1
|
Lepais O, Aissi A, Véla E, Beghami Y. Joint analysis of microsatellites and flanking sequences enlightens complex demographic history of interspecific gene flow and vicariance in rear-edge oak populations. Heredity (Edinb) 2022; 129:169-182. [PMID: 35725763 PMCID: PMC9411615 DOI: 10.1038/s41437-022-00550-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 06/10/2022] [Accepted: 06/10/2022] [Indexed: 12/25/2022] Open
Abstract
Inference of recent population divergence requires fast evolving markers and necessitates to differentiate shared genetic variation caused by ancestral polymorphism and gene flow. Theoretical research shows that the use of compound marker systems integrating linked polymorphisms with different mutational dynamics, such as a microsatellite and its flanking sequences, can improve estimation of population structure and inference of demographic history, especially in the case of complex population dynamics. However, empirical application in natural populations has so far been limited by lack of suitable methods for data collection. A solution comes from the development of sequence-based microsatellite genotyping which we used to study molecular variation at 36 sequenced nuclear microsatellites in seven Quercus canariensis and four Q. faginea rear-edge populations across Algeria. We aim to decipher their taxonomic relationship, past evolutionary history and recent demographic trajectory. First, we compare the estimation of population genetics parameters and simulation-based inference of demographic history from microsatellite sequence alone, flanking sequence alone or the combination of linked microsatellite and flanking sequence variation. Second, we apply random forest approximate Bayesian computation to identify which of these sequence types is most informative. Whereas analysing microsatellite variation alone indicates recent interspecific gene flow, additional information gained by integrating nucleotide variation in flanking sequences, by reducing homoplasy, suggests ancient interspecific gene flow followed by drift in isolation instead. The weight of each polymorphism in the inference also demonstrates the value of linked variations with contrasted mutation dynamic to improve estimation of both demographic and mutational parameters.
Collapse
Affiliation(s)
- Olivier Lepais
- Univ. Bordeaux, INRAE, BIOGECO, F-33610, Cestas, France.
| | | | - Errol Véla
- AMAP, Université de Montpellier/CIRAD/CNRS/INRA/IRD, Montpellier, France
| | - Yassine Beghami
- LAPAPEZA, Université Batna 1 Hadj Lakhdar, ISVSA, Batna, Algeria
| |
Collapse
|
2
|
Controlling the uncontrolled variation in the diet induced obese mouse by microbiomic characterization. Sci Rep 2022; 12:13767. [PMID: 35962158 PMCID: PMC9374709 DOI: 10.1038/s41598-022-17242-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Accepted: 07/22/2022] [Indexed: 11/24/2022] Open
Abstract
Group sizes in an animal study are calculated from estimates on variation, effect, power and significance level. Much of the variation in glucose related parameters of the diet-induced obese (DIO) mouse model is due to inter-individual variation in gut microbiota composition. In addition, standard tandem repeats (STRs) in the non-coding DNA shows that inbred mice are not always homogenic. C57BL/6NTac (B6NTac) mice from Taconic and C57BL/6NRj (B6NRj) mice from Janvier Labs were fed a high calorie diet and treated with liraglutide. The fecal microbiota was sequenced before high-calorie feeding (time 1) and after diet-induced obesity instantly before liraglutide treatment (time 2) and mice were divided into clusters on the basis of their microbiota. Although liraglutide in both sub-strains alleviated glucose intolerance and reduced body weight, in a one-way ANOVA a borderline reduction in glycosylated hemoglobin (HbA1c) could only be shown in B6NTac mice. However, if the microbiota clusters from time 1 or time 2 were incorporated in a two-way ANOVA, the HbA1c effect was significant in B6NTac mice in both analyses, while this did not change anything in B6NRj mice. In a one-way ANOVA the estimated group size needed for a significant HbA1c effect in B6NTac mice was 42, but in two-way ANOVAs based upon microbiota clusters of time 1 or time 2 it was reduced to 21 or 12, respectively. The lowering impact on glucose tolerance was also powered by incorporation of microbiota clusters of both times in both sub-strains. B6NRj had up to six, while B6NTac had maximum three alleles in some of their STRs. In B6NRj mice in 28.8% of the STRs the most prevalent allele had a gene frequency less than 90%, while this was only 6.6% in the B6NTac mice. However, incorporation of the STRs with the highest number of alleles or the most even distribution of frequencies in two-way ANOVAs only had little impact on the outcome of data evaluation. It is concluded that the inclusion of microbiota clusters in a two-way ANOVA in the evaluation of the glucose related effects of an intervention in the DIO mouse model might be an efficient tool for increasing power and reducing group sizes in mouse sub-strains, if these have a microbiota, which influences these parameters.
Collapse
|
3
|
Jousson A, Christe C, Stauffer F, Marazzi B, Aberlenc F, Maspoli G, Naciri Y. Panmixia and active colonisation of the invasive palm Trachycarpus fortunei (Arecaceae) in Southern Switzerland and Northern Italy as inferred by microsatellites and SNP markers. Biol Invasions 2022. [DOI: 10.1007/s10530-022-02874-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
AbstractTrachycarpus fortunei (Arecaceae: Coryphoideae) is an Asian palm that was introduced during the nineteenth century in southern Switzerland and northern Italy as an ornamental plant. In the recent decades, the palm has become an aggressive invasive species in the region. Before this study, the genetic structure and diversity of the naturalised populations were unknown. We aimed at understanding the dynamics of invasion and at comparing the results obtained with two types of markers. This genetic approach aimed at tracing back as far as possible the source of invasive populations comparing historical information found in literature and invasive genetic patterns. The genetic diversity was analysed using eight microsatellites (five were developed for that purpose) and 31′000 SNPs identified through GBS analyses. Genetic analyses were carried out for 200 naturalised individuals sampled from 21 populations in the Canton Ticino (Switzerland) and the provinces of Lombardy and Piedmont (Italy). The observed general panmixia indicates that the expansion of T. fortunei is active in its naturalised areas. The genetic pattern found for both SNPs and microsatellites appears to be related to the colonisation process, with a lack of geographic structure and bottleneck signatures occurring at the colonisation front, distantly from historical sites. This study gives a better understanding of the expansion of T. fortunei and adds new insights to its ecology.
Collapse
|
4
|
Pierre JS, Stoeckel S, Wajnberg E. The advantage of sex: Reinserting fluctuating selection in the pluralist approach. PLoS One 2022; 17:e0272134. [PMID: 35917359 PMCID: PMC9345338 DOI: 10.1371/journal.pone.0272134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Accepted: 07/13/2022] [Indexed: 11/29/2022] Open
Abstract
The advantage of sex, and its fixation in some clades and species all over the eukaryote tree of life, is considered an evolutionary enigma, especially regarding its assumed two-fold cost. Several likely hypotheses have been proposed such as (1) a better response to the negative frequency-dependent selection imposed by the “Red Queen” hypothesis; (2) the competition between siblings induced by the Tangled Bank hypothesis; (3) the existence of genetic and of (4) ecological factors that can diminish the cost of sex to less than the standard assumed two-fold; and (5) a better maintenance of genetic diversity and its resulting phenotypic variation, providing a selective advantage in randomly fluctuating environments. While these hypotheses have mostly been studied separately, they can also act simultaneously. This was advocated by several studies which presented a pluralist point of view. Only three among the five causes cited above were considered yet in such a framework: the Red Queen hypothesis, the Tangled Bank and the genetic factors lowering the cost of sex. We thus simulated the evolution of a finite mutating population undergoing negative frequency-dependent selection on phenotypes and a two-fold (or less) cost of sexuality, experiencing randomly fluctuating selection along generations. The individuals inherited their reproductive modes, either clonal or sexual. We found that exclusive sexuality begins to fix in populations exposed to environmental variation that exceeds the width of one ecological niche (twice the standard deviation of a Gaussian response to environment). This threshold was lowered by increasing negative frequency-dependent selection and when reducing the two-fold cost of sex. It contributes advocating that the different processes involved in a short-term advantage of sex and recombination can act in combination to favor the fixation of sexual reproduction in populations.
Collapse
Affiliation(s)
- Jean-Sébastien Pierre
- UMR 6553 Ecologie Biodiversité Evolution, CNRS INEE, Université de Rennes 1, OSUR, Campus de Beaulieu, Rennes Cedex, France
- * E-mail:
| | - Solenn Stoeckel
- IGEPP, INRAE, Institut Agro, Université de Rennes, Le Rheu, France
| | - Eric Wajnberg
- INRAE, Sophia Antipolis Cedex, France
- Projet Hephaistos, INRIA, Sophia Antipolis Cedex, France
| |
Collapse
|
5
|
Stoeckel S, Porro B, Arnaud-Haond S. The discernible and hidden effects of clonality on the genotypic and genetic states of populations: Improving our estimation of clonal rates. Mol Ecol Resour 2021; 21:1068-1084. [PMID: 33386695 DOI: 10.1111/1755-0998.13316] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Revised: 11/05/2020] [Accepted: 12/21/2020] [Indexed: 11/29/2022]
Abstract
Partial clonality is widespread across the tree of life, but most population genetic models are designed for exclusively clonal or sexual organisms. This gap hampers our understanding of the influence of clonality on evolutionary trajectories and the interpretation of population genetic data. We performed forward simulations of diploid populations at increasing rates of clonality (c), analysed their relationships with genotypic (clonal richness, R, and distribution of clonal sizes, Pareto β) and genetic (FIS and linkage disequilibrium) indices, and tested predictions of c from population genetic data through supervised machine learning. Two complementary behaviours emerged from the probability distributions of genotypic and genetic indices with increasing c. While the impact of c on R and Pareto β was easily described by simple mathematical equations, its effects on genetic indices were noticeable only at the highest levels (c > 0.95). Consequently, genotypic indices allowed reliable estimates of c, while genetic descriptors led to poorer performances when c < 0.95. These results provide clear baseline expectations for genotypic and genetic diversity and dynamics under partial clonality. Worryingly, however, the use of realistic sample sizes to acquire empirical data systematically led to gross underestimates (often of one to two orders of magnitude) of c, suggesting that many interpretations hitherto proposed in the literature, mostly based on genotypic richness, should be reappraised. We propose future avenues to derive realistic confidence intervals for c and show that, although still approximate, a supervised learning method would greatly improve the estimation of c from population genetic data.
Collapse
Affiliation(s)
- Solenn Stoeckel
- Institute for Genetics, Environment and Plant Protection, INRAE, Le Rheu, France
| | - Barbara Porro
- Institute for Research on Cancer and Aging (IRCAN), Université Côte d'Azur, Nice, France.,MARBEC - Marine Biodiversity Exploitation and Conservation, University of Montpellier, CNRS, Ifremer, IRD, MARBEC, Sète, France
| | - Sophie Arnaud-Haond
- MARBEC - Marine Biodiversity Exploitation and Conservation, University of Montpellier, CNRS, Ifremer, IRD, MARBEC, Sète, France
| |
Collapse
|
6
|
Daniels RF, Chenet S, Rogier E, Lucchi N, Herman C, Pierre B, Lemoine JF, Boncy J, Wirth DF, Chang MA, Udhayakumar V, Volkman SK. Genetic analysis reveals unique characteristics of Plasmodium falciparum parasite populations in Haiti. Malar J 2020; 19:379. [PMID: 33097045 PMCID: PMC7583211 DOI: 10.1186/s12936-020-03439-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Accepted: 10/03/2020] [Indexed: 11/18/2022] Open
Abstract
Background With increasing interest in eliminating malaria from the Caribbean region, Haiti is one of the two countries on the island of Hispaniola with continued malaria transmission. While the Haitian population remains at risk for malaria, there are a limited number of cases annually, making conventional epidemiological measures such as case incidence and prevalence of potentially limited value for fine-scale resolution of transmission patterns and trends. In this context, genetic signatures may be useful for the identification and characterization of the Plasmodium falciparum parasite population in order to identify foci of transmission, detect outbreaks, and track parasite movement to potentially inform malaria control and elimination strategies. Methods This study evaluated the genetic signals based on analysis of 21 single-nucleotide polymorphisms (SNPs) from 462 monogenomic (single-genome) P. falciparum DNA samples extracted from dried blood spots collected from malaria-positive patients reporting to health facilities in three southwestern Haitian departments (Nippes, Grand’Anse, and Sud) in 2016. Results Assessment of the parasite genetic relatedness revealed evidence of clonal expansion within Nippes and the exchange of parasite lineages between Nippes, Sud, and Grand'Anse. Furthermore, 437 of the 462 samples shared high levels of genetic similarity–at least 20 of 21 SNPS–with at least one other sample in the dataset. Conclusions These results revealed patterns of relatedness suggestive of the repeated recombination of a limited number of founding parasite types without significant outcrossing. These genetic signals offer clues to the underlying relatedness of parasite populations and may be useful for the identification of the foci of transmission and tracking of parasite movement in Haiti for malaria elimination.
Collapse
Affiliation(s)
- Rachel F Daniels
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Harvard T.H. Chan School of Public Health, 665 Huntington Ave, Boston, MA, 02115, USA.,Broad Institute, Cambridge, MA, USA
| | - Stella Chenet
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Harvard T.H. Chan School of Public Health, 665 Huntington Ave, Boston, MA, 02115, USA.,Instituto de Medicina Tropical, Universidad Nacional Toribio Rodríguez de Mendoza de Amazonas, Chachapoyas, Peru
| | - Eric Rogier
- Malaria Branch, Division of Parasitic Diseases and Malaria, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Naomi Lucchi
- Malaria Branch, Division of Parasitic Diseases and Malaria, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Camelia Herman
- Malaria Branch, Division of Parasitic Diseases and Malaria, Centers for Disease Control and Prevention, Atlanta, GA, USA.,CDC Foundation, Atlanta, GA, USA
| | - Baby Pierre
- Ministère de La Santé Publique Et de La Population (MSPP), Programme National de Contrôle de La Malaria, Port-au-Prince, Haiti
| | - Jean Frantz Lemoine
- Ministère de La Santé Publique Et de La Population (MSPP), Programme National de Contrôle de La Malaria, Port-au-Prince, Haiti
| | - Jacques Boncy
- Ministère de La Santé Publique Et de La Population (MSPP), Programme National de Contrôle de La Malaria, Port-au-Prince, Haiti
| | - Dyann F Wirth
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Harvard T.H. Chan School of Public Health, 665 Huntington Ave, Boston, MA, 02115, USA.,Broad Institute, Cambridge, MA, USA
| | - Michelle A Chang
- Malaria Branch, Division of Parasitic Diseases and Malaria, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Venkatachalam Udhayakumar
- Malaria Branch, Division of Parasitic Diseases and Malaria, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Sarah K Volkman
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Harvard T.H. Chan School of Public Health, 665 Huntington Ave, Boston, MA, 02115, USA. .,Broad Institute, Cambridge, MA, USA.
| |
Collapse
|
7
|
Lepais O, Chancerel E, Boury C, Salin F, Manicki A, Taillebois L, Dutech C, Aissi A, Bacles CF, Daverat F, Launey S, Guichoux E. Fast sequence-based microsatellite genotyping development workflow. PeerJ 2020; 8:e9085. [PMID: 32411534 PMCID: PMC7204839 DOI: 10.7717/peerj.9085] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2020] [Accepted: 04/08/2020] [Indexed: 12/21/2022] Open
Abstract
Application of high-throughput sequencing technologies to microsatellite genotyping (SSRseq) has been shown to remove many of the limitations of electrophoresis-based methods and to refine inference of population genetic diversity and structure. We present here a streamlined SSRseq development workflow that includes microsatellite development, multiplexed marker amplification and sequencing, and automated bioinformatics data analysis. We illustrate its application to five groups of species across phyla (fungi, plant, insect and fish) with different levels of genomic resource availability. We found that relying on previously developed microsatellite assay is not optimal and leads to a resulting low number of reliable locus being genotyped. In contrast, de novo ad hoc primer designs gives highly multiplexed microsatellite assays that can be sequenced to produce high quality genotypes for 20-40 loci. We highlight critical upfront development factors to consider for effective SSRseq setup in a wide range of situations. Sequence analysis accounting for all linked polymorphisms along the sequence quickly generates a powerful multi-allelic haplotype-based genotypic dataset, calling to new theoretical and analytical frameworks to extract more information from multi-nucleotide polymorphism marker systems.
Collapse
Affiliation(s)
- Olivier Lepais
- INRAE, Univ. Bordeaux, BIOGECO, Cestas, France
- INRAE, Université de Pau et Pays de l’Adour, ECOBIOP, Saint-Peé-sur-Nivelle, France
| | | | | | | | - Aurélie Manicki
- INRAE, Université de Pau et Pays de l’Adour, ECOBIOP, Saint-Peé-sur-Nivelle, France
| | - Laura Taillebois
- INRAE, Université de Pau et Pays de l’Adour, ECOBIOP, Saint-Peé-sur-Nivelle, France
| | | | | | - Cecile F.E. Bacles
- INRAE, Université de Pau et Pays de l’Adour, ECOBIOP, Saint-Peé-sur-Nivelle, France
| | | | - Sophie Launey
- INRAE, Agrocampus Ouest, ESE, Ecology and Ecosystem Health, Rennes, France
| | | |
Collapse
|
8
|
Roques S, Chancerel E, Boury C, Pierre M, Acolas M. From microsatellites to single nucleotide polymorphisms for the genetic monitoring of a critically endangered sturgeon. Ecol Evol 2019; 9:7017-7029. [PMID: 31380030 PMCID: PMC6662312 DOI: 10.1002/ece3.5268] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2018] [Revised: 02/12/2019] [Accepted: 04/04/2019] [Indexed: 01/06/2023] Open
Abstract
The use of genetic information is crucial in conservation programs for the establishment of breeding plans and for the evaluation of restocking success. Short tandem repeats (STRs) have been the most widely used molecular markers in such programs, but next-generation sequencing approaches have prompted the transition to genome-wide markers such as single nucleotide polymorphisms (SNPs). Until now, most sturgeon species have been monitored using STRs. The low diversity found in the critically endangered European sturgeon (Acipenser sturio), however, makes its future genetic monitoring challenging, and the current resolution needs to be increased. Here, we describe the discovery of a highly informative set of 79 SNPs using double-digest restriction-associated DNA (ddRAD) sequencing and its validation by genotyping using the MassARRAY system. Comparing with STRs, the SNP panel proved to be highly efficient and reproducible, allowing for more accurate parentage and kinship assignments' on 192 juveniles of known pedigree and 40 wild-born adults. We explore the effectiveness of both markers to estimated relatedness and inbreeding, using simulated and empirical datasets. Interestingly, we found significant correlations between STRs and SNPs at individual heterozygosity and inbreeding that give support to a reasonable representation of whole genome diversity for both markers. These results are useful for the conservation program of A. sturio in building a comprehensive studbook, which will optimize conservation strategies. This approach also proves suitable for other case studies in which highly discriminatory genetic markers are needed to assess parentage and kinship.
Collapse
Affiliation(s)
- Séverine Roques
- Aquatic Ecosystems and Global ChangesIRSTEA, EABX URCestasFrance
| | | | | | - Maud Pierre
- Aquatic Ecosystems and Global ChangesIRSTEA, EABX URCestasFrance
| | | |
Collapse
|
9
|
Kulski JK, Mawart A, Marie K, Tay GK, AlSafar HS. MHC class I polymorphic Alu insertion (POALIN) allele and haplotype frequencies in the Arabs of the United Arab Emirates and other world populations. Int J Immunogenet 2019; 46:247-262. [PMID: 31021060 DOI: 10.1111/iji.12426] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2018] [Revised: 02/17/2019] [Accepted: 03/12/2019] [Indexed: 01/02/2023]
Abstract
Polymorphic Alu insertions (POALINs) are found throughout the human genome and have been used in various studies to infer geographic origin of human populations. The main aim of this study was to determine the allele and haplotype frequencies of five POALINs, AluHF, AluHG, AluHJ, AluTF and AluMICB, within the major histocompatibility complex (MHC) class I region of 95 UAE Arabs, and correlate their frequencies to those of the HLA-A, HLA-C and HLA-B class I allele lineages. Evolutionary relationships between the POALINs of the Arabs and those previously studied in populations of African, Asian and European descent were compared. At each of the five Alu loci (AluHF, AluHG, AluHJ, AluTF and AluMICB), Alu insertion was designated as Alu(locus)*02 and absence was Alu(locus)*01. The AluHG insertion (AluHG*02) had the highest frequency (0.332), followed by AluHF*02 (0.300), AluHJ*02 (0.263), AluMICB*02 (0.111) and AluTF*02 (0.058). Of the 270 Alu-HLA haplotypes pairs in the UAE Arabs, 110 had no Alu insertion, and 54 had an Alu insertion at >50% per haplotype. An Alu insertion >75% per haplotype was found between AluMICB*02 and HLA-B*14, HLA-B*22, HLA-B*44, HLA-B*55, HLA-B*57 and HLA-B*73, and with HLA-C*01 and HLA-C*18; AluHJ*02 with HLA-A*01, HLA-A*19, HLA-A*24 and HLA-A*32; AluHG*02 with HLA-A*02 and HLA-B*18; and AluHF*02 with HLA-A*10. The genotyped allele and haplotype frequencies of the MHC POALINs in UAE Arabs were compared with the results of 30 previously published Asian, European, American and African populations. Phylogenetic and multidimensional scaling (MDS) analysis of the relative MHC POALINs allele and haplotype frequencies revealed that the UAE Arabs have a similar lineage to Caucasians and the most distant genetic relationship to the Waorani native American population of Ecuador. The structure of both the phylogenetic tree and the MDS analysis supports the Out of Africa theory of human evolution. The nature of the clusters suggests the Arabian Middle East represents a crossroads from which human populations migrated towards Asia in the east and Europe to the north-west.
Collapse
Affiliation(s)
- Jerzy K Kulski
- Faculty of Health and Medical Sciences, UWA Medical School, The University of Western Australia, Crawley, Western Australia, Australia
| | - Aurelie Mawart
- Center for Biotechnology, Khalifa University of Science and Technology, Abu Dhabi, United Arab Emirates
| | - Kirsten Marie
- Faculty of Health and Medical Sciences, UWA Medical School, The University of Western Australia, Crawley, Western Australia, Australia
| | - Guan K Tay
- Faculty of Health and Medical Sciences, UWA Medical School, The University of Western Australia, Crawley, Western Australia, Australia.,Center for Biotechnology, Khalifa University of Science and Technology, Abu Dhabi, United Arab Emirates.,Department of Biomedical Engineering, Khalifa University of Science and Technology, Abu Dhabi, United Arab Emirates
| | - Habiba S AlSafar
- Center for Biotechnology, Khalifa University of Science and Technology, Abu Dhabi, United Arab Emirates.,Department of Biomedical Engineering, Khalifa University of Science and Technology, Abu Dhabi, United Arab Emirates
| |
Collapse
|
10
|
Nakato GV, Fuentes Rojas JL, Verniere C, Blondin L, Coutinho T, Mahuku G, Wicker E. A new Multi Locus Variable Number of Tandem Repeat Analysis Scheme for epidemiological surveillance of Xanthomonas vasicola pv. musacearum, the plant pathogen causing bacterial wilt on banana and enset. PLoS One 2019; 14:e0215090. [PMID: 30973888 PMCID: PMC6459536 DOI: 10.1371/journal.pone.0215090] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2018] [Accepted: 03/26/2019] [Indexed: 11/25/2022] Open
Abstract
Xanthomonas vasicola pv. musacearum (Xvm) which causes Xanthomonas wilt (XW) on banana (Musa accuminata x balbisiana) and enset (Ensete ventricosum), is closely related to the species Xanthomonas vasicola that contains the pathovars vasculorum (Xvv) and holcicola (Xvh), respectively pathogenic to sugarcane and sorghum. Xvm is considered a monomorphic bacterium whose intra-pathovar diversity remains poorly understood. With the sudden emergence of Xvm within east and central Africa coupled with the unknown origin of one of the two sublineages suggested for Xvm, attention has shifted to adapting technologies that focus on identifying the origin and distribution of the genetic diversity within this pathogen. Although microbiological and conventional molecular diagnostics have been useful in pathogen identification. Recent advances have ushered in an era of genomic epidemiology that aids in characterizing monomorphic pathogens. To unravel the origin and pathways of the recent emergence of XW in Eastern and Central Africa, there was a need for a genotyping tool adapted for molecular epidemiology. Multi-Locus Variable Number of Tandem Repeat Analysis (MLVA) is able to resolve the evolutionary patterns and invasion routes of a pathogen. In this study, we identified microsatellite loci from nine published Xvm genome sequences. Of the 36 detected microsatellite loci, 21 were selected for primer design and 19 determined to be highly typeable, specific, reproducible and polymorphic with two- to four- alleles per locus on a sub-collection. The 19 markers were multiplexed and applied to genotype 335 Xvm strains isolated from seven countries over several years. The microsatellite markers grouped the Xvm collection into three clusters; with two similar to the SNP-based sublineages 1 and 2 and a new cluster 3, revealing an unknown diversity in Ethiopia. Five of the 19 markers had alleles present in both Xvm and Xanthomonas vasicola pathovars holcicola and vasculorum, supporting the phylogenetic closeliness of these three pathovars. Thank to the public availability of the haplotypes on the MLVABank database, this highly reliable and polymorphic genotyping tool can be further used in a transnational surveillance network to monitor the spread and evolution of XW throughout Africa.. It will inform and guide management of Xvm both in banana-based and enset-based cropping systems. Due to the suitability of MLVA-19 markers for population genetic analyses, this genotyping tool will also be used in future microevolution studies.
Collapse
Affiliation(s)
- Gloria Valentine Nakato
- IITA, Kampala, Uganda
- Department of Biochemistry, Genetics and Microbiology, Centre for Microbial Ecology and Genomics/Forestry and Agricultural Biotechnology Institute, University of Pretoria, Pretoria, South Africa
| | | | | | | | - Teresa Coutinho
- Department of Biochemistry, Genetics and Microbiology, Centre for Microbial Ecology and Genomics/Forestry and Agricultural Biotechnology Institute, University of Pretoria, Pretoria, South Africa
| | | | - Emmanuel Wicker
- UMR IPME, Univ Montpellier, CIRAD, IRD, Montpellier, France
- CIRAD, UMR IPME, Montpellier, France
| |
Collapse
|
11
|
Lyra DH, Galli G, Alves FC, Granato ÍSC, Vidotti MS, Bandeira E Sousa M, Morosini JS, Crossa J, Fritsche-Neto R. Modeling copy number variation in the genomic prediction of maize hybrids. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2019; 132:273-288. [PMID: 30382311 DOI: 10.1007/s00122-018-3215-2] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2018] [Accepted: 10/20/2018] [Indexed: 06/08/2023]
Abstract
Our study indicates that copy variants may play an essential role in the phenotypic variation of complex traits in maize hybrids. Moreover, predicting hybrid phenotypes by combining additive-dominance effects with copy variants has the potential to be a viable predictive model. Non-additive effects resulting from the actions of multiple loci may influence trait variation in single-cross hybrids. In addition, complementation of allelic variation could be a valuable contributor to hybrid genetic variation, especially when crossing inbred lines with higher contents of copy gains. With this in mind, we aimed (1) to study the association between copy number variation (CNV) and hybrid phenotype, and (2) to compare the predictive ability (PA) of additive and additive-dominance genomic best linear unbiased prediction model when combined with the effects of CNV in two datasets of maize hybrids (USP and HELIX). In the USP dataset, we observed a significant negative phenotypic correlation of low magnitude between copy number loss and plant height, revealing a tendency that more copy losses lead to lower plants. In the same set, when CNV was combined with the additive plus dominance effects, the PA significantly increased only for plant height under low nitrogen. In this case, CNV effects explicitly capture relatedness between individuals and add extra information to the model. In the HELIX dataset, we observed a pronounced difference in PA between additive (0.50) and additive-dominance (0.71) models for predicting grain yield, suggesting a significant contribution of dominance. We conclude that copy variants may play an essential role in the phenotypic variation of complex traits in maize hybrids, although the inclusion of CNVs into datasets does not return significant gains concerning PA.
Collapse
Affiliation(s)
- Danilo Hottis Lyra
- Department of Genetics, Luiz de Queiroz College of Agriculture, University of São Paulo (ESALQ/USP), Piracicaba, São Paulo, Brazil.
- Department of Computational and Analytical Sciences, Rothamsted Research, West Common, Harpenden, AL52JQ, UK.
| | - Giovanni Galli
- Department of Genetics, Luiz de Queiroz College of Agriculture, University of São Paulo (ESALQ/USP), Piracicaba, São Paulo, Brazil
| | - Filipe Couto Alves
- Department of Genetics, Luiz de Queiroz College of Agriculture, University of São Paulo (ESALQ/USP), Piracicaba, São Paulo, Brazil
| | - Ítalo Stefanine Correia Granato
- Department of Genetics, Luiz de Queiroz College of Agriculture, University of São Paulo (ESALQ/USP), Piracicaba, São Paulo, Brazil
| | - Miriam Suzane Vidotti
- Department of Genetics, Luiz de Queiroz College of Agriculture, University of São Paulo (ESALQ/USP), Piracicaba, São Paulo, Brazil
| | - Massaine Bandeira E Sousa
- Department of Genetics, Luiz de Queiroz College of Agriculture, University of São Paulo (ESALQ/USP), Piracicaba, São Paulo, Brazil
| | - Júlia Silva Morosini
- Department of Genetics, Luiz de Queiroz College of Agriculture, University of São Paulo (ESALQ/USP), Piracicaba, São Paulo, Brazil
| | - José Crossa
- Biometrics and Statistics Unit, International Maize and Wheat Improvement Center (CIMMYT), 06600, Texcoco, D.F, Mexico
| | - Roberto Fritsche-Neto
- Department of Genetics, Luiz de Queiroz College of Agriculture, University of São Paulo (ESALQ/USP), Piracicaba, São Paulo, Brazil
| |
Collapse
|
12
|
Borrell JS, Wang N, Nichols RA, Buggs RJA. Genetic diversity maintained among fragmented populations of a tree undergoing range contraction. Heredity (Edinb) 2018; 121:304-318. [PMID: 30111882 PMCID: PMC6134035 DOI: 10.1038/s41437-018-0132-8] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2018] [Revised: 07/06/2018] [Accepted: 07/07/2018] [Indexed: 11/09/2022] Open
Abstract
Dwarf birch (Betula nana) has a widespread boreal distribution but has declined significantly in Britain where populations are now highly fragmented. We analyzed the genetic diversity of these fragmented populations using markers that differ in mutation rate: conventional microsatellites markers (PCR-SSRs), RADseq generated transition and transversion SNPs (RAD-SNPs), and microsatellite markers mined from RADseq reads (RAD-SSRs). We estimated the current population sizes by census and indirectly, from the linkage-disequilibrium found in the genetic surveys. The two types of estimate were highly correlated. Overall, we found genetic diversity to be only slightly lower in Britain than across a comparable area in Scandinavia where populations are large and continuous. While the ensemble of British fragments maintain diversity levels close to Scandinavian populations, individually they have drifted apart and lost diversity; particularly the smaller populations. An ABC analysis, based on coalescent models, favors demographic scenarios in which Britain maintained high levels of genetic diversity through post-glacial re-colonization. This diversity has subsequently been partitioned into population fragments that have recently lost diversity at a rate corresponding to the current population-size estimates. We conclude that the British population fragments retain sufficient genetic resources to be the basis of conservation and re-planting programmes. Use of markers with different mutation rates gives us greater confidence and insight than one marker set could have alone, and we suggest that RAD-SSRs are particularly useful as high mutation-rate marker set with a well-specified ascertainment bias, which are widely available yet often neglected in existing RAD datasets.
Collapse
Affiliation(s)
- James S Borrell
- Jodrell Laboratory, Royal Botanic Gardens, Kew, Richmond, Surrey, TW9 3DS, UK
| | - Nian Wang
- School of Biological and Chemical Sciences, Queen Mary University of London, London, E1 4NS, UK
- College of Forestry, Shandong Agricultural University, Tai'an city, 271018, Shandong Province, China
| | - Richard A Nichols
- School of Biological and Chemical Sciences, Queen Mary University of London, London, E1 4NS, UK
| | - Richard J A Buggs
- Jodrell Laboratory, Royal Botanic Gardens, Kew, Richmond, Surrey, TW9 3DS, UK.
- School of Biological and Chemical Sciences, Queen Mary University of London, London, E1 4NS, UK.
| |
Collapse
|
13
|
Alvarado-Serrano DF, Van Etten ML, Chang SM, Baucom RS. The relative contribution of natural landscapes and human-mediated factors on the connectivity of a noxious invasive weed. Heredity (Edinb) 2018; 122:29-40. [PMID: 29967398 DOI: 10.1038/s41437-018-0106-x] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2018] [Revised: 05/16/2018] [Accepted: 05/17/2018] [Indexed: 01/20/2023] Open
Abstract
Examining how the landscape may influence gene flow is at the forefront of understanding population differentiation and adaptation. Such understanding is crucial in light of ongoing environmental changes and the elevated risk of ecosystems alteration. In particular, knowledge of how humans may influence population structure is imperative to allow for informed decisions in management and conservation as well as to gain a better understanding of anthropogenic impacts on the interplay between gene flow, genetic drift, and selection. Here, we use genome-wide molecular markers to characterize the population genetic structure and connectivity of Ipomoea purpurea (Convolvulaceae), a noxious invasive weed. We, likewise, assess the interaction between natural and human-driven influences on genetic differentiation among populations. Our analyses find that human population density is an important predictor of pairwise population differentiation, suggesting that the agricultural and/or horticultural trade may be involved in maintaining some level of connectivity across distant agricultural fields. Climatic variation appears as an additional predictor of genetic connectivity in this species. We discuss the implications of these results and highlight future research needed to disentangle the mechanistic processes underlying population connectivity of weeds.
Collapse
Affiliation(s)
- Diego F Alvarado-Serrano
- Department of Ecology and Evolutionary Biology, University of Michigan, 1105 North University, 2020E Biological Science Building, Ann Arbor, MI, 48109-1085, USA.
| | - Megan L Van Etten
- Department of Ecology and Evolutionary Biology, University of Michigan, 1105 North University, 2020E Biological Science Building, Ann Arbor, MI, 48109-1085, USA
| | - Shu-Mei Chang
- Department of Plant Biology, University of Georgia, Rm 3613; 2502 Miller Plant Sciences, Athens, GA, 30602-7271, USA
| | - Regina S Baucom
- Department of Ecology and Evolutionary Biology, University of Michigan, 1105 North University, 2020E Biological Science Building, Ann Arbor, MI, 48109-1085, USA
| |
Collapse
|
14
|
Molecular Epidemiology of Mycoplasma pneumoniae: Genotyping Using Single Nucleotide Polymorphisms and SNaPshot Technology. J Clin Microbiol 2015. [PMID: 26202117 DOI: 10.1128/jcm.01156-15] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Molecular typing of Mycoplasma pneumoniae is an important tool for identifying grouped cases and investigating outbreaks. In the present study, we developed a new genotyping method based on single nucleotide polymorphisms (SNPs) selected from the whole-genome sequencing of eight M. pneumoniae strains, using the SNaPshot minisequencing assay. Eight SNPs, localized in housekeeping genes, predicted lipoproteins, and adhesin P1 genes were selected for genotyping. These SNPs were evaluated on 140 M. pneumoniae clinical isolates previously genotyped by multilocus variable-number tandem-repeat analysis (MLVA-5) and adhesin P1 typing. This method was also adapted for direct use with clinical samples and evaluated on 51 clinical specimens. The analysis of the clinical isolates using the SNP typing method showed nine distinct SNP types with a Hunter and Gaston diversity index (HGDI) of 0.836, which is higher than the HGDI of 0.583 retrieved for the MLVA-4 typing method, where the nonstable Mpn1 marker was removed. A strong correlation with the P1 adhesin gene typing results was observed. The congruence was poor between MLVA-5 and SNP typing, indicating distinct genotyping schemes. Combining the results increased the discriminatory power. This new typing method based on SNPs and the SNaPshot technology is a method for rapid M. pneumoniae typing directly from clinical specimens, which does not require any sequencing step. This method is based on stable markers and provides information distinct from but complementary to MLVA typing. The combined use of SNPs and MLVA typing provides powerful discrimination of strains.
Collapse
|
15
|
Kwong M, Pemberton TJ. Sequence differences at orthologous microsatellites inflate estimates of human-chimpanzee differentiation. BMC Genomics 2014; 15:990. [PMID: 25407736 PMCID: PMC4253012 DOI: 10.1186/1471-2164-15-990] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2014] [Accepted: 10/30/2014] [Indexed: 02/06/2023] Open
Abstract
Background Microsatellites---contiguous arrays of 2–6 base-pair motifs---have formed the cornerstone of population-genetic studies for over two decades. Their genotype data typically takes the form of PCR fragment lengths obtained using locus-specific primer pairs to amplify the genomic region encompassing the microsatellite. Recently, we reported a dataset of 5,795 human and 84 chimpanzee individuals with genotypes at 246 human-derived autosomal microsatellites as a resource to facilitate interspecies comparisons. A major assumption underlying this dataset is that PCR amplicons at orthologous microsatellites are commensurable between species. Results We find this assumption to be frequently incorrect owing to discordance in microsatellite organization and variability, as well as nontrivial length imbalances caused by small species-specific indels in microsatellite flanking sequences. Converting PCR fragment lengths into the repeat numbers they represent at 138 microsatellites whose organization and variability was found to be highly similar in both species, we show that interspecies incommensurability among PCR amplicons can inflate FST and DPS estimates by up to 10.6%. Separate investigations of determinants of microsatellite variability in humans and chimpanzees uncover similar patterns with mean and maximum numbers of repeats, as well as numbers and ranges of distinct alleles, all important factors in predicting heterozygosity. In contrast, across microsatellites, numbers of repeats were significantly smaller in chimpanzees than in humans, while numbers and ranges of distinct alleles were instead larger. Conclusions Our findings have fundamental implications for interspecies comparisons using microsatellites and offer new opportunities for more accurate comparisons of patterns of human and chimpanzee genetic variation in numerous areas of application. Electronic supplementary material The online version of this article (doi:10.1186/1471-2164-15-990) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
| | - Trevor J Pemberton
- Department of Biochemistry and Medical Genetics, University of Manitoba, Winnipeg, Manitoba, Canada.
| |
Collapse
|
16
|
Putman AI, Carbone I. Challenges in analysis and interpretation of microsatellite data for population genetic studies. Ecol Evol 2014; 4:4399-428. [PMID: 25540699 PMCID: PMC4267876 DOI: 10.1002/ece3.1305] [Citation(s) in RCA: 207] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2014] [Revised: 10/02/2014] [Accepted: 10/03/2014] [Indexed: 12/14/2022] Open
Abstract
Advancing technologies have facilitated the ever-widening application of genetic markers such as microsatellites into new systems and research questions in biology. In light of the data and experience accumulated from several years of using microsatellites, we present here a literature review that synthesizes the limitations of microsatellites in population genetic studies. With a focus on population structure, we review the widely used fixation (F ST) statistics and Bayesian clustering algorithms and find that the former can be confusing and problematic for microsatellites and that the latter may be confounded by complex population models and lack power in certain cases. Clustering, multivariate analyses, and diversity-based statistics are increasingly being applied to infer population structure, but in some instances these methods lack formalization with microsatellites. Migration-specific methods perform well only under narrow constraints. We also examine the use of microsatellites for inferring effective population size, changes in population size, and deeper demographic history, and find that these methods are untested and/or highly context-dependent. Overall, each method possesses important weaknesses for use with microsatellites, and there are significant constraints on inferences commonly made using microsatellite markers in the areas of population structure, admixture, and effective population size. To ameliorate and better understand these constraints, researchers are encouraged to analyze simulated datasets both prior to and following data collection and analysis, the latter of which is formalized within the approximate Bayesian computation framework. We also examine trends in the literature and show that microsatellites continue to be widely used, especially in non-human subject areas. This review assists with study design and molecular marker selection, facilitates sound interpretation of microsatellite data while fostering respect for their practical limitations, and identifies lessons that could be applied toward emerging markers and high-throughput technologies in population genetics.
Collapse
Affiliation(s)
- Alexander I Putman
- Department of Plant Pathology, North Carolina State University Raleigh, North Carolina, 27695-7616
| | - Ignazio Carbone
- Department of Plant Pathology, North Carolina State University Raleigh, North Carolina, 27695-7616
| |
Collapse
|
17
|
Lozier JD. Revisiting comparisons of genetic diversity in stable and declining species: assessing genome-wide polymorphism in North American bumble bees using RAD sequencing. Mol Ecol 2014; 23:788-801. [DOI: 10.1111/mec.12636] [Citation(s) in RCA: 71] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2013] [Revised: 12/10/2013] [Accepted: 12/13/2013] [Indexed: 02/02/2023]
Affiliation(s)
- J. D. Lozier
- Department of Biological Sciences; University of Alabama; Tuscaloosa AL 35487 USA
| |
Collapse
|
18
|
Ekblom R, Wennekes P, Horsburgh GJ, Burke T. Characterization of the house sparrow (Passer domesticus) transcriptome: a resource for molecular ecology and immunogenetics. Mol Ecol Resour 2014; 14:636-46. [PMID: 24345231 DOI: 10.1111/1755-0998.12213] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2013] [Revised: 12/04/2013] [Accepted: 12/11/2013] [Indexed: 11/30/2022]
Abstract
The house sparrow (Passer domesticus) is an important model species in ecology and evolution. However, until recently, genomic resources for molecular ecological projects have been lacking in this species. Here, we present transcriptome sequencing data (RNA-Seq) from three different house sparrow tissues (spleen, blood and bursa). These tissues were specifically chosen to obtain a diverse representation of expressed genes and to maximize the yield of immune-related gene functions. After de novo assembly, 15,250 contigs were identified, representing sequence data from a total of 8756 known avian genes (as inferred from the closely related zebra finch). The transcriptome assembly contain sequence data from nine manually annotated MHC genes, including an almost complete MHC class I coding sequence. There were 407, 303 and 68 genes overexpressed in spleen, blood and bursa, respectively. Gene ontology terms related to ribosomal function were associated with overexpression in spleen and oxygen transport functions with overexpression in blood. In addition to the transcript sequences, we provide 327 gene-linked microsatellites (SSRs) with sufficient flanking sequences for primer design, and 3177 single-nucleotide polymorphisms (SNPs) within genes, that can be used in follow-up molecular ecology studies of this ecological well-studied species.
Collapse
Affiliation(s)
- Robert Ekblom
- Department of Ecology and Genetics, Evolutionary Biology Centre, Uppsala University, Norbyvägen 18 D, Uppsala, SE-75236, Sweden; Department of Animal and Plant Sciences, University of Sheffield, Sheffield, S10 2TN, UK
| | | | | | | |
Collapse
|
19
|
Cutter AD, Jovelin R, Dey A. Molecular hyperdiversity and evolution in very large populations. Mol Ecol 2013; 22:2074-95. [PMID: 23506466 PMCID: PMC4065115 DOI: 10.1111/mec.12281] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2012] [Revised: 01/24/2013] [Accepted: 01/29/2013] [Indexed: 02/06/2023]
Abstract
The genomic density of sequence polymorphisms critically affects the sensitivity of inferences about ongoing sequence evolution, function and demographic history. Most animal and plant genomes have relatively low densities of polymorphisms, but some species are hyperdiverse with neutral nucleotide heterozygosity exceeding 5%. Eukaryotes with extremely large populations, mimicking bacterial and viral populations, present novel opportunities for studying molecular evolution in sexually reproducing taxa with complex development. In particular, hyperdiverse species can help answer controversial questions about the evolution of genome complexity, the limits of natural selection, modes of adaptation and subtleties of the mutation process. However, such systems have some inherent complications and here we identify topics in need of theoretical developments. Close relatives of the model organisms Caenorhabditis elegans and Drosophila melanogaster provide known examples of hyperdiverse eukaryotes, encouraging functional dissection of resulting molecular evolutionary patterns. We recommend how best to exploit hyperdiverse populations for analysis, for example, in quantifying the impact of noncrossover recombination in genomes and for determining the identity and micro-evolutionary selective pressures on noncoding regulatory elements.
Collapse
Affiliation(s)
- Asher D Cutter
- Department of Ecology & Evolutionary Biology, University of Toronto, Toronto, Ontario, Canada.
| | | | | |
Collapse
|
20
|
DeFaveri J, Viitaniemi H, Leder E, Merilä J. Characterizing genic and nongenic molecular markers: comparison of microsatellites and
SNP
s. Mol Ecol Resour 2013; 13:377-92. [DOI: 10.1111/1755-0998.12071] [Citation(s) in RCA: 80] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2012] [Revised: 12/04/2012] [Accepted: 12/11/2012] [Indexed: 11/30/2022]
Affiliation(s)
- Jacquelin DeFaveri
- Department of Biosciences Ecological Genetics Research Unit University of Helsinki PO Box 65 Helsinki FI‐00014 Finland
| | - Heidi Viitaniemi
- Division of Genetics and Physiology Department of Biology University of Turku PL 33 Turku FI‐00014 Finland
| | - Erica Leder
- Division of Genetics and Physiology Department of Biology University of Turku PL 33 Turku FI‐00014 Finland
| | - Juha Merilä
- Department of Biosciences Ecological Genetics Research Unit University of Helsinki PO Box 65 Helsinki FI‐00014 Finland
| |
Collapse
|
21
|
Barthe S, Gugerli F, Barkley NA, Maggia L, Cardi C, Scotti I. Always look on both sides: phylogenetic information conveyed by simple sequence repeat allele sequences. PLoS One 2012; 7:e40699. [PMID: 22808236 PMCID: PMC3396589 DOI: 10.1371/journal.pone.0040699] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2012] [Accepted: 06/12/2012] [Indexed: 11/18/2022] Open
Abstract
Simple sequence repeat (SSR) markers are widely used tools for inferences about genetic diversity, phylogeography and spatial genetic structure. Their applications assume that variation among alleles is essentially caused by an expansion or contraction of the number of repeats and that, accessorily, mutations in the target sequences follow the stepwise mutation model (SMM). Generally speaking, PCR amplicon sizes are used as direct indicators of the number of SSR repeats composing an allele with the data analysis either ignoring the extent of allele size differences or assuming that there is a direct correlation between differences in amplicon size and evolutionary distance. However, without precisely knowing the kind and distribution of polymorphism within an allele (SSR and the associated flanking region (FR) sequences), it is hard to say what kind of evolutionary message is conveyed by such a synthetic descriptor of polymorphism as DNA amplicon size. In this study, we sequenced several SSR alleles in multiple populations of three divergent tree genera and disentangled the types of polymorphisms contained in each portion of the DNA amplicon containing an SSR. The patterns of diversity provided by amplicon size variation, SSR variation itself, insertions/deletions (indels), and single nucleotide polymorphisms (SNPs) observed in the FRs were compared. Amplicon size variation largely reflected SSR repeat number. The amount of variation was as large in FRs as in the SSR itself. The former contributed significantly to the phylogenetic information and sometimes was the main source of differentiation among individuals and populations contained by FR and SSR regions of SSR markers. The presence of mutations occurring at different rates within a marker’s sequence offers the opportunity to analyse evolutionary events occurring on various timescales, but at the same time calls for caution in the interpretation of SSR marker data when the distribution of within-locus polymorphism is not known.
Collapse
Affiliation(s)
- Stéphanie Barthe
- Unité Mixte de Recherche “Ecologie des forêts de Guyane”, University of French West Indies and French Guiana, Kourou, French Guiana
| | - Felix Gugerli
- Biodiversity and Conservation Biology Research Unit, Swiss Federal Research Institute for Forest, Snow and Landscape Research, Birmensdorf, Switzerland
| | - Noelle A. Barkley
- Plant Genetic Resources Conservation Unit, United States Department of Agriculture – Agricultural Research Service, Griffin, Georgia, United States of America
| | - Laurent Maggia
- Unité Mixte de Recherche “Amélioration génétique et adaptation des plantes méditerranéennes et tropicales”, Institut Agronomique néo-Calédonien, Nouméa, New Caledonia
| | - Céline Cardi
- Unité Mixte de Recherche “Amélioration génétique et adaptation des plantes méditerranéennes et tropicales”, Centre de coopération internationale en recherche agronomique pour le développement, Montpellier, France
| | - Ivan Scotti
- Unité Mixte de Recherche Ecologie des forêts de Guyane, Institut National de la Recherche Agronomique, Kourou, French Guiana
- * E-mail:
| |
Collapse
|
22
|
Alves I, Coelho M, Gignoux C, Damasceno A, Prista A, Rocha J. Genetic homogeneity across Bantu-speaking groups from Mozambique and Angola challenges early split scenarios between East and West Bantu populations. Hum Biol 2011; 83:13-38. [PMID: 21453002 DOI: 10.3378/027.083.0102] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
The large scale spread of Bantu-speaking populations remains one of the most debated questions in African population history. In this work we studied the genetic structure of 19 Bantu-speaking groups from Mozambique and Angola using a multilocus approach based on 14 newly developed compound haplotype systems (UEPSTRs), each consisting of a rapidly evolving short tandem repeat (STR) closely linked to a unique event polymorphism (UEP). We compared the ability of UEPs, STRs and UEPSTRs to document genetic variation at the intercontinental level and among the African Bantu populations, and found that UEPSTR systems clearly provided more resolution than UEPs or STRs alone. The observed patterns of genetic variation revealed high levels of genetic homogeneity between major populations from Angola and Mozambique, with two main outliers: the Kuvale from Angola and the Chopi from Mozambique. Within Mozambique, two Kaskazi-speaking populations from the far north (Yao and Mwani) and two Nyasa-speaking groups from the Zambezi River basin (Nyungwe and Sena) could be differentiated from the remaining groups, but no further population structure was observed across the country. The close genetic relationship between most sampled Bantu populations is consistent with high degrees of interaction between peoples living in savanna areas located to the south of the rainforest. Our results highlight the role of gene flow during the Bantu expansions and show that the genetic evidence accumulated so far is becoming increasingly difficult to reconcile with widely accepted models postulating an early split between eastern and western Bantu populations.
Collapse
Affiliation(s)
- Isabel Alves
- IPATIMUP, Instituto de Patologia e Imunologia Molecular da Universidade do Porto, Portugal
| | | | | | | | | | | |
Collapse
|
23
|
Sorenson MD, DaCosta JM. Genotyping HapSTR loci: phase determination from direct sequencing of PCR products. Mol Ecol Resour 2011; 11:1068-75. [PMID: 21692999 DOI: 10.1111/j.1755-0998.2011.03036.x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
HapSTRs combine information from a microsatellite (or simple tandem repeat, STR) with one or more single nucleotide polymorphisms in the DNA sequence immediately flanking the STR. These loci may offer increased power for the estimation of demographic parameters, but also present some challenges for data collection and analysis. We describe a process for inferring HapSTR alleles, including the flanking haplotypes, STR alleles and their phase relative to each other, directly from DNA sequence electropherograms of PCR products from heterozygous individuals. Our approach eliminates the need for more costly and time-consuming processes, such as cloning or acrylamide gel electrophoresis to separate alleles prior to sequencing.
Collapse
Affiliation(s)
- Michael D Sorenson
- Department of Biology, Boston University, 5 Cummington St., Boston, MA 02215, USA.
| | | |
Collapse
|
24
|
Including copy number variation in association studies to predict genotypic values. Genet Res (Camb) 2010; 92:115-25. [PMID: 20515515 DOI: 10.1017/s0016672310000091] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
The objective of this study was to investigate, both empirically and deterministically, the ability to explain genetic variation resulting from a copy number polymorphism (CNP) by including the CNP, either by its genotype or by a continuous derivation thereof, alone or together with a nearby single nucleotide polymorphism (SNP) in the model. This continuous measure of a CNP genotype could be a raw hybridization measurement, or a predicted CNP genotype. Results from simulations showed that the linkage disequilibrium (LD) between an SNP and CNP was lower than LD between two SNPs, due to the higher mutation rate at the CNP loci. The model R(2) values from analysing the simulated data were very similar to the R(2) values predicted with the deterministic formulae. Under the assumption that x copies at a CNP locus lead to the effect of x times the effect of 1 copy, including a continuous measure of a CNP locus in the model together with the genotype of a nearby SNP increased power to explain variation at the CNP locus, even when the continuous measure explained only 15% of the variation at the CNP locus.
Collapse
|
25
|
Payseur BA, Jing P, Haasl RJ. A genomic portrait of human microsatellite variation. Mol Biol Evol 2010; 28:303-12. [PMID: 20675409 DOI: 10.1093/molbev/msq198] [Citation(s) in RCA: 81] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Rapid advances in DNA sequencing and genotyping technologies are beginning to reveal the scope and pattern of human genomic variation. Although single nucleotide polymorphisms (SNPs) have been intensively studied, the extent and form of variation at other types of molecular variants remain poorly understood. Polymorphism at the most variable loci in the human genome, microsatellites, has rarely been examined on a genomic scale without the ascertainment biases that attend typical genotyping studies. We conducted a genomic survey of variation at microsatellites with at least three perfect repeats by comparing two complete genome sequences, the Human Genome Reference sequence and the sequence of J. Craig Venter. The genomic proportion of polymorphic loci was 2.7%, much higher than the rate of SNP variation, with marked heterogeneity among classes of loci. The proportion of variable loci increased substantially with repeat number. Repeat lengths differed in levels of variation, with longer repeat lengths generally showing higher polymorphism at the same repeat number. Microsatellite variation was weakly correlated with regional SNP number, indicating modest effects of shared genealogical history. Reductions in variation were detected at microsatellites located in introns, in untranslated regions, in coding exons, and just upstream of transcription start sites, suggesting the presence of selective constraints. Our results provide new insights into microsatellite mutational processes and yield a preview of patterns of variation that will be obtained in genomic surveys of larger numbers of individuals.
Collapse
|
26
|
Payseur BA, Jing P. A genomewide comparison of population structure at STRPs and nearby SNPs in humans. Mol Biol Evol 2009; 26:1369-77. [PMID: 19289600 DOI: 10.1093/molbev/msp052] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Patterns of population structure provide insights into evolutionary processes and help identify groups of individuals for genotype-phenotype association studies. With increasing availability of polymorphic molecular markers across genomes, the examination of population structure using large numbers of unlinked loci has become a common practice in evolutionary biology and human genetics. The two classes of molecular variation most widely used for this purpose, short tandem repeat polymorphisms (STRPs) and single-nucleotide polymorphisms (SNPs), differ in mutational properties expected to affect population structure. To measure the relative ability of these loci to describe population structure, we compared diversity at neighboring STRPs and SNPs from 720 genomic regions in the four populations that comprise the Human HapMap. Comparing loci from the same genomic regions allowed us to focus on the contribution of mutational differences (rather than variation in genealogical history) to disparities in population structure between STRPs and SNPs. Relative to average values for SNPs from the same regions, STRPs had lower F(st), but higher G(st)' and I(n) values. STRP-SNP correlations in population structure across genomic regions were statistically significant but weak in magnitude. Separate analyses by repeat type showed that these correlations were driven primarily by tetranucleotide and trinucleotide STRPs; measures of population structure at dinucleotides and SNPs were not significantly correlated. Pairwise comparisons among populations revealed effects of divergence time on differences in population structure between STRPs and SNPs. Collectively, these results confirm that individual STRPs can provide more information about population structure than individual SNPs, but suggest that the difference in structure at STRPs and SNPs depends on local genealogical history. Our study motivates theoretical comparisons of population structure at loci with different mutational properties.
Collapse
Affiliation(s)
- Bret A Payseur
- Laboratory of Genetics, University of Wisconsin, WI, USA.
| | | |
Collapse
|
27
|
Szövényi P, Terracciano S, Ricca M, Giordano S, Shaw AJ. Recent divergence, intercontinental dispersal and shared polymorphism are shaping the genetic structure of amphi-Atlantic peatmoss populations. Mol Ecol 2009; 17:5364-77. [PMID: 19121003 DOI: 10.1111/j.1365-294x.2008.04003.x] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Several lines of evidence suggest that recent long-distance dispersal may have been important in the evolution of intercontinental distribution ranges of bryophytes. However, the absolute rate of intercontinental migration and its relative role in the development of certain distribution ranges is still poorly understood. To this end, the genetic structure of intercontinental populations of six peatmoss species showing an amphi-Atlantic distribution was investigated using microsatellite markers. Methods relying on the coalescent were applied (IM and MIGRATE) to understand the evolution of this distribution pattern in peatmosses. Intercontinental populations of the six peatmoss species were weakly albeit significantly differentiated (average F(ST) = 0.104). This suggests that the North Atlantic Ocean is acting as a barrier to gene flow even in bryophytes adapted to long-range dispersal. The im analysis suggested a relatively recent split of intercontinental populations dating back to the last two glacial periods (9000-289,000 years ago). In contrast to previous hypotheses, analyses indicated that both ongoing migration and ancestral polymorphism are important in explaining the intercontinental genetic similarity of peatmoss populations, but their relative contribution varies with species. Migration rates were significantly asymmetric towards America suggesting differential extinction of genotypes on the two continents or invasion of the American continent by European lineages. These results indicate that low genetic divergence of amphi-Atlantic populations is a general pattern across numerous flowering plants and bryophytes. However, in bryophytes, ongoing intercontinental gene flow and retained shared ancestral polymorphism must both be considered to explain the genetic similarity of intercontinental populations.
Collapse
Affiliation(s)
- P Szövényi
- Department of Biology, Box 90338, Duke University, Durham, NC 27708-0338, USA.
| | | | | | | | | |
Collapse
|
28
|
VÄLI ÜLO, EINARSSON ANNIKA, WAITS LISETTE, ELLEGREN HANS. To what extent do microsatellite markers reflect genome-wide genetic diversity in natural populations? Mol Ecol 2008; 17:3808-17. [DOI: 10.1111/j.1365-294x.2008.03876.x] [Citation(s) in RCA: 196] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
29
|
Ma L, Taylor S, Jensen JS, Myers L, Lillis R, Martin DH. Short tandem repeat sequences in the Mycoplasma genitalium genome and their use in a multilocus genotyping system. BMC Microbiol 2008; 8:130. [PMID: 18664269 PMCID: PMC2515158 DOI: 10.1186/1471-2180-8-130] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2008] [Accepted: 07/29/2008] [Indexed: 11/29/2022] Open
Abstract
Background Several methods have been reported for strain typing of Mycoplasma genitalium. The value of these methods has never been comparatively assessed. The aims of this study were: 1) to identify new potential genetic markers based on an analysis of short tandem repeat (STR) sequences in the published M. genitalium genome sequence; 2) to apply previously and newly identified markers to a panel of clinical strains in order to determine the optimal combination for an efficient multi-locus genotyping system; 3) to further confirm sexual transmission of M. genitalium using the newly developed system. Results We performed a comprehensive analysis of STRs in the genome of the M. genitalium type strain G37 and identified 18 loci containing STRs. In addition to one previously studied locus, MG309, we chose two others, MG307 and MG338, for further study. Based on an analysis of 74 unrelated patient specimens from New Orleans and Scandinavia, the discriminatory indices (DIs) for these three markers were 0.9153, 0.7381 and 0.8730, respectively. Two other previously described markers, including single nucleotide polymorphisms (SNPs) in the rRNA genes (rRNA-SNPs) and SNPs in the MG191 gene (MG191-SNPs) were found to have DIs of 0.5820 and 0.9392, respectively. A combination of MG309-STRs and MG191-SNPs yielded almost perfect discrimination (DI = 0.9894). An additional finding was that the rRNA-SNPs distribution pattern differed significantly between Scandinavia and New Orleans. Finally we applied multi-locus typing to further confirm sexual transmission using specimens from 74 unrelated patients and 31 concurrently infected couples. Analysis of multi-locus genotype profiles using the five variable loci described above revealed 27 of the couples had concordant genotype profiles compared to only four examples of concordance among the 74 unrelated randomly selected patients. Conclusion We propose that a combination of the MG309-STRs and MG191-SNPs is efficient for general epidemiological studies and addition of MG307-STRs and MG338-STRs is potentially useful for sexual network studies of M. genitalium infection. The multi-locus typing analysis of 74 unrelated M. genitalium-infected individuals and 31 infected couples adds to the evidence that M. genitalium is sexually transmitted.
Collapse
Affiliation(s)
- Liang Ma
- Section of Infectious Diseases, Department of Medicine, Louisiana State University Health Sciences Center, New Orleans, LA 70112, USA.
| | | | | | | | | | | |
Collapse
|
30
|
Payseur BA, Place M, Weber JL. Linkage disequilibrium between STRPs and SNPs across the human genome. Am J Hum Genet 2008; 82:1039-50. [PMID: 18423524 PMCID: PMC2427224 DOI: 10.1016/j.ajhg.2008.02.018] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2007] [Revised: 01/06/2008] [Accepted: 02/29/2008] [Indexed: 01/10/2023] Open
Abstract
Patterns of linkage disequilibrium (LD) reveal the action of evolutionary processes and provide crucial information for association mapping of disease genes. Although recent studies have described the landscape of LD among single nucleotide polymorphisms (SNPs) from across the human genome, associations involving other classes of molecular variation remain poorly understood. In addition to recombination and population history, mutation rate and process are expected to shape LD. To test this idea, we measured associations between short-tandem-repeat polymorphisms (STRPs), which can mutate rapidly and recurrently, and SNPs in 721 regions across the human genome. We directly compared STRP-SNP LD with SNP-SNP LD from the same genomic regions in the human HapMap populations. The intensity of STRP-SNP LD, measured by the average of D', was reduced, consistent with the action of recurrent mutation. Nevertheless, a higher fraction of STRP-SNP pairs than SNP-SNP pairs showed significant LD, on both short (up to 50 kb) and long (cM) scales. These results reveal the substantial effects of mutational processes on LD at STRPs and provide important measures of the potential of STRPs for association mapping of disease genes.
Collapse
Affiliation(s)
- Bret A Payseur
- Laboratory of Genetics, University of Wisconsin, Madison, WI 53706, USA.
| | | | | |
Collapse
|
31
|
Empirical comparison of Simple Sequence Repeats and single nucleotide polymorphisms in assessment of maize diversity and relatedness. PLoS One 2007; 2:e1367. [PMID: 18159250 PMCID: PMC2137949 DOI: 10.1371/journal.pone.0001367] [Citation(s) in RCA: 106] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2007] [Accepted: 12/02/2007] [Indexed: 01/20/2023] Open
Abstract
While Simple Sequence Repeats (SSRs) are extremely useful genetic markers, recent advances in technology have produced a shift toward use of single nucleotide polymorphisms (SNPs). The different mutational properties of these two classes of markers result in differences in heterozygosities and allele frequencies that may have implications for their use in assessing relatedness and evaluation of genetic diversity. We compared analyses based on 89 SSRs (primarily dinucleotide repeats) to analyses based on 847 SNPs in individuals from the same 259 inbred maize lines, which had been chosen to represent the diversity available among current and historic lines used in breeding. The SSRs performed better at clustering germplasm into populations than did a set of 847 SNPs or 554 SNP haplotypes, and SSRs provided more resolution in measuring genetic distance based on allele-sharing. Except for closely related pairs of individuals, measures of distance based on SSRs were only weakly correlated with measures of distance based on SNPs. Our results suggest that 1) large numbers of SNP loci will be required to replace highly polymorphic SSRs in studies of diversity and relatedness and 2) relatedness among highly-diverged maize lines is difficult to measure accurately regardless of the marker system.
Collapse
|
32
|
Jensen JD, Wong A, Aquadro CF. Approaches for identifying targets of positive selection. Trends Genet 2007; 23:568-77. [PMID: 17959267 DOI: 10.1016/j.tig.2007.08.009] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2007] [Revised: 08/20/2007] [Accepted: 08/20/2007] [Indexed: 01/25/2023]
Abstract
Despite significant advancements in both empirical and theoretical population genetics throughout the past century, fundamental questions about the evolutionary forces that shape genomic diversity remain unresolved. Perhaps foremost among these are the strength and frequency of adaptive evolution. To quantify these parameters, statistical tools are needed that are capable of effectively identifying targets of positive selection throughout the genome in an unbiased manner, and functional approaches are needed that are capable of connecting these identified genotypes with the resulting adaptively significant phenotypes. Here we review recent advancements in both statistical and empirical methodology, and discuss important challenges and opportunities that remain as researchers continue to uncouple the relative importance of stochastic and deterministic factors in the evolution of natural populations.
Collapse
Affiliation(s)
- Jeffrey D Jensen
- Department of Molecular Biology and Genetics, Biotechnology Building, Cornell University, Ithaca, NY 14853, USA
| | | | | |
Collapse
|
33
|
Ding C. ‘Other’ applications of single nucleotide polymorphisms. Trends Biotechnol 2007; 25:279-83. [PMID: 17493698 DOI: 10.1016/j.tibtech.2007.04.007] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2006] [Revised: 03/07/2007] [Accepted: 04/26/2007] [Indexed: 11/16/2022]
Abstract
Single nucleotide polymorphisms (SNPs) are the most frequent form of sequence variation in the human genome, occurring on average every 300 base pairs. Owing to their high density, SNPs are considered useful for identifying the genes associated with complex diseases. The focus of this Opinion article is the recent applications of SNPs that fall outside of disease association studies. These applications are diverse, ranging from using SNPs as qualitative markers for distinguishing individuals in mixed samples to using SNPs for quantitative genomic DNA and RNA transcript dosage assessment. These are possible owing to the millions of validated SNPs and the variety of robust SNP analysis platforms.
Collapse
Affiliation(s)
- Chunming Ding
- Stanley Ho Centre for Emerging Infectious Diseases and Li Ka Shing Institute of Health Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, New Territories, Hong Kong SAR, China.
| |
Collapse
|