1
|
Llobregat B, Abad-Fuentes A, Mercader JV, González-Candelas L, Ballester AR. The role of Penicillium expansum histone deacetylases HosA and HosB in growth, development, and patulin production. Microbiol Res 2025; 297:128181. [PMID: 40262355 DOI: 10.1016/j.micres.2025.128181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2024] [Revised: 04/07/2025] [Accepted: 04/09/2025] [Indexed: 04/24/2025]
Abstract
Histone modifications are key epigenetic mechanisms for gene regulation in response to environmental stimuli. Histone acetylation is crucial for regulating chromatin accessibility and is controlled by histone-modifying enzymes: histone acetyltransferases (HATs) and histone deacetylases (HDACs). This study examined the roles of two HDACs, HosA and HosB, in the fungus Penicillium expansum. While the deletion of hosB did not affect the phenotype, HosA was found to play a crucial role in growth, development, and conidiation. The ΔhosA strain exhibited a characteristic fluffy phenotype and a significant reduction in conidiation. Expression analysis indicated that these differences were related to lower expression of the core regulatory gene wetA, and, to a lesser extent, brlA and abaA. Additionally, the growth of ΔhosA was negatively affected by the addition of calcofluor white and sodium chloride, while the deletion of hosA increased tolerance to sodium dodecyl sulfate and hydrogen peroxide on solid media. Furthermore, the ΔhosA strain showed an abnormal pattern of patulin production during in vitro growth, and reduced virulence likely due to growth retardation and impaired conidiation. These findings suggest that HosA is an epigenetic regulator of conidiation and plays an indirect role in secondary metabolite production and virulence in P. expansum.
Collapse
Affiliation(s)
- Belén Llobregat
- Institute of Agrochemistry and Food Technology, Spanish Council for Scientific Research (IATA-CSIC), Calle Catedrático Agustín Escardino 7, Paterna, Valencia 46980, Spain
| | - Antonio Abad-Fuentes
- Institute of Agrochemistry and Food Technology, Spanish Council for Scientific Research (IATA-CSIC), Calle Catedrático Agustín Escardino 7, Paterna, Valencia 46980, Spain
| | - Josep V Mercader
- Institute of Agrochemistry and Food Technology, Spanish Council for Scientific Research (IATA-CSIC), Calle Catedrático Agustín Escardino 7, Paterna, Valencia 46980, Spain
| | - Luis González-Candelas
- Institute of Agrochemistry and Food Technology, Spanish Council for Scientific Research (IATA-CSIC), Calle Catedrático Agustín Escardino 7, Paterna, Valencia 46980, Spain
| | - Ana-Rosa Ballester
- Institute of Agrochemistry and Food Technology, Spanish Council for Scientific Research (IATA-CSIC), Calle Catedrático Agustín Escardino 7, Paterna, Valencia 46980, Spain.
| |
Collapse
|
2
|
Hou X, Liu L, Li Y, Wang P, Pan X, Xu D, Lai D, Zhou L. Regulation of Histone Acetylation Modification on Biosynthesis of Secondary Metabolites in Fungi. Int J Mol Sci 2024; 26:25. [PMID: 39795886 PMCID: PMC11720177 DOI: 10.3390/ijms26010025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2024] [Revised: 12/20/2024] [Accepted: 12/22/2024] [Indexed: 01/13/2025] Open
Abstract
The histone acetylation modification is a conservative post-translational epigenetic regulation in fungi. It includes acetylation and deacetylation at the lysine residues of histone, which are catalyzed by histone acetyltransferase (HAT) and deacetylase (HDAC), respectively. The histone acetylation modification plays crucial roles in fungal growth and development, environmental stress response, secondary metabolite (SM) biosynthesis, and pathogenicity. One of the most important roles is to regulate the gene expression that is responsible for SM biosynthesis in fungi. This mini-review summarized the regulation of histone acetylation modification by HATs and HDACs on the biosynthesis of SMs in fungi. In most cases, histone acetylation by HATs positively regulated the biosynthesis of fungal SMs, while HDACs had their negative regulations. Some HATs and HDACs were revealed to regulate fungal SM biosynthesis. Hda1 was found to be the most efficient regulator to affect the biosynthesis of SMs in fungi. The regulated fungal species were mainly from the genera of Aspergillus, Calcarisporium, Cladosporium, Fusarium, Monascus, Penicillium, and Pestalotiopsis. With the strategy of histone acetylation modification, the biosynthesis of some harmful SMs will be inhibited, while the production of useful bioactive SMs will be promoted in fungi. The subsequent research should focus on the study of regulatory mechanisms.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Ligang Zhou
- Department of Plant Pathology, College of Plant Protection, China Agricultural University, Beijing 100193, China; (X.H.); (L.L.); (Y.L.); (P.W.); (X.P.); (D.X.); (D.L.)
| |
Collapse
|
3
|
Ozair A, Bhat V, Alisch RS, Khosla AA, Kotecha RR, Odia Y, McDermott MW, Ahluwalia MS. DNA Methylation and Histone Modification in Low-Grade Gliomas: Current Understanding and Potential Clinical Targets. Cancers (Basel) 2023; 15:1342. [PMID: 36831683 PMCID: PMC9954183 DOI: 10.3390/cancers15041342] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 02/02/2023] [Accepted: 02/14/2023] [Indexed: 02/22/2023] Open
Abstract
Gliomas, the most common type of malignant primary brain tumor, were conventionally classified through WHO Grades I-IV (now 1-4), with low-grade gliomas being entities belonging to Grades 1 or 2. While the focus of the WHO Classification for Central Nervous System (CNS) tumors had historically been on histopathological attributes, the recently released fifth edition of the classification (WHO CNS5) characterizes brain tumors, including gliomas, using an integration of histological and molecular features, including their epigenetic changes such as histone methylation, DNA methylation, and histone acetylation, which are increasingly being used for the classification of low-grade gliomas. This review describes the current understanding of the role of DNA methylation, demethylation, and histone modification in pathogenesis, clinical behavior, and outcomes of brain tumors, in particular of low-grade gliomas. The review also highlights potential diagnostic and/or therapeutic targets in associated cellular biomolecules, structures, and processes. Targeting of MGMT promoter methylation, TET-hTDG-BER pathway, association of G-CIMP with key gene mutations, PARP inhibition, IDH and 2-HG-associated processes, TERT mutation and ARL9-associated pathways, DNA Methyltransferase (DNMT) inhibition, Histone Deacetylase (HDAC) inhibition, BET inhibition, CpG site DNA methylation signatures, along with others, present exciting avenues for translational research. This review also summarizes the current clinical trial landscape associated with the therapeutic utility of epigenetics in low-grade gliomas. Much of the evidence currently remains restricted to preclinical studies, warranting further investigation to demonstrate true clinical utility.
Collapse
Affiliation(s)
- Ahmad Ozair
- Miami Cancer Institute, Baptist Health South Florida, Miami, FL 33176, USA
- Faculty of Medicine, King George’s Medical University, Lucknow 226003, India
| | - Vivek Bhat
- St. John’s Medical College, Bangalore 560034, India
| | - Reid S. Alisch
- Department of Neurosurgery, University of Wisconsin-Madison, Madison, WI 53792, USA
| | - Atulya A. Khosla
- Miami Cancer Institute, Baptist Health South Florida, Miami, FL 33176, USA
| | - Rupesh R. Kotecha
- Miami Cancer Institute, Baptist Health South Florida, Miami, FL 33176, USA
- Herbert Wertheim College of Medicine, Florida International University, Miami, FL 33199, USA
| | - Yazmin Odia
- Miami Cancer Institute, Baptist Health South Florida, Miami, FL 33176, USA
- Herbert Wertheim College of Medicine, Florida International University, Miami, FL 33199, USA
| | - Michael W. McDermott
- Herbert Wertheim College of Medicine, Florida International University, Miami, FL 33199, USA
- Miami Neuroscience Institute, Baptist Health South Florida, Miami, FL 33176, USA
| | - Manmeet S. Ahluwalia
- Miami Cancer Institute, Baptist Health South Florida, Miami, FL 33176, USA
- Miami Neuroscience Institute, Baptist Health South Florida, Miami, FL 33176, USA
| |
Collapse
|
4
|
Go KO, Kim YZ. Brain Invasion and Trends in Molecular Research on Meningioma. Brain Tumor Res Treat 2023; 11:47-58. [PMID: 36762808 PMCID: PMC9911709 DOI: 10.14791/btrt.2022.0044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2022] [Revised: 01/06/2023] [Accepted: 01/09/2023] [Indexed: 02/05/2023] Open
Abstract
Meningiomas are the most common primary brain tumors in adults. The treatment of non-benign meningiomas remains a challenging task, and after the publication of the 2021 World Health Organization classification, the importance of molecular biological classification is emerging. In this article, we introduce the mechanisms of brain invasion in atypical meningioma and review the genetic factors involved along with epigenetic regulation. First, it is important to understand the three major steps for brain invasion of meningeal cells: 1) degradation of extracellular matrix by proteases, 2) promotion of tumor cell migration to resident cells by adhesion molecules, and 3) neovascularization and supporting cells by growth factors. Second, the genomic landscape of meningiomas should be analyzed by major categories, such as germline mutations in NF2 and somatic mutations in non-NF2 genes (TRAF7, KLF4, AKT1, SMO, and POLR2A). Finally, epigenetic alterations in meningiomas are being studied, with a focus on DNA methylation, histone modification, and RNA interference. Increasing knowledge of the molecular landscape of meningiomas has allowed the identification of prognostic and predictive markers that can guide therapeutic decision-making processes and the timing of follow-up.
Collapse
Affiliation(s)
- Kyeong-O Go
- Department of Neurosurgery, Gyeongsang National University Hospital, Gyeongsang National University College of Medicine, Jinju, Korea
| | - Young Zoon Kim
- Division of Neuro Oncology and Department of Neurosurgery, Samsung Changwon Hospital, Sungkyunkwan University School of Medicine, Changwon, Korea.
| |
Collapse
|
5
|
Zhang X, Noberini R, Bonaldi T, Collemare J, Seidl MF. The histone code of the fungal genus Aspergillus uncovered by evolutionary and proteomic analyses. Microb Genom 2022; 8. [PMID: 36129736 PMCID: PMC9676040 DOI: 10.1099/mgen.0.000856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Chemical modifications of DNA and histone proteins impact the organization of chromatin within the nucleus. Changes in these modifications, catalysed by different chromatin-modifying enzymes, influence chromatin organization, which in turn is thought to impact the spatial and temporal regulation of gene expression. While combinations of different histone modifications, the histone code, have been studied in several model species, we know very little about histone modifications in the fungal genus Aspergillus, whose members are generally well studied due to their importance as models in cell and molecular biology as well as their medical and biotechnological relevance. Here, we used phylogenetic analyses in 94 Aspergilli as well as other fungi to uncover the occurrence and evolutionary trajectories of enzymes and protein complexes with roles in chromatin modifications or regulation. We found that these enzymes and complexes are highly conserved in Aspergilli, pointing towards a complex repertoire of chromatin modifications. Nevertheless, we also observed few recent gene duplications or losses, highlighting Aspergillus species to further study the roles of specific chromatin modifications. SET7 (KMT6) and other components of PRC2 (Polycomb Repressive Complex 2), which is responsible for methylation on histone H3 at lysine 27 in many eukaryotes including fungi, are absent in Aspergilli as well as in closely related Penicillium species, suggesting that these lost the capacity for this histone modification. We corroborated our computational predictions by performing untargeted MS analysis of histone post-translational modifications in Aspergillus nidulans. This systematic analysis will pave the way for future research into the complexity of the histone code and its functional implications on genome architecture and gene regulation in fungi.
Collapse
Affiliation(s)
- Xin Zhang
- Theoretical Biology & Bioinformatics Group, Department of Biology, Utrecht University, Padualaan 8, 3584 CH Utrecht, the Netherlands.,Westerdijk Fungal Biodiversity Institute, Uppsalalaan 8, 3584 CT Utrecht, the Netherlands
| | - Roberta Noberini
- Department of Experimental Oncology, IEO, European Institute of Oncology IRCCS, Via Adamello 16, 20139 Milan, Italy
| | - Tiziana Bonaldi
- Department of Experimental Oncology, IEO, European Institute of Oncology IRCCS, Via Adamello 16, 20139 Milan, Italy.,Department of Oncology and Haematology-Oncology, University of Milano, Via Santa Sofia 9/1, 20122 Milano, Italy
| | - Jerome Collemare
- Westerdijk Fungal Biodiversity Institute, Uppsalalaan 8, 3584 CT Utrecht, the Netherlands
| | - Michael F Seidl
- Theoretical Biology & Bioinformatics Group, Department of Biology, Utrecht University, Padualaan 8, 3584 CH Utrecht, the Netherlands
| |
Collapse
|
6
|
Hou Y, Lu Q, Su J, Jin X, Jia C, An L, Tian Y, Song Y. Genome-Wide Analysis of the HDAC Gene Family and Its Functional Characterization at Low Temperatures in Tartary Buckwheat ( Fagopyrum tataricum). Int J Mol Sci 2022; 23:ijms23147622. [PMID: 35886971 PMCID: PMC9319316 DOI: 10.3390/ijms23147622] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Revised: 07/02/2022] [Accepted: 07/05/2022] [Indexed: 02/04/2023] Open
Abstract
Histone deacetylases (HDACs), widely found in various types of eukaryotic cells, play crucial roles in biological process, including the biotic and abiotic stress responses in plants. However, no research on the HDACs of Fagopyrum tataricum has been reported. Here, 14 putative FtHDAC genes were identified and annotated in Fagopyrum tataricum. Their gene structure, motif composition, cis-acting elements, phylogenetic relationships, protein structure, alternative splicing events, subcellular localization and gene expression pattern were investigated. The gene structure showed FtHDACs were classified into three subfamilies. The promoter analysis revealed the presence of various cis-acting elements responsible for hormone, abiotic stress and developmental regulation for the specific induction of FtHDACs. Two duplication events were identified in FtHDA6-1, FtHDA6-2, and FtHDA19. The expression patterns of FtHDACs showed their correlation with the flavonoid synthesis pathway genes. In addition, alternative splicing, mRNA enrichment profiles and transgenic analysis showed the potential role of FtHDACs in cold responses. Our study characterized FtHDACs, providing a candidate gene family for agricultural breeding and crop improvement.
Collapse
Affiliation(s)
- Yukang Hou
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou 730030, China; (Y.H.); (Q.L.); (J.S.); (X.J.); (L.A.)
| | - Qi Lu
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou 730030, China; (Y.H.); (Q.L.); (J.S.); (X.J.); (L.A.)
| | - Jianxun Su
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou 730030, China; (Y.H.); (Q.L.); (J.S.); (X.J.); (L.A.)
| | - Xing Jin
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou 730030, China; (Y.H.); (Q.L.); (J.S.); (X.J.); (L.A.)
| | - Changfu Jia
- Key Laboratory for Bio-Resources and Eco-Environment of Ministry of Education, College of Life Science, Sichuan University, Chengdu 610017, China;
| | - Lizhe An
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou 730030, China; (Y.H.); (Q.L.); (J.S.); (X.J.); (L.A.)
| | - Yongke Tian
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou 730030, China; (Y.H.); (Q.L.); (J.S.); (X.J.); (L.A.)
- Correspondence: (Y.T.); (Y.S.)
| | - Yuan Song
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou 730030, China; (Y.H.); (Q.L.); (J.S.); (X.J.); (L.A.)
- Correspondence: (Y.T.); (Y.S.)
| |
Collapse
|
7
|
Pang N, Sun J, Che S, Yang N. Structural characterization of fungus-specific histone deacetylase Hos3 provides insights into developing selective inhibitors with antifungal activity. J Biol Chem 2022; 298:102068. [PMID: 35623387 PMCID: PMC9201020 DOI: 10.1016/j.jbc.2022.102068] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 05/19/2022] [Accepted: 05/20/2022] [Indexed: 11/28/2022] Open
Abstract
Fungal infection has long been a chronic and even life-threatening problem for humans. The demand for new antifungal drugs has increased dramatically as fungal infections have continued to increase, yet no new classes of drugs have been approved for nearly 15 years due to either high toxicity or development of drug resistance. Thus, validating new drug targets, especially fungus-specific targets, may facilitate future drug design. Here, we report the crystal structure of yeast Hos3 (ScHos3), a fungus-specific histone deacetylase (HDAC) that plays an important role in the life span of fungi. As acetylation modifications are important to many aspects of fungal infection, the species specificity of Hos3 makes it an ideal target for the development of new antifungal drugs. In this study, we show that ScHos3 forms a functional homodimer in solution, and key residues for dimerization crucial for its deacetylation activity were identified. We used molecular dynamics simulation and structural comparison with mammalian hHDAC6 to determine unique features of the ScHos3 catalytic core. In addition, a small-molecule inhibitor with a preference for ScHos3 was identified through structure-based virtual screening and in vitro enzymatic assays. The structural information and regulatory interferences of ScHos3 reported here provide new insights for the design of selective inhibitors that target fungal HDAC with high efficiency and low toxicity or that have the potential to overcome the prevailing problem of drug resistance in combination therapy with other drugs.
Collapse
Affiliation(s)
- Ningning Pang
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Key Laboratory of Medical Data Analysis and Statistical Research of Tianjin, Nankai University, Tianjin, China
| | - Jixue Sun
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Key Laboratory of Medical Data Analysis and Statistical Research of Tianjin, Nankai University, Tianjin, China
| | - Shiyou Che
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Key Laboratory of Medical Data Analysis and Statistical Research of Tianjin, Nankai University, Tianjin, China; College of Chemistry, Tianjin Normal University, Tianjin, China
| | - Na Yang
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Key Laboratory of Medical Data Analysis and Statistical Research of Tianjin, Nankai University, Tianjin, China.
| |
Collapse
|
8
|
Gut microbiota drives macrophage-dependent self-renewal of intestinal stem cells via niche enteric serotonergic neurons. Cell Res 2022; 32:555-569. [PMID: 35379903 DOI: 10.1038/s41422-022-00645-7] [Citation(s) in RCA: 60] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2021] [Accepted: 02/08/2022] [Indexed: 11/08/2022] Open
Abstract
Lgr5+ intestinal stem cells (ISCs) reside within specialized niches at the crypt base and harbor self-renewal and differentiation capacities. ISCs in the crypt base are sustained by their surrounding niche for precise modulation of self-renewal and differentiation. However, how intestinal cells in the crypt niche and microbiota in enteric cavity coordinately regulate ISC stemness remains unclear. Here, we show that ISCs are regulated by microbiota and niche enteric serotonergic neurons. The gut microbiota metabolite valeric acid promotes Tph2 expression in enteric serotonergic neurons via blocking the recruitment of the NuRD complex onto Tph2 promoter. 5-hydroxytryptamine (5-HT) in turn activates PGE2 production in a PGE2+ macrophage subset through its receptors HTR2A/3 A; and PGE2 via binding its receptors EP1/EP4, promotes Wnt/β-catenin signaling in ISCs to promote their self-renewal. Our findings illustrate a complex crosstalk among microbiota, intestinal nerve cells, intestinal immune cells and ISCs, revealing a new layer of ISC regulation by niche cells and microbiota.
Collapse
|
9
|
Nadeau S, Martins GA. Conserved and Unique Functions of Blimp1 in Immune Cells. Front Immunol 2022; 12:805260. [PMID: 35154079 PMCID: PMC8829541 DOI: 10.3389/fimmu.2021.805260] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Accepted: 12/21/2021] [Indexed: 12/20/2022] Open
Abstract
B-lymphocyte-induced maturation protein-1 (Blimp1), is an evolutionarily conserved transcriptional regulator originally described as a repressor of gene transcription. Blimp1 crucially regulates embryonic development and terminal differentiation in numerous cell lineages, including immune cells. Initial investigations of Blimp1’s role in immunity established its non-redundant role in lymphocytic terminal effector differentiation and function. In B cells, Blimp1 drives plasmablast formation and antibody secretion, whereas in T cells, Blimp1 regulates functional differentiation, including cytokine gene expression. These studies established Blimp1 as an essential transcriptional regulator that promotes efficient and controlled adaptive immunity. Recent studies have also demonstrated important roles for Blimp1 in innate immune cells, specifically myeloid cells, and Blimp1 has been established as an intrinsic regulator of dendritic cell maturation and T cell priming. Emerging studies have determined both conserved and unique functions of Blimp1 in different immune cell subsets, including the unique direct activation of the igh gene transcription in B cells and a conserved antagonism with BCL6 in B cells, T cells, and myeloid cells. Moreover, polymorphisms associated with the gene encoding Blimp1 (PRDM1) have been linked to numerous chronic inflammatory conditions in humans. Blimp1 has been shown to regulate target gene expression by either competing with other transcription factors for binding to the target loci, and/or by recruiting various chromatin-modifying co-factors that promote suppressive chromatin structure, such as histone de-acetylases and methyl-transferases. Further, Blimp1 function has been shown to be essentially dose and context-dependent, which adds to Blimp1’s versatility as a regulator of gene expression. Here, we review Blimp1’s complex roles in immunity and highlight specific gaps in the understanding of the biology of this transcriptional regulator, with a major focus on aspects that could foster the description and understanding of novel pathways regulated by Blimp1 in the immune system.
Collapse
Affiliation(s)
- Samantha Nadeau
- F. Widjaja Foundation Inflammatory Bowel and Immunobiology Research Institute (IBIRI), Cedars-Sinai Medical Center (CSMC), Los Angeles, CA, United States.,Department of Biomedical Sciences, Research Division of Immunology, Cedars-Sinai Medical Center (CSMC), Los Angeles, CA, United States
| | - Gislâine A Martins
- F. Widjaja Foundation Inflammatory Bowel and Immunobiology Research Institute (IBIRI), Cedars-Sinai Medical Center (CSMC), Los Angeles, CA, United States.,Department of Biomedical Sciences, Research Division of Immunology, Cedars-Sinai Medical Center (CSMC), Los Angeles, CA, United States.,Department of Medicine, Gastroenterology Division, Cedars-Sinai Medical Center (CSMC), Los Angeles, CA, United States
| |
Collapse
|
10
|
Unno T, Takatsuka H, Ohnishi Y, Ito M, Kubota Y. A class I histone deacetylase HDA-2 is essential for embryonic development and size regulation of fertilized eggs in Caenorhabditis elegans. Genes Genomics 2021; 44:343-357. [PMID: 34843089 DOI: 10.1007/s13258-021-01195-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Accepted: 11/21/2021] [Indexed: 02/07/2023]
Abstract
BACKGROUND Caenorhabditis elegans encodes three class I histone deacetylases (HDACs), HDA-1, HDA-2, and HDA-3. Although HDA-1 is known to be involved in embryogenesis, the regulatory roles of HDA-2 and HDA-3 in embryonic development remain unexplored. OBJECTIVE To elucidate the functional roles of the three class I HDACs in C. elegans embryonic development. METHODS The roles of Class I HDACs, HDA-1, HDA-2, and HDA-3 in Caenorhabditis elegans during embryogenesis were investigated through the analysis of embryonic lethality via gene knockdown or deletion mutants. Additionally, the size of these knockdown and mutant eggs was observed using a differential interference contrast microscope. Finally, expression pattern and tissue-specific role of hda-2 and transcriptome of the hda-2 mutant were analyzed. RESULTS Here, we report that HDA-1 and HDA-2, but not HDA-3, play essential roles in Caenorhabditis elegans embryonic development. Our observations of the fertilized egg size variance demonstrated that HDA-2 is involved in regulating the size of fertilized eggs. Combined analysis of expression patterns and sheath cell-specific rescue experiments indicated that the transgenerational role of HDA-2 is involved in the viability of embryonic development and fertilized egg size regulation. Furthermore, transcriptome analysis of hda-2 mutant embryos implies that HDA-2 is involved in epigenetic regulation of embryonic biological processes by downregulating and upregulating the gene expression. CONCLUSION Our finding suggests that HDA-2 regulates the embryonic development in Caenorhabditis elegans by controling a specific subset of genes, and this function might be mediated by transgenerational epigenetic effect.
Collapse
Affiliation(s)
- Takuma Unno
- Advanced Life Sciences Program, Graduate School of Life Sciences, Ritsumeikan University, 1-1-1 Nojihigashi, Kusatsu, Shiga, 525-8577, Japan
| | - Hisashi Takatsuka
- Advanced Life Sciences Program, Graduate School of Life Sciences, Ritsumeikan University, 1-1-1 Nojihigashi, Kusatsu, Shiga, 525-8577, Japan
| | - Yuto Ohnishi
- Advanced Life Sciences Program, Graduate School of Life Sciences, Ritsumeikan University, 1-1-1 Nojihigashi, Kusatsu, Shiga, 525-8577, Japan
| | - Masahiro Ito
- Advanced Life Sciences Program, Graduate School of Life Sciences, Ritsumeikan University, 1-1-1 Nojihigashi, Kusatsu, Shiga, 525-8577, Japan.,Department of Bioinformatics, College of Life Sciences, Ritsumeikan University, 1-1-1 Nojihigashi, Kusatsu, Shiga, 525-8577, Japan
| | - Yukihiko Kubota
- Department of Bioinformatics, College of Life Sciences, Ritsumeikan University, 1-1-1 Nojihigashi, Kusatsu, Shiga, 525-8577, Japan.
| |
Collapse
|
11
|
Ranjan K, Brandão F, Morais JAV, Muehlmann LA, Silva-Pereira I, Bocca AL, Matos LF, Poças-Fonseca MJ. The role of Cryptococcus neoformans histone deacetylase genes in the response to antifungal drugs, epigenetic modulators and to photodynamic therapy mediated by an aluminium phthalocyanine chloride nanoemulsion in vitro. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2021; 216:112131. [PMID: 33517071 DOI: 10.1016/j.jphotobiol.2021.112131] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2020] [Revised: 01/09/2021] [Accepted: 01/19/2021] [Indexed: 10/22/2022]
Abstract
Cryptococcus is a globally distributed fungal pathogen that primarily afflicts immunocompromised individuals. The therapeutic options are limited and include mostly amphotericin B or fluconazole, alone or in combination. The extensive usage of antifungals allowed the selection of resistant pathogens posing threats to global public health. Histone deacetylase genes are involved in Cryptococcus virulence, and in pathogenicity and resistance to azoles in Candida albicans. Aiming to assess whether histone deacetylase genes are involved in antifungal response and in synergistic drug interactions, we evaluated the activity of amphotericin B, fluconazole, sulfamethoxazole, sodium butyrate or trichostatin A (histone deacetylase inhibitors), and hydralazine or 5- aza-2'-deoxycytidine (DNA methyl-transferase inhibitors) against different Cryptococcus neoformans strains, C. neoformans histone deacetylase null mutants and Cryptococcus gattii NIH198. The drugs were employed alone or in different combinations. Fungal growth after photodynamic therapy mediated by an aluminium phthalocyanine chloride nanoemulsion, alone or in combination with the aforementioned drugs, was assessed for the C. neoformans HDAC null mutant strains. Our results showed that fluconazole was synergistic with sodium butyrate or with trichostatin A for the hda1Δ/hos2Δ double mutant strain. Sulfamethoxazole was synergistic with sodium butyrate or with hydralazine also for hda1Δ/hos2Δ. These results clearly indicate a link between HDAC impairment and drug sensitivity. Photodynamic therapy efficacy on controlling the growth of the HDAC mutant strains was increased by amphotericin B, fluconazole, sodium butyrate or hydralazine. This is the first study in Cryptococcus highlighting the combined effects of antifungal drugs, histone deacetylase or DNA methyltransferase inhibitors and photodynamic therapy in vitro.
Collapse
Affiliation(s)
- Kunal Ranjan
- Department of Genetics and Morphology, University of Brasilia, Brasilia, Brazil
| | - Fabiana Brandão
- Faculty of Health Sciences, University of Brasilia, Brasilia, Brazil
| | - José Athayde V Morais
- Postgraduate Program in Nanoscience and Nanobiotechnology, University of Brasilia, Brasilia, Brazil
| | - Luís Alexandre Muehlmann
- Postgraduate Program in Nanoscience and Nanobiotechnology, University of Brasilia, Brasilia, Brazil; Faculty of Ceilandia, University of Brasilia, Brasilia, Brazil
| | | | | | | | | |
Collapse
|
12
|
Zhang H, Guo F, Qi P, Huang Y, Xie Y, Xu L, Han N, Xu L, Bian H. OsHDA710-Mediated Histone Deacetylation Regulates Callus Formation of Rice Mature Embryo. PLANT & CELL PHYSIOLOGY 2020; 61:1646-1660. [PMID: 32592489 DOI: 10.1093/pcp/pcaa086] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Accepted: 06/17/2020] [Indexed: 05/18/2023]
Abstract
Histone deacetylases (HDACs) play important roles in the regulation of eukaryotic gene expression. The role of HDACs in specialized transcriptional regulation and biological processes is poorly understood. In this study, we evaluated the global expression patterns of genes related to epigenetic modifications during callus initiation in rice. We found that the repression of HDAC activity by trichostatin A (TSA) or by OsHDA710 mutation (hda710) results in impaired callus formation of rice mature embryo and increased global histone H3 acetylation levels. The HDAC inhibition decreased auxin response and cell proliferation in callus formation. Meanwhile, the transcriptional repressors OsARF18 and OsARF22 were upregulated in the callus of hda710. The chromatin immunoprecipitation-quantitative PCR (ChIP-qPCR) analysis demonstrated that the callus of hda710 exhibited enhanced histone H3 acetylation levels at the chromatin regions of OsARF18 and OsARF22. Furthermore, we found that OsARF18 and OsARF22 were regulated through OsHDA710 recruitment to their target loci. In addition, overexpression of OsARF18 decreased the transcription of downstream genes PLT1 and PLT2 and inhibited callus formation of the mature embryo. These results demonstrate that OsHDA710 regulates callus formation by suppressing repressive OsARFs via histone deacetylation during callus formation of rice mature embryo. This indicates that OsHDA710-mediated histone deacetylation is an epigenetic regulation pathway for maintaining auxin response during cell dedifferentiation.
Collapse
Affiliation(s)
- Haidao Zhang
- Institute of Genetic and Regenerative Biology, Key Laboratory for Cell and Gene Engineering of Zhejiang Province, College of Life Sciences, Zhejiang University, Hangzhou 310058, China
| | - Fu Guo
- Institute of Genetic and Regenerative Biology, Key Laboratory for Cell and Gene Engineering of Zhejiang Province, College of Life Sciences, Zhejiang University, Hangzhou 310058, China
| | - Peipei Qi
- Institute of Genetic and Regenerative Biology, Key Laboratory for Cell and Gene Engineering of Zhejiang Province, College of Life Sciences, Zhejiang University, Hangzhou 310058, China
| | - Yizi Huang
- Institute of Genetic and Regenerative Biology, Key Laboratory for Cell and Gene Engineering of Zhejiang Province, College of Life Sciences, Zhejiang University, Hangzhou 310058, China
| | - Yongyao Xie
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou 510642, China
| | - Lei Xu
- Key Laboratory of Plant Nutrition and Fertilizers, Ministry of Agriculture, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Ning Han
- Institute of Genetic and Regenerative Biology, Key Laboratory for Cell and Gene Engineering of Zhejiang Province, College of Life Sciences, Zhejiang University, Hangzhou 310058, China
| | - Lin Xu
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, 300 Fenglin Road, Shanghai 200032, China
| | - Hongwu Bian
- Institute of Genetic and Regenerative Biology, Key Laboratory for Cell and Gene Engineering of Zhejiang Province, College of Life Sciences, Zhejiang University, Hangzhou 310058, China
| |
Collapse
|
13
|
Marayati BF, Tucker JF, De La Cerda DA, Hou TC, Chen R, Sugiyama T, Pease JB, Zhang K. The Catalytic-Dependent and -Independent Roles of Lsd1 and Lsd2 Lysine Demethylases in Heterochromatin Formation in Schizosaccharomyces pombe. Cells 2020; 9:E955. [PMID: 32295063 PMCID: PMC7226997 DOI: 10.3390/cells9040955] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Revised: 04/06/2020] [Accepted: 04/10/2020] [Indexed: 12/30/2022] Open
Abstract
In eukaryotes, heterochromatin plays a critical role in organismal development and cell fate acquisition, through regulating gene expression. The evolutionarily conserved lysine-specific demethylases, Lsd1 and Lsd2, remove mono- and dimethylation on histone H3, serving complex roles in gene expression. In the fission yeast Schizosaccharomyces pombe, null mutations of Lsd1 and Lsd2 result in either severe growth defects or inviability, while catalytic inactivation causes minimal defects, indicating that Lsd1 and Lsd2 have essential functions beyond their known demethylase activity. Here, we show that catalytic mutants of Lsd1 or Lsd2 partially assemble functional heterochromatin at centromeres in RNAi-deficient cells, while the C-terminal truncated alleles of Lsd1 or Lsd2 exacerbate heterochromatin formation at all major heterochromatic regions, suggesting that Lsd1 and Lsd2 repress heterochromatic transcripts through mechanisms both dependent on and independent of their catalytic activities. Lsd1 and Lsd2 are also involved in the establishment and maintenance of heterochromatin. At constitutive heterochromatic regions, Lsd1 and Lsd2 regulate one another and cooperate with other histone modifiers, including the class II HDAC Clr3 and the Sirtuin family protein Sir2 for gene silencing, but not with the class I HDAC Clr6. Our findings explore the roles of lysine-specific demethylases in epigenetic gene silencing at heterochromatic regions.
Collapse
Affiliation(s)
- Bahjat F. Marayati
- Department of Biology, Center for Molecular Signaling, Wake Forest University, Winston-Salem, NC 27109, USA; (B.F.M.); (J.F.T.); (D.A.D.L.C.); (T.-C.H.); (J.B.P.)
| | - James F. Tucker
- Department of Biology, Center for Molecular Signaling, Wake Forest University, Winston-Salem, NC 27109, USA; (B.F.M.); (J.F.T.); (D.A.D.L.C.); (T.-C.H.); (J.B.P.)
| | - David A. De La Cerda
- Department of Biology, Center for Molecular Signaling, Wake Forest University, Winston-Salem, NC 27109, USA; (B.F.M.); (J.F.T.); (D.A.D.L.C.); (T.-C.H.); (J.B.P.)
| | - Tien-Chi Hou
- Department of Biology, Center for Molecular Signaling, Wake Forest University, Winston-Salem, NC 27109, USA; (B.F.M.); (J.F.T.); (D.A.D.L.C.); (T.-C.H.); (J.B.P.)
| | - Rong Chen
- Physiology and pharmacology, Wake Forest School of Medicine, Winston-Salem, NC 27101, USA;
| | - Tomoyasu Sugiyama
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China;
| | - James B. Pease
- Department of Biology, Center for Molecular Signaling, Wake Forest University, Winston-Salem, NC 27109, USA; (B.F.M.); (J.F.T.); (D.A.D.L.C.); (T.-C.H.); (J.B.P.)
| | - Ke Zhang
- Department of Biology, Center for Molecular Signaling, Wake Forest University, Winston-Salem, NC 27109, USA; (B.F.M.); (J.F.T.); (D.A.D.L.C.); (T.-C.H.); (J.B.P.)
| |
Collapse
|
14
|
Histone Deacetylase (HDAC) Gene Family in Allotetraploid Cotton and Its Diploid Progenitors: In Silico Identification, Molecular Characterization, and Gene Expression Analysis under Multiple Abiotic Stresses, DNA Damage and Phytohormone Treatments. Int J Mol Sci 2020; 21:ijms21010321. [PMID: 31947720 PMCID: PMC6981504 DOI: 10.3390/ijms21010321] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Revised: 12/31/2019] [Accepted: 01/01/2020] [Indexed: 01/11/2023] Open
Abstract
Histone deacetylases (HDACs) play a significant role in a plant’s development and response to various environmental stimuli by regulating the gene transcription. However, HDACs remain unidentified in cotton. In this study, a total of 29 HDACs were identified in allotetraploid Gossypium hirsutum, while 15 and 13 HDACs were identified in Gossypium arboretum and Gossypium raimondii, respectively. Gossypium HDACs were classified into three groups (reduced potassium dependency 3 (RPD3)/HDA1, HD2-like, and Sir2-like (SRT) based on their sequences, and Gossypium HDACs within each subgroup shared a similar gene structure, conserved catalytic domains and motifs. Further analysis revealed that Gossypium HDACs were under a strong purifying selection and were unevenly distributed on their chromosomes. Gene expression data revealed that G. hirsutumHDACs were differentially expressed in various vegetative and reproductive tissues, as well as at different developmental stages of cotton fiber. Furthermore, some G. hirsutum HDACs were co-localized with quantitative trait loci (QTLs) and single-nucleotide polymorphism (SNPs) of fiber-related traits, indicating their function in fiber-related traits. We also showed that G. hirsutum HDACs were differentially regulated in response to plant hormones (abscisic acid (ABA) and auxin), DNA damage agent (methyl methanesulfonate (MMS)), and abiotic stresses (cold, salt, heavy metals and drought), indicating the functional diversity and specification of HDACs in response to developmental and environmental cues. In brief, our results provide fundamental information regarding G.hirsutumHDACs and highlight their potential functions in cotton growth, fiber development and stress adaptations, which will be helpful for devising innovative strategies for the improvement of cotton fiber and stress tolerance.
Collapse
|
15
|
Xu W, An X, Zhang N, Li L, Zhang X, Wang Y, Wang L, Sun Y. Middle-aged female rats lack changes in histone H3 acetylation in the anterior hypothalamus observed in young females on the day of a luteinizing hormone surge. Biosci Trends 2019; 13:334-341. [PMID: 31434815 DOI: 10.5582/bst.2019.01162] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Histone acetylation has recently been implicated in gene transcription and estradiol (E2) actions in the hypothalamus. This study aims to determine the involvement of histone acetylation in mediating E2-induced luteinizing hormone (LH) surge to understand the mechanism underlying LH surge dysfunction in female reproductive aging. Young and middle-aged female rats were ovariectomized (OVX) and treated with hormone or oil once per day for two days. At the time of the expected LH surge, blood samples were taken for LH assay. The anterior and posterior hypothalami were dissected, histone H3/H4 acetylation and histone deacetylases (HDACs) 4, -5, -10 and -11 protein expressions were measured using Western blotting. Our results show that in the young females, E2 markedly increased histone H3 acetylation while significantly reducing HDAC10 protein expression in the anterior hypothalamus. Notably, E2-induced alterations of histone H3 acetylation and HDAC10 in the anterior hypothalamus were absent in middle-aged females, associated with a reduced LH release. However, age alters histone H4 acetylation in both the anterior and posterior hypothalamus and significantly increased HDAC 4 and -5 protein expression in the anterior hypothalamus. Taken together, these data suggest that histone H3 acetylation in the anterior hypothalamus may mediate E2 regulation of LH surge and the process possibly through decreasing HDAC10. The missed responsiveness of histone H3 acetylation and HDAC10 expression to E2 in the anterior hypothalamus may contribute to LH surge failure that occurs in female reproductive aging.
Collapse
Affiliation(s)
- Wen Xu
- Hospital of Obstetrics and Gynecology, Fudan University
| | - Xiaofei An
- Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine
| | - Na Zhang
- Hospital of Obstetrics and Gynecology, Fudan University.,Shanghai Key Laboratory of Female Reproductive Endocrine-related Disease
| | - Lisha Li
- Hospital of Obstetrics and Gynecology, Fudan University.,Shanghai Key Laboratory of Female Reproductive Endocrine-related Disease
| | - Xinyan Zhang
- Hospital of Obstetrics and Gynecology, Fudan University.,Shanghai Key Laboratory of Female Reproductive Endocrine-related Disease
| | - Yan Wang
- Hospital of Obstetrics and Gynecology, Fudan University.,Shanghai Key Laboratory of Female Reproductive Endocrine-related Disease
| | - Ling Wang
- Hospital of Obstetrics and Gynecology, Fudan University.,Shanghai Key Laboratory of Female Reproductive Endocrine-related Disease.,The Academy of Integrative Medicine of Fudan University
| | - Yan Sun
- Hospital of Obstetrics and Gynecology, Fudan University.,Shanghai Key Laboratory of Female Reproductive Endocrine-related Disease.,The Academy of Integrative Medicine of Fudan University
| |
Collapse
|
16
|
de Bruyn Kops A, Burke JE, Guthrie C. Brr6 plays a role in gene recruitment and transcriptional regulation at the nuclear envelope. Mol Biol Cell 2018; 29:2578-2590. [PMID: 30133335 PMCID: PMC6254580 DOI: 10.1091/mbc.e18-04-0258] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Abstract
Correlation between transcriptional regulation and positioning of genes at the nuclear envelope is well established in eukaryotes, but the mechanisms involved are not well understood. We show that brr6-1, a mutant of the essential yeast envelope transmembrane protein Brr6p, impairs normal positioning and expression of the PAB1 and FUR4-GAL1,10,7 loci. Similarly, expression of a dominant negative nucleoplasmic Brr6 fragment in wild-type cells reproduced many of the brr6-1 effects. Histone chromatin immunoprecipitation (ChIP) experiments showed decreased acetylation at the key histone H4K16 residue in the FUR4-GAL1,10,7 region in brr6-1. Importantly, blocking deacetylation significantly suppressed selected brr6-1 phenotypes. ChIPseq with FLAG-tagged Brr6 fragments showed enrichment at FUR4 and several other genes that showed striking changes in brr6-1 RNAseq data. These associations depended on a Brr6 putative zinc finger domain. Importantly, artificially tethering the GAL1 locus to the envelope suppressed the brr6-1 effects on GAL1 and FUR4 expression and increased H4K16 acetylation between GAL1 and FUR4 in the mutant. Together these results argue that Brr6 interacts with chromatin, helping to maintain normal chromatin architecture and transcriptional regulation of certain loci at the nuclear envelope.
Collapse
Affiliation(s)
- Anne de Bruyn Kops
- Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA 94143
| | - Jordan E Burke
- Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA 94143
| | - Christine Guthrie
- Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA 94143
| |
Collapse
|
17
|
Wang T, Holt MV, Young NL. Early butyrate induced acetylation of histone H4 is proteoform specific and linked to methylation state. Epigenetics 2018; 13:519-535. [PMID: 29940793 DOI: 10.1080/15592294.2018.1475979] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022] Open
Abstract
Histone posttranslational modifications (PTMs) help regulate DNA templated processes; however, relatively little work has unbiasedly explored the single-molecule combinations of histone PTMs, their dynamics on short timescales, or how these preexisting histone PTMs modulate further histone modifying enzyme activity. We use quantitative top down proteomics to unbiasedly measure histone H4 proteoforms (single-molecule combinations of PTMs) upon butyrate treatment. Our results show that histone proteoforms change in cells within 10 minutes of application of sodium butyrate. Cells recover from treatment within 30 minutes after removal of butyrate. Surprisingly, K20me2 containing proteoforms are the near-exclusive substrate of histone acetyltransferases upon butyrate treatment. Single-molecule hierarchies of progressive PTMs mostly dictate the addition and removal of histone PTMs (K16ac > K12ac ≥ K8ac > K5ac, and the reverse on recovery). This reveals the underlying single-molecule mechanism that explains the previously reported but indistinct and unexplained patterns of H4 acetylation. Thus, preexisting histone PTMs strongly modulate histone modifying enzyme activity and this suggests that proteoform constrained reaction pathways are crucial mechanisms that enable the long-term stability of the cellular epigenetic state.
Collapse
Affiliation(s)
- Tao Wang
- a Verna & Marrs McLean Department of Biochemistry & Molecular Biology , Baylor College of Medicine , Houston , TX
| | - Matthew V Holt
- a Verna & Marrs McLean Department of Biochemistry & Molecular Biology , Baylor College of Medicine , Houston , TX
| | - Nicolas L Young
- a Verna & Marrs McLean Department of Biochemistry & Molecular Biology , Baylor College of Medicine , Houston , TX.,b Department of Molecular and Cellular Biology , Baylor College of Medicine , Houston , TX
| |
Collapse
|
18
|
Gallagher PS, Larkin M, Thillainadesan G, Dhakshnamoorthy J, Balachandran V, Xiao H, Wellman C, Chatterjee R, Wheeler D, Grewal SIS. Iron homeostasis regulates facultative heterochromatin assembly in adaptive genome control. Nat Struct Mol Biol 2018; 25:372-383. [PMID: 29686279 PMCID: PMC5936480 DOI: 10.1038/s41594-018-0056-2] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2017] [Accepted: 03/09/2018] [Indexed: 01/04/2023]
Abstract
Iron metabolism is critical for sustaining life and maintaining human health. Here, we find that iron homeostasis is linked to facultative heterochromatin assembly and regulation of gene expression during adaptive genome control. We show that the fission yeast Clr4/Suv39h histone methyltransferase is part of a rheostat-like mechanism in which transcriptional upregulation of mRNAs in response to environmental change provides feedback to prevent their uncontrolled expression through heterochromatin assembly. Interestingly, proper iron homeostasis is required, as iron depletion or downregulation of iron transporters causes defects in heterochromatin assembly and unrestrained upregulation of gene expression. Remarkably, an unbiased genetic screen revealed that restoration of iron homeostasis is sufficient to re-establish facultative heterochromatin and proper gene control genome-wide. These results establish a role for iron homeostasis in facultative heterochromatin assembly and reveal a dynamic mechanism for reprogramming the genome in response to environmental changes.
Collapse
Affiliation(s)
- Pamela S Gallagher
- Laboratory of Biochemistry and Molecular Biology, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Madeline Larkin
- Laboratory of Biochemistry and Molecular Biology, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Gobi Thillainadesan
- Laboratory of Biochemistry and Molecular Biology, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Jothy Dhakshnamoorthy
- Laboratory of Biochemistry and Molecular Biology, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Vanivilasini Balachandran
- Laboratory of Biochemistry and Molecular Biology, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Hua Xiao
- Laboratory of Biochemistry and Molecular Biology, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Christopher Wellman
- Laboratory of Biochemistry and Molecular Biology, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | | | - David Wheeler
- Laboratory of Biochemistry and Molecular Biology, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Shiv I S Grewal
- Laboratory of Biochemistry and Molecular Biology, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA.
| |
Collapse
|
19
|
Brandão F, Esher SK, Ost KS, Pianalto K, Nichols CB, Fernandes L, Bocca AL, Poças-Fonseca MJ, Alspaugh JA. HDAC genes play distinct and redundant roles in Cryptococcus neoformans virulence. Sci Rep 2018; 8:5209. [PMID: 29581526 PMCID: PMC5979944 DOI: 10.1038/s41598-018-21965-y] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2017] [Accepted: 02/14/2018] [Indexed: 01/01/2023] Open
Abstract
The human fungal pathogen Cryptococcus neoformans undergoes many phenotypic changes to promote its survival in specific ecological niches and inside the host. To explore the role of chromatin remodeling on the expression of virulence-related traits, we identified and deleted seven genes encoding predicted class I/II histone deacetylases (HDACs) in the C. neoformans genome. These studies demonstrated that individual HDACs control non-identical but overlapping cellular processes associated with virulence, including thermotolerance, capsule formation, melanin synthesis, protease activity and cell wall integrity. We also determined the HDAC genes necessary for C. neoformans survival during in vitro macrophage infection and in animal models of cryptococcosis. Our results identified the HDA1 HDAC gene as a central mediator controlling several cellular processes, including mating and virulence. Finally, a global gene expression profile comparing the hda1Δ mutant versus wild-type revealed altered transcription of specific genes associated with the most prominent virulence attributes in this fungal pathogen. This study directly correlates the effects of Class I/II HDAC-mediated chromatin remodeling on the marked phenotypic plasticity and virulence potential of this microorganism. Furthermore, our results provide insights into regulatory mechanisms involved in virulence gene expression that are likely shared with other microbial pathogens.
Collapse
Affiliation(s)
- Fabiana Brandão
- Department of Cell Biology, Institute of Biological Sciences, University of Brasília, Brasília, Brazil
| | - Shannon K Esher
- Department of Medicine/Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, NC, USA
| | - Kyla S Ost
- Department of Medicine/Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, NC, USA
| | - Kaila Pianalto
- Department of Medicine/Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, NC, USA
| | - Connie B Nichols
- Department of Medicine/Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, NC, USA
| | - Larissa Fernandes
- Department of Cell Biology, Institute of Biological Sciences, University of Brasília, Brasília, Brazil
| | - Anamélia L Bocca
- Department of Cell Biology, Institute of Biological Sciences, University of Brasília, Brasília, Brazil
| | - Marcio José Poças-Fonseca
- Department of Cell Biology, Institute of Biological Sciences, University of Brasília, Brasília, Brazil
| | - J Andrew Alspaugh
- Department of Medicine/Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, NC, USA.
| |
Collapse
|
20
|
Salmaninejad A, Valilou SF, Bayat H, Ebadi N, Daraei A, Yousefi M, Nesaei A, Mojarrad M. Duchenne muscular dystrophy: an updated review of common available therapies. Int J Neurosci 2018; 128:854-864. [PMID: 29351004 DOI: 10.1080/00207454.2018.1430694] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
BACKGROUND AND PURPOSE Duchenne muscular dystrophy (DMD) is a lethal progressive pediatric muscle disorder and genetically inherited as an X-linked disease that caused by mutations in the dystrophin gene. DMD leads to progressive muscle weakness, degeneration, and wasting; finally, follows with the premature demise in affected individuals due to respiratory and/or cardiac failure typically by age of 30. For decades, scientists tried massively to find an effective therapy method, but there is no absolute cure currently for patients with DMD, nevertheless, recent advanced progressions on the treatment of DMD will be hopeful in the future. Several promising gene therapies are currently under investigation. These include gene replacement, exon skipping, suppression of stop codons. More recently, a promising gene editing tool referred to as CRISPR/Cas9 offers exciting perspectives for restoring dystrophin expression in patients with DMD. This review intents to briefly describe these methods and comment on their advances. Since DMD is a genetic disorder, it should be treated by replacing the deficient DMD copy with a functional one. However, there are different types of mutations in this gene, so such therapeutic approaches are highly mutation specific and thus are personalized. Therefore, DMD has arisen as a model of genetic disorder for understanding and overcoming of the challenges of developing personalized genetic medicines, consequently, the lessons learned from these approaches will be applicable to many other disorders. CONCLUSIONS This review provides an update on the recent gene therapies for DMD that aim to compensate for dystrophin deficiency and the related clinical trials.
Collapse
Affiliation(s)
- Arash Salmaninejad
- a Drug Applied Research Center , Tabriz University of Medical Sciences , Tabriz , Iran.,b Student Research Committee, Department of Medical Genetics, Faculty of Medicine , Mashhad University of Medical Sciences , Mashhad , Iran.,c Medical Genetics Research Center, Faculty of Medicine , Mashhad University of Medical Sciences , Mashhad , Iran
| | - Saeed Farajzadeh Valilou
- d Medical Genetics Network (MeGeNe) , Universal Scientific Education and Research Network (USERN) , Tehran , Iran
| | - Hadi Bayat
- e Department of Tissue Engineering, School of Advanced Technologies in Medicine , Shahid Beheshti University of Medical Sciences , Tehran , Iran
| | - Nader Ebadi
- f Department of Medical Genetics, Faculty of Medicine , Tehran University of Medical Science , Tehran , Iran
| | - Abdolreza Daraei
- g Genetic Department, Faculty of Medicine , Babol University of Medical Sciences , Babol , Iran
| | - Meysam Yousefi
- b Student Research Committee, Department of Medical Genetics, Faculty of Medicine , Mashhad University of Medical Sciences , Mashhad , Iran.,c Medical Genetics Research Center, Faculty of Medicine , Mashhad University of Medical Sciences , Mashhad , Iran
| | - Abolfazl Nesaei
- h Department of Basic Sciences, Faculty of Medicine , Gonabad University of Medical Sciences , Gonabad , Iran
| | - Majid Mojarrad
- b Student Research Committee, Department of Medical Genetics, Faculty of Medicine , Mashhad University of Medical Sciences , Mashhad , Iran.,c Medical Genetics Research Center, Faculty of Medicine , Mashhad University of Medical Sciences , Mashhad , Iran
| |
Collapse
|
21
|
Induction of H3K9me3 and DNA methylation by tethered heterochromatin factors in Neurospora crassa. Proc Natl Acad Sci U S A 2017; 114:E9598-E9607. [PMID: 29078403 DOI: 10.1073/pnas.1715049114] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Functionally different chromatin domains display distinct chemical marks. Constitutive heterochromatin is commonly associated with trimethylation of lysine 9 on histone H3 (H3K9me3), hypoacetylated histones, and DNA methylation, but the contributions of and interplay among these features are not fully understood. To dissect the establishment of heterochromatin, we investigated the relationships among these features using an in vivo tethering system in Neurospora crassa Artificial recruitment of the H3K9 methyltransferase DIM-5 (defective in methylation-5) induced H3K9me3 and DNA methylation at a normally active, euchromatic locus but did not bypass the requirement of DIM-7, previously implicated in the localization of DIM-5, indicating additional DIM-7 functionality. Tethered heterochromatin protein 1 (HP1) induced H3K9me3, DNA methylation, and gene silencing. The induced heterochromatin required histone deacetylase 1 (HDA-1), with an intact catalytic domain, but HDA-1 was not essential for de novo heterochromatin formation at native heterochromatic regions. Silencing did not require H3K9me3 or DNA methylation. However, DNA methylation contributed to establishment of H3K9me3 induced by tethered HP1. Our analyses also revealed evidence of regulatory mechanisms, dependent on HDA-1 and DIM-5, to control the localization and catalytic activity of the DNA methyltransferase DIM-2. Our study clarifies the interrelationships among canonical aspects of heterochromatin and supports a central role of HDA-1-mediated histone deacetylation in heterochromatin spreading and gene silencing.
Collapse
|
22
|
Luo M, Cheng K, Xu Y, Yang S, Wu K. Plant Responses to Abiotic Stress Regulated by Histone Deacetylases. FRONTIERS IN PLANT SCIENCE 2017; 8:2147. [PMID: 29326743 PMCID: PMC5737090 DOI: 10.3389/fpls.2017.02147] [Citation(s) in RCA: 71] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2017] [Accepted: 12/04/2017] [Indexed: 05/18/2023]
Abstract
In eukaryotic cells, histone acetylation and deacetylation play an important role in the regulation of gene expression. Histone acetylation levels are modulated by histone acetyltransferases and histone deacetylases (HDACs). Recent studies indicate that HDACs play essential roles in the regulation of gene expression in plant response to environmental stress. In this review, we discussed the recent advance regarding the plant HDACs and their functions in the regulation of abiotic stress responses. The role of HDACs in autophagy was also discussed.
Collapse
Affiliation(s)
- Ming Luo
- Guangdong Provincial Key Laboratory of Applied Botany, Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
- *Correspondence: Ming Luo, Keqiang Wu,
| | - Kai Cheng
- Guangdong Provincial Key Laboratory of Applied Botany, Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
| | - Yingchao Xu
- Guangdong Provincial Key Laboratory of Applied Botany, Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
| | - Songguang Yang
- Guangdong Provincial Key Laboratory of Applied Botany, Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
- College of Life Science, Institute of Plant Biology, National Taiwan University, Taipei, Taiwan
| | - Keqiang Wu
- College of Life Science, Institute of Plant Biology, National Taiwan University, Taipei, Taiwan
- *Correspondence: Ming Luo, Keqiang Wu,
| |
Collapse
|
23
|
Li Y, Tian X, Ma M, Jerman S, Kong S, Somlo S, Sun Z. Deletion of ADP Ribosylation Factor-Like GTPase 13B Leads to Kidney Cysts. J Am Soc Nephrol 2016; 27:3628-3638. [PMID: 27153923 PMCID: PMC5118478 DOI: 10.1681/asn.2015091004] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2015] [Accepted: 03/08/2016] [Indexed: 12/14/2022] Open
Abstract
The gene for ADP ribosylation factor-like GTPase 13B (Arl13b) encodes a small GTPase essential for cilia biogenesis in multiple model organisms. Inactivation of arl13b in zebrafish leads to a number of phenotypes indicative of defective cilia, including cystic kidneys. In mouse, null mutation in Arl13b results in severe patterning defects in the neural tube and defective Hedgehog signaling. Human mutations of ARL13B lead to Joubert syndrome, a ciliopathy. However, patients with mutated ARL13B do not develop kidney cysts. To investigate whether Arl13b has a role in ciliogenesis in mammalian kidney and whether loss of function of Arl13b leads to cystic kidneys in mammals, we generated a mouse model with kidney-specific conditional knockout of Arl13b Deletion of Arl13b in the distal nephron at the perinatal stage led to a cilia biogenesis defect and rapid kidney cyst formation. Additionally, we detected misregulation of multiple pathways in the cystic kidneys of this model. Moreover, valproic acid, a histone deacetylase inhibitor that we previously showed slows cyst progression in a mouse cystic kidney model with neonatal inactivation of Pkd1, inhibited the early rise of Wnt7a expression, ameliorated fibrosis, slowed cyst progression, and improved kidney function in the Arl13b mutant mouse. Finally, in rescue experiments in zebrafish, all ARL13B allele combinations identified in patients with Joubert syndrome provided residual Arl13b function, supporting the idea that the lack of cystic kidney phenotype in human patients with ARL13B mutations is explained by the hypomorphic nature of the mutations.
Collapse
Affiliation(s)
| | - Xin Tian
- Internal Medicine, Yale University School of Medicine, New Haven, Connecticut
| | - Ming Ma
- Internal Medicine, Yale University School of Medicine, New Haven, Connecticut
| | | | | | - Stefan Somlo
- Departments of *Genetics and
- Internal Medicine, Yale University School of Medicine, New Haven, Connecticut
| | | |
Collapse
|
24
|
|
25
|
Kumar A, Chauhan S. How much successful are the medicinal chemists in modulation of SIRT1: A critical review. Eur J Med Chem 2016; 119:45-69. [PMID: 27153347 DOI: 10.1016/j.ejmech.2016.04.063] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2016] [Revised: 04/14/2016] [Accepted: 04/25/2016] [Indexed: 12/27/2022]
Abstract
Silent information regulator two homologue one (SIRT1) is the most widely studied member of the sirtuin family related to histone deacetylases class III super-family using nicotinamide adenine dinucleotide (NAD(+)) as its cofactor. It is located in the nucleus but also modulates the targets in cytoplasm and mainly acts as transacetylase rather than deacetylase. SIRT1 specifically cleaves the nicotinamide ribosyl bond of NAD(+) and transfers the acetyl group from proteins to their co-substrate through an ADP- ribose-peptidyl imidate intermediate. It has been indicated that SIRT1 and its histone as well as non histone targets are involved in a wide range of biological courses including metabolic diseases, age related diseases, viral infection, inflammation, tumor-cell growth and metastasis. Modulation of SIRT1 expression may present a new insight in the discovery of a number of therapeutics. This review summarizes studies about SIRT1 and mainly focuses on the various modulators of SIRT1 evolved by natural as well as synthetic means.
Collapse
Affiliation(s)
- Ashwani Kumar
- Department of Pharmaceutical Sciences, Guru Jambheshwar University of Science and Technology, Hisar, Haryana, India.
| | - Shilpi Chauhan
- Department of Pharmaceutical Sciences, Guru Jambheshwar University of Science and Technology, Hisar, Haryana, India
| |
Collapse
|
26
|
Schmoll M, Dattenböck C, Carreras-Villaseñor N, Mendoza-Mendoza A, Tisch D, Alemán MI, Baker SE, Brown C, Cervantes-Badillo MG, Cetz-Chel J, Cristobal-Mondragon GR, Delaye L, Esquivel-Naranjo EU, Frischmann A, Gallardo-Negrete JDJ, García-Esquivel M, Gomez-Rodriguez EY, Greenwood DR, Hernández-Oñate M, Kruszewska JS, Lawry R, Mora-Montes HM, Muñoz-Centeno T, Nieto-Jacobo MF, Nogueira Lopez G, Olmedo-Monfil V, Osorio-Concepcion M, Piłsyk S, Pomraning KR, Rodriguez-Iglesias A, Rosales-Saavedra MT, Sánchez-Arreguín JA, Seidl-Seiboth V, Stewart A, Uresti-Rivera EE, Wang CL, Wang TF, Zeilinger S, Casas-Flores S, Herrera-Estrella A. The Genomes of Three Uneven Siblings: Footprints of the Lifestyles of Three Trichoderma Species. Microbiol Mol Biol Rev 2016; 80:205-327. [PMID: 26864432 PMCID: PMC4771370 DOI: 10.1128/mmbr.00040-15] [Citation(s) in RCA: 126] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The genus Trichoderma contains fungi with high relevance for humans, with applications in enzyme production for plant cell wall degradation and use in biocontrol. Here, we provide a broad, comprehensive overview of the genomic content of these species for "hot topic" research aspects, including CAZymes, transport, transcription factors, and development, along with a detailed analysis and annotation of less-studied topics, such as signal transduction, genome integrity, chromatin, photobiology, or lipid, sulfur, and nitrogen metabolism in T. reesei, T. atroviride, and T. virens, and we open up new perspectives to those topics discussed previously. In total, we covered more than 2,000 of the predicted 9,000 to 11,000 genes of each Trichoderma species discussed, which is >20% of the respective gene content. Additionally, we considered available transcriptome data for the annotated genes. Highlights of our analyses include overall carbohydrate cleavage preferences due to the different genomic contents and regulation of the respective genes. We found light regulation of many sulfur metabolic genes. Additionally, a new Golgi 1,2-mannosidase likely involved in N-linked glycosylation was detected, as were indications for the ability of Trichoderma spp. to generate hybrid galactose-containing N-linked glycans. The genomic inventory of effector proteins revealed numerous compounds unique to Trichoderma, and these warrant further investigation. We found interesting expansions in the Trichoderma genus in several signaling pathways, such as G-protein-coupled receptors, RAS GTPases, and casein kinases. A particularly interesting feature absolutely unique to T. atroviride is the duplication of the alternative sulfur amino acid synthesis pathway.
Collapse
Affiliation(s)
- Monika Schmoll
- Austrian Institute of Technology, Department Health and Environment, Bioresources Unit, Tulln, Austria
| | - Christoph Dattenböck
- Austrian Institute of Technology, Department Health and Environment, Bioresources Unit, Tulln, Austria
| | | | | | - Doris Tisch
- Research Division Biotechnology and Microbiology, Institute of Chemical Engineering, TU Wien, Vienna, Austria
| | - Mario Ivan Alemán
- Cinvestav, Department of Genetic Engineering, Irapuato, Guanajuato, Mexico
| | - Scott E Baker
- Pacific Northwest National Laboratory, Richland, Washington, USA
| | - Christopher Brown
- University of Otago, Department of Biochemistry and Genetics, Dunedin, New Zealand
| | | | - José Cetz-Chel
- LANGEBIO, National Laboratory of Genomics for Biodiversity, Cinvestav-Irapuato, Guanajuato, Mexico
| | | | - Luis Delaye
- Cinvestav, Department of Genetic Engineering, Irapuato, Guanajuato, Mexico
| | | | - Alexa Frischmann
- Research Division Biotechnology and Microbiology, Institute of Chemical Engineering, TU Wien, Vienna, Austria
| | | | - Monica García-Esquivel
- LANGEBIO, National Laboratory of Genomics for Biodiversity, Cinvestav-Irapuato, Guanajuato, Mexico
| | | | - David R Greenwood
- The University of Auckland, School of Biological Sciences, Auckland, New Zealand
| | - Miguel Hernández-Oñate
- LANGEBIO, National Laboratory of Genomics for Biodiversity, Cinvestav-Irapuato, Guanajuato, Mexico
| | - Joanna S Kruszewska
- Polish Academy of Sciences, Institute of Biochemistry and Biophysics, Laboratory of Fungal Glycobiology, Warsaw, Poland
| | - Robert Lawry
- Lincoln University, Bio-Protection Research Centre, Lincoln, Canterbury, New Zealand
| | | | | | | | | | | | | | - Sebastian Piłsyk
- Polish Academy of Sciences, Institute of Biochemistry and Biophysics, Laboratory of Fungal Glycobiology, Warsaw, Poland
| | - Kyle R Pomraning
- Pacific Northwest National Laboratory, Richland, Washington, USA
| | - Aroa Rodriguez-Iglesias
- Austrian Institute of Technology, Department Health and Environment, Bioresources Unit, Tulln, Austria
| | | | | | - Verena Seidl-Seiboth
- Research Division Biotechnology and Microbiology, Institute of Chemical Engineering, TU Wien, Vienna, Austria
| | | | | | - Chih-Li Wang
- National Chung-Hsing University, Department of Plant Pathology, Taichung, Taiwan
| | - Ting-Fang Wang
- Academia Sinica, Institute of Molecular Biology, Taipei, Taiwan
| | - Susanne Zeilinger
- Research Division Biotechnology and Microbiology, Institute of Chemical Engineering, TU Wien, Vienna, Austria University of Innsbruck, Institute of Microbiology, Innsbruck, Austria
| | | | - Alfredo Herrera-Estrella
- LANGEBIO, National Laboratory of Genomics for Biodiversity, Cinvestav-Irapuato, Guanajuato, Mexico
| |
Collapse
|
27
|
Escape from Mitotic Arrest: An Unexpected Connection Between Microtubule Dynamics and Epigenetic Regulation of Centromeric Chromatin in Schizosaccharomyces pombe. Genetics 2015; 201:1467-78. [PMID: 26510788 DOI: 10.1534/genetics.115.181792] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2015] [Accepted: 10/23/2015] [Indexed: 01/02/2023] Open
Abstract
Accurate chromosome segregation is necessary to ensure genomic integrity. Segregation depends on the proper functioning of the centromere, kinetochore, and mitotic spindle microtubules and is monitored by the spindle assembly checkpoint (SAC). In the fission yeast Schizosaccharomyces pombe, defects in Dis1, a microtubule-associated protein that influences microtubule dynamics, lead to mitotic arrest as a result of an active SAC and consequent failure to grow at low temperature. In a mutant dis1 background (dis1-288), loss of function of Msc1, a fission yeast homolog of the KDM5 family of proteins, suppresses the growth defect and promotes normal mitosis. Genetic analysis implicates a histone deacetylase (HDAC)-linked pathway in suppression because HDAC mutants clr6-1, clr3∆, and sir2∆, though not hos2∆, also promote normal mitosis in the dis1-288 mutant. Suppression of the dis phenotype through loss of msc1 function requires the spindle checkpoint protein Mad2 and is limited by the presence of the heterochromatin-associated HP1 protein homolog Swi6. We speculate that alterations in histone acetylation promote a centromeric chromatin environment that compensates for compromised dis1 function by allowing for successful kinetochore-microtubule interactions that can satisfy the SAC. In cells arrested in mitosis by mutation of dis1, loss of function of epigenetic determinants such as Msc1 or specific HDACs can promote cell survival. Because the KDM5 family of proteins has been implicated in human cancers, an appreciation of the potential role of this family of proteins in chromosome segregation is warranted.
Collapse
|
28
|
Abstract
Histone modifications and DNA methylation represent central dynamic and reversible processes that regulate gene expression and contribute to cellular phenotypes. These epigenetic marks have been shown to play fundamental roles in a diverse set of signaling and behavioral outcomes. Psychiatric disorders such as schizophrenia and depression are complex and heterogeneous diseases with multiple and independent factors that may contribute to their pathophysiology, making challenging to find a link between specific elements and the underlying mechanisms responsible for the disorder and its treatment. Growing evidences suggest that epigenetic modifications in certain brain regions and neural circuits represent a key mechanism through which environmental factors interact with individual's genetic constitution to affect risk of psychiatric conditions throughout life. This review focuses on recent advances that directly implicate epigenetic modifications in schizophrenia and antipsychotic drug action.
Collapse
Affiliation(s)
- Daisuke Ibi
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Javier González-Maeso
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Department of Physiology and Biophysics, Virginia Commonwealth University Medical School, Richmond, VA 23298, USA.
| |
Collapse
|
29
|
Halsall JA, Turan N, Wiersma M, Turner BM. Cells adapt to the epigenomic disruption caused by histone deacetylase inhibitors through a coordinated, chromatin-mediated transcriptional response. Epigenetics Chromatin 2015; 8:29. [PMID: 26380582 PMCID: PMC4572612 DOI: 10.1186/s13072-015-0021-9] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2015] [Accepted: 08/03/2015] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND The genome-wide hyperacetylation of chromatin caused by histone deacetylase inhibitors (HDACi) is surprisingly well tolerated by most eukaryotic cells. The homeostatic mechanisms that underlie this tolerance are unknown. Here we identify the transcriptional and epigenomic changes that constitute the earliest response of human lymphoblastoid cells to two HDACi, valproic acid and suberoylanilide hydroxamic acid (Vorinostat), both in widespread clinical use. RESULTS Dynamic changes in transcript levels over the first 2 h of exposure to HDACi were assayed on High Density microarrays. There was a consistent response to the two different inhibitors at several concentrations. Strikingly, components of all known lysine acetyltransferase (KAT) complexes were down-regulated, as were genes required for growth and maintenance of the lymphoid phenotype. Up-regulated gene clusters were enriched in regulators of transcription, development and phenotypic change. In untreated cells, HDACi-responsive genes, whether up- or down-regulated, were packaged in highly acetylated chromatin. This was essentially unaffected by HDACi. In contrast, HDACi induced a strong increase in H3K27me3 at transcription start sites, irrespective of their transcriptional response. Inhibition of the H3K27 methylating enzymes, EZH1/2, altered the transcriptional response to HDACi, confirming the functional significance of H3K27 methylation for specific genes. CONCLUSIONS We propose that the observed transcriptional changes constitute an inbuilt adaptive response to HDACi that promotes cell survival by minimising protein hyperacetylation, slowing growth and re-balancing patterns of gene expression. The transcriptional response to HDACi is mediated by a precisely timed increase in H3K27me3 at transcription start sites. In contrast, histone acetylation, at least at the three lysine residues tested, seems to play no direct role. Instead, it may provide a stable chromatin environment that allows transcriptional change to be induced by other factors, possibly acetylated non-histone proteins.
Collapse
Affiliation(s)
- John A Halsall
- Chromatin and Gene Expression Group, School of Cancer Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, B15 2TT UK
| | - Nil Turan
- Chromatin and Gene Expression Group, School of Cancer Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, B15 2TT UK
| | - Maaike Wiersma
- Chromatin and Gene Expression Group, School of Cancer Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, B15 2TT UK
| | - Bryan M Turner
- Chromatin and Gene Expression Group, School of Cancer Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, B15 2TT UK
| |
Collapse
|
30
|
Nishida H, Matsumoto T, Kondo S, Hamamoto M, Yoshikawa H. The early diverging ascomycetous budding yeast Saitoella complicata has three histone deacetylases belonging to the Clr6, Hos2, and Rpd3 lineages. J GEN APPL MICROBIOL 2015; 60:7-12. [PMID: 24646756 DOI: 10.2323/jgam.60.7] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
We sequenced the genomic DNA and the transcribed RNA of the ascomycetous budding yeast Saitoella complicata, which belongs to the earliest lineage (Taphrinomycotina) of ascomycetes. We found 3 protein-coding regions similar to Clr6 of Schizosaccharomyces (a member of Taphrinomycotina). Clr6 has a structure similar to that of Rpd3 and Hos2 of Saccharomyces. These proteins belong to the class 1 histone deacetylase (HDAC) family. The phylogenetic tree showed that the Clr6, Hos2, and Rpd3 lineages are separated in fungal HDACs. Basidiomycetes have 3 proteins belonging to the Clr6, Hos2, and Rpd3 lineages. On the other hand, whereas ascomycetes except for Schizosaccharomyces have the Hos2 and Rpd3 homologs, and lack the Clr6 homolog, Schizosaccharomyces has the Clr6 and Hos2 homologs, and lacks the Rpd3 homolog. Interestingly, Pneumocystis and Saitoella have 3 proteins belonging to the Clr6, Hos2, and Rpd3 lineages. Thus, these fungi are the first ascomycete found to possess all 3 types. Our findings indicated that Taphrinomycotina has conserved the Clr6 protein, suggesting that the ancestor of Dikarya (ascomycetes and basidiomycetes) had 3 proteins belonging to the Clr6, Hos2, and Rpd3 lineages. During ascomycete evolution, Pezizomycotina and Saccharomycotina appear to have lost their Clr6 homologs and Schizosaccharomyces to have lost its Rpd3 homolog.
Collapse
Affiliation(s)
- Hiromi Nishida
- Biotechnology Research Center and Department of Biotechnology, Toyama Prefectural University
| | | | | | | | | |
Collapse
|
31
|
Yan M, Chen C, Gong W, Yin Z, Zhou L, Chaugai S, Wang DW. miR-21-3p regulates cardiac hypertrophic response by targeting histone deacetylase-8. Cardiovasc Res 2014; 105:340-52. [PMID: 25504627 DOI: 10.1093/cvr/cvu254] [Citation(s) in RCA: 102] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
AIMS Growing evidences indicate that microRNAs (miRNAs) are involved in cardiac hypertrophy development. Multiple miRNAs have been identified as diagnostic and prognostic biomarkers of cardiac hypertrophy, as well as potential therapeutic tools. The present study aimed to investigate the functions and regulatory mechanisms of miR-21-3p in cardiac hypertrophy. METHODS AND RESULTS Decreased expression of miR-21-3p was observed in cardiac hypertrophy induced by transverse aortic constriction (TAC) and angiotensin (Ang) II infusion in mice. To further explore the role of miR-21-3p in cardiac hypertrophy, rAAV-miR-21-3p was administered intravenously in mice. Overexpression of miR-21-3p markedly suppressed TAC-induced cardiac hypertrophy and also blocked Ang II-induced cardiac hypertrophy as determined by cardiac function measurement and biomarker detection. Furthermore, western blot assays showed that histone deacetylase-8 (HDAC8) was silenced by miR-21-3p, and luciferase reporter assays showed that miR-21-3p binds to the 3' UTR of HDAC8. Moreover, re-expression of HDAC8 attenuated miR-21-3p-mediated suppression of cardiac hypertrophy by enhancing phospho-Akt and phospho-Gsk3β expression. CONCLUSION Our data reveal a role of miR-21-3p in regulating HDAC8 expression and Akt/Gsk3β pathway, and suggest that modulation of miR-21-3p levels may provide a therapeutic approach for cardiac hypertrophy.
Collapse
Affiliation(s)
- Mengwen Yan
- Department of Internal Medicine, Institute of Hypertension, Tongji Hospital, Tongji Medical College of Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan 430030, PR China
| | - Chen Chen
- Department of Internal Medicine, Institute of Hypertension, Tongji Hospital, Tongji Medical College of Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan 430030, PR China
| | - Wei Gong
- Department of Internal Medicine, Institute of Hypertension, Tongji Hospital, Tongji Medical College of Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan 430030, PR China
| | - Zhongwei Yin
- Department of Internal Medicine, Institute of Hypertension, Tongji Hospital, Tongji Medical College of Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan 430030, PR China
| | - Ling Zhou
- Department of Internal Medicine, Institute of Hypertension, Tongji Hospital, Tongji Medical College of Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan 430030, PR China
| | - Sandip Chaugai
- Department of Internal Medicine, Institute of Hypertension, Tongji Hospital, Tongji Medical College of Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan 430030, PR China
| | - Dao Wen Wang
- Department of Internal Medicine, Institute of Hypertension, Tongji Hospital, Tongji Medical College of Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan 430030, PR China
| |
Collapse
|
32
|
Epigenetic regulation in neural crest development. Dev Biol 2014; 396:159-68. [PMID: 25446277 DOI: 10.1016/j.ydbio.2014.09.034] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2014] [Revised: 09/17/2014] [Accepted: 09/25/2014] [Indexed: 12/22/2022]
Abstract
The neural crest is a migratory and multipotent cell population that plays a crucial role in many aspects of embryonic development. In all vertebrate embryos, these cells emerge from the dorsal neural tube then migrate long distances to different regions of the body, where they contribute to formation of many cell types and structures. These include much of the peripheral nervous system, craniofacial skeleton, smooth muscle, and pigmentation of the skin. The best-studied regulatory events guiding neural crest development are mediated by transcription factors and signaling molecules. In recent years, however, growing evidence supports an important role for epigenetic regulation as an additional mechanism for controlling the timing and level of gene expression at different stages of neural crest development. Here, we summarize the process of neural crest formation, with focus on the role of epigenetic regulation in neural crest specification, migration, and differentiation as well as in neural crest related birth defects and diseases.
Collapse
|
33
|
Protein acetylation and acetyl coenzyme a metabolism in budding yeast. EUKARYOTIC CELL 2014; 13:1472-83. [PMID: 25326522 DOI: 10.1128/ec.00189-14] [Citation(s) in RCA: 87] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Cells sense and appropriately respond to the physical conditions and availability of nutrients in their environment. This sensing of the environment and consequent cellular responses are orchestrated by a multitude of signaling pathways and typically involve changes in transcription and metabolism. Recent discoveries suggest that the signaling and transcription machineries are regulated by signals which are derived from metabolism and reflect the metabolic state of the cell. Acetyl coenzyme A (CoA) is a key metabolite that links metabolism with signaling, chromatin structure, and transcription. Acetyl-CoA is produced by glycolysis as well as other catabolic pathways and used as a substrate for the citric acid cycle and as a precursor in synthesis of fatty acids and steroids and in other anabolic pathways. This central position in metabolism endows acetyl-CoA with an important regulatory role. Acetyl-CoA serves as a substrate for lysine acetyltransferases (KATs), which catalyze the transfer of acetyl groups to the epsilon-amino groups of lysines in histones and many other proteins. Fluctuations in the concentration of acetyl-CoA, reflecting the metabolic state of the cell, are translated into dynamic protein acetylations that regulate a variety of cell functions, including transcription, replication, DNA repair, cell cycle progression, and aging. This review highlights the synthesis and homeostasis of acetyl-CoA and the regulation of transcriptional and signaling machineries in yeast by acetylation.
Collapse
|
34
|
LI YANNING, WANG JUNXIA, XIE YING, LIU SHUFENG, TIAN YE. Pattern of change in histone 3 lysine 9 acetylation and histone deacetylases in development of zebrafish embryo. J Genet 2014; 93:539-44. [DOI: 10.1007/s12041-014-0403-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
35
|
Wang M, Collins RN. A lysine deacetylase Hos3 is targeted to the bud neck and involved in the spindle position checkpoint. Mol Biol Cell 2014; 25:2720-34. [PMID: 25057019 PMCID: PMC4161508 DOI: 10.1091/mbc.e13-10-0619] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
The Saccharomyces cerevisiae lysine deacetylase Hos3 is asymmetrically targeted to the daughter side of the neck, dependent on the morphogenesis checkpoint member Hsl7, and to the daughter spindle pole body (SPB). In the presence of spindle misalignment, Hos3 at the SPBs functions as a brake component to inhibit mitotic exit. An increasing number of cellular activities can be regulated by reversible lysine acetylation. Targeting the enzymes responsible for such posttranslational modifications is instrumental in defining their substrates and functions in vivo. Here we show that a Saccharomyces cerevisiae lysine deacetylase, Hos3, is asymmetrically targeted to the daughter side of the bud neck and to the daughter spindle pole body (SPB). The morphogenesis checkpoint member Hsl7 recruits Hos3 to the neck region. Cells with a defect in spindle orientation trigger Hos3 to load onto both SPBs. When associated symmetrically with both SPBs, Hos3 functions as a spindle position checkpoint (SPOC) component to inhibit mitotic exit. Neck localization of Hos3 is essential for its symmetric association with SPBs in cells with misaligned spindles. Our data suggest that Hos3 facilitates cross-talk between the morphogenesis checkpoint and the SPOC as a component of the intricate monitoring of spindle orientation after mitotic entry and before commitment to mitotic exit.
Collapse
Affiliation(s)
- Mengqiao Wang
- Program in Biochemistry, Molecular and Cell Biology, Cornell University, Ithaca, NY 14853 Department of Molecular Medicine, Cornell University, Ithaca, NY 14853
| | - Ruth N Collins
- Department of Molecular Medicine, Cornell University, Ithaca, NY 14853
| |
Collapse
|
36
|
Kim YZ. Altered histone modifications in gliomas. Brain Tumor Res Treat 2014; 2:7-21. [PMID: 24926467 PMCID: PMC4049557 DOI: 10.14791/btrt.2014.2.1.7] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2013] [Revised: 03/16/2014] [Accepted: 03/21/2014] [Indexed: 12/24/2022] Open
Abstract
Gliomas are the most frequently occurring primary brain tumors in adults. Although they exist in different malignant stages, including histologically benign forms and highly aggressive states, most gliomas are clinically challenging for neuro-oncologists because of their infiltrative growth patterns and inherent relapse tendency with increased malignancy. Once this disease reaches the glioblastoma multiforme stage, the prognosis of patients is dismal: median survival time is 15 months. Extensive genetic analyses of glial tumors have revealed a variety of deregulated genetic pathways involved in DNA repair, apoptosis, cell migration/adhesion, and cell cycle. Recently, it has become evident that epigenetic alterations may also be an important factor for glioma genesis. Of epigenetic marks, histone modification is a key mark that regulates gene expression and thus modulates a wide range of cellular processes. In this review, I discuss the neuro-oncological significance of altered histone modifications and modifiers in glioma patients while briefly overviewing the biological roles of histone modifications.
Collapse
Affiliation(s)
- Young Zoon Kim
- Division of Neuro-Oncology, Department of Neurosurgery, Samsung Changwon Hospital, Sungkyunkwan University School of Medicine, Changwon, Korea
| |
Collapse
|
37
|
Fungus-specific sirtuin HstD coordinates secondary metabolism and development through control of LaeA. EUKARYOTIC CELL 2013; 12:1087-96. [PMID: 23729383 DOI: 10.1128/ec.00003-13] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The sirtuins are members of the NAD(+)-dependent histone deacetylase family that contribute to various cellular functions that affect aging, disease, and cancer development in metazoans. However, the physiological roles of the fungus-specific sirtuin family are still poorly understood. Here, we determined a novel function of the fungus-specific sirtuin HstD/Aspergillus oryzae Hst4 (AoHst4), which is a homolog of Hst4 in A. oryzae yeast. The deletion of all histone deacetylases in A. oryzae demonstrated that the fungus-specific sirtuin HstD/AoHst4 is required for the coordination of fungal development and secondary metabolite production. We also show that the expression of the laeA gene, which is the most studied fungus-specific coordinator for the regulation of secondary metabolism and fungal development, was induced in a ΔhstD strain. Genetic interaction analysis of hstD/Aohst4 and laeA clearly indicated that HstD/AoHst4 works upstream of LaeA to coordinate secondary metabolism and fungal development. The hstD/Aohst4 and laeA genes are fungus specific but conserved in the vast family of filamentous fungi. Thus, we conclude that the fungus-specific sirtuin HstD/AoHst4 coordinates fungal development and secondary metabolism via the regulation of LaeA in filamentous fungi.
Collapse
|
38
|
Pereira R, Benedetti R, Pérez-Rodríguez S, Nebbioso A, García-Rodríguez J, Carafa V, Stuhldreier M, Conte M, Rodríguez-Barrios F, Stunnenberg HG, Gronemeyer H, Altucci L, de Lera ÁR. Indole-Derived Psammaplin A Analogues as Epigenetic Modulators with Multiple Inhibitory Activities. J Med Chem 2012; 55:9467-91. [DOI: 10.1021/jm300618u] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Affiliation(s)
- Raquel Pereira
- Departamento de Química
Orgánica, Universidade de Vigo,
36310 Vigo, Spain
| | - Rosaria Benedetti
- Dipartimento
di Patologia Generale, Seconda Università degli Studi di Napoli, Vico
L. de Crecchio 7, 80138 Napoli, Italy
| | | | - Angela Nebbioso
- Dipartimento
di Patologia Generale, Seconda Università degli Studi di Napoli, Vico
L. de Crecchio 7, 80138 Napoli, Italy
| | | | - Vincenzo Carafa
- Dipartimento
di Patologia Generale, Seconda Università degli Studi di Napoli, Vico
L. de Crecchio 7, 80138 Napoli, Italy
| | - Mayra Stuhldreier
- Departamento de Química
Orgánica, Universidade de Vigo,
36310 Vigo, Spain
| | - Mariarosaria Conte
- Dipartimento
di Patologia Generale, Seconda Università degli Studi di Napoli, Vico
L. de Crecchio 7, 80138 Napoli, Italy
| | | | - Hendrik G. Stunnenberg
- NCMLS, Department
of Molecular
Biology, Radboud University, 6525 GA Nijmegen,
The Netherlands
| | - Hinrich Gronemeyer
- Department
of Cancer Biology, Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), CNRS, INSERM, ULP, BP 163, 67404
Illkirch Cedex, C. U. de Strasbourg, France
| | - Lucia Altucci
- Dipartimento
di Patologia Generale, Seconda Università degli Studi di Napoli, Vico
L. de Crecchio 7, 80138 Napoli, Italy
- Institute of Genetics and Biophysics (IGB), CNR, Via P. Castellino 111, 80131
Napoli, Italy
| | - Ángel R. de Lera
- Departamento de Química
Orgánica, Universidade de Vigo,
36310 Vigo, Spain
| |
Collapse
|
39
|
Strobl-Mazzulla PH, Marini M, Buzzi A. Epigenetic landscape and miRNA involvement during neural crest development. Dev Dyn 2012; 241:1849-56. [PMID: 22972707 DOI: 10.1002/dvdy.23868] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/29/2012] [Indexed: 11/06/2022] Open
Abstract
The neural crest (NC) is a multipotent, migratory cell population that arises from the dorsal neural fold of vertebrate embryos. NC cells migrate extensively and differentiate into a variety of tissues, including melanocytes, bone, and cartilage of the craniofacial skeleton, peripheral and enteric neurons, glia, and smooth muscle and endocrine cells. For several years, the gene regulatory network that orchestrates NC cells development has been extensively studied. However, we have recently begun to understand that epigenetic and posttranscriptional regulation, such as miRNAs, plays important roles in NC development. In this review, we focused on some of the most recent findings on chromatin-dependent mechanisms and miRNAs regulation during vertebrate NC cells development.
Collapse
Affiliation(s)
- Pablo H Strobl-Mazzulla
- Laboratory of Developmental Biology, Instituto de Investigaciones Biotecnológicas- Instituto Tecnológico de Chascomús, Chascomús, Argentina.
| | | | | |
Collapse
|
40
|
Chang J, Varghese DS, Gillam MC, Peyton M, Modi B, Schiltz RL, Girard L, Martinez ED. Differential response of cancer cells to HDAC inhibitors trichostatin A and depsipeptide. Br J Cancer 2011; 106:116-25. [PMID: 22158273 PMCID: PMC3251870 DOI: 10.1038/bjc.2011.532] [Citation(s) in RCA: 77] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Background: Over the last decade, several drugs that inhibit class I and/or class II histone deacetylases (HDACs) have been identified, including trichostatin A, the cyclic depsipeptide FR901228 and the antibiotic apicidin. These compounds have had immediate application in cancer research because of their ability to reactivate aberrantly silenced tumour suppressor genes and/or block tumour cell growth. Although a number of HDAC inhibitors are being evaluated in preclinical cancer models and in clinical trials, little is known about the differences in their specific mechanism of action and about the unique determinants of cancer cell sensitivity to each of these inhibitors. Methods: Using a combination of cell viability assays, HDAC enzyme activity measurements, western blots for histone modifications, microarray gene expression analysis and qRT–PCR, we have characterised differences in trichostatin A vs depsipeptide-induced phenotypes in lung cancer, breast cancer and skin cancer cells and in normal cells and have then expanded these studies to other HDAC inhibitors. Results: Cell viability profiles across panels of lung cancer, breast cancer and melanoma cell lines showed distinct sensitivities to the pan-inhibitor TSA compared with the class 1 selective inhibitor depsipeptide. In several instances, the cell lines most sensitive to one inhibitor were most resistant to the other inhibitor, demonstrating these drugs act on at least some non-overlapping cellular targets. These differences were not explained by the HDAC selectivity of these inhibitors alone since apicidin, which is a class 1 selective compound similar to depsipeptide, also showed a unique drug sensitivity profile of its own. TSA had greater specificity for cancer vs normal cells compared with other HDAC inhibitors. In addition, at concentrations that blocked cancer cell viability, TSA effectively inhibited purified recombinant HDACs 1, 2 and 5 and moderately inhibited HDAC8, while depsipeptide did not inhibit the activity of purified HDACs in vitro but did in cellular extracts, suggesting a potentially indirect action of this drug. Although both depsipeptide and TSA increased levels of histone acetylation in cancer cells, only depsipeptide decreased global levels of transcriptionally repressive histone methylation marks. Analysis of gene expression profiles of an isogenic cell line pair that showed discrepant sensitivity to depsipeptide, suggested that resistance to this inhibitor may be mediated by increased expression of multidrug resistance genes triggered by exposure to chemotherapy as was confirmed by verapamil studies. Conclusion: Although generally thought to have similar activities, the HDAC modulators trichostatin A and depsipeptide demonstrated distinct phenotypes in the inhibition of cancer cell viability and of HDAC activity, in their selectivity for cancer vs normal cells, and in their effects on histone modifications. These differences in mode of action may bear on the future therapeutic and research application of these inhibitors.
Collapse
Affiliation(s)
- J Chang
- Hamon Center for Therapeutic Oncology Research, UT Southwestern Medical Center, 6000 Harry Hines Boulevard, Dallas, TX 75390-8593, USA
| | | | | | | | | | | | | | | |
Collapse
|
41
|
Kagami A, Sakuno T, Yamagishi Y, Ishiguro T, Tsukahara T, Shirahige K, Tanaka K, Watanabe Y. Acetylation regulates monopolar attachment at multiple levels during meiosis I in fission yeast. EMBO Rep 2011; 12:1189-95. [PMID: 21979813 DOI: 10.1038/embor.2011.188] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2011] [Revised: 08/13/2011] [Accepted: 08/26/2011] [Indexed: 01/29/2023] Open
Abstract
In fission yeast, meiotic mono-orientation of sister kinetochores is established by cohesion at the core centromere, which is established by a meiotic cohesin complex and the kinetochore protein Moa1. The cohesin subunit Psm3 is acetylated by Eso1 and deacetylated by Clr6. We show that in meiosis, Eso1 is required for establishing core centromere cohesion during S phase, whereas Moa1 is required for maintaining this cohesion after S phase. The clr6-1 mutation suppresses the mono-orientation defect of moa1Δ cells, although the Clr6 target for this suppression is not Psm3. Thus, several acetylations are crucial for establishing and maintaining core centromere cohesion.
Collapse
Affiliation(s)
- Ayano Kagami
- Laboratory of Chromosome Dynamics, Institute of Molecular and Cellular Biosciences, University of Tokyo, Yayoi, Bunkyo-ku, Tokyo 113-0032, Japan
| | | | | | | | | | | | | | | |
Collapse
|
42
|
Abstract
The cardiovascular system is broadly composed of the heart, which pumps blood, and the blood vessels, which carry blood to and from tissues of the body. Heart malformations are the most serious common birth defect, affecting at least 2% of newborns and leading to significant morbidity and mortality. Severe heart malformations cause heart failure in fetuses, infants, and children, whereas milder heart defects may not trigger significant heart dysfunction until early or midadulthood. Severe vasculogenesis or angiogenesis defects in embryos are incompatible with life, and anomalous arterial patterning may cause vascular aberrancies that often require surgical treatment. It is therefore important to understand the underlying mechanisms that control cardiovascular development. Understanding developmental mechanisms will also help us design better strategies to regenerate cardiovascular tissues for therapeutic purposes. An important mechanism regulating genes involves the modification of chromatin, the higher-order structure in which DNA is packaged. Recent studies have greatly expanded our understanding of the regulation of cardiovascular development at the chromatin level, including the remodeling of chromatin and the modification of histones. Chromatin-level regulation integrates multiple inputs and coordinates broad gene expression programs. Thus, understanding chromatin-level regulation will allow for a better appreciation of gene regulation as a whole and may set a fundamental basis for cardiovascular disease. This review focuses on how chromatin-remodeling and histone-modifying factors regulate gene expression to control cardiovascular development.
Collapse
Affiliation(s)
- Ching-Pin Chang
- Division of Cardiovascular Medicine, Department of Medicine, Stanford University School of Medicine, Stanford, California 94305, USA.
| | | |
Collapse
|
43
|
Kraft M, Cirstea IC, Voss AK, Thomas T, Goehring I, Sheikh BN, Gordon L, Scott H, Smyth GK, Ahmadian MR, Trautmann U, Zenker M, Tartaglia M, Ekici A, Reis A, Dörr HG, Rauch A, Thiel CT. Disruption of the histone acetyltransferase MYST4 leads to a Noonan syndrome-like phenotype and hyperactivated MAPK signaling in humans and mice. J Clin Invest 2011; 121:3479-91. [PMID: 21804188 DOI: 10.1172/jci43428] [Citation(s) in RCA: 87] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2010] [Accepted: 06/08/2011] [Indexed: 01/08/2023] Open
Abstract
Epigenetic regulation of gene expression, through covalent modification of histones, is a key process controlling growth and development. Accordingly, the transcription factors regulating these processes are important targets of genetic diseases. However, surprisingly little is known about the relationship between aberrant epigenetic states, the cellular process affected, and their phenotypic consequences. By chromosomal breakpoint mapping in a patient with a Noonan syndrome-like phenotype that encompassed short stature, blepharoptosis, and attention deficit hyperactivity disorder, we identified haploinsufficiency of the histone acetyltransferase gene MYST histone acetyltransferase (monocytic leukemia) 4 (MYST4), as the underlying cause of the phenotype. Using acetylation, whole genome expression, and ChIP studies in cells from the patient, cell lines in which MYST4 expression was knocked down using siRNA, and the Myst4 querkopf mouse, we found that H3 acetylation is important for neural, craniofacial, and skeletal morphogenesis, mainly through its ability to specifically regulating the MAPK signaling pathway. This finding further elucidates the complex role of histone modifications in mammalian development and adds what we believe to be a new mechanism to the pathogenic phenotypes resulting from misregulation of the RAS signaling pathway.
Collapse
Affiliation(s)
- Michael Kraft
- Institute of Human Genetics, Friedrich-Alexander University Erlangen-Nuremberg, Erlangen, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Liu Y, Xiao A. Epigenetic regulation in neural crest development. BIRTH DEFECTS RESEARCH. PART A, CLINICAL AND MOLECULAR TERATOLOGY 2011; 91:788-96. [PMID: 21618405 DOI: 10.1002/bdra.20797] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2010] [Revised: 12/16/2010] [Accepted: 02/02/2011] [Indexed: 12/31/2022]
Abstract
The neural crest (NC) is a multipotent, migratory cell population that arises from the developing dorsal neural fold of vertebrate embryos. Once their fates are specified, neural crest cells (NCCs) migrate along defined routes and differentiate into a variety of tissues, including bone and cartilage of the craniofacial skeleton, peripheral neurons, glia, pigment cells, endocrine cells, and mesenchymal precursor cells (Santagati and Rijli,2003; Dupin et al.,2006; Hall,2009). Abnormal development of NCCs causes a number of human diseases, including ear abnormalities (including deafness), heart anomalies, neuroblastomas, and mandibulofacial dysostosis (Hall,2009). For more than a century, NCCs have attracted the attention of geneticists and developmental biologists for their stem cell-like properties, including self-renewal and multipotent differentiation potential. However, we have only begun to understand the underlying mechanisms responsible for their formation and behavior. Recent studies have demonstrated that epigenetic regulation plays important roles in NC development. In this review, we focused on some of the most recent findings on chromatin-mediated mechanisms for vertebrate NCC development.
Collapse
Affiliation(s)
- Yifei Liu
- Yale Stem Cell Center, Yale University, New Haven, CT 06520, USA
| | | |
Collapse
|
45
|
Kaiser GS, Germann SM, Westergaard T, Lisby M. Phenylbutyrate inhibits homologous recombination induced by camptothecin and methyl methanesulfonate. Mutat Res 2011; 713:64-75. [PMID: 21658395 DOI: 10.1016/j.mrfmmm.2011.05.016] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2011] [Revised: 05/15/2011] [Accepted: 05/23/2011] [Indexed: 01/05/2023]
Abstract
Homologous recombination is accompanied by extensive changes to chromatin organization at the site of DNA damage. Some of these changes are mediated through acetylation/deacetylation of histones. Here, we show that recombinational repair of DNA damage induced by the anti-cancer drug camptothecin (CPT) and the alkylating agent methyl methanesulfonate (MMS) is blocked by sodium phenylbutyrate (PBA) in the budding yeast Saccharomyces cerevisiae. In particular, PBA suppresses CPT- and MMS-induced genetic recombination as well as DNA double-strand break repair during mating-type interconversion. Treatment with PBA is accompanied by a dramatic reduction in histone H4 lysine 8 acetylation. Live cell imaging of homologous recombination proteins indicates that repair of CPT-induced DNA damage is redirected to a non-recombinogenic pathway in the presence of PBA without loss in cell viability. In contrast, the suppression of MMS-induced recombination by PBA is accompanied by a dramatic loss in cell viability. Taken together, our results demonstrate that PBA inhibits DNA damage-induced homologous recombination likely by mediating changes in chromatin acetylation. Moreover, the combination of PBA with genotoxic agents can lead to different cell fates depending on the type of DNA damage inflicted.
Collapse
Affiliation(s)
- Gitte S Kaiser
- Department of Biology, University of Copenhagen, Ole Maaloeesvej 5, DK-2200 Copenhagen N, Denmark
| | | | | | | |
Collapse
|
46
|
The transposon-driven evolutionary origin and basis of histone deacetylase functions and limitations in disease prevention. Clin Epigenetics 2011; 2:97-112. [PMID: 22704332 PMCID: PMC3365375 DOI: 10.1007/s13148-011-0020-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2010] [Accepted: 01/03/2011] [Indexed: 12/19/2022] Open
Abstract
Histone deacetylases (HDACs) are homologous to prokaryotic enzymes that removed acetyl groups from non-histone proteins before the evolution of eukaryotic histones. Enzymes inherited from prokaryotes or from a common ancestor were adapted for histone deacetylation, while useful deacetylation of non-histone proteins was selectively retained. Histone deacetylation served to prevent transcriptions with pathological consequences, including the expression of viral DNA and the deletion or dysregulation of vital genes by random transposon insertions. Viruses are believed to have evolved from transposons, with transposons providing the earliest impetus of HDAC evolution. Because of the wide range of genes potentially affected by transposon insertions, the range of diseases that can be prevented by HDACs is vast and inclusive. Repressive chromatin modifications that may prevent transcription also include methylation of selective lysine residues of histones H3 and H4 and the methylation of selective DNA cytosines following specific histone lysine methylation. Methylation and acetylation of individual histone residues are mutually exclusive. While transposons were sources of disease to be prevented by HDAC evolution, they were also the source of numerous and valuable coding and regulatory sequences recruited by “molecular domestication.” Those sequences contribute to evolved complex transcription regulation in which components with contradictory effects, such as HDACs and HATs, may be coordinated and complementary. Within complex transcription regulation, however, HDACs remain ineffective as defense against some critical infectious and non-infectious diseases because evolutionary compromises have rendered their activity transient.
Collapse
|
47
|
Yamane K, Mizuguchi T, Cui B, Zofall M, Noma KI, Grewal SIS. Asf1/HIRA facilitate global histone deacetylation and associate with HP1 to promote nucleosome occupancy at heterochromatic loci. Mol Cell 2011; 41:56-66. [PMID: 21211723 PMCID: PMC3035992 DOI: 10.1016/j.molcel.2010.12.009] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2010] [Revised: 11/03/2010] [Accepted: 11/24/2010] [Indexed: 12/21/2022]
Abstract
Heterochromatin impacts various nuclear processes by providing a recruiting platform for diverse chromosomal proteins. In fission yeast, HP1 proteins Chp2 and Swi6, which bind to methylated histone H3 lysine 9, associate with SHREC (Snf2/HDAC repressor complex) and Clr6 histone deacetylases (HDACs) involved in heterochromatic silencing. However, heterochromatic silencing machinery is not fully defined. We describe a histone chaperone complex containing Asf1 and HIRA that spreads across silenced domains via its association with Swi6 to enforce transcriptional silencing. Asf1 functions in concert with a Clr6 HDAC complex to silence heterochromatic repeats, and it suppresses antisense transcription by promoting histone deacetylation. Furthermore, we demonstrate that Asf1 and SHREC facilitate nucleosome occupancy at heterochromatic regions but TFIIIC transcription factor binding sites within boundary elements are refractory to these factors. These analyses uncover a role for Asf1 in global histone deacetylation and suggest that HP1-associated histone chaperone promotes nucleosome occupancy to assemble repressive heterochromatin.
Collapse
Affiliation(s)
- Kenichi Yamane
- Laboratory of Biochemistry and Molecular Biology National Cancer Institute Bethesda, Maryland 20892
| | - Takeshi Mizuguchi
- Laboratory of Biochemistry and Molecular Biology National Cancer Institute Bethesda, Maryland 20892
| | - Bowen Cui
- Laboratory of Biochemistry and Molecular Biology National Cancer Institute Bethesda, Maryland 20892
| | - Martin Zofall
- Laboratory of Biochemistry and Molecular Biology National Cancer Institute Bethesda, Maryland 20892
| | - Ken-ichi Noma
- Laboratory of Biochemistry and Molecular Biology National Cancer Institute Bethesda, Maryland 20892
| | - Shiv I. S. Grewal
- Laboratory of Biochemistry and Molecular Biology National Cancer Institute Bethesda, Maryland 20892
| |
Collapse
|
48
|
Hansen KR, Hazan I, Shanker S, Watt S, Verhein-Hansen J, Bähler J, Martienssen RA, Partridge JF, Cohen A, Thon G. H3K9me-independent gene silencing in fission yeast heterochromatin by Clr5 and histone deacetylases. PLoS Genet 2011; 7:e1001268. [PMID: 21253571 PMCID: PMC3017117 DOI: 10.1371/journal.pgen.1001268] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2010] [Accepted: 12/03/2010] [Indexed: 01/01/2023] Open
Abstract
Nucleosomes in heterochromatic regions bear histone modifications that distinguish them from euchromatic nucleosomes. Among those, histone H3 lysine 9 methylation (H3K9me) and hypoacetylation have been evolutionarily conserved and are found in both multicellular eukaryotes and single-cell model organisms such as fission yeast. In spite of numerous studies, the relative contributions of the various heterochromatic histone marks to the properties of heterochromatin remain largely undefined. Here, we report that silencing of the fission yeast mating-type cassettes, which are located in a well-characterized heterochromatic region, is hardly affected in cells lacking the H3K9 methyltransferase Clr4. We document the existence of a pathway parallel to H3K9me ensuring gene repression in the absence of Clr4 and identify a silencing factor central to this pathway, Clr5. We find that Clr5 controls gene expression at multiple chromosomal locations in addition to affecting the mating-type region. The histone deacetylase Clr6 acts in the same pathway as Clr5, at least for its effects in the mating-type region, and on a subset of other targets, notably a region recently found to be prone to neo-centromere formation. The genomic targets of Clr5 also include Ste11, a master regulator of sexual differentiation. Hence Clr5, like the multi-functional Atf1 transcription factor which also modulates chromatin structure in the mating-type region, controls sexual differentiation and genome integrity at several levels. Globally, our results point to histone deacetylases as prominent repressors of gene expression in fission yeast heterochromatin. These deacetylases can act in concert with, or independently of, the widely studied H3K9me mark to influence gene silencing at heterochromatic loci.
Collapse
Affiliation(s)
- Klavs R. Hansen
- Department of Biology, University of Copenhagen, Copenhagen, Denmark
- Department of Plant Genetics, Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, United States of America
| | - Idit Hazan
- Department of Microbiology and Molecular Genetics, Institute for Medical Research Israel – Canada (IMRIC), The Hebrew University – Hadassah Medical School, Jerusalem, Israel
| | - Sreenath Shanker
- Department of Biochemistry, St. Jude Children's Research Hospital, Memphis, Tennessee, United States of America
| | - Stephen Watt
- Department of Genetics, Evolution, and Environment, University College London, London, United Kingdom
- University College London Cancer Institute, London, United Kingdom
| | | | - Jürg Bähler
- Department of Genetics, Evolution, and Environment, University College London, London, United Kingdom
- University College London Cancer Institute, London, United Kingdom
| | - Robert A. Martienssen
- Department of Plant Genetics, Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, United States of America
| | - Janet F. Partridge
- Department of Biochemistry, St. Jude Children's Research Hospital, Memphis, Tennessee, United States of America
| | - Amikam Cohen
- Department of Microbiology and Molecular Genetics, Institute for Medical Research Israel – Canada (IMRIC), The Hebrew University – Hadassah Medical School, Jerusalem, Israel
| | - Geneviève Thon
- Department of Biology, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
49
|
Jun dimerization protein 2 controls senescence and differentiation via regulating histone modification. J Biomed Biotechnol 2010; 2011:569034. [PMID: 21197464 PMCID: PMC3005813 DOI: 10.1155/2011/569034] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2010] [Accepted: 09/08/2010] [Indexed: 01/23/2023] Open
Abstract
Transcription factor, Jun dimerization protein 2 (JDP2), binds directly to histones and DNAs and then inhibits the p300-mediated acetylation both of core histones and of reconstituted nucleosomes that contain JDP2 recognition DNA sequences. JDP2 plays a key role as a repressor of adipocyte differentiation by regulation of the expression of the gene
C/EBPδ
via inhibition of histone acetylation. Moreover, JDP2-deficient mouse embryonic fibroblasts (JDP2−/− MEFs)
are resistant to replicative senescence. JDP2 inhibits the recruitment of polycomb repressive complexes (PRC1 and PRC2) to the promoter
of the gene encoding p16Ink4a, resulting from the inhibition of methylation of lysine 27 of histone H3 (H3K27). Therefore, it seems that chromatin-remodeling factors, including the PRC complex controlled by JDP2, may be important players in the senescence program. The novel mechanisms that underline the action of JDP2 in inducing cellular senescence and suppressing adipocyte differentiation are reviewed.
Collapse
|
50
|
Horn D, McCulloch R. Molecular mechanisms underlying the control of antigenic variation in African trypanosomes. Curr Opin Microbiol 2010; 13:700-5. [PMID: 20884281 PMCID: PMC3117991 DOI: 10.1016/j.mib.2010.08.009] [Citation(s) in RCA: 88] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2010] [Accepted: 08/30/2010] [Indexed: 11/02/2022]
Abstract
African trypanosomes escape the host adaptive immune response by switching their dense protective coat of Variant Surface Glycoprotein (VSG). Each cell expresses only one VSG gene at a time from a telomeric expression site (ES). The 'pre-genomic' era saw the identification of the range of pathways involving VSG recombination in the context of mono-telomeric VSG transcription. A prominent feature of the early post-genomic era is the description of the molecular machineries involved in these processes. We describe the factors and sequences recently linked to mutually exclusive transcription and VSG recombination, and how these act in the control of the key virulence mechanism of antigenic variation.
Collapse
Affiliation(s)
- David Horn
- London School of Hygiene and Tropical Medicine, Keppel Street, London, WC1E 7HT, UK.
| | | |
Collapse
|