1
|
Montemurro M, Verni M, Rizzello CG, Pontonio E. Design of a Plant-Based Yogurt-Like Product Fortified with Hemp Flour: Formulation and Characterization. Foods 2023; 12:485. [PMID: 36766014 PMCID: PMC9914809 DOI: 10.3390/foods12030485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 01/17/2023] [Accepted: 01/18/2023] [Indexed: 01/21/2023] Open
Abstract
Plant-based milk alternatives have gained massive popularity among consumers because of their sustainable production compared to bovine milk and because of meeting the nutritional requests of consumers affected by cow milk allergies and lactose intolerance. In this work, hemp flour, in a blend with rice flour, was used to design a novel lactose- and gluten-free yogurt-like (YL) product with suitable nutritional, functional, and sensory features. The growth and the acidification of three different lactic acid bacteria strains were monitored to better set up the biotechnological protocol for making the YL product. Hemp flour conferred the high fiber (circa 2.6 g/100 g), protein (circa 4 g/100 g), and mineral contents of the YL product, while fermentation by selected lactic acid bacteria increased the antioxidant properties (+8%) and the soluble fiber (+0.3 g/100 g), decreasing the predicted glycemic index (-10%). As demonstrated by the sensory analysis, the biotechnological process decreased the earthy flavor (typical of raw hemp flour) and increased the acidic and creamy sensory perceptions. Supplementation with natural clean-label vanilla powder and agave syrup was proposed to further decrease the astringent and bitter flavors. The evaluation of the starter survival and biochemical properties of the product under refrigerated conditions suggests an estimated shelf-life of 30 days. This work demonstrated that hemp flour might be used as a nutritional improver, while fermentation with a selected starter represents a sustainable and effective option for exploiting its potential.
Collapse
Affiliation(s)
- Marco Montemurro
- Department of Soil, Plant and Food Science, University of Bari Aldo Moro, 70126 Bari, Italy
- National Research Council of Italy, Institute of Sciences of Food Production (CNR-ISPA), 70126 Bari, Italy
| | - Michela Verni
- Department of Soil, Plant and Food Science, University of Bari Aldo Moro, 70126 Bari, Italy
| | | | - Erica Pontonio
- Department of Soil, Plant and Food Science, University of Bari Aldo Moro, 70126 Bari, Italy
| |
Collapse
|
2
|
Tyndall SM, Maloney GR, Cole MB, Hazell NG, Augustin MA. Critical food and nutrition science challenges for plant-based meat alternative products. Crit Rev Food Sci Nutr 2022; 64:638-653. [PMID: 35972071 DOI: 10.1080/10408398.2022.2107994] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
A reduced reliance on animal-based diets with a move towards a more plant-based diet has driven the market demand for new generation sustainable plant-based meat alternatives. This review covers science and business perspectives relating to the development of plant-based meat alternatives. A conceptual framework to help inform the innovation pathway is provided. The market opportunity, consumer perspectives, the science that underpins the development of plant-based meat alternatives and patent information relating to these products are discussed. Careful navigation through the public domain science literature and patent landscape is necessary for informing the choice of ingredients, formulations and processes for producing plant-based meat alternatives. Attention to design of ingredient systems for optimization of flavor, texture, binding, color and nutrition is necessary for development of plant-based meat alternatives with desirable consumer attributes. Recommendations for further research for developing superior formulations for consumer-acceptable plant-based meat alternative products for improving sustainability outcomes are suggested.
Collapse
Affiliation(s)
| | | | - Martin B Cole
- Wine Australia, Kent Town, South Australia, Australia
| | | | | |
Collapse
|
3
|
Otero DM, da Rocha Lemos Mendes G, da Silva Lucas AJ, Christ-Ribeiro A, Ribeiro CDF. Exploring alternative protein sources: Evidence from patents and articles focusing on food markets. Food Chem 2022; 394:133486. [PMID: 35759839 DOI: 10.1016/j.foodchem.2022.133486] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 05/10/2022] [Accepted: 06/12/2022] [Indexed: 11/04/2022]
Abstract
This review considers alternative protein sources through the analysis of food science literature and patents. Data collection was performed from scientific literature and patent documents using the Scopus and National Institute of Industrial Property databases, with a term combination "alternative protein source" and "source* AND protein* AND alternative*". A total of 945 documents were analyzed. The scientific prospection showed that agricultural and biological science was the main application area. The food industry area had the highest number of filed patents. The annual evaluation of published documents demonstrated that this area had been investigated since the 1970s, and the number of articles was twice than that of filled patents. Although protein products are available for sale, animal and vegetable sources replace conventional protein products. Presently, alternative protein sources are already a worldwide trend in the food industry, enabling the development of new products to facilitate their insertion into the consumer market.
Collapse
Affiliation(s)
- Deborah Murowaniecki Otero
- Graduate Program in Food, Nutrition, and Health, Nutrition School, Federal University of Bahia, Campus Canela, Salvador, Bahia 40110-907, Brazil; Graduate Program in Food Science, Faculty of Pharmacy, Federal University of Bahia, Campus Ondina, Salvador, Bahia 40170-115, Brazil.
| | - Gabriela da Rocha Lemos Mendes
- Institute of Agricultural Sciences, Federal University of Minas Gerais, Campus Montes Claros, Montes Claros, Minas Gerais 39404-547, Brazil
| | | | - Anelise Christ-Ribeiro
- School of Chemistry and Food, Federal University of Rio Grande, Rio Grande, Rio Grande do Sul 96203-900, Brazil
| | - Camila Duarte Ferreira Ribeiro
- Graduate Program in Food, Nutrition, and Health, Nutrition School, Federal University of Bahia, Campus Canela, Salvador, Bahia 40110-907, Brazil; Graduate Program in Food Science, Faculty of Pharmacy, Federal University of Bahia, Campus Ondina, Salvador, Bahia 40170-115, Brazil
| |
Collapse
|
4
|
Moura MAFE, Martins BDA, Oliveira GPD, Takahashi JA. Alternative protein sources of plant, algal, fungal and insect origins for dietary diversification in search of nutrition and health. Crit Rev Food Sci Nutr 2022; 63:10691-10708. [PMID: 35698908 DOI: 10.1080/10408398.2022.2085657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
This review aimed to compare alternative protein sources in terms of nutritional composition and health benefits with the purpose of disseminating up-to-date knowledge and contribute for diversification of the food marked and consumers decision-making. Plant-based is the most well-established category of alternative proteins, but there is still room for diversification. Less conventional species such as chia seeds are prominent sources of ω-3 (∼60% total lipids), while hempseed and quinoa are notable sources of ω-6 (up to 58% and 61%, respectively). Edible insects and microalgae are alternative foods rich in protein (up to 70%), fibers (∼30%), as well as peptides and polysaccharides with antimicrobial, antioxidant, anti-hypertensive, antidiabetic, antidepressant, antitumor, and immunomodulatory activities. Additionally, lipid contents in insect larvae can be as high as 50%, on a dry weight basis, containing fatty acids with anti-inflammatory and antitumor properties. In contrast, edible fungi have low lipid contents (∼2%), but are rich in carbohydrates (up to 79%) and have balanced amino acid profiles. The results suggest that food formulations combining different alternative protein sources can meet dietary requirements. Further studies on flavoring and texturing processes will help to create meat and dairy analogs, thus helping to broaden acceptance and applicability of alternative protein sources.
Collapse
Affiliation(s)
| | - Bruna de Almeida Martins
- Department of Chemistry, Exact Sciences Institute, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Geane P de Oliveira
- Department of Chemistry, Exact Sciences Institute, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Jacqueline A Takahashi
- Department of Food Science, Faculty of Pharmacy, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
- Department of Chemistry, Exact Sciences Institute, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| |
Collapse
|
5
|
The Impact of Alternative Foods on Consumers' Continuance Intention from an Innovation Perspective. Foods 2022; 11:foods11081167. [PMID: 35454753 PMCID: PMC9031686 DOI: 10.3390/foods11081167] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 04/13/2022] [Accepted: 04/14/2022] [Indexed: 11/21/2022] Open
Abstract
This paper aims to model consumers’ perceptions and preferences toward alternative foods. We conducted a survey of 519 people and analyzed their responses using a structural equation model. The article discusses the role of food innovation quality (FIQ), a concept developed from innovative design, which shows how consumers perceive the quality of products in an innovative context. Further, the paper discusses the relationship between this concept and promoting consumer acceptance of alternative foods. Studies suggest that higher FIQ may lead to increased consumer satisfaction with alternative foods, which may in turn lead to higher levels of trust and continuation. Moreover, expectations play a significant role in FIQ and in the perceived value of alternative foods in the model. This illustrates that the promotion of alternative foods in an innovative manner should include establishing a practical mechanism for meeting consumer expectations. Given the continued growth in global food demand, it is both effective and beneficial to promote alternative foods through innovative design as part of a broader food industry approach. On the one hand, alternative foods produced in an innovative manner serve to energize the consumer market by expanding dietary choices. On the other hand, alternative foods, which include new forms of meat products, contribute to the alleviation of the problem of meat production capacity in agriculture. In addition, the alternative foods process eliminates the emission of large amounts of carbon dioxide by traditional agriculture, increasing the sustainability of food production.
Collapse
|
6
|
Liu F, Li M, Wang Q, Yan J, Han S, Ma C, Ma P, Liu X, McClements DJ. Future foods: Alternative proteins, food architecture, sustainable packaging, and precision nutrition. Crit Rev Food Sci Nutr 2022; 63:6423-6444. [PMID: 35213241 DOI: 10.1080/10408398.2022.2033683] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
There are numerous challenges facing the modern food and agriculture industry that urgently need to be addressed, including feeding a growing global population, mitigating and adapting to climate change, decreasing pollution, waste, and biodiversity loss, and ensuring that people remain healthy. At the same time, foods should be safe, affordable, convenient, and delicious. The latest developments in science and technology are being deployed to address these issues. Some of the most important elements within this modern food design approach are encapsulated by the MATCHING model: Meat-reduced; Automation; Technology-driven; Consumer-centric; Healthy; Intelligent; Novel; and Globalization. In this review article, we focus on four key aspects that will be important for the creation of a new generation of healthier and more sustainable foods: emerging raw materials; structural design principles for creating innovative products; developments in eco-friendly packaging; and precision nutrition and customized production of foods. We also highlight some of the most important new developments in science and technology that are being used to create future foods, including food architecture, synthetic biology, nanoscience, and sensory perception.Supplemental data for this article is available online at https://doi.org/10.1080/10408398.2022.2033683.
Collapse
Affiliation(s)
- Fuguo Liu
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi, PR China
| | - Moting Li
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi, PR China
| | - Qiankun Wang
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi, PR China
| | - Jun Yan
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi, PR China
| | - Shuang Han
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi, PR China
| | - Cuicui Ma
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi, PR China
| | - Peihua Ma
- Department of Nutrition and Food Science, College of Agriculture and Natural Resources, University of Maryland, College Park, MD, USA
| | - Xuebo Liu
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi, PR China
| | | |
Collapse
|
7
|
Daba SD, McGee RJ, Morris CF. Trait associations and genetic variability in field pea (
Pisum sativum
L.): Implications in variety development process. Cereal Chem 2021. [DOI: 10.1002/cche.10496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Sintayehu D. Daba
- USDA‐ARS Western Wheat & Pulse Quality Laboratory Pullman Washington USA
| | - Rebecca J. McGee
- USDA‐ARS Grain Legume Genetics and Physiology Research Unit Pullman Washington USA
| | - Craig F. Morris
- USDA‐ARS Western Wheat & Pulse Quality Laboratory Pullman Washington USA
| |
Collapse
|
8
|
Jerez-Timaure N, Sánchez-Hidalgo M, Pulido R, Mendoza J. Effect of Dietary Brown Seaweed ( Macrocystis pyrifera) Additive on Meat Quality and Nutrient Composition of Fattening Pigs. Foods 2021; 10:foods10081720. [PMID: 34441498 PMCID: PMC8393841 DOI: 10.3390/foods10081720] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Revised: 07/19/2021] [Accepted: 07/20/2021] [Indexed: 12/21/2022] Open
Abstract
The objective of this study was to evaluate the effects of dietary brown seaweed (Macrocystis pyrifera) additive (SWA) on meat quality and nutrient composition of commercial fattening pigs. The treatments were: Regular diet with 0% inclusion of SWA (CON); Regular diet with 2% SWA (2%-SWA); Regular diet with 4% SWA (4%-SWA). After slaughtering, five carcasses from each group were selected, and longissimus lumborum (LL) samples were taken for meat quality and chemical composition analysis. Meat quality traits (except redness intensity) were not affected (p > 0.05) by treatments. Samples from the 4%-SWA treatment showed the lowest a value than those from the 2%-SWA and CON treatments (p = 0.05). Meat samples from the 4%-SWA group contained 3.37 and 3.81 mg/100 g more of muscle cholesterol than CON and 2% SWA groups, respectively (p < 0.05). The SWA treatments affected (p ≤ 0.05) the content of ash, Mn, Fe, and Cu. The LL samples from 4%-SWA had the highest content of ash; however, they showed 0.13, 0.45, and 0.23 less mg/100 g of Mn, Fe, and Zn, respectively, compared to samples from CON (p ≤ 0.05). Fatty acids composition and macro minerals content (Na, Mg, and K) did not show variation due to the SWA treatments. Further studies are needed to understand the biological effects of these components on adipogenesis, cholesterol metabolism, and mineral deposition in muscle.
Collapse
Affiliation(s)
- Nancy Jerez-Timaure
- Instituto de Ciencia Animal, Facultad de Ciencias Veterinarias, Universidad Austral de Chile, Valdivia 5090000, Chile;
- Correspondence:
| | - Melissa Sánchez-Hidalgo
- Escuela de Graduados, Facultad de Ciencias Veterinarias, Universidad Austral de Chile, Valdivia 5090000, Chile;
| | - Rubén Pulido
- Instituto de Ciencia Animal, Facultad de Ciencias Veterinarias, Universidad Austral de Chile, Valdivia 5090000, Chile;
| | | |
Collapse
|