1
|
Coppola F, Lombardi SJ, Tremonte P. Edible Insect Meals as Bioactive Ingredients in Sustainable Snack Bars. Foods 2025; 14:702. [PMID: 40002145 PMCID: PMC11854822 DOI: 10.3390/foods14040702] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2025] [Revised: 02/13/2025] [Accepted: 02/17/2025] [Indexed: 02/27/2025] Open
Abstract
Insect metabolites are known for their preservative potential, but the time-consuming and unsustainable extraction process compromises their transferability. This study aimed to identify user-friendly solutions based on the use of insect meals that could improve microbiological safety as well as consumer acceptability. In this regard, the antimicrobial activity of Alphitobius diaperinus and Tenebrio molitor meals against surrogate strains of Gram-positive (Listeria monocytogenes) and Gram-negative (Escherichia coli) pathogenic bacteria and mycotoxin-producing fungi (Penicillium expansum) was evaluated. Minimum inhibitory concentration values of between 3.12 mg/mL vs. Listeria innocua and 12.50 mg/mL vs. Escherichia coli were found. Based on this finding, a model food was developed also considering consumer acceptance. Statistical analysis of food preferences showed that nutritional and sustainability claims were the independent variables of greatest interest. Therefore, waste or by-products from other food chains were selected as co-ingredients for sustainability, nutritional, and sensory claims. Analysis of the chemical composition showed that the insect bar-style snack qualifies as a "high-protein" food, as protein provides more than 20% of the energy value. Based on the moisture (30%) and water activity (0.77) values, the bar could be classified as an intermediate-moisture food. The challenge test showed that the insect meal prevented the proliferation of intentionally added undesirable microorganisms. Conclusively, the findings complement the knowledge on the antimicrobial activities of insect meals, offering new possibilities for their use as natural preservative ingredients with nutritionally relevant properties.
Collapse
Affiliation(s)
- Francesca Coppola
- Institute of Food Science, Italian National Research Council, Via Roma 64, 83100 Avellino, Italy
- Department of Agricultural Sciences, University of Naples “Federico II”, Piazza Carlo di Borbone 1, 80055 Portici, Italy
| | - Silvia Jane Lombardi
- Department of Agricultural, Environmental and Food Sciences (DiAAA), University of Molise, Via De Sanctis snc, 86100 Campobasso, Italy;
| | - Patrizio Tremonte
- Department of Agricultural, Environmental and Food Sciences (DiAAA), University of Molise, Via De Sanctis snc, 86100 Campobasso, Italy;
| |
Collapse
|
2
|
Hamilton AN, Gibson KE. Impact of Storage Conditions on Salmonella enterica and Listeria monocytogenes in Pre- and Post-Printed 3D Food Ink. J Food Prot 2025; 88:100409. [PMID: 39551263 DOI: 10.1016/j.jfp.2024.100409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2024] [Revised: 11/11/2024] [Accepted: 11/12/2024] [Indexed: 11/19/2024]
Abstract
3D food printers (3DFPs) allow for the customization of physicochemical properties of foods in new ways. Storage conditions for food ink capsules and printed food inks have not been investigated. This study aimed to determine the impact of storage temperature, time, and method (pre- vs. postprinting) on Salmonella enterica and Listeria monocytogenes. A bacterial cocktail was cultured in minimal media and added to a protein cookie food ink at ∼6.5 log CFU/g. The inoculated food ink was divided into 18 capsules (50 g/capsule); half were 3D printed. The remaining capsules and printed products were stored at three temperatures [20 °C, 4 °C, -18 °C]. Selective media (XLT-4 and CHROMagar Listeria) were used for pathogen enumeration. Aerobic plate count and yeast counts were performed at each time point. The pH and water activity (aw) of the food ink were measured at the initial and final timepoints. A significant four-way interaction effect was observed between microorganism type (L. monocytogenes/Salmonella), time, temperature, and storage method (capsule/print) (p = 0.014). Significant findings include (1) at -18 °C, concentrations of L. monocytogenes decreased between Day 0 and Day 1, (2) at 20 °C, concentrations of S. enterica were significantly higher in the capsule than in the printed food on Day 1 (p < 0.0001), and (3) at 4 °C, concentrations of S. enterica were significantly higher in the printed food on Day 5 compared to Day 1 (p < 0.0001) with a 0.9 (95% CI: 0.89, 0.91) log increase. In addition, a significant three-way interaction effect was found between microorganism type (yeast/aerobic counts), time, and temperature (p = 0.024). Yeast counts remained steady at all temperatures, while aerobic counts increased at 4 °C. Minimal differences were observed between Listeria and Salmonella and their responses to varying storage conditions over time indicating that storage method and temperature may be less important for a low-water activity product such as protein cookie food ink.
Collapse
Affiliation(s)
- Allyson N Hamilton
- Department of Food Science, Center for Food Safety, University of Arkansas System Division of Agriculture, Fayetteville, AR 72704, United States
| | - Kristen E Gibson
- Department of Food Science, Center for Food Safety, University of Arkansas System Division of Agriculture, Fayetteville, AR 72704, United States.
| |
Collapse
|
3
|
Alegbeleye O, Rhee MS. Growth of Listeria monocytogenes in fresh vegetables and vegetable salad products: An update on influencing intrinsic and extrinsic factors. Compr Rev Food Sci Food Saf 2024; 23:e13423. [PMID: 39169547 DOI: 10.1111/1541-4337.13423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 07/09/2024] [Accepted: 07/15/2024] [Indexed: 08/23/2024]
Abstract
The ability of foodborne pathogens to grow in food products increases the associated food safety risks. Listeria monocytogenes (Lm) is a highly adaptable pathogen that can survive and grow under a wide range of environmental circumstances, including otherwise inhibitory conditions, such as restrictive cold temperatures. It can also survive long periods under adverse environmental conditions. This review examines the experimental evidence available for the survival and growth of Lm on fresh vegetables and ready-to-eat vegetable salads. Published data indicate that, depending on certain intrinsic (e.g., nutrient composition) and extrinsic factors (e.g., storage temperature, packaging atmosphere), Lm can survive on and in a wide variety of vegetables and fresh-cut minimally processed vegetable salads. Studies have shown that temperature, modified atmosphere packaging, relative humidity, pH, water activity, background microbiota of vegetables, microbial strain peculiarities, and nutrient type and availability can significantly impact the fate of Lm in vegetables and vegetable salads. The influence of these factors can either promote its growth or decline. For example, some studies have shown that background microbiota inhibit the growth of Lm in vegetables and minimally processed vegetable salads, but others have reported a promoting, neutral, or insignificant effect on the growth of Lm. A review of relevant literature also indicated that the impact of most influencing factors is related to or interacts with other intrinsic or extrinsic factors. This literature synthesis contributes to the body of knowledge on possible strategies for improving food safety measures to minimize the risk of Lm-associated foodborne outbreaks involving vegetables and vegetable salads.
Collapse
Affiliation(s)
- Oluwadara Alegbeleye
- Department of Food Science and Nutrition, Faculty of Food Engineering, Universidade Estadual de Campinas, Campinas, Brazil
| | - Min Suk Rhee
- Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul, South Korea
| |
Collapse
|
4
|
Xu Y, Guan X, Wang S. Synergistic bactericidal mechanisms of RF energy simultaneously combined with cinnamon essential oil or epsilon-polylysine against Salmonella revealed at cellular and metabolic levels. Int J Food Microbiol 2024; 408:110447. [PMID: 37907022 DOI: 10.1016/j.ijfoodmicro.2023.110447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 09/13/2023] [Accepted: 10/11/2023] [Indexed: 11/02/2023]
Abstract
Radio frequency (RF) heating and antimicrobials are considered to be effective methods for inactivating food pathogens. This study explored the bactericidal effects against Salmonella of RF heating combined with two kinds of natural antimicrobials possessing different hydrophobic properties and their synergistic bactericidal mechanisms. Results showed that RF heating caused sublethal damage to bacterial cells and enhanced the interaction of cells and antimicrobials, leading to synergistic bactericidal effects of the simultaneous combination of RF heating and antimicrobials. The combination of RF heating and ε-polylysine (ε-PL) further promoted cell morphological alteration, raised membrane permeability, intracellular adenosine triphosphate (ATP) leakage and intracellular reactive oxygen species (ROS) accumulation compared to individual treatment. The simultaneous combination of RF heating and cinnamon essential oil nanoemulsion (CEON) also further enhanced membrane permeability and ROS accumulation compared to individual treatment, but impacts were less than those in the combination of RF heating and ε-PL. The major synergistic bactericidal mechanism of RF heating and CEON was significantly inhibiting intracellular ATP synthesis. The untargeted metabolomics analysis revealed that the combined treatments enhanced disturbances to multiple intracellular metabolisms compared to individual treatment, thus leading to synergistic bactericidal effects against Salmonella. These results provide an in-depth understanding of the synergistic bactericidal mechanisms of the combination of RF heating and natural antimicrobials from cellular and metabolic levels.
Collapse
Affiliation(s)
- Yuanmei Xu
- College of Biological and Food Engineering, Changshu Institute of Technology, 99 South Third Ring Road, Changshu 215500, China
| | - Xiangyu Guan
- College of Food Science and Engineering, Shandong Agricultural University, Taian 271018, China
| | - Shaojin Wang
- College of Mechanical and Electronic Engineering, Northwest A&F University, Yangling 712100, China; Washington State University, Department of Biological Systems Engineering, Pullman, WA 99164-6120, USA.
| |
Collapse
|
5
|
Carlin CR, Akins-Lewenthal D, Bastin B, Crowley E, McMahon W, Ziebell B. An Alternative Rapid Confirmation Method for Identifying Listeria monocytogenes from a Variety of 125 g Food Samples Within Two Days of a PCR Presumptive Positive. J Food Prot 2024; 87:100193. [PMID: 37967767 DOI: 10.1016/j.jfp.2023.100193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 11/06/2023] [Accepted: 11/08/2023] [Indexed: 11/17/2023]
Abstract
Cultural confirmation following detection of a Listeria monocytogenespresumptive positive can take 3-7 days to finalize; this uncertainty is a point of frustration for food producers needing to make time-sensitive disposition decisions. To address the demand for shortened time-to-results, an alternative L. monocytogenes confirmation method consisting of two components, (i) a secondary screen using a different rapid method, and (ii) concurrent cultural isolation followed by next-day colony identification was evaluated. For the study, four food matrices (hot dogs, peanut butter, frozen vegetables, and multicomponent frozen meals) were inoculated with low levels (0.36-1.39 MPN/125 g) of L. monocytogenes per the AOAC guidelines for a matrix study. Analyses were performed on 125 g test portions and started with a PCR primary screen (Bio-Rad iQ-Check Listeria monocytogenes II). Next, all enriched food samples underwent a secondary screen by bioMérieux's GENE-UP LMO2 Real-Time PCR and VIDAS LMX ELFA along with streaking onto RAPID'L.mono Agar. Presumptive positive L. monocytogenes colonies were identified utilizing a high throughput rapid identification method (Hygiena's BAX System L. monocytogenes Real-Time PCR assay, Neogen's ANSR isothermal nucleic acid amplification assay, and Bruker's MALDI Biotyper). Importantly, this study evaluated multiple commercially available options for the secondary screen (n = 2) and rapid identification (n = 3) to allow for easy adoption by testing laboratories. Overall, there was no statistically significant difference (p ≤ 0.05) between the number of L. monocytogenes-positive 125 g samples obtained by the cultural reference method and the alternative confirmation methods (regardless of which method combinations were evaluated). Additionally, this study supports that, when both the primary and secondary screen methods yield a positive result, the sample could be considered a confirmed positive for L. monocytogenes.
Collapse
Affiliation(s)
| | - Deann Akins-Lewenthal
- ConAgra - Center for Research and Development, Conagra Brands, Inc., Six Conagra Drive, Omaha, NE 68102, USA
| | - Benjamin Bastin
- Q Laboratories, 1930 Radcliff Drive, Cincinnati, OH 45204, USA
| | - Erin Crowley
- Q Laboratories, 1930 Radcliff Drive, Cincinnati, OH 45204, USA
| | - Wendy McMahon
- Mérieux NutriSciences, 3600 Eagle Nest Dr., Crete, IL 60417, USA
| | - Bradley Ziebell
- ConAgra - Center for Research and Development, Conagra Brands, Inc., Six Conagra Drive, Omaha, NE 68102, USA.
| |
Collapse
|
6
|
Ling N, Li Z, Wang Y, Wu Q, Ye Y, Zhang J. LuxS-deficiency reduces persistence of Cronobacter to low-moisture but contributes to virulence after rehydration. Food Res Int 2023; 174:113642. [PMID: 37986541 DOI: 10.1016/j.foodres.2023.113642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2023] [Revised: 10/21/2023] [Accepted: 10/24/2023] [Indexed: 11/22/2023]
Abstract
Low-moisture foods (LMF) have arisen an increasing concern as vehicles of foodborne pathogens. Cronobacter genus, a class A pathogen in powdered infant formula (PIF), is crucial to the safety of LMF. Researchers have concentrated more on the bacterial survival caused by key hazardous factors, yet they often ignore the alteration of virulence properties in the surviving strains following rehydration of LMF mediated by the key factors. Our previous transcriptional profiling showed that luxS might participate in desiccation response. Herein, we further investigated the role of Cronobacter LuxS under desiccation stress by combining with the phenotypic and gene analysis between the Cronobacter parent and luxS mutant strains. Desiccation stress destructing assays confirmed that luxS can significantly enhance the resistance of Cronobacter towards desiccation. Our results also showed that cell hydrophobicity, aggregation, motility, the content of polysaccharide, and AI-2 synthesis pathway involved in luxS-mediated desiccation response. The luxS mutant strain exhibited higher swimming and swarming motility, more content of capsular polysaccharide, and more rapid of aggregation, but lower hydrophobicity than that of the wild-type strain, whereas desiccation stress would result in a opposite effect on these cell surface properties in ΔluxS during rehydration. Additionally, the comparation of gene expression profiles indicated that low moisture would trigger Cronobacter luxS to promote transport osmoprotectants by regulating the expression of proX, proW, and treC, and suppress the expression of cpsG associated with polysaccharide colanic acid. Notably, this study also discovered for the first time that the luxS-deficiency dramatically attenuated adhesion and invasion to intestinal and brain cells, but ΔluxS subjected to desiccation could aggravate the cell virulence instead. Therefore, thinking the alteration of toxicity caused by low-moisture, approach based on blocking the expression of the luxS gene to prevent Cronobacter in LMF needs to be adopted with caution.
Collapse
Affiliation(s)
- Na Ling
- Provincial Key Laboratory of Microbial Safety and Health, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China; School of Food Science and Engineering, Hefei University of Technology, Hefei 230009, China
| | - Zongyang Li
- School of Food Science and Engineering, Hefei University of Technology, Hefei 230009, China
| | - Yuhang Wang
- School of Food Science and Engineering, Hefei University of Technology, Hefei 230009, China
| | - Qingping Wu
- Provincial Key Laboratory of Microbial Safety and Health, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China
| | - Yingwang Ye
- Provincial Key Laboratory of Microbial Safety and Health, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China; School of Food Science and Engineering, Hefei University of Technology, Hefei 230009, China.
| | - Jumei Zhang
- Provincial Key Laboratory of Microbial Safety and Health, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China.
| |
Collapse
|
7
|
Liu S, Xue R, Qin W, Yang X, Ye Q, Wu Q. Performance and transcriptome analysis of Salmonella enterica serovar Enteritidis PT 30 under persistent desiccation stress: Cultured by lawn and broth methods. Food Microbiol 2023; 115:104323. [PMID: 37567618 DOI: 10.1016/j.fm.2023.104323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 06/04/2023] [Accepted: 06/13/2023] [Indexed: 08/13/2023]
Abstract
Lawn-harvest method uses a solid medium (e.g., tryptic soy agar, TSA) to produce bacterial lawns and is widely accepted for the culture of microorganisms in microbial studies of low-moisture foods (LMFs, foods with water activity less than 0.85). It produces desiccation-tolerant cells with higher D-values in LMFs; however, little is known about the molecular mechanisms underlying bacterial resistance. Salmonella enterica Enteritidis PT 30 (S. Enteritidis), the most pertinent pathogen in LMFs, was cultured in TSA and tryptic soy broth (TSB). Cells were harvested and inoculated on filter papers to assess their performance under a relative humidity of 32 ± 2%. Transcriptome analysis of cultured cells during long-term desiccation (24, 72, and 168 h) was conducted in TruSeq PE Cluster Kit (Illumina) by paired-end methods. Lawn-cultured S. Enteritidis cells have stronger survivability (only decreased by 0.78 ± 0.12 log after 130 d of storage) and heat tolerance (higher D/β value) than those from the broth method. More desiccation genes of lawn-cultured cells were significantly upregulated from growth to long-term desiccation. Differentially expressed genes were the most enriched in the ribosome and sulfur metabolism pathways in the lawn- and broth-cultured groups. This study tracked the transcriptomic differences between two cultured groups in response to long-term desiccation stress and revealed some molecular mechanisms underlying their different suitability in microbial studies of LMFs.
Collapse
Affiliation(s)
- Shuxiang Liu
- College of Food Science, Sichuan Agricultural University, Ya'an, 625014, China; Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, 510070, China.
| | - Ruimin Xue
- College of Food Science, Sichuan Agricultural University, Ya'an, 625014, China
| | - Wen Qin
- College of Food Science, Sichuan Agricultural University, Ya'an, 625014, China
| | - Xiaojuan Yang
- Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, 510070, China
| | - Qinghua Ye
- Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, 510070, China
| | - Qingping Wu
- Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, 510070, China.
| |
Collapse
|
8
|
Cui L, Chang W, Wei R, Chen W, Tang Y, Yue X. Aptamer and Ru(bpy)
3
2+
‐
AuNPs
‐based electrochemiluminescence biosensor for accurate detecting
Listeria monocytogenes
. J Food Saf 2022. [DOI: 10.1111/jfs.13008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Liwei Cui
- Department of Food and Bioengineering Henan University of Animal Husbandry and Economy Zhengzhou China
| | - Weidan Chang
- Department of Food and Bioengineering Henan University of Animal Husbandry and Economy Zhengzhou China
| | - Rong Wei
- Department of Food and Bioengineering Henan University of Animal Husbandry and Economy Zhengzhou China
| | - Weifeng Chen
- Department of Food and Bioengineering Henan University of Animal Husbandry and Economy Zhengzhou China
| | - Yuanlong Tang
- Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, State Key Laboratory of Applied Microbiology Southern China Institute of Microbiology, Guangdong Academy of Sciences Guangzhou China
| | - Xiaoyu Yue
- Department of Food and Bioengineering Henan University of Animal Husbandry and Economy Zhengzhou China
| |
Collapse
|
9
|
Alves Â, Santos-Ferreira N, Magalhães R, Ferreira V, Teixeira P. From chicken to salad: Cooking salt as a potential vehicle of Salmonella spp. and Listeria monocytogenes cross-contamination. Food Control 2022; 137:108959. [PMID: 35783559 PMCID: PMC9025383 DOI: 10.1016/j.foodcont.2022.108959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Revised: 03/04/2022] [Accepted: 03/07/2022] [Indexed: 11/16/2022]
Abstract
Epidemiological studies show that improper food handling practices at home account for a significant portion of foodborne illness cases. Mishandling of raw meat during meal preparation is one of the most frequent hazardous behaviours reported in observational research studies that potentially contributes to illness occurrence, particularly through the transfer of microbial pathogens from the raw meat to ready-to-eat (RTE) foods. This study evaluated the transfer of two major foodborne pathogens, Salmonella enterica and Listeria monocytogenes, from artificially contaminated chicken meat to lettuce via cooking salt (used for seasoning) during simulated domestic handling practices. Pieces of chicken breast fillets were spiked with five different loads (from ca. 1 to 5 Log CFU/g) of a multi-strain cocktail of either S. enterica or L. monocytogenes. Hands of volunteers (gloved) contaminated by handling the chicken, stirred the cooking salt that was further used to season lettuce leaves. A total of 15 events of cross-contamination (three volunteers and five bacterial loads) were tested for each pathogen. Immediately after the events, S. enterica was isolated from all the cooking salt samples (n = 15) and from 12 samples of seasoned lettuce; whereas L. monocytogenes was isolated from 13 salt samples and from all the seasoned lettuce samples (n = 15). In addition, S. enterica and L. monocytogenes were able to survive in artificially contaminated salt (with a water activity of 0.49) for, at least, 146 days and 126 days, respectively. The ability of these foodborne pathogens to survive for a long time in cooking salt, make it a good vehicle for transmission and cross-contamination if consumers do not adopt good hygiene practices when preparing meals.
Collapse
Affiliation(s)
- Ângela Alves
- Universidade Católica Portuguesa, CBQF - Centro de Biotecnologia e Química Fina – Laboratório Associado, Escola Superior de Biotecnologia, Rua Diogo Botelho 1327, 4169-005, Porto, Portugal
| | - Nânci Santos-Ferreira
- Universidade Católica Portuguesa, CBQF - Centro de Biotecnologia e Química Fina – Laboratório Associado, Escola Superior de Biotecnologia, Rua Diogo Botelho 1327, 4169-005, Porto, Portugal
| | - Rui Magalhães
- Universidade Católica Portuguesa, CBQF - Centro de Biotecnologia e Química Fina – Laboratório Associado, Escola Superior de Biotecnologia, Rua Diogo Botelho 1327, 4169-005, Porto, Portugal
| | - Vânia Ferreira
- Universidade Católica Portuguesa, CBQF - Centro de Biotecnologia e Química Fina – Laboratório Associado, Escola Superior de Biotecnologia, Rua Diogo Botelho 1327, 4169-005, Porto, Portugal
| | - Paula Teixeira
- Universidade Católica Portuguesa, CBQF - Centro de Biotecnologia e Química Fina – Laboratório Associado, Escola Superior de Biotecnologia, Rua Diogo Botelho 1327, 4169-005, Porto, Portugal
| |
Collapse
|