Electrochemical and Optical Carbon Dots and Glassy Carbon Biosensors: A Review on Their Development and Applications in Early Cancer Detection. MICROMACHINES 2025; 16:139. [PMID: 40047624 PMCID: PMC11857277 DOI: 10.3390/mi16020139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/18/2024] [Revised: 01/22/2025] [Accepted: 01/23/2025] [Indexed: 03/09/2025]
Abstract
Cancer remains one of the leading causes of mortality worldwide, making early detection a critical factor in improving patient outcomes and survival rates. Developing advanced biosensors is essential for achieving early detection and accurate cancer diagnosis. This review offers a comprehensive overview of the development and application of carbon dots (CDs) and glassy carbon (GC) biosensors for early cancer detection. It covers the synthesis of CDs and GC, electrode fabrication methods, and electrochemical and optical transduction principles. This review explores various biosensors, including enzymatic and non-enzymatic, and discusses key biomarkers relevant to cancer detection. It also examines characterization techniques for electrochemical and optical biosensors, such as electrochemical impedance spectroscopy, cyclic voltammetry, UV-VIS, and confocal microscopy. The findings highlight the advancements in biosensor performance, emphasizing improvements in sensitivity, selectivity, and stability, as well as underscoring the potential of integrating different transduction methods and characterization approaches to enhance early cancer detection.
Collapse
Affiliation(s)
- Juana G. López
- Biomedical Engineering Research Group—GBIO, Universidad Autónoma de Occidente, Cali 760030, Colombia; (J.G.L.); (M.M.); (V.A.); (V.G.); (P.C.C.)
| | - Mariana Muñoz
- Biomedical Engineering Research Group—GBIO, Universidad Autónoma de Occidente, Cali 760030, Colombia; (J.G.L.); (M.M.); (V.A.); (V.G.); (P.C.C.)
| | - Valentina Arias
- Biomedical Engineering Research Group—GBIO, Universidad Autónoma de Occidente, Cali 760030, Colombia; (J.G.L.); (M.M.); (V.A.); (V.G.); (P.C.C.)
| | - Valentina García
- Biomedical Engineering Research Group—GBIO, Universidad Autónoma de Occidente, Cali 760030, Colombia; (J.G.L.); (M.M.); (V.A.); (V.G.); (P.C.C.)
| | - Paulo C. Calvo
- Biomedical Engineering Research Group—GBIO, Universidad Autónoma de Occidente, Cali 760030, Colombia; (J.G.L.); (M.M.); (V.A.); (V.G.); (P.C.C.)
| | - Alejandro O. Ondo-Méndez
- Clinical Investigation Research Group, School of Medicine and Health Sciences, Universidad del Rosario, Bogotá 111221, Colombia;
| | - Diana C. Rodríguez-Burbano
- Givia Research Group, School of Medicine and Health Sciences, Universidad del Rosario, Bogotá 111221, Colombia;
| | - Faruk Fonthal
- Biomedical Engineering Research Group—GBIO, Universidad Autónoma de Occidente, Cali 760030, Colombia; (J.G.L.); (M.M.); (V.A.); (V.G.); (P.C.C.)
| |
Collapse
|
4
|
Jia M, Mi W, Guo X, Zhang M. A ratiometric fluorescent sensor based on dual-emitting carbon dots for the rapid detection of sulfite. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2025; 325:125132. [PMID: 39303336 DOI: 10.1016/j.saa.2024.125132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 08/09/2024] [Accepted: 09/11/2024] [Indexed: 09/22/2024]
Abstract
Sulfur dioxide (SO2) derivatives are typically employed as antioxidants in food and pharmaceutical processing. However, excessive sulfite intake could trigger serious health problems. Hence, it is urgent to establish a rapid and effective system for monitoring SO2. This study adopted a one-step hydrothermal method to synthesize dual-emitting nitrogen-doped carbon quantum dots (CECDs) and developed a ratiometric sensor for sulfite using CECDs-Cr (VI) composites. The emission intensity ratio (I440/I500) of the CECDs-Cr (VI) composites increased considerably with the addition of HSO3-. A method based on the ratiometric sensor was established for SO2 derivatives with advanced efficiency and excellent linearity over a broad concentration range of 0-500 μM (R2 = 0.9946). Four medicine-food homology materials (MFHMs) fumigated with sulfur have been accurately detected using this approach. Furthermore, a portable test tube was prepared to achieve rapid and semi-quantitative detection of SO2 residues and applied to real samples. This work presents an effective approach to develop a rapid on-site detection platform for sulfite residues in food and pharmaceuticals.
Collapse
Affiliation(s)
- Mingyan Jia
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, PR China.
| | - Wenxing Mi
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, PR China
| | - Xiaowei Guo
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, PR China
| | - Mei Zhang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, PR China.
| |
Collapse
|
5
|
Wang A, Shu W, Wang Y, Liu K, Yu S, Zhang Y, Wang K, Li D, Sun Z, Sun X, Xiao H. A near-infrared fluorescent molecular rotor for viscosity detection in biosystem and fluid beverages. Food Chem 2025; 463:141458. [PMID: 39362090 DOI: 10.1016/j.foodchem.2024.141458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 09/11/2024] [Accepted: 09/26/2024] [Indexed: 10/05/2024]
Abstract
Viscosity is closely associated with physiological and pathological processes, as well as food quality. Herein, a novel fluorescent molecular rotor, BMCY-V, was presented and applied for detection of viscosity. BMCY-V contained a benzoindole unit as electron donor and a malononitrile group as acceptor. In low-viscous solvents, the rotor can freely rotate, leading to dissipation of excited-state energy. In high-viscous media, however, the free rotation of the rotor is severely restricted, thus reducing non-radiative transition and resulting in significantly enhanced fluorescence intensity. BMCY-V is extremely sensitive to viscosity, showing about 3968 times increase of fluorescence intensity at 728 nm from water to 95 % glycerol. Due to the excellent photophysical property such as near-infrared emission, BMCY-V was successfully used to visualize viscosity in live cells and in liver tissues. In addition, BMCY-V can also evaluate the thickening effect of various thickeners and visualize the changes of viscosity during deterioration of fluid drinks.
Collapse
Affiliation(s)
- Anyang Wang
- School of Chemistry and Chemical Engineering, Shandong University of Technology, Zibo 255000, PR China
| | - Wei Shu
- School of Life Sciences and Medicine, Shandong University of Technology, Zibo 255000, PR China
| | - Yu Wang
- Zibo Qisu Environmental Technology Co., Ltd., Zibo 255400, PR China
| | - Kaile Liu
- School of Chemistry and Chemical Engineering, Shandong University of Technology, Zibo 255000, PR China
| | - Sinian Yu
- School of Chemistry and Chemical Engineering, Shandong University of Technology, Zibo 255000, PR China
| | - Yu Zhang
- School of Life Sciences and Medicine, Shandong University of Technology, Zibo 255000, PR China
| | - Kai Wang
- School of Chemistry and Chemical Engineering, Shandong University of Technology, Zibo 255000, PR China
| | - Dongpeng Li
- School of Chemistry and Chemical Engineering, Shandong University of Technology, Zibo 255000, PR China
| | - Zifei Sun
- School of Chemistry and Chemical Engineering, Shandong University of Technology, Zibo 255000, PR China.
| | - Xiaofeng Sun
- School of Chemistry and Chemical Engineering, Shandong University of Technology, Zibo 255000, PR China.
| | - Haibin Xiao
- School of Chemistry and Chemical Engineering, Shandong University of Technology, Zibo 255000, PR China.
| |
Collapse
|
6
|
Singh S, Dev K, Bhardwaj S, Ramakanth D, Singh KR, Poluri KM, Ghosh K, Maji PK. Biodegradable cellulose nanocrystal composites doped with carbon dots for packaging and anticounterfeiting applications. NANOSCALE 2025; 17:904-918. [PMID: 39585361 DOI: 10.1039/d4nr03768e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/26/2024]
Abstract
Developing sustainable and multifunctional materials is imperative for advancing anti-counterfeiting measures, sensing technologies, and intelligent packaging solutions. Concurrently, materials based on carbon dots (CDs) and cellulose nanocrystals (CNCs) are becoming established in such applications. Therefore, herein, we present the fabrication and characterization of water-based CDs and CNCs from Vigna mungo (black lentil: BL). The carbon dots (CDBL) were doped with nitrogen (NCDBL) and sulfur (SCDBL). These CDs were then utilized as anti-counterfeit inks and multifunctional sensor films when loaded in a biodegradable CNCBL matrix. These CDBL, SCDBL, and NCDBL exhibited diameters of 3.7, 5.3, and 5.5 nm, respectively, with bandgap values ranging from 3.65 eV to 2.95 eV. For anti-counterfeiting, CDs/CNCBL-based inks were applied to white sheets, rendering them invisible under normal lighting conditions and visible under UV light (365 nm). NCDBL exhibited sensitivity towards pH changes (2-12), demonstrating the sensing potential of NCDBL/CNCBL films for monitoring food freshness. Additionally, NCDBL/CNCBL-based films have exhibited effective control over microbial load due to nitrogen doping. These films biodegrade within 29 days when buried in soil after use. This innovative approach presents multifunctional films that address critical needs in sensing, anti-counterfeiting, and intelligent packaging and opens new avenues for creating eco-friendly, multifunctional materials.
Collapse
Affiliation(s)
- Shiva Singh
- Department of Polymer and Process Engineering, Indian Institute of Technology Roorkee, Saharanpur Campus, Saharanpur-247001, India.
| | - Keshav Dev
- Department of Chemistry, Indian Institute of Technology, Roorkee 247667, India
| | - Shakshi Bhardwaj
- Department of Polymer and Process Engineering, Indian Institute of Technology Roorkee, Saharanpur Campus, Saharanpur-247001, India.
| | - Dakuri Ramakanth
- Department of Polymer and Process Engineering, Indian Institute of Technology Roorkee, Saharanpur Campus, Saharanpur-247001, India.
| | - Khushboo Rani Singh
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee-247667, Uttarakhand, India
| | - Krishna Mohan Poluri
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee-247667, Uttarakhand, India
| | - Kaushik Ghosh
- Department of Chemistry, Indian Institute of Technology, Roorkee 247667, India
| | - Pradip K Maji
- Department of Polymer and Process Engineering, Indian Institute of Technology Roorkee, Saharanpur Campus, Saharanpur-247001, India.
| |
Collapse
|
7
|
Patra S, Sahoo D, Swain SK. Carbon quantum dots in N,N'-Dicyclohexylcarbodiimide assisted cellulose: A fluorescence sensitive approach for ex vivo glucose monitoring in human serum. Int J Biol Macromol 2024; 283:137761. [PMID: 39551307 DOI: 10.1016/j.ijbiomac.2024.137761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2024] [Revised: 10/22/2024] [Accepted: 11/15/2024] [Indexed: 11/19/2024]
Abstract
Bioactive functional materials have been focused recently because of their superior properties due to structural orientations. Herein, carbon quantum dots (CQDs) encapsulated chemically modified carboxymethyl cellulose (CMC) nanocomposites are designed for non-enzymatic ex vivo glucose sensing by a low-cost green technique. The N,N'-Dicyclohexylcarbodiimide (DCC) assisted Steglich esterification between CMC and glucose is responsible for the fluorescence "Turn ON-OFF" mechanism behind glucose detection. The in vitro sensing study derived a limit of detection (LOD) of 7 nM for glucose covering two linear ranges from 0 to 0.06 mM (R2 = 0.9346) and 1.28 to 61.44 mM (R2 = 0.9704). The sensing system maintained excellent stability under extreme ionic strength and pH conditions and the high selectivity is successfully studied against interferents such as homologous sugars, amino acids, cations, and anions. Clinical potential of the proposed sensor is validated through direct testing in human blood samples against commercial glucometer. The sensor proved its reliability with recovery rates of 100 ± 5 % confirming its promising application in glucose monitoring towards effective diabetes management.
Collapse
Affiliation(s)
- Swapnita Patra
- Department of Chemistry, Veer Surendra Sai University of Technology, Burla, Sambalpur 768018, Odisha, India
| | - Debasis Sahoo
- Department of Chemistry, Veer Surendra Sai University of Technology, Burla, Sambalpur 768018, Odisha, India
| | - Sarat K Swain
- Department of Chemistry, Veer Surendra Sai University of Technology, Burla, Sambalpur 768018, Odisha, India.
| |
Collapse
|
8
|
Fatemi K, Lau SY, Obayomi KS, Kiew SF, Coorey R, Chung LY, Fatemi R, Heshmatipour Z, Premarathna KSD. Carbon nanomaterial-based aptasensors for rapid detection of foodborne pathogenic bacteria. Anal Biochem 2024; 695:115639. [PMID: 39127327 DOI: 10.1016/j.ab.2024.115639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 08/06/2024] [Accepted: 08/07/2024] [Indexed: 08/12/2024]
Abstract
Each year, millions of people suffer from foodborne illness due to the consumption of food contaminated with pathogenic bacteria, which severely challenges global health. Therefore, it is essential to recognize foodborne pathogens swiftly and correctly. However, conventional detection techniques for bacterial pathogens are labor-intensive, low selectivity, and time-consuming, highlighting a notable knowledge gap. A novel approach, aptamer-based biosensors (aptasensors) linked to carbon nanomaterials (CNs), has shown the potential to overcome these limitations and provide a more reliable method for detecting bacterial pathogens. Aptamers, short single-stranded DNA (ssDNA)/RNA molecules, serve as bio-recognition elements (BRE) due to their exceptionally high affinity and specificity in identifying foodborne pathogens such as Salmonella spp., Escherichia coli (E. coli), Listeria monocytogenes, Campylobacter jejuni, and other relevant pathogens commonly associated with foodborne illnesses. Carbon nanomaterials' high surface area-to-volume ratio contributes unique characteristics crucial for bacterial sensing, as it improves the binding capacity and signal amplification in the design of aptasensors. Furthermore, aptamers can bind to CNs and create aptasensors with improved signal specificity and sensitivity. Hence, this review intends to critically review the current literature on developing aptamer functionalized CN-based biosensors by transducer optical and electrochemical for detecting foodborne pathogens and explore the advantages and challenges associated with these biosensors. Aptasensors conjugated with CNs offers an efficient tool for identifying foodborne pathogenic bacteria that is both precise and sensitive to potentially replacing complex current techniques that are time-consuming.
Collapse
Affiliation(s)
- Kiyana Fatemi
- Department of Chemical Engineering, Faculty of Engineering and Science, Curtin University Malaysia, Miri, Sarawak, Malaysia
| | - Sie Yon Lau
- Department of Chemical Engineering, Faculty of Engineering and Science, Curtin University Malaysia, Miri, Sarawak, Malaysia.
| | - Kehinde Shola Obayomi
- Department of Chemical Engineering, Faculty of Engineering and Science, Curtin University Malaysia, Miri, Sarawak, Malaysia; Zuckerberg Institute for Water Research (ZIWR), The Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Midreshet Ben-Gurion, 84990, Israel
| | - Siaw Fui Kiew
- Department of Chemical Engineering, Faculty of Engineering and Science, Curtin University Malaysia, Miri, Sarawak, Malaysia; Sarawak Biovalley Pilot Plant, Curtin University Malaysia, CDT 250, 98009, Miri, Sarawak, Malaysia
| | - Ranil Coorey
- School of Molecular and Life Sciences, Curtin University, Bentley, Western Australia, Australia
| | - Lip Yong Chung
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Universiti Malaya, 50603, Kuala Lumpur, Malaysia
| | - Reza Fatemi
- Department of Electrical Engineering, College of Technical and Engineering, West Tehran Branch, Islamic Azad University, Tehran, Iran
| | - Zoheir Heshmatipour
- Department of Microbiology, Faculty of Science, Tonekabon Branch, Islamic Azad University, Tonekabon, Iran
| | - K S D Premarathna
- Department of Chemical Engineering, Faculty of Engineering and Science, Curtin University Malaysia, Miri, Sarawak, Malaysia
| |
Collapse
|
9
|
Li H, Hu Y, Lin Z, Yan X, Sun C, Yao D. Carbon dots-based stimuli-responsive hydrogel for in-situ detection of thiram on fruits and vegetables. Food Chem 2024; 460:140405. [PMID: 39053272 DOI: 10.1016/j.foodchem.2024.140405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 06/23/2024] [Accepted: 07/07/2024] [Indexed: 07/27/2024]
Abstract
Stimuli-responsive hydrogel possesses a strong loading capacity to embed luminescent indicators for constructing food safety sensors, which are suitable for field application. In this work, a fluorescent hydrogel sensor was fabricated by incorporating Ag+-modified carbon dots (CDs-Ag+) into a sodium alginate (SA) hydrogel for in-situ detection of thiram. The fluorescence of CDs was quenched due to the combined effects of electrostatic adsorption and electron transfer between Ag+ and CDs. The formation of an AgS bond between thiram and Ag+ facilitates the release of CDs, causing subsequently fluorescence recovery. Combined with smartphone and analysis software, the fluorescence color change of the hydrogel sensor was converted into data information for quantitative detection of thiram. Such a sample-to-result step is completed within 10 min. Notably, the in-situ detection experiment of thiram in fruit and vegetable samples confirmed the practical application of the hydrogel sensor. Therefore, the hydrogel sensor provides a new research direction for the in-situ detection of pesticide residues in the monitoring of food safety.
Collapse
Affiliation(s)
- Hongxia Li
- Department of Food Quality and Safety, College of Food Science and Engineering, Jilin University, Changchun 130062, China; College of Electronic Science and Engineering, Jilin University, Changchun 130012, China
| | - Yanan Hu
- Department of Food Quality and Safety, College of Food Science and Engineering, Jilin University, Changchun 130062, China
| | - Zhen Lin
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, China
| | - Xu Yan
- College of Electronic Science and Engineering, Jilin University, Changchun 130012, China
| | - Chunyan Sun
- Department of Food Quality and Safety, College of Food Science and Engineering, Jilin University, Changchun 130062, China
| | - Dong Yao
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, China.
| |
Collapse
|
10
|
Bai HJ, Li HW, Li Y, Huang Z, Liu S, Duan XH, Wu Y. A fluorescence-enhanced method specific for furfural determination in Chinese Baijiu based on luminescent carbon dots and direct surface reaction. Talanta 2024; 279:126660. [PMID: 39116733 DOI: 10.1016/j.talanta.2024.126660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 06/26/2024] [Accepted: 07/31/2024] [Indexed: 08/10/2024]
Abstract
Detecting the furfural concentration in Baijiu can be used to assess the quality of Baijiu, allowing for the optimization of processing techniques and the enhancement of overall quality. In this paper, a fluorescence-enhanced method based on carbon dots (o-CDs) is developed for the furfural determination in Chinese Baijiu. In an environment full-filled with ·SO4- and ·OH, furfural undergone a direct surface reaction with the ortho-diamino groups at o-CDs. The created furan-based imidazole increased the surface electron density, leading an emission enhancement and color changes from orange to green. Thereby, a linear fluorescence response of o-CDs-TA to furfural is established in water with a detection limit of 30.5 nM. Finally, after ethanol correction it is used to determine furfural in Chinese Baijiu with high precision and reproducibility, providing a new strategy with low-cost and high sensitivity. In particular, the idea of covalently connecting target molecule to the CDs surface via the assistance of free radical opens a new avenue to merge the nanoscale and molecular realms through implementing chemical role into carbon nanostructures.
Collapse
Affiliation(s)
- Hao-Jie Bai
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, No. 2699 Qianjin Street, Changchun, 130012, PR China; Institute of Theoretical Chemistry, College of Chemistry, Jilin University, No. 2 Liutiao Road, Changchun, 130023, PR China
| | - Hong-Wei Li
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, No. 2699 Qianjin Street, Changchun, 130012, PR China; Institute of Theoretical Chemistry, College of Chemistry, Jilin University, No. 2 Liutiao Road, Changchun, 130023, PR China
| | - Yi Li
- China Light Industry Enterprises Investment and Development Association, 22B. Fuwai Avenue, Xicheng District, Beijing, 100833, PR China
| | - Zhijiu Huang
- Luzhou Laojiao Group Co., LTD., Luzhou, Sichuan, 646000, PR China
| | - Sha Liu
- Luzhou Laojiao Group Co., LTD., Luzhou, Sichuan, 646000, PR China
| | - Xin-He Duan
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, No. 2699 Qianjin Street, Changchun, 130012, PR China; Institute of Theoretical Chemistry, College of Chemistry, Jilin University, No. 2 Liutiao Road, Changchun, 130023, PR China
| | - Yuqing Wu
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, No. 2699 Qianjin Street, Changchun, 130012, PR China; Institute of Theoretical Chemistry, College of Chemistry, Jilin University, No. 2 Liutiao Road, Changchun, 130023, PR China.
| |
Collapse
|
11
|
Ma Y, Mao L, Cui C, Hu Y, Chen Z, Zhan Y, Zhang Y. Nitrogen-doped carbon dots as fluorescent probes for sensitive and selective determination of Fe 3. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2024; 316:124347. [PMID: 38678843 DOI: 10.1016/j.saa.2024.124347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 04/07/2024] [Accepted: 04/23/2024] [Indexed: 05/01/2024]
Abstract
At present, the contamination of water resources by heavy metal ions has posed a significant threat to human survival. Therefore, it is particularly critical to develop low-cost, easy-to-use, and highly efficient heavy metal detection technologies. In this work, a fast and cost-effective fluorescent probe for nitrogen-doped carbon dots (N-CDs) was prepared using one-step hydrothermal method with citric acid (CA) as carbon source, and melamine as nitrogen source. The structural and optical characterizations of the resulting N-CDs were investigated in details. The results showed that the quantum yield of the prepared fluorescent probe was as high as 45 %, and an average fluorescence lifetime was about 7.80 ns. N-CDs have excellent water solubility and dispersibility, with an average size of 2.58 nm. N-CDs exhibited excellent specific responsiveness to Fe3+ and can be used as an effective method for detecting Fe3+ at low-concentrations (the concentrations of N-CDs as low as 0.24 μg/mL) using fluorescent probes. The linear response of the fluorescent probe N-CDs to Fe3+ was formed in the concentration range of 20-80 μM, and the detection limit was 3.18 μM. In addition, in the actual water samples analysis, the recovery rate reached 97.05-100.58 %. The prepared of N-CDs provide available Fe3+ fluorescent probes in the environment.
Collapse
Affiliation(s)
- Yulin Ma
- Ministry-of- Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules, Hubei Key Laboratory for Precision Synthesis of Small Molecule Pharmaceuticals, College of Chemistry and Chemical Engineering, Hubei University, Wuhan 430062, China
| | - Linhan Mao
- Ministry-of- Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules, Hubei Key Laboratory for Precision Synthesis of Small Molecule Pharmaceuticals, College of Chemistry and Chemical Engineering, Hubei University, Wuhan 430062, China
| | - Congcong Cui
- Ministry-of- Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules, Hubei Key Laboratory for Precision Synthesis of Small Molecule Pharmaceuticals, College of Chemistry and Chemical Engineering, Hubei University, Wuhan 430062, China
| | - Yong Hu
- Ministry-of- Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules, Hubei Key Laboratory for Precision Synthesis of Small Molecule Pharmaceuticals, College of Chemistry and Chemical Engineering, Hubei University, Wuhan 430062, China
| | - Zhaoxia Chen
- Ministry-of- Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules, Hubei Key Laboratory for Precision Synthesis of Small Molecule Pharmaceuticals, College of Chemistry and Chemical Engineering, Hubei University, Wuhan 430062, China
| | - Yuan Zhan
- Ministry-of- Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules, Hubei Key Laboratory for Precision Synthesis of Small Molecule Pharmaceuticals, College of Chemistry and Chemical Engineering, Hubei University, Wuhan 430062, China.
| | - Yuhong Zhang
- Ministry-of- Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules, Hubei Key Laboratory for Precision Synthesis of Small Molecule Pharmaceuticals, College of Chemistry and Chemical Engineering, Hubei University, Wuhan 430062, China.
| |
Collapse
|
12
|
Meng C, Li S, Zhang D, Liu H, Sun B. Conjugated molecularly imprinted polymers based on covalent organic frameworks: Fluorescent sensing platform for specific capture of urea and elimination of ethyl carbamate. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2024; 316:124357. [PMID: 38692110 DOI: 10.1016/j.saa.2024.124357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2024] [Revised: 04/23/2024] [Accepted: 04/25/2024] [Indexed: 05/03/2024]
Abstract
This study described the preparation of an azide covalent organic framework-embedded molecularly imprinted polymers (COFs(azide)@MIPs) platform for urea adsorption and indirect ethyl carbamate (EC) removal from Chinese yellow rice wine (Huangjiu). By modifying the pore surface of COFs using the copper-catalyzed azide-alkyne cycloaddition (CuAAC) reaction, COFs(azide) with a high fluorescence quantum yield and particular recognition ability were inventively produced. In order to selectively trap urea, the COFs(azide) were encased in an imprinted shell layer via imprinting technology. With a detection limit (LOD) of 0.016 μg L-1 (R2 = 0.9874), the COFs(azides)@MIPs demonstrated a good linear relationship with urea in the linear range of 0-5 μg L-1. Using real Huangjiu samples, the spiking recovery trials showed the viability of this sensing platform with recoveries ranging from 88.44 % to 109.26 % and an RSD of less than 3.40 %. The Huangjiu processing model system achieved 38.93 % EC reduction by COFs(azides)@MIPs. This research will open up new avenues for the treatment of health problems associated with fermented alcoholic beverages, particularly Huangjiu, while also capturing and removing hazards coming from food.
Collapse
Affiliation(s)
- Chen Meng
- Key Laboratory of Geriatric Nutrition and Health (Beijing Technology and Business University), Ministry of Education, 11 Fucheng Road, Beijing, 100048, China
| | - Suyu Li
- Key Laboratory of Geriatric Nutrition and Health (Beijing Technology and Business University), Ministry of Education, 11 Fucheng Road, Beijing, 100048, China
| | - Dianwei Zhang
- Key Laboratory of Geriatric Nutrition and Health (Beijing Technology and Business University), Ministry of Education, 11 Fucheng Road, Beijing, 100048, China
| | - Huilin Liu
- Key Laboratory of Geriatric Nutrition and Health (Beijing Technology and Business University), Ministry of Education, 11 Fucheng Road, Beijing, 100048, China.
| | - Baoguo Sun
- Key Laboratory of Geriatric Nutrition and Health (Beijing Technology and Business University), Ministry of Education, 11 Fucheng Road, Beijing, 100048, China
| |
Collapse
|
13
|
Wang Z, Liu Y, Liang M, Chen Y, Dong W, Hu Q, Song S, Shuang S, Dong C, Gong X. Hydrophobic carbon quantum dots with red fluorescence: An optical dual-mode and smartphone imaging sensor for identifying Chinese Baijiu quality. Talanta 2024; 275:126064. [PMID: 38640519 DOI: 10.1016/j.talanta.2024.126064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 03/25/2024] [Accepted: 04/04/2024] [Indexed: 04/21/2024]
Abstract
Chinese Baijiu (Liquor) is a popular alcoholic beverage, and the ethanol content in Baijiu is closely related to its quality; therefore, it is of great significance to explore a facile, sensitive, and rapid method to detect ethanol content in Baijiu. Hydrophobic carbon quantum dots (H-CQDs) with bright red fluorescence (24.14 %) were fabricated by hydrothermal method using o-phenylenediamine, p-aminobenzoic acid, manganese chloride, and hydrochloric acid as reaction precursors. After the introduction of ultrapure water into the ethanol solution dissolved with H-CQDs, the aggregated H-CQDs resulted in significant changes in fluorescence intensity and absorbance. On this basis, a sensor for detecting ethanol by optical dual-mode and smartphone imaging was constructed. More importantly, the sensor can be used for detecting ethanol content in Chinese Baijiu with satisfactory results. This sensing platform has great potential for quality identification in Chinese Baijiu, broadening the application scope of CQDs in food safety detection.
Collapse
Affiliation(s)
- Zihan Wang
- Institute of Environmental Science, Shanxi University, Taiyuan 030006, China
| | - Yang Liu
- Institute of Environmental Science, Shanxi University, Taiyuan 030006, China
| | - Meiqi Liang
- Institute of Environmental Science, Shanxi University, Taiyuan 030006, China
| | - Yihong Chen
- Institute of Environmental Science, Shanxi University, Taiyuan 030006, China
| | - Wenjuan Dong
- Institute of Environmental Science, Shanxi University, Taiyuan 030006, China
| | - Qin Hu
- College of Food Chemistry and Engineering, Yangzhou University, Yangzhou 225001, China
| | - Shengmei Song
- Institute of Environmental Science, Shanxi University, Taiyuan 030006, China
| | - Shaomin Shuang
- School of Chemistry and Chemical Engineering, Shanxi University, Taiyuan 030006, China
| | - Chuan Dong
- Institute of Environmental Science, Shanxi University, Taiyuan 030006, China
| | - Xiaojuan Gong
- Institute of Environmental Science, Shanxi University, Taiyuan 030006, China.
| |
Collapse
|
14
|
Dong W, Fan Z, Shang X, Han M, Sun B, Shen C, Liu M, Lin F, Sun X, Xiong Y, Deng B. Nanotechnology-based optical sensors for Baijiu quality and safety control. Food Chem 2024; 447:138995. [PMID: 38513496 DOI: 10.1016/j.foodchem.2024.138995] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 01/27/2024] [Accepted: 03/09/2024] [Indexed: 03/23/2024]
Abstract
Baijiu quality and safety have received considerable attention owing to the gradual increase in its consumption. However, owing to the unique and complex process of Baijiu production, issues leading to quality and safety concerns may occur during the manufacturing process. Therefore, establishing appropriate analytical methods is necessary for Baijiu quality assurance and process control. Nanomaterial (NM)-based optical sensing techniques have garnered widespread interest because of their unique advantages. However, comprehensive studies on nano-optical sensing technology for quality and safety control of Baijiu are lacking. In this review, we systematically summarize NM-based optical sensor applications for the accurate detection and quantification of analytes closely related to Baijiu quality and safety. Furthermore, we evaluate the sensing mechanisms for each application. Finally, we discuss the challenges nanotechnology poses for Baijiu analysis and future trends. Overall, nanotechnological approaches provide a potentially useful alternative for simplifying Baijiu analysis and improving final product quality and safety.
Collapse
Affiliation(s)
- Wei Dong
- Beijing Laboratory of Food Quality and Safety, Beijing Technology and Business University, Beijing 100048, China; Key Laboratory of Brewing Molecular Engineering of China Light Industry, Beijing Technology and Business University, Beijing 100048, China; Key Laboratory of Geriatric Nutrition and Health (Beijing Technology and Business University), Ministry of Education, Beijing 100048, China
| | - Zhen Fan
- Beijing Laboratory of Food Quality and Safety, Beijing Technology and Business University, Beijing 100048, China; Key Laboratory of Brewing Molecular Engineering of China Light Industry, Beijing Technology and Business University, Beijing 100048, China; Key Laboratory of Geriatric Nutrition and Health (Beijing Technology and Business University), Ministry of Education, Beijing 100048, China
| | - Xiaolong Shang
- Beijing Laboratory of Food Quality and Safety, Beijing Technology and Business University, Beijing 100048, China; Key Laboratory of Brewing Molecular Engineering of China Light Industry, Beijing Technology and Business University, Beijing 100048, China; Key Laboratory of Geriatric Nutrition and Health (Beijing Technology and Business University), Ministry of Education, Beijing 100048, China
| | - Mengjun Han
- Key Laboratory of Brewing Molecular Engineering of China Light Industry, Beijing Technology and Business University, Beijing 100048, China; Key Laboratory of Geriatric Nutrition and Health (Beijing Technology and Business University), Ministry of Education, Beijing 100048, China
| | - Baoguo Sun
- Beijing Laboratory of Food Quality and Safety, Beijing Technology and Business University, Beijing 100048, China; Key Laboratory of Brewing Molecular Engineering of China Light Industry, Beijing Technology and Business University, Beijing 100048, China; Key Laboratory of Geriatric Nutrition and Health (Beijing Technology and Business University), Ministry of Education, Beijing 100048, China
| | | | - Miao Liu
- Luzhou Laojiao Co. Ltd., Luzhou 646000, China
| | - Feng Lin
- Luzhou Laojiao Co. Ltd., Luzhou 646000, China
| | - Xiaotao Sun
- Beijing Laboratory of Food Quality and Safety, Beijing Technology and Business University, Beijing 100048, China; Key Laboratory of Brewing Molecular Engineering of China Light Industry, Beijing Technology and Business University, Beijing 100048, China; Key Laboratory of Geriatric Nutrition and Health (Beijing Technology and Business University), Ministry of Education, Beijing 100048, China.
| | | | - Bo Deng
- Luzhou Laojiao Co. Ltd., Luzhou 646000, China
| |
Collapse
|
15
|
He J, Wang L, Liu H, Sun B. Recent advances in molecularly imprinted polymers (MIPs) for visual recognition and inhibition of α-dicarbonyl compound-mediated Maillard reaction products. Food Chem 2024; 446:138839. [PMID: 38428083 DOI: 10.1016/j.foodchem.2024.138839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 02/08/2024] [Accepted: 02/20/2024] [Indexed: 03/03/2024]
Abstract
α-Dicarbonyl compounds (α-DCs) are important intermediates and precursors of harmful Maillard reaction products (e.g., acrylamide and late glycosylation end-products), and they exist widely in thermoprocessed sugar- or fat-rich foods. α-DCs and their end-products are prone to accumulation in the human body and lead to the development of various chronic diseases. Therefore, detection of α-DCs and their associated hazards in food samples is crucial. This paper reviews the preparation of molecularly imprinted polymers (MIPs) enabling visual intelligent responses and the strategies for recognition and capture of α-DCs and their associated hazards, and provides a comprehensive summary of the development of visual MIPs, including integration strategies and applications with real food samples. The visual signal responses as well as the mechanisms for hazard recognition and capture are highlighted. Current challenges and prospects for visual MIPs with advanced applications in food, agricultural and environmental samples are also discussed. This review will open new horizons regarding visual MIPs for recognition and inhibition of hazards in food safety.
Collapse
Affiliation(s)
- Jingbo He
- School of Food and Health, Beijing Technology and Business University (BTBU), No. 11 Fucheng Road, Beijing 100048, People's Republic of China
| | - Lei Wang
- School of Food and Health, Beijing Technology and Business University (BTBU), No. 11 Fucheng Road, Beijing 100048, People's Republic of China
| | - Huilin Liu
- School of Food and Health, Beijing Technology and Business University (BTBU), No. 11 Fucheng Road, Beijing 100048, People's Republic of China.
| | - Baoguo Sun
- School of Food and Health, Beijing Technology and Business University (BTBU), No. 11 Fucheng Road, Beijing 100048, People's Republic of China
| |
Collapse
|
16
|
Udhayakumari D, Ramasundaram S, Jerome P, Oh TH. A Review on Small Molecule Based Fluorescence Chemosensors for Bioimaging Applications. J Fluoresc 2024:10.1007/s10895-024-03826-2. [PMID: 38990455 DOI: 10.1007/s10895-024-03826-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Accepted: 06/24/2024] [Indexed: 07/12/2024]
Abstract
This review provides a thorough examination of small molecule-based fluorescence chemosensors tailored for bioimaging applications, showcasing their unique ability to visualize biological processes with exceptional sensitivity and selectivity. It explores recent advancements, methodologies, and applications in this domain, focusing on various designs rooted in anthracene, benzothiazole, naphthalene, quinoline, and Schiff base. Structural modifications and molecular engineering strategies are emphasized for enhancing sensor performance, including heightened sensitivity, selectivity, and biocompatibility. Additionally, the review offers valuable insights into the ongoing development and utilization of these chemosensors, addressing current challenges and charting future directions in this rapidly evolving field.
Collapse
Affiliation(s)
| | | | - Peter Jerome
- School of Chemical Engineering, Yeungnam University, Gyeongsan, 38541, Republic of Korea
| | - Tae Hwan Oh
- School of Chemical Engineering, Yeungnam University, Gyeongsan, 38541, Republic of Korea
| |
Collapse
|
17
|
Mankoti M, Meena SS, Mohanty A. Exploring the potential of eco-friendly carbon dots in monitoring and remediation of environmental pollutants. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:43492-43523. [PMID: 38713351 DOI: 10.1007/s11356-024-33448-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Accepted: 04/19/2024] [Indexed: 05/08/2024]
Abstract
Photoluminescent carbon dots (CDs) have garnered significant interest owing to their distinctive optical and electronic properties. In contrast to semiconductor quantum dots, which incorporated toxic elements in their composition, CDs have emerged as a promising alternative, rendering them suitable for both environmental and biological applications. CDs exhibit astonishing features, including photoluminescence, charge transfer, quantum confinement effect, and biocompatibility. Recently, CDs derived from green sources have drawn a lot of attention due to their strong photostability, reduced toxicity, better biocompatibility, enhanced fluorescence, and simplicity. These attributes have shown great promise in the areas of LED technology, bioimaging, photocatalysis, drug delivery, biosensing, and antibacterial activity. In contrast, this review offers a comprehensive overview of various green sources utilized to produce CDs and methodologies, along with their merits and demerits, with a notable emphasis on physiochemical properties. Additionally, the paper provides insight into the bibliometric analysis and recent advancements of CDs in sensing, photocatalysis, and antibacterial activity. In this field, extensive research is underway, and a total of 7,438 articles have been identified. Among these, 4242 articles are dedicated to sensing applications, while 1518 and 1678 focus on adsorption and degradation. Carbon dots demonstrate exceptional sensing capabilities within the nanomolar range with a selectivity of up to 95% for pollutants. They exhibit excellent degradation efficiency exceeding 90% within 10-130 min and possess an adsorption capacity from 100 to 800 mg/g. These fascinating qualities render them suitable for diverse applications.
Collapse
Affiliation(s)
- Megha Mankoti
- Department of Biotechnology, Dr B R Ambedkar National Institute of Technology, Jalandhar, Punjab, India
| | - Sumer Singh Meena
- Department of Biotechnology, Dr B R Ambedkar National Institute of Technology, Jalandhar, Punjab, India
| | - Anee Mohanty
- Department of Biotechnology, Dr B R Ambedkar National Institute of Technology, Jalandhar, Punjab, India.
| |
Collapse
|
18
|
Zhang D, Zhang Y, Wang S, Ma Y, Liao Y, Wang F, Liu H. Fabrication of fluorescence probe based on molecularly imprinted polymers on red emissive biomass-derived carbon dots coupled with smartphone readout for tyramine determination in fermented meat products. Mikrochim Acta 2024; 191:436. [PMID: 38954059 DOI: 10.1007/s00604-024-06499-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Accepted: 06/07/2024] [Indexed: 07/04/2024]
Abstract
A fluorescence probe based on molecularly imprinted polymers on red emissive biomass-derived carbon dots (r-BCDs@MIPs) was developed to detect tyramine in fermented meat products. The red emissive biomass-derived carbon dots (r-BCDs) were synthesized by the one-step solvothermal method using discarded passion fruit shells as raw materials. The fluorescence emission peak of r-BCDs was at 670 nm, and the relative quantum yield (QY) was about 2.44%. Molecularly imprinted sensing materials were prepared with r-BCDs as fluorescent centers for the detection of trace tyramine, which showed a good linear response in the concentration range of tyramine from 1 to 40 µg L-1. The linear correlation coefficient was 0.9837, and the limit of detection was 0.77 µg L-1. The method was successfully applied to the determination of tyramine in fermented meat products, and the recovery was 87.17-106.02%. The reliability of the results was verified through high-performance liquid chromatography (HPLC). Furthermore, we combined the r-BCDs@MIPs with smartphone-assisted signal readout to achieve real-time detection of tyramine in real samples. Considering its simplicity and convenience, the method could be used as a rapid and low-cost promising platform with broad application prospects for on-site detection of trace tyramine with smartphone-assisted signal readout.
Collapse
Affiliation(s)
- Dianwei Zhang
- Beijing Technology and Business University, 11 Fucheng Road, Beijing, 100048, China
| | - Yuhua Zhang
- Beijing Technology and Business University, 11 Fucheng Road, Beijing, 100048, China
| | - Shengnan Wang
- Beijing Technology and Business University, 11 Fucheng Road, Beijing, 100048, China
| | - Yuanchen Ma
- Beijing Technology and Business University, 11 Fucheng Road, Beijing, 100048, China
| | - Yonghong Liao
- Beijing Technology and Business University, 11 Fucheng Road, Beijing, 100048, China
| | - Fenghuan Wang
- Beijing Technology and Business University, 11 Fucheng Road, Beijing, 100048, China.
| | - Huilin Liu
- Beijing Technology and Business University, 11 Fucheng Road, Beijing, 100048, China.
| |
Collapse
|
19
|
Yuan L, Shao C, Zhang Q, Webb E, Zhao X, Lu S. Biomass-derived carbon dots as emerging visual platforms for fluorescent sensing. ENVIRONMENTAL RESEARCH 2024; 251:118610. [PMID: 38442811 DOI: 10.1016/j.envres.2024.118610] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/24/2023] [Revised: 02/17/2024] [Accepted: 02/29/2024] [Indexed: 03/07/2024]
Abstract
Biomass-derived carbon dots (CDs) are non-toxic and fluorescently stable, making them suitable for extensive application in fluorescence sensing. The use of cheap and renewable materials not only improves the utilization rate of waste resources, but it is also drawing increasing attention to and interest in the production of biomass-derived CDs. Visual fluorescence detection based on CDs is the focus of current research. This method offers high sensitivity and accuracy and can be used for rapid and accurate determination under complex conditions. This paper describes the biomass precursors of CDs, including plants, animal remains and microorganisms. The factors affecting the use of CDs as fluorescent probes are also discussed, and a brief overview of enhancements made to the preparation process of CDs is provided. In addition, the application prospects and challenges related to biomass-derived CDs are demonstrated.
Collapse
Affiliation(s)
- Lili Yuan
- Key Laboratory of Green and Precise Synthetic Chemistry and Applications, Ministry of Education, School of Chemistry and Materials Science, Huaibei Normal University, Huaibei, Anhui, 235000, China
| | - Congying Shao
- Key Laboratory of Green and Precise Synthetic Chemistry and Applications, Ministry of Education, School of Chemistry and Materials Science, Huaibei Normal University, Huaibei, Anhui, 235000, China.
| | - Qian Zhang
- Key Laboratory of Green and Precise Synthetic Chemistry and Applications, Ministry of Education, School of Chemistry and Materials Science, Huaibei Normal University, Huaibei, Anhui, 235000, China
| | - Erin Webb
- Environmental Sciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, 37830, United States
| | - Xianhui Zhao
- Environmental Sciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, 37830, United States.
| | - Shun Lu
- Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing, 400714, China.
| |
Collapse
|
20
|
He Z, Lin H, Sui J, Wang K, Wang H, Cao L. Seafood waste derived carbon nanomaterials for removal and detection of food safety hazards. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 929:172332. [PMID: 38615776 DOI: 10.1016/j.scitotenv.2024.172332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 03/19/2024] [Accepted: 04/07/2024] [Indexed: 04/16/2024]
Abstract
Nanobiotechnology and the engineering of nanomaterials are currently the main focus of many researches. Seafood waste carbon nanomaterials (SWCNs) are a renewable resource with large surface area, porous structure, high reactivity, and abundant active sites. They efficiently adsorb food contaminants through π-π conjugated, ion exchange, and electrostatic interaction. Furthermore, SWCNs prepared from seafood waste are rich in N and O functional groups. They have high quantum yield (QY) and excellent fluorescence properties, making them promising materials for the removal and detection of pollutants. It provides an opportunity by which solutions to the long-term challenges of the food industry in assessing food safety, maintaining food quality, detecting contaminants and pretreating samples can be found. In addition, carbon nanomaterials can be used as adsorbents to reduce environmental pollutants and prevent food safety problems from the source. In this paper, the types of SWCNs are reviewed; the synthesis, properties and applications of SWCNs are reviewed and the raw material selection, preparation methods, reaction conditions and formation mechanisms of biomass-based carbon materials are studied in depth. Finally, the advantages of seafood waste carbon and its composite materials in pollutant removal and detection were discussed, and existing problems were pointed out, which provided ideas for the future development and research directions of this interesting and versatile material. Based on the concept of waste pricing and a recycling economy, the aim of this paper is to outline current trends and the future potential to transform residues from the seafood waste sector into valuable biological (nano) materials, and to apply them to food safety.
Collapse
Affiliation(s)
- Ziyang He
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003, Shandong Province, China
| | - Hong Lin
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003, Shandong Province, China
| | - Jianxin Sui
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003, Shandong Province, China
| | - Kaiqiang Wang
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003, Shandong Province, China
| | - Huiying Wang
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003, Shandong Province, China
| | - Limin Cao
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003, Shandong Province, China.
| |
Collapse
|
21
|
Krasley A, Li E, Galeana JM, Bulumulla C, Beyene AG, Demirer GS. Carbon Nanomaterial Fluorescent Probes and Their Biological Applications. Chem Rev 2024; 124:3085-3185. [PMID: 38478064 PMCID: PMC10979413 DOI: 10.1021/acs.chemrev.3c00581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 02/01/2024] [Accepted: 02/09/2024] [Indexed: 03/28/2024]
Abstract
Fluorescent carbon nanomaterials have broadly useful chemical and photophysical attributes that are conducive to applications in biology. In this review, we focus on materials whose photophysics allow for the use of these materials in biomedical and environmental applications, with emphasis on imaging, biosensing, and cargo delivery. The review focuses primarily on graphitic carbon nanomaterials including graphene and its derivatives, carbon nanotubes, as well as carbon dots and carbon nanohoops. Recent advances in and future prospects of these fields are discussed at depth, and where appropriate, references to reviews pertaining to older literature are provided.
Collapse
Affiliation(s)
- Andrew
T. Krasley
- Janelia
Research Campus, Howard Hughes Medical Institute, 19700 Helix Drive, Ashburn, Virginia 20147, United States
| | - Eugene Li
- Division
of Chemistry and Chemical Engineering, California
Institute of Technology, 1200 E. California Boulevard, Pasadena, California 91125, United States
| | - Jesus M. Galeana
- Division
of Chemistry and Chemical Engineering, California
Institute of Technology, 1200 E. California Boulevard, Pasadena, California 91125, United States
| | - Chandima Bulumulla
- Janelia
Research Campus, Howard Hughes Medical Institute, 19700 Helix Drive, Ashburn, Virginia 20147, United States
| | - Abraham G. Beyene
- Janelia
Research Campus, Howard Hughes Medical Institute, 19700 Helix Drive, Ashburn, Virginia 20147, United States
| | - Gozde S. Demirer
- Division
of Chemistry and Chemical Engineering, California
Institute of Technology, 1200 E. California Boulevard, Pasadena, California 91125, United States
| |
Collapse
|
22
|
Tang X, Lu M, Wang J, Man S, Peng W, Ma L. Recent Advances of DNA-Templated Metal Nanoclusters for Food Safety Detection: From Synthesis, Applications, Challenges, and Beyond. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:5542-5554. [PMID: 38377578 DOI: 10.1021/acs.jafc.3c09621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/22/2024]
Abstract
Food safety concerns have become a significant threat to human health and well-being, catching global attention in recent years. As a result, it is imperative to research conceptually novel biosensing and effective techniques for food matrices detection. Currently, DNA-templated metal nanoclusters (DNA-MNCs) are considered as one of the most promising nanomaterials due to their excellent properties in biosensing. While DNA-MNCs have garnered increasing interest, the reviews of design strategies, applications, and futuristic prospects for biosensing have been hardly found especially in food safety. The synthesis of DNA-MNCs and their use as biosensing materials in food contamination detection, including pathogenic bacteria, toxins, heavy metals, residues of pesticides, and others were comprehensively reviewed. In addition, we summarize the properties of DNA-MNCs briefly and discuss the challenges and future trends. The application of DNA-MNCs powered biosensing has been demonstrated and actively studied, which is a promising paradigm for food safety testing that can supplement or even replace current existing methods. Despite the challenges of difficulty regulating accurately, poor stability, low quantum yield, and difficult commercial transformation, the application prospects of DNA-MNCs biosensors are promising. This review aims to provide insights and directions for the future development of DNA-MNCs based food detection technology.
Collapse
Affiliation(s)
- Xiaoqin Tang
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Industrial Microbiology, Ministry of Education, Tianjin Key Laboratory of Industry Microbiology, National and Local United Engineering Lab of Metabolic Control Fermentation Technology, China International Science and Technology Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry, College of Biotechnology, Tianjin University of Science & Technology, Tianjin 300457, China
| | - Minghui Lu
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Industrial Microbiology, Ministry of Education, Tianjin Key Laboratory of Industry Microbiology, National and Local United Engineering Lab of Metabolic Control Fermentation Technology, China International Science and Technology Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry, College of Biotechnology, Tianjin University of Science & Technology, Tianjin 300457, China
| | - Jiajing Wang
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Industrial Microbiology, Ministry of Education, Tianjin Key Laboratory of Industry Microbiology, National and Local United Engineering Lab of Metabolic Control Fermentation Technology, China International Science and Technology Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry, College of Biotechnology, Tianjin University of Science & Technology, Tianjin 300457, China
| | - Shuli Man
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Industrial Microbiology, Ministry of Education, Tianjin Key Laboratory of Industry Microbiology, National and Local United Engineering Lab of Metabolic Control Fermentation Technology, China International Science and Technology Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry, College of Biotechnology, Tianjin University of Science & Technology, Tianjin 300457, China
| | - Weipan Peng
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Industrial Microbiology, Ministry of Education, Tianjin Key Laboratory of Industry Microbiology, National and Local United Engineering Lab of Metabolic Control Fermentation Technology, China International Science and Technology Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry, College of Biotechnology, Tianjin University of Science & Technology, Tianjin 300457, China
| | - Long Ma
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Industrial Microbiology, Ministry of Education, Tianjin Key Laboratory of Industry Microbiology, National and Local United Engineering Lab of Metabolic Control Fermentation Technology, China International Science and Technology Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry, College of Biotechnology, Tianjin University of Science & Technology, Tianjin 300457, China
| |
Collapse
|
23
|
Chen H, Li D, Zheng Y, Wang K, Zhang H, Feng Z, Huang B, Wen H, Wu J, Xue W, Huang S. Construction of optical dual-mode sensing platform based on green emissive carbon quantum dots for effective detection of ClO - and cellular imaging. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2024; 309:123733. [PMID: 38157745 DOI: 10.1016/j.saa.2023.123733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2023] [Revised: 11/29/2023] [Accepted: 12/02/2023] [Indexed: 01/03/2024]
Abstract
Hypochlorite (ClO-) is an important redox regulator in reactive oxygen species, which play a considerable role in oxidative stress and related diseases. Hence, accurate and sensitive monitoring of ClO- concentration was urgently needed in the fields of life sciences, food and environment. Bright green fluorescent carbon quantum dots (G-CQDs) were synthesized utilizing one-step hydrothermal method with citric acid and acriflavine precursors. Through TEM, FTIR, XPS and zeta potential characterization procedures, G-CQDs illustrated uniformly dispersed and significant number of -NH2 and -OH on the surface. Meanwhile, the fluorescence and colorimetric analysis exhibited wide linear range and low detection limit response to ClO-. The fluorescence changes of G-CQDs were identified via smartphone to realize mobile sensing of ClO-. Subsequently, G-CQDs was applied for visualization and quantitative detection of ClO- in drinking water samples with satisfactory recovery rate. More importantly, G-CQDs demonstrated good water solubility, optical stability and excellent biocompatibility, which offered a promising analysis approach in cell imaging and exogenous ClO- detection in living cells. G-CQDs illustrated bright prospect and great potential in practical application of ClO- associated disease prevention and early clinical diagnosis.
Collapse
Affiliation(s)
- Huajie Chen
- School of Chemical Engineering, Northwest University, Xi'an, PR China
| | - Dai Li
- School of Chemical Engineering, Northwest University, Xi'an, PR China
| | - Yutao Zheng
- School of Chemical Engineering, Northwest University, Xi'an, PR China
| | - Kui Wang
- School of Chemical Engineering, Northwest University, Xi'an, PR China
| | - He Zhang
- School of Chemical Engineering, Northwest University, Xi'an, PR China
| | - Zhipeng Feng
- School of Chemical Engineering, Northwest University, Xi'an, PR China
| | - Bolin Huang
- School of Chemical Engineering, Northwest University, Xi'an, PR China
| | - Huiyun Wen
- School of Chemical Engineering, Northwest University, Xi'an, PR China
| | - Jiyong Wu
- Department of Pharmacy, Shandong Second Provincial General Hospital, Jinan.
| | - Weiming Xue
- School of Chemical Engineering, Northwest University, Xi'an, PR China.
| | - Saipeng Huang
- School of Chemical Engineering, Northwest University, Xi'an, PR China.
| |
Collapse
|
24
|
Wang C, Yang L, Chu K, Xu J, Wang D, Zhao W. Fluorescent carbon dots synthesized by waste wind turbine blade for photocatalytic degradation. LUMINESCENCE 2024; 39:e4608. [PMID: 37918949 DOI: 10.1002/bio.4608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 09/25/2023] [Accepted: 10/05/2023] [Indexed: 11/04/2023]
Abstract
Developing novel waste recycling strategies has become a feasible solution to overcome environmental pollution. In this work, a method of using waste wind turbine blade (WTB) as a carbon source to synthesize blue fluorescent carbon dots (B-CDs) by hydrothermal treatment is proposed. B-CDs are spherical and have an average particle size of 5.2 nm. The surface is rich in C-O, C=O, -CH3 , and N-H bond functional groups, containing five elements: C, O, N, Si, and Ca. The optimal emission wavelength of B-CDs is 463 nm, corresponding to an excitation wavelength of 380 nm. Notably, a relatively high quantum yield of 29.9% and a utilization rate of 40% were obtained. In addition, B-CDs can serve as a photocatalyst to degrade methylene blue dye, with a degradation efficiency of 64% under 40-min irradiation conditions. The presence of holes has a significant influence on the degradation process.
Collapse
Affiliation(s)
- Congling Wang
- School of Materials Science and Engineering, Hunan University, Changsha, China
| | - Lilin Yang
- School of Materials Science and Engineering, University of Jinan, Jinan, China
| | - Kunyu Chu
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning, China
| | - Jun Xu
- Shandong Provincial Key Laboratory of Preparation and Measurement of Building Materials, University of Jinan, Jinan, China
| | - Dongzhi Wang
- School of Materials Science and Engineering, University of Jinan, Jinan, China
| | - Weilin Zhao
- School of Materials Science and Engineering, University of Jinan, Jinan, China
| |
Collapse
|
25
|
Patra S, Sahu KM, Mahanty J, Swain SK. Ex Vivo Glucose Detection in Human Blood Serums with Carbon Quantum Dot-Doped Oleic Acid-Treated Chitosan Nanocomposites. ACS APPLIED BIO MATERIALS 2023; 6:5730-5745. [PMID: 37972392 DOI: 10.1021/acsabm.3c00851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2023]
Abstract
Herein, carbon quantum dot (CQD)-doped oleic acid (OL)-treated chitosan (Ch) nanocomposites (Ch-OL/CQD) are prepared by a simple solution technique for nonenzymatic ex vivo detection of glucose in human blood samples. From the architecture of the structure, it is observed that the agglomeration of CQD is restricted by OL-treated Ch polymeric chain, and simultaneously the inhibition in the entanglement of Ch-OL polymeric chains in the matrix is attained by the incorporation of CQD, thereby proving the high stability of the nanocomposite. In vitro detection of glucose is studied by the "Turn ON-OFF" fluorescence technique which is again evidenced by the shining core image of nanocomposites in HRTEM. A highly selective glucose sensing against interfering sugars due to the specific spatial arrangement of the hydroxyl groups of glucose, leading to prominent hydrogen-bonding interaction is established, with a very low limit of detection (LOD) of 1.51 μM, covering a wide linear domain from 0 to 104 μM, R2 = 0.98. Moreover, the calculated glucose levels in real human blood serums by Ch-OL/CQD nanocomposites are compared with a commercial glucometer, with recovery percentages from 95.8 to 107.3%. The clinical potential is supported by studying the stimuli responsiveness of the nanocomposites as a function of pH and ionic strength, encouraging the operation of the sensor in a complex biological scenario. The present work may offer an opportunity for the monitoring of glucose in the blood for successful diabetes management.
Collapse
Affiliation(s)
- Swapnita Patra
- Department of Chemistry, Veer Surendra Sai University of Technology, Burla, Sambalpur, Odisha 768018, India
| | - Krishna Manjari Sahu
- Department of Chemistry, Veer Surendra Sai University of Technology, Burla, Sambalpur, Odisha 768018, India
| | - Jharana Mahanty
- Department of Chemistry, Veer Surendra Sai University of Technology, Burla, Sambalpur, Odisha 768018, India
| | - Sarat K Swain
- Department of Chemistry, Veer Surendra Sai University of Technology, Burla, Sambalpur, Odisha 768018, India
| |
Collapse
|
26
|
Sasikumar K, Rajamanikandan R, Ju H. Nitrogen- and Sulfur-Codoped Strong Green Fluorescent Carbon Dots for the Highly Specific Quantification of Quercetin in Food Samples. MATERIALS (BASEL, SWITZERLAND) 2023; 16:7686. [PMID: 38138829 PMCID: PMC10744681 DOI: 10.3390/ma16247686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2023] [Revised: 12/14/2023] [Accepted: 12/15/2023] [Indexed: 12/24/2023]
Abstract
Carbon dots (CDs) doped with heteroatoms have garnered significant interest due to their chemically modifiable luminescence properties. Herein, nitrogen- and sulfur-codoped carbon dots (NS-CDs) were successfully prepared using p-phenylenediamine and thioacetamide via a facile process. The as-developed NS-CDs had high photostability against photobleaching, good water dispersibility, and excitation-independent spectral emission properties due to the abundant amino and sulfur functional groups on their surface. The wine-red-colored NS-CDs exhibited strong green emission with a large Stokes shift of up to 125 nm upon the excitation wavelength of 375 nm, with a high quantum yield (QY) of 28%. The novel NS-CDs revealed excellent sensitivity for quercetin (QT) detection via the fluorescence quenching effect, with a low detection limit of 17.3 nM within the linear range of 0-29.7 μM. The fluorescence was quenched only when QT was brought near the NS-CDs. This QT-induced quenching occurred through the strong inner filter effect (IFE) and the complex bound state formed between the ground-state QT and excited-state NS-CDs. The quenching-based detection strategies also demonstrated good specificity for QT over various interferents (phenols, biomolecules, amino acids, metal ions, and flavonoids). Moreover, this approach could be effectively applied to the quantitative detection of QT (with good sensing recovery) in real food samples such as red wine and onion samples. The present work, consequently, suggests that NS-CDs may open the door to the sensitive and specific detection of QT in food samples in a cost-effective and straightforward manner.
Collapse
Affiliation(s)
| | | | - Heongkyu Ju
- Department of Physics, Gachon University, Seongnam-si 13120, Gyeonggi-do, Republic of Korea; (K.S.); (R.R.)
| |
Collapse
|
27
|
Jia Z, Shi C, Yang X, Zhang J, Sun X, Guo Y, Ying X. QD-based fluorescent nanosensors: Production methods, optoelectronic properties, and recent food applications. Compr Rev Food Sci Food Saf 2023; 22:4644-4669. [PMID: 37680064 DOI: 10.1111/1541-4337.13236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 07/12/2023] [Accepted: 08/11/2023] [Indexed: 09/09/2023]
Abstract
Food quality and safety are crucial public health concerns with global significance. In recent years, a series of fluorescence detection technologies have been widely used in the detection/monitoring of food quality and safety. Due to the advantages of wide detection range, high sensitivity, convenient and fast detection, and strong specificity, quantum dot (QD)-based fluorescent nanosensors have emerged as preferred candidates for food quality and safety analysis. In this comprehensive review, several common types of QD production methods are introduced, including colloidal synthesis, self-assembly, plasma synthesis, viral assembly, electrochemical assembly, and heavy-metal-free synthesis. The optoelectronic properties of QDs are described in detail at the electronic level, and the effect of food matrices on QDs was summarized. Recent advancements in the field of QD-based fluorescent nanosensors for trace level detection and monitoring of volatile components, heavy metal ions, food additives, pesticide residues, veterinary-drug residues, other chemical components, mycotoxins, foodborne pathogens, humidity, and temperature are also thoroughly summarized. Moreover, we discuss the limitations of the QD-based fluorescent nanosensors and present the challenges and future prospects for developing QD-based fluorescent nanosensors. As shown by numerous publications in the field, QD sensors have the advantages of strong anti-interference ability, convenient and quick operation, good linear response, and wide detection range. However, the reported assays are laboratory-focused and have not been industrialized and commercialized. Promising research needs to examine the potential applications of bionanotechnology in QD-based fluorescent nanosensors, and focus on the development of smart packaging films, labeled test strips, and portable kits-based sensors.
Collapse
Affiliation(s)
- Zhixin Jia
- School of Agricultural Engineering and Food Science, Shandong University of Technology, Zibo, Shandong, China
- Information Technology Research Center, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
- Key Laboratory of Cold Chain Logistics Technology for Agro-product, Ministry of Agriculture and Rural Affairs, Beijing, China
- National Engineering Laboratory for Agri-product Quality Traceability, Beijing Academy of Agricultural and Forestry Sciences, Beijing, China
| | - Ce Shi
- Information Technology Research Center, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
- Key Laboratory of Cold Chain Logistics Technology for Agro-product, Ministry of Agriculture and Rural Affairs, Beijing, China
- National Engineering Laboratory for Agri-product Quality Traceability, Beijing Academy of Agricultural and Forestry Sciences, Beijing, China
| | - Xinting Yang
- School of Agricultural Engineering and Food Science, Shandong University of Technology, Zibo, Shandong, China
- Information Technology Research Center, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
- Key Laboratory of Cold Chain Logistics Technology for Agro-product, Ministry of Agriculture and Rural Affairs, Beijing, China
- National Engineering Laboratory for Agri-product Quality Traceability, Beijing Academy of Agricultural and Forestry Sciences, Beijing, China
| | - Jiaran Zhang
- School of Electrical and Information Engineering, Beijing University of Civil Engineering and Architecture, Daxing District, Beijing, China
| | - Xia Sun
- School of Agricultural Engineering and Food Science, Shandong University of Technology, Zibo, Shandong, China
| | - Yemin Guo
- School of Agricultural Engineering and Food Science, Shandong University of Technology, Zibo, Shandong, China
| | - Xiaoguo Ying
- College of Food and Pharmacy, Zhejiang Ocean University, Zhoushan, Zhejiang, China
| |
Collapse
|
28
|
Szczepankowska J, Khachatryan G, Khachatryan K, Krystyjan M. Carbon Dots-Types, Obtaining and Application in Biotechnology and Food Technology. Int J Mol Sci 2023; 24:14984. [PMID: 37834430 PMCID: PMC10573487 DOI: 10.3390/ijms241914984] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2023] [Revised: 09/28/2023] [Accepted: 10/04/2023] [Indexed: 10/15/2023] Open
Abstract
Materials with a "nano" structure are increasingly used in medicine and biotechnology as drug delivery systems, bioimaging agents or biosensors in the monitoring of toxic substances, heavy metals and environmental variations. Furthermore, in the food industry, they have found applications as detectors of food adulteration, microbial contamination and even in packaging for monitoring product freshness. Carbon dots (CDs) as materials with broad as well as unprecedented possibilities could revolutionize the economy, if only their synthesis was based on low-cost natural sources. So far, a number of studies point to the positive possibilities of obtaining CDs from natural sources. This review describes the types of carbon dots and the most important methods of obtaining them. It also focuses on presenting the potential application of carbon dots in biotechnology and food technology.
Collapse
Affiliation(s)
- Joanna Szczepankowska
- Faculty of Biotechnology and Horticulture, University of Agriculture in Krakow, Al. Mickiewicza 21, 31-120 Krakow, Poland;
| | - Gohar Khachatryan
- Faculty of Food Technology, University of Agriculture in Krakow, Al. Mickiewicza 21, 31-120 Krakow, Poland; (G.K.); (K.K.)
| | - Karen Khachatryan
- Faculty of Food Technology, University of Agriculture in Krakow, Al. Mickiewicza 21, 31-120 Krakow, Poland; (G.K.); (K.K.)
| | - Magdalena Krystyjan
- Faculty of Food Technology, University of Agriculture in Krakow, Al. Mickiewicza 21, 31-120 Krakow, Poland; (G.K.); (K.K.)
| |
Collapse
|
29
|
Bai X, Ga L, Ai J. A fluorescent biosensor based on carbon quantum dots and single-stranded DNA for the detection of Escherichia coli. Analyst 2023; 148:3892-3898. [PMID: 37462388 DOI: 10.1039/d3an01024d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/08/2023]
Abstract
To detect E. coli in food, a simple fluorescent biosensor based on single-stranded DNA (ssDNA) and carbon quantum dots (CQDs) was developed. The carbon quantum dots were synthesized using a superhydrothermal method with carrot juice as a carbon source. The fluorescence intensity of the CQDs was decreased by induced ssDNA attachment. In the presence of E. coli, ssDNA preferentially binds to E. coli through hydrogen bonding and its fluorescence is greater than that in the absence of E. coli. The results showed that the linear range of the sensor was 1 × 102-1 × 108 CFU mL-1 with a coefficient of determination (R2) of 0.9870. The detection limit for E. coli was 60 CFU mL-1.
Collapse
Affiliation(s)
- Xiaolian Bai
- College of Chemistry and Environmental Science, Inner Mongolia Key Laboratory of Green Catalysis, Inner Mongolia Normal University, 81 zhaowudalu, Hohhot 010022, China.
| | - Lu Ga
- College of Pharmacy, Inner Mongolia Medical University, Jinchuankaifaqu, Hohhot, 010110, China
| | - Jun Ai
- College of Chemistry and Environmental Science, Inner Mongolia Key Laboratory of Green Catalysis, Inner Mongolia Normal University, 81 zhaowudalu, Hohhot 010022, China.
| |
Collapse
|
30
|
Meng C, Xie C, He J, Chen X, Liu H, Sun B. Ionic liquid-enhanced lemon biomass carbon dots with sustainable use in bionic antibody microspheres for urea capture and ethyl carbamate inhibition. Food Chem 2023; 415:135715. [PMID: 36842375 DOI: 10.1016/j.foodchem.2023.135715] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 01/29/2023] [Accepted: 02/14/2023] [Indexed: 02/24/2023]
Abstract
Herein, we reported the room-temperature fabrication of ionic liquid-modified carbon dots encapsulated in bionic antibodies (IL-modified CDs@BAs) by one-pot green synthesis. In order to enhance the fluorescence intensity of CDs, imidazole ILs and lemon rich in heteroatoms were selected as CDs modifiers and sources. The resulting IL-modified CDs@BAs showed good selectivity and capture toward urea and obviously induced fluorescence quenching by template-binding. The inhibition rate ofIL-modified CDs@BAs on the urea pathway of ethyl carbamate was about 29.07% in the simulated Huangjiu system, indicating a good inhibitory effect. The IL-modified CDs@BAs system was also reproducible after five consecutive uses, thus reducing the economic cost. This research would expand the application fields of BAs-based optical sensing system from the perspectives of energy conservation, environmental protection and resource recovery, focusing on their application in the field of food safety control.
Collapse
Affiliation(s)
- Chen Meng
- Beijing Technology and Business University, 11 Fucheng Road, Beijing 100048, China
| | - Chenchen Xie
- Beijing Technology and Business University, 11 Fucheng Road, Beijing 100048, China
| | - Jingbo He
- Beijing Technology and Business University, 11 Fucheng Road, Beijing 100048, China
| | - Xiaolin Chen
- Beijing Technology and Business University, 11 Fucheng Road, Beijing 100048, China
| | - Huilin Liu
- Beijing Technology and Business University, 11 Fucheng Road, Beijing 100048, China.
| | - Baoguo Sun
- Beijing Technology and Business University, 11 Fucheng Road, Beijing 100048, China
| |
Collapse
|
31
|
Rostami M, Zhang B, Zhang Y. Selective detection of nitenpyram by silica-supported carbon quantum dots. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2023; 292:122387. [PMID: 36731305 DOI: 10.1016/j.saa.2023.122387] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2022] [Revised: 12/06/2022] [Accepted: 01/16/2023] [Indexed: 06/18/2023]
Abstract
In this study, a fluorescent sensor of nitrogen-doped carbon quantum dots (N-CQDs) and silica gel hybrid was developed for the quantitative detection of nitenpyram, a toxic neonicotinoid existing in groundwater and/or surface water.The prepared N-CQDs@SiO2 sensor exhibited remarkable sensing selectivity and sensitivity towards nitenpyram among the four pesticides and six metal ions. A prominent fluorescence quenching of N-CQDs@SiO2 at 445 nm was observed in the presence of nitenpyram with a linear response range of 0-300.0 mg L-1 and an estimated limit of detection of 1.53 mg L-1. The main cause for selective sensing is that nitenpyram absorbs the excitation light of N-CQDs@SiO2, leading to fluorescence quenching of the sensor through the inner filter effect.
Collapse
Affiliation(s)
- Masoumeh Rostami
- Department of Process Engineering, Faculty of Engineering and Applied Science, Memorial University of Newfoundland, St. John's A1C 5S7, Canada
| | - Baiyu Zhang
- The Northern Region Persistent Organic Pollution Control (NRPOP) Laboratory, Faculty of Engineering and Applied Science, Memorial University of Newfoundland, St. John's A1C 5S7, Canada
| | - Yan Zhang
- Department of Process Engineering, Faculty of Engineering and Applied Science, Memorial University of Newfoundland, St. John's A1C 5S7, Canada.
| |
Collapse
|
32
|
Zhu X, Su H, Liu H, Sun B. A selectivity-enhanced fluorescence imprinted sensor based on yellow-emission peptide nanodots for sensitive and visual smart detection of λ-cyhalothrin. Anal Chim Acta 2023; 1255:341124. [PMID: 37032054 DOI: 10.1016/j.aca.2023.341124] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 03/17/2023] [Accepted: 03/18/2023] [Indexed: 03/28/2023]
Abstract
The development of precise and efficient detection technologies to recognize λ-cyhalothrin (LC) in agricultural products has attracted attention worldwide due to its widespread use and notable toxic effects on humans. Herein, a novel fluorescence biomimetic nanosensor was elaborately designed based on Zn(II)-doped cyclo-ditryptophan (c-WW)-type peptide nanodots and incorporating molecularly imprinted polymer (c-WW/Zn-PNs@MIP) for LC assays. C-WW/Zn-PNs obtained by self-assembly with aromatic cyclic dipeptides as basic building blocks and coordination with Zn(II) have low-toxicity, photostability, and bright yellow fluorescence emission, as a sensitive signal transducer. High-affinity imprinting sites further endow c-WW/Zn-PNs@MIP with superior selectivity and reusability. Based on prominent merits, c-WW/Zn-PNs@MIP demonstrated a good linear range (1-360 μg/L) with a low limit of detection (LOD) (0.93 μg/L), fast kinetics in target capture (10 min), and strong practicability in the capture of LC from real samples (spiked recovery of 81.0-107.7%). Additionally, to attain onsite profiling of LC, a visual platform was developed by integrating c-WW/Zn-PNs@MIP with a smartphone-assisted optical device. This smart evaluation system can capture concentration-dependent fluorescent images and accurately digitize them, enabling quantitative analysis of LC. This study developed a fluorescent c-WW/Zn-PNs@MIP-based smart evaluation system as a novel platform for LC monitoring applications, which not only has enormous economic value but also great environmental health significance.
Collapse
|
33
|
Qin S, You X, Guo X, Chu H, Dong Q, Cui H, Jin F, Gao L. A chiral fluorescent COF prepared by post-synthesis modification for optosensing of imazamox enantiomers. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2023; 291:122370. [PMID: 36680831 DOI: 10.1016/j.saa.2023.122370] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 01/04/2023] [Accepted: 01/11/2023] [Indexed: 06/17/2023]
Abstract
We report a post-synthesis modification for the preparation of a novel chiral fluorescent covalent organic framework (COF) for selective recognization of imazamox enantiomers. In this study, chiral COF was firstly synthesized via a Schiff-base reaction between 2,5-dihydroxyterephthalaldehyde (Dha) and 1,3,5-tris(4-aminophenyl)benzene (Tab) followed by a nucleophilic substitution using (1S)-(+)-10-camphorsulfonyl chloride as chiral modifier. The resulting regular spherical chiral COF Dha Tab not only presented the high optical efficiency, strong covalent bond structure, good crystallinity, large specific surface area but also showed the specific enantioselectivity and quick identification for imazamox enantiomers among five pesticide enantiomers (S/R-imazamox, acephate, acetochlor, propisochlor and metalaxyl). The detection limits for S- and R-imazamox were 4.20 μmol/L and 3.03 μmol/L, respectively. Meanwhile, the enantiomeric excess value (5.30 %) manifested that the chiral COF Dha Tab had the strong adsorption ability to imazamox enantiomers and more higher affinity for R-imazamox. This chiral fluorescent COF opened up a new way for the recognition of enantiomers.
Collapse
Affiliation(s)
- Shili Qin
- College of Chemistry and Chemical Engineering, Qiqihar University, Qiqihar 161006, PR China
| | - Xingyu You
- College of Chemistry and Chemical Engineering, Qiqihar University, Qiqihar 161006, PR China
| | - Xinyu Guo
- College of Chemistry and Chemical Engineering, Qiqihar University, Qiqihar 161006, PR China
| | - Hongtao Chu
- College of Chemistry and Chemical Engineering, Qiqihar University, Qiqihar 161006, PR China
| | - Qing Dong
- College of Chemistry and Chemical Engineering, Qiqihar University, Qiqihar 161006, PR China
| | - Hongshou Cui
- College of Chemistry and Chemical Engineering, Qiqihar University, Qiqihar 161006, PR China
| | - Fenglong Jin
- Qiqihar Inspection and Testing Center, Qiqihar Administration for Market Regulation, China.
| | - Lidi Gao
- College of Chemistry and Chemical Engineering, Qiqihar University, Qiqihar 161006, PR China.
| |
Collapse
|
34
|
Xu L, Peng H, Huang Y, Huang C, Xie C, He G. Green extract rosemary acid as a viscosity-sensitive molecular sensor in liquid systems. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2023; 15:1881-1887. [PMID: 36974992 DOI: 10.1039/d3ay00112a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
The liquid micro-environment plays a momentous role in the regulation of various activities, and the abnormal changes are often closely related to the deterioration phenomena in multiple beverages. The local viscosity fluctuation has long been regarded as a key indicator to reflect the micro-environmental status changes. Herein, we proposed a versatile optical sensor, rosmarinic acid (RA), one kind of green natural product extracted from rosemary, for monitoring liquid micro-environmental viscosity alterations. RA displays a larger Stokes shift (123.8 nm) with narrow-band energy and exhibits wide adaptability, high selectivity, good sensitivity, and excellent photostability in various commercial liquids. When in high viscous media, a bright fluorescent signal of RA is specifically activated, and a high signal-to-noise ratio signal was released (58-fold). With the assistance of the fluorescence analytical technique, we have successfully achieved tracking the viscosity fluctuations during the deterioration stage of liquids via an in situ and visualization method. Our study will spur additional research on the molecular tools extracted from natural products for liquid safety inspection, and a convenient and sustainable application pathway has been established.
Collapse
Affiliation(s)
- Lingfeng Xu
- Key Laboratory of Biodiversity and Ecological Engineering of Jiangxi Province, Jinggangshan University, Ji'an, Jiangxi 343009, China.
- State Key Laboratory of Luminescent Materials & Devices, College of Materials Science & Engineering, South China University of Technology, Guangzhou 510640, China
| | - Hui Peng
- Key Laboratory of Biodiversity and Ecological Engineering of Jiangxi Province, Jinggangshan University, Ji'an, Jiangxi 343009, China.
| | - Yanrong Huang
- School of Modern Agriculture and Forestry Engineering, Ji'an Vocational and Technical College, Ji'an, Jiangxi 343009, China
| | - Chunfang Huang
- Key Laboratory of Biodiversity and Ecological Engineering of Jiangxi Province, Jinggangshan University, Ji'an, Jiangxi 343009, China.
| | - Chengning Xie
- College of Mechanical and Electrical Engineering, Jinggangshan University, Ji'an, Jiangxi 343009, China
| | - Genhe He
- Key Laboratory of Biodiversity and Ecological Engineering of Jiangxi Province, Jinggangshan University, Ji'an, Jiangxi 343009, China.
| |
Collapse
|
35
|
Xu L, Huang Y, Peng H, Xu W, Yi X, He G. Triphenylamine-Modified Cinnamaldehyde Derivate as a Molecular Sensor for Viscosity Detection in Liquids. ACS OMEGA 2023; 8:13213-13221. [PMID: 37065079 PMCID: PMC10099141 DOI: 10.1021/acsomega.3c00488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Accepted: 03/07/2023] [Indexed: 06/19/2023]
Abstract
Liquid safety is considered a serious public health problem; a convenient and effective viscosity determination method has been regarded as one of the powerful means to detect liquid safety. Herein, one kind of triphenylamine-modified cinnamaldehyde-based fluorescent sensor (3-(4'-(diphenylamino)-[1,1'-biphenyl]-4-yl)acrylaldehyde (DPABA)) has been developed for sensing viscosity fluctuations in a liquid system, where a cinnamaldehyde derivative was extracted from one kind of natural plant cinnamon and acted as an acceptor, which has been combined with a triphenylamine derivate via the Suzuki coupling reaction within one facile step. Twisted intramolecular charge transfer (TICT) was observed, and the rotation could be restricted in the high-viscosity microenvironment; thus, the fluorescent signal was released at 548 nm. Featured with a larger Stokes shift (223.8 nm in water, 145.0 nm in glycerol), high adaptability, sensitivity, selectivity, and good photostability, the capability of high signal-to-noise ratio sensing was achieved. Importantly, this sensor DPABA has achieved noninvasively identifying thickening efficiency investigation, and viscosity fluctuations during the liquid deterioration program have been screened as well. We believed that this unique strategy can accelerate intelligent molecular platforms toward liquid quality and safety inspection.
Collapse
Affiliation(s)
- Lingfeng Xu
- Key
Laboratory of Biodiversity and Ecological Engineering of Jiangxi Province, Jinggangshan University, Ji’an 343009, Jiangxi, China
- State
Key Laboratory of Luminescent Materials & Devices, College of
Materials Science & Engineering, South
China University of Technology, Guangzhou 510640, China
| | - Yanrong Huang
- School
of Modern Agriculture and Forestry Engineering, Ji’an Vocational and Technical College, Ji’an 343009, Jiangxi, China
| | - Hui Peng
- Key
Laboratory of Biodiversity and Ecological Engineering of Jiangxi Province, Jinggangshan University, Ji’an 343009, Jiangxi, China
| | - Wenyan Xu
- Key
Laboratory of Biodiversity and Ecological Engineering of Jiangxi Province, Jinggangshan University, Ji’an 343009, Jiangxi, China
| | - Xiuguang Yi
- School
of Chemistry and Chemical Engineering, Jinggangshan
University, Ji’an 343009, Jiangxi, China
| | - Genhe He
- Key
Laboratory of Biodiversity and Ecological Engineering of Jiangxi Province, Jinggangshan University, Ji’an 343009, Jiangxi, China
| |
Collapse
|
36
|
Suliman Maashi M. CRISPR/Cas-based Aptasensor as an Innovative Sensing Approaches for Food Safety Analysis: Recent Progresses and New Horizons. Crit Rev Anal Chem 2023; 54:2599-2617. [PMID: 36940173 DOI: 10.1080/10408347.2023.2188955] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/21/2023]
Abstract
Food safety is one of the greatest public problems occurring around the world. Chemical, physical, and microbiological hazards could lead to food safety problems, which might occur at all stages of the supply chain. To tackle food safety problems and protect consumer health, specific, accurate, and rapid diagnosis techniques meeting various requirements are the imperative measures to ensure food safety. CRISPR-Cas system, a novel emerging technology, is effectively repurposed in (bio)sensing and has shown a tremendous capability to develop on-site and portable diagnostic methods with high specificity and sensitivity. Among numerous existing CRISPR/Cas systems, CRISPR/Cas13a and CRISPR/Cas12a are extensively employed in the design of biosensors, owing to their ability to cleave both non-target and target sequences. However, the specificity limitation in CRISPR/Cas has hindered its progress. Nowadays, nucleic acid aptamers recognized for their specificity and high-affinity characteristics for their analytes are incorporated into CRISPR/Cas systems. With the benefits of reproducibility, high durability, portability, facile operation, and cost-effectiveness, CRISPR/Cas-based aptasensing approaches are an ideal choice for fabricating highly specific point-of-need analytical tools with enhanced response signals. In the current study, we explore some of the most recent progress in the CRISPR/Cas-mediated aptasensors for detecting food risk factors including veterinary drugs, pesticide residues, pathogens, mycotoxins, heavy metals, illegal additives, food additives, and other contaminants. The nanomaterial engineering support with CRISPR/Cas aptasensors is also signified to achieve a hopeful perspective to provide new straightforward test kits toward trace amounts of different contaminants encountered in food samples.
Collapse
Affiliation(s)
- Marwah Suliman Maashi
- Medical Laboratory Science Department, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
- Regenerative Medicine Unit at King Fahad Medical Research Centre, Jeddah, Saudi Arabia
| |
Collapse
|
37
|
Zhang W, Sun DW, Ma J, Wang Z, Qin A, Zhong Tang B. Simultaneous Sensing of Ammonia and Temperatures Using A Dual-mode Freshness Indicator Based on Au/Cu Nanoclusters for Packaged Seafood. Food Chem 2023; 418:135929. [PMID: 37001353 DOI: 10.1016/j.foodchem.2023.135929] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2022] [Revised: 02/26/2023] [Accepted: 03/09/2023] [Indexed: 03/13/2023]
Abstract
Seafood is highly perishable and monitoring its freshness this thus an important issue. For the first time, the current study developed a dual-mode freshness indicator based on d-penicillamine capped bimetallic gold/copper nanoclusters (DPA-Au/CuNCs) as a response probe for simultaneous monitoring of ammonia and temperatures to assess seafood freshness. Results indicated that the prepared DPA-Au/CuNCs have good sensitivity toward ammonia, with a limit of detection of 0.14 ppm. The indicator as a gas sensor for ammonia vapour detection exhibited highly recognizable fluorescence colour changes and the variations from white to yellow were observed with increasing storage temperature under natural light. For confirming its practical applications, the indicator was used to simultaneously monitor ammonia and temperatures during the storage of shrimp and fish, showing good potential for practical applications in evaluating seafood freshness for the food industry.
Collapse
Affiliation(s)
- Wenyang Zhang
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510641, China; Academy of Contemporary Food Engineering, South China University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou 510006, China; Engineering and Technological Research Centre of Guangdong Province on Intelligent Sensing and Process Control of Cold Chain Foods, & Guangdong Province Engineering Laboratory for Intelligent Cold Chain Logistics Equipment for Agricultural Products, Guangzhou Higher Education Mega Centre, Guangzhou 510006, China
| | - Da-Wen Sun
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510641, China; Academy of Contemporary Food Engineering, South China University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou 510006, China; Engineering and Technological Research Centre of Guangdong Province on Intelligent Sensing and Process Control of Cold Chain Foods, & Guangdong Province Engineering Laboratory for Intelligent Cold Chain Logistics Equipment for Agricultural Products, Guangzhou Higher Education Mega Centre, Guangzhou 510006, China; Food Refrigeration and Computerized Food Technology (FRCFT), Agriculture and Food Science Centre, University College Dublin, National University of Ireland, Belfield, Dublin 4, Ireland. http://www.ucd.ie/refrig
| | - Ji Ma
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510641, China; Academy of Contemporary Food Engineering, South China University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou 510006, China; Engineering and Technological Research Centre of Guangdong Province on Intelligent Sensing and Process Control of Cold Chain Foods, & Guangdong Province Engineering Laboratory for Intelligent Cold Chain Logistics Equipment for Agricultural Products, Guangzhou Higher Education Mega Centre, Guangzhou 510006, China; State Key Laboratory of Luminescent Materials and Devices, Center for Aggregation-Induced Emission, South China University of Technology, Guangzhou 510640, China
| | - Zhiming Wang
- State Key Laboratory of Luminescent Materials and Devices, Center for Aggregation-Induced Emission, South China University of Technology, Guangzhou 510640, China
| | - Anjun Qin
- State Key Laboratory of Luminescent Materials and Devices, Center for Aggregation-Induced Emission, South China University of Technology, Guangzhou 510640, China
| | - Ben Zhong Tang
- State Key Laboratory of Luminescent Materials and Devices, Center for Aggregation-Induced Emission, South China University of Technology, Guangzhou 510640, China; Shenzhen Institute of Aggregate Science and Technology, School of Science and Engineering, The Chinese University of Hong Kong, Shenzhen, 2001 Longxiang Boulevard, Longgang District, Shenzhen City, Guangdong 518172, China
| |
Collapse
|
38
|
Efficient detection of formaldehyde by fluorescence switching sensor based on GSH-CdTe. Microchem J 2023. [DOI: 10.1016/j.microc.2023.108647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/19/2023]
|
39
|
Patra S, Purohit SS, Swain SK. In vivo fluorescence non-enzymatic glucose sensing technique for diabetes management by CQDs incorporated dextran nanocomposites in human blood serums. Microchem J 2023. [DOI: 10.1016/j.microc.2023.108646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/19/2023]
|
40
|
Zhu X, Chuai Q, Zhang D, Liu H, Sun B. A Robust Ratiometric Fluorescent Sensor Based on Covalent Assembly of Dipeptides and Biomolecules for the High-Sensitive and Optosmart Detection of Pyrethroids. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:3040-3049. [PMID: 36716129 DOI: 10.1021/acs.jafc.2c07397] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
In this study, two ultrashort dipeptides, diphenylalanine (FF) or C-terminal amidated diphenylalanine (DPA), were covalently self-assembled with genipin to obtain two well-defined supramolecular peptide nanoparticles for the detection of pyrethroids. DPA-genipin nanoparticles (PNPs) demonstrated excellent dual-emission fluorescence characteristics, tunable particle size, and robust photostability. Parallel to this, PNPs showed a ratiometric fluorescence response to λ-cyhalothrin (LC) with a distinct green-to-red color transition. The satisfactory self-calibration capability of the ratiometric system enabled PNPs to respond sensitively to LC in a wide range (5-800 μg/L) with a lower limit of detection of 0.034 μg/L. The introduction of a smartphone application made it easy to develop an intelligent evaluation platform based on PNPs, which had been proven to be applicable for on-site visualization of LC in agricultural products. The platform proposed here may be a new application of peptide self-assembly in sensing, with both important food safety implications and great economic value.
Collapse
Affiliation(s)
- Xuecheng Zhu
- School of Food and Health, Beijing Technology and Business University (BTBU), No. 11 Fucheng Road, Beijing100048, People's Republic of China
| | - Qingxin Chuai
- School of Food and Health, Beijing Technology and Business University (BTBU), No. 11 Fucheng Road, Beijing100048, People's Republic of China
| | - Dianwei Zhang
- School of Food and Health, Beijing Technology and Business University (BTBU), No. 11 Fucheng Road, Beijing100048, People's Republic of China
| | - Huilin Liu
- School of Food and Health, Beijing Technology and Business University (BTBU), No. 11 Fucheng Road, Beijing100048, People's Republic of China
| | - Baoguo Sun
- School of Food and Health, Beijing Technology and Business University (BTBU), No. 11 Fucheng Road, Beijing100048, People's Republic of China
| |
Collapse
|
41
|
Red emissive N-doped carbon dots encapsulated within molecularly imprinted polymers for optosensing of pyrraline in fatty foods. Mikrochim Acta 2023; 190:88. [PMID: 36773114 DOI: 10.1007/s00604-023-05669-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2022] [Accepted: 01/20/2023] [Indexed: 02/12/2023]
Abstract
A novel and facile method was proposed for preparation of red emissive N-doped carbon dots encapsulated within molecularly imprinted polymers (RNCDs@MIPs) using a one-pot room-temperature reverse microemulsion polymerization. RNCDs used citric acid and urea as carbon and nitrogen sources by one-step solvothermal synthesis with the optimum emission of 620 nm. Unique optical properties of RNCDs coupled with high selective MIPs make the RNCDs@MIPs conjugate capable to adsorb specific targets of pyrraline (PRL), such a binding event was then transduced to quench fluorescence response signal of the RNCDs. RNCDs@MIPs for PRL showed linearity from 0.1 to 40 μg/L, with a detection limit of 65 ng/L. The RNCDs@MIPs exhibited a good reproducibility of 4.67% obtained from four times of rebinding for PRL. The optosensing probe was successfully applied to the detection of PRL in fatty foods with the spiked recovery of 85.93-106.96%.
Collapse
|
42
|
Photoluminescence Performance and Photocatalytic Activity of Modified Carbon Quantum Dots Derived from Pluronic F127. Polymers (Basel) 2023; 15:polym15040850. [PMID: 36850134 PMCID: PMC9959664 DOI: 10.3390/polym15040850] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 02/04/2023] [Accepted: 02/06/2023] [Indexed: 02/11/2023] Open
Abstract
The photocatalytic degradation of organic dyes in waste water using carbon quantum dots (CQDs) remains a hot topic due to the importance of environmental protection. However, identifying suitable carbon resources and successful surface modification are still challenging. Herein, the hydrothermal method and surface modification of ammonia and thionyl chloride were applied to synthesize CQDs with different surface groups using PEO106PPO70PEO106 (Pluronic F127) as a carbon source. The average particle size of the as-prepared CQDs was in the range of 2.3-3.5 nm. The unmodified CQDs had the highest relative photoluminescence intensity, while all as-prepared CQDs exhibited abnormal photoluminescence located outside the scope of the visible spectrum. Interestingly, CQDs modified with ammonia achieved a degradation rate of 99.13% (15 d) for 50 mg/L indigo carmine solution, while CQDs modified with thionyl chloride reached a degradation rate of 97.59% (15 d) for light green SF yellowish solution. Therefore, in this work, two typical organic dyes can be effectively photocatalytically degraded by as-prepared CQDs, with suitable surface modification.
Collapse
|
43
|
Zhang J, Chen H, Xu K, Deng D, Zhang Q, Luo L. Current Progress of Ratiometric Fluorescence Sensors Based on Carbon Dots in Foodborne Contaminant Detection. BIOSENSORS 2023; 13:233. [PMID: 36831999 PMCID: PMC9953573 DOI: 10.3390/bios13020233] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Revised: 01/30/2023] [Accepted: 02/03/2023] [Indexed: 06/18/2023]
Abstract
Carbon dots (CDs) are widely used in the detection of foodborne contaminants because of their biocompatibility, photoluminescence stability, and ease of chemical modification. In order to solve the interference problem of complexity in food matrices, the development of ratiometric fluorescence sensors shows great prospects. In this review, the progress of ratiometric fluorescence sensors based on CDs in foodborne contaminant detection in recent years will be summarized, focusing on the functionalized modification of CDs, the fluorescence sensing mechanism, the types of ratiometric fluorescence sensors, and the application of portable devices. In addition, the outlook on the development of the field will be presented, with the development of smartphone applications and related software helping to better enable the on-site detection of foodborne contaminants to ensure food safety and human health.
Collapse
Affiliation(s)
- Jialu Zhang
- School of Medicine, Shanghai University, Shanghai 200444, China
| | - Huinan Chen
- College of Sciences, Shanghai University, Shanghai 200444, China
| | - Kaidi Xu
- College of Sciences, Shanghai University, Shanghai 200444, China
| | - Dongmei Deng
- College of Sciences, Shanghai University, Shanghai 200444, China
| | - Qixian Zhang
- School of Materials Science and Engineering, Shanghai University, Shanghai 200436, China
- Shaoxing Institute of Technology, Shanghai University, Shaoxing 312000, China
| | - Liqiang Luo
- College of Sciences, Shanghai University, Shanghai 200444, China
| |
Collapse
|
44
|
Hao Y, Yu L, Li T, Chen L, Han X, Chai F. The synthesis of carbon dots by folic acid and utilized as sustainable probe and paper sensor for Hg 2+ sensing and cellular imaging. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2023; 285:121865. [PMID: 36155928 DOI: 10.1016/j.saa.2022.121865] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 08/31/2022] [Accepted: 09/06/2022] [Indexed: 06/16/2023]
Abstract
In this work, the blue emission carbon dots (FA-CDs) are synthesized by one-pot solvothermal method by using folic acid as precursor. The FA-CDs emitted bright emission at 445 nm when excited at 360 nm with the QY of 31.2 %. The FA-CDs exhibit sensitive quenching response to Hg2+ with variable concentrations systematically, which determined FA-CDs can be employed as fluorescent probe, with a reliable linear relationship between fluorescence intensity and Hg2+ concentration, and a limit of detection (LOD) of 1.29 nM. Notably, the quenched FA-CDs can be recovered by using EDTA saturated solution with the emission comparable to initial in succession. The FA-CDs based paper sensor can be explored with similar detection performance, and it can also be restored by EDTA saturated solution. Both the restored CDs and paper sensor can be reused in the next turn for detecting Hg2+, which allowed the FA-CDs and their paper sensor can be serviced as sustainable probe for Hg2+ detection. The visual LOD of paper sensor can be determined at 0.1 μM, notably, the paper sensor can be reused at least 3 times with good performance, which is beneficial to environmental protection and saving resources. Possess excellent water solubility and non-toxic properties, the cellular imaging of FA-CDs was evaluated with excellent quality fluorescent image results. The FA-CDs provide a promising convenient fluorescent probe for multi-application in detection and imaging.
Collapse
Affiliation(s)
- Yunqi Hao
- Key Laboratory of Photochemical Biomaterials and Energy Storage Materials, Heilongjiang Province, Key Laboratory for Photonic and Electronic Bandgap Materials, Ministry of Education, College of Chemistry and Chemical Engineering, Harbin Normal University, Harbin, 150025, Heilongjiang Province, China
| | - Liying Yu
- Key Laboratory of Photochemical Biomaterials and Energy Storage Materials, Heilongjiang Province, Key Laboratory for Photonic and Electronic Bandgap Materials, Ministry of Education, College of Chemistry and Chemical Engineering, Harbin Normal University, Harbin, 150025, Heilongjiang Province, China
| | - Tingting Li
- Key Laboratory of Photochemical Biomaterials and Energy Storage Materials, Heilongjiang Province, Key Laboratory for Photonic and Electronic Bandgap Materials, Ministry of Education, College of Chemistry and Chemical Engineering, Harbin Normal University, Harbin, 150025, Heilongjiang Province, China
| | - Lihua Chen
- Shandong Key Laboratory of Biochemical Analysis, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, Shandong Province, China.
| | - Xu Han
- College of Computer Science and Information Engineering, Harbin Normal University, Harbin, 150025, Heilongjiang Province, China.
| | - Fang Chai
- Key Laboratory of Photochemical Biomaterials and Energy Storage Materials, Heilongjiang Province, Key Laboratory for Photonic and Electronic Bandgap Materials, Ministry of Education, College of Chemistry and Chemical Engineering, Harbin Normal University, Harbin, 150025, Heilongjiang Province, China.
| |
Collapse
|
45
|
Schiff Bases: A Versatile Fluorescence Probe in Sensing Cations. J Fluoresc 2023; 33:859-893. [PMID: 36633727 DOI: 10.1007/s10895-022-03135-6] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Accepted: 12/24/2022] [Indexed: 01/13/2023]
Abstract
Metal cations such as Zn2+, Al3+, Hg2+, Cd2+, Sn2+, Fe2+, Fe3+ and Cu2+ play important roles in biology, medicine, and the environment. However, when these are not maintained in proper concentration, they can be lethal to life. Therefore, selective sensing of metal cations is of great importance in understanding various metabolic processes, disease diagnosis, checking the purity of environmental samples, and detecting toxic analytes. Schiff base probes have been largely used in designing fluorescent sensors for sensing metal ions because of their easy processing, availability, fast response time, and low detection limit. Herein, an in-depth report on metal ions recognition by some Schiff base fluorescent sensors, their sensing mechanism, their practical applicability in cell imaging, building logic gates, and analysis of real-life samples has been presented. The metal ions having biological, industrial, and environmental significance are targeted. The compiled information is expected to prove beneficial in designing and synthesis of the related Schiff base fluorescent sensors.
Collapse
|
46
|
Otchere E, McKay BM, English MM, Aryee ANA. Current trends in nano-delivery systems for functional foods: a systematic review. PeerJ 2023; 11:e14980. [PMID: 36949757 PMCID: PMC10026715 DOI: 10.7717/peerj.14980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Accepted: 02/09/2023] [Indexed: 03/19/2023] Open
Abstract
Background Increased awareness of the relationship between certain components in food beyond basic nutrition and health has generated interest in the production and consumption. Functional foods owe much of their health benefits to the presence of bioactive components. Despite their importance, their poor stability, solubility, and bioavailability may require the use of different strategies including nano-delivery systems (NDS) to sustain delivery and protection during handling, storage, and ingestion. Moreover, increasing consumer trend for non-animal sourced ingredients and interest in sustainable production invigorate the need to evaluate the utility of plant-based NDS. Method In the present study, 129 articles were selected after screening from Google Scholar searches using key terms from current literature. Scope This review provides an overview of current trends in the use of bioactive compounds as health-promoting ingredients in functional foods and the main methods used to stabilize these components. The use of plant proteins as carriers in NDS for bioactive compounds and the merits and challenges of this approach are also explored. Finally, the review discusses the application of protein-based NDS in food product development and highlights challenges and opportunities for future research. Key Findings Plant-based NDS is gaining recognition in food research and industry for their role in improving the shelf life and bioavailability of bioactives. However, concerns about safety and possible toxicity limit their widespread application. Future research efforts that focus on mitigating or enhancing their safety for food applications is warranted.
Collapse
Affiliation(s)
- Emmanuel Otchere
- Department of Human Ecology, Delaware State University, Dover, Delaware, United States
| | - Brighid M. McKay
- Department of Human Nutrition, St. Francis Xavier University, Antigonish, Nova Scotia, Canada
| | - Marcia M. English
- Department of Human Nutrition, St. Francis Xavier University, Antigonish, Nova Scotia, Canada
| | - Alberta N. A. Aryee
- Department of Human Ecology, Delaware State University, Dover, Delaware, United States
| |
Collapse
|
47
|
Xu L, Kang M, Xiong F, Sui Y, Huang Y. Cinnamaldehyde‐based Natural Product as Viscosity‐Sensitive Sensor toward Liquid Safety Inspection. ChemistrySelect 2022. [DOI: 10.1002/slct.202203458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Lingfeng Xu
- Key Laboratory of Biodiversity and Ecological Engineering of Jiangxi Province Jinggangshan University Ji'an Jiangxi 343009 China
- State Key Laboratory of Luminescent Materials & Devices South China University of Technology Guangzhou Guangdong 510640 China
| | - Minqing Kang
- School of Chemistry and Chemical Engineering Jinggangshan University Ji'an Jiangxi 343009 China
| | - Fangzhi Xiong
- School of Chemistry and Chemical Engineering Jinggangshan University Ji'an Jiangxi 343009 China
| | - Yan Sui
- School of Chemistry and Chemical Engineering Jinggangshan University Ji'an Jiangxi 343009 China
| | - Yanrong Huang
- Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety South China University of Technology Guangzhou Guangdong 510640 China
| |
Collapse
|
48
|
Pan Y, Han Z, Chen S, Wei K, Wei X. Metallic nanoclusters: From synthetic challenges to applications of their unique properties in food contamination detection. Coord Chem Rev 2022. [DOI: 10.1016/j.ccr.2022.214964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
49
|
Li H, Su C, Liu N, Lv T, Yang C, Lu Q, Sun C, Yan X. Carbon Dot-Anchored Cobalt Oxyhydroxide Composite-Based Hydrogel Sensor for On-Site Monitoring of Organophosphorus Pesticides. ACS APPLIED MATERIALS & INTERFACES 2022; 14:53340-53347. [PMID: 36380517 DOI: 10.1021/acsami.2c17450] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
The development of a portable, quantitative, and user-friendly sensor for on-site monitoring of organophosphorus pesticides (OPs) is significantly urgent to guarantee food safety. Herein, a carbon dot/cobalt oxyhydroxide composite (CD/CoOOH)-based fluorescent hydrogel sensor is constructed for precisely quantifying OPs using a homemade portable auxiliary device. As a fluorescence signal indicator, the orange-emissive CD/CoOOH composite is encapsulated into an agarose hydrogel kit for amplifying the detection signals, shielding background interference, and enhancing stability. Acetylcholinesterase (AChE) catalyzes the hydrolysis of the substrate to produce thiocholine, which induces the decomposition of CoOOH and makes the fluorescence enhancement of the hydrogel platform possible. OPs can specifically block the AChE activity to limit thiocholine production, resulting in a decrease in platform fluorescence. The image color of the fluorescent hydrogel kit is transformed into digital information using a homemade auxiliary device, achieving on-site quantitative detection of paraoxon (model target) with a detection limit of 10 ng mL-1. Harnessing CD/CoOOH composite signatures, hydrogel encapsulation, and portable optical devices, the proposed fluorescence hydrogel platform demonstrated high sensitivity and good anti-interference performance in agricultural sample analysis, indicating considerable potential in the on-site application.
Collapse
Affiliation(s)
- Hongxia Li
- Department of Food Quality and Safety, College of Food Science and Engineering, Jilin University, Changchun 130062, P. R. China
| | - Changshun Su
- Department of Food Quality and Safety, College of Food Science and Engineering, Jilin University, Changchun 130062, P. R. China
| | - Ni Liu
- Department of Food Quality and Safety, College of Food Science and Engineering, Jilin University, Changchun 130062, P. R. China
| | - Ting Lv
- Department of Food Quality and Safety, College of Food Science and Engineering, Jilin University, Changchun 130062, P. R. China
| | - Chuanyu Yang
- Department of Food Quality and Safety, College of Food Science and Engineering, Jilin University, Changchun 130062, P. R. China
| | - Qi Lu
- Department of Food Quality and Safety, College of Food Science and Engineering, Jilin University, Changchun 130062, P. R. China
| | - Chunyan Sun
- Department of Food Quality and Safety, College of Food Science and Engineering, Jilin University, Changchun 130062, P. R. China
| | - Xu Yan
- State Key Laboratory of Integrated Optoelectronics, Key Laboratory of Advanced Gas Sensors, College of Electronic Science and Engineering, Jilin University, 2699 Qianjin Street, Jilin Province, Changchun 130012, P. R. China
| |
Collapse
|
50
|
Wang Q, Tang Z, Li L, Guo J, Jin L, Lu J, Huang P, Zhang S, Jiao L. Highly efficient red-emitting carbon dots as a "turn-on" temperature probe in living cells. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2022; 280:121538. [PMID: 35752035 DOI: 10.1016/j.saa.2022.121538] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 06/16/2022] [Accepted: 06/17/2022] [Indexed: 06/15/2023]
Abstract
Nanothermometers, which can precisely detect the intracellular temperature changes, have great potential to solve questions concerning the cellular processes. Thus, the temperature sensors that provide fluorescent "turn-on" signals in the biological transparency window are of highly desirable. To meet these criteria, this work reported a new "turn-on" carbon dot (CD)-based fluorescent nanothermometry device for sensing temperature in living cells. The CDs that emit bright red fluorescence (R-CDs; λmax = 610 nm in water) were synthesized with o-phenylenediamine as carbon precursor via a facile solvothermal method. The R-CDs in water were almost nonfluorescent at 15 °C. As the temperature increased, the fluorescence intensity of R-CDs exhibited a gradual increase and the final enhancement factor was greater than 21-fold. The fluorescence intensity exhibited a linear response to temperature and a high-sensitive variation of ≈13.3 % °C-1 was detected within a broad temperature range of 28-60 °C. Moreover, the R-CD thermal sensors also exhibited high storage stability, excellent response reversibility and superior photo- and thermo-stability. Due to its good biocompatibility and "intelligent" response to external temperature, the nanothermometer could be applied for sensing temperature changes in biological media.
Collapse
Affiliation(s)
- Qin Wang
- Shaanxi Key Laboratory of Catalysis, School of Chemistry and Environment Science, Shaanxi University of Technology, Hanzhong, Shaanxi 723000, China
| | - Zhihua Tang
- Shaanxi Key Laboratory of Catalysis, School of Chemistry and Environment Science, Shaanxi University of Technology, Hanzhong, Shaanxi 723000, China
| | - Lihua Li
- Shaanxi Key Laboratory of Catalysis, School of Chemistry and Environment Science, Shaanxi University of Technology, Hanzhong, Shaanxi 723000, China
| | - Jinxiu Guo
- College of Science, Gansu Agricultural University, Lanzhou 730070, China
| | - Lingxia Jin
- Shaanxi Key Laboratory of Catalysis, School of Chemistry and Environment Science, Shaanxi University of Technology, Hanzhong, Shaanxi 723000, China
| | - Jiufu Lu
- Shaanxi Key Laboratory of Catalysis, School of Chemistry and Environment Science, Shaanxi University of Technology, Hanzhong, Shaanxi 723000, China
| | - Pei Huang
- Shaanxi Key Laboratory of Catalysis, School of Chemistry and Environment Science, Shaanxi University of Technology, Hanzhong, Shaanxi 723000, China
| | - Shengrui Zhang
- Shaanxi Key Laboratory of Catalysis, School of Chemistry and Environment Science, Shaanxi University of Technology, Hanzhong, Shaanxi 723000, China.
| | - Long Jiao
- College of Chemistry and Chemical Engineering, Xi'an Shiyou University, Xi'an 710065, China.
| |
Collapse
|