1
|
Pelé A, Falque M, Lodé-Taburel M, Huteau V, Morice J, Coriton O, Martin OC, Chèvre AM, Rousseau-Gueutin M. Genomic Divergence Shaped the Genetic Regulation of Meiotic Homologous Recombination in Brassica Allopolyploids. Mol Biol Evol 2025; 42:msaf073. [PMID: 40173423 PMCID: PMC11982612 DOI: 10.1093/molbev/msaf073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2024] [Revised: 03/05/2025] [Accepted: 03/06/2025] [Indexed: 04/04/2025] Open
Abstract
The tight regulation of meiotic recombination between homologs is disrupted in Brassica AAC allotriploids, a genomic configuration that may have facilitated the formation of rapeseed (Brassica napus L.) ∼7,500 years ago. Indeed, the presence of the haploid C genome induces supernumerary crossovers between homologous A chromosomes with dramatically reshaped distribution. However, the genetic mechanisms driving this phenomenon and their divergence between nascent and established lineages remain unclear. To address these concerns, we generated hybrids carrying additional C chromosomes derived either from an established lineage of the allotetraploid B. napus or from its diploid progenitor B. oleracea. We then assessed recombination variation across twelve populations by mapping male meiotic crossovers using single nucleotide polymorphism markers evenly distributed across the sequenced A genome. Our findings reveal that the C09 chromosome of B. oleracea is responsible for the formation of additional crossovers near pericentromeric regions. Interestingly, its counterpart from an established lineage of B. napus shows no significant effect on its own, despite having a similar content of meiotic genes. However, we showed that the B. napus C09 chromosome influences crossover formation through inter-chromosomal epistatic interactions with other specific C chromosomes. These results provide new insights into the genetic regulation of homologous recombination in Brassica and emphasize the role of genomic divergence since the formation of the allopolyploid B. napus.
Collapse
Affiliation(s)
- Alexandre Pelé
- IGEPP, INRAE, Institut Agro, Univ Rennes, Le Rheu 35653, France
- Laboratory of Genome Biology, Institute of Molecular Biology and Biotechnology, Adam Mickiewicz University in Poznan, Poznan 61-614, Poland
| | - Matthieu Falque
- INRAE, CNRS, AgroParisTech, GQE—Le Moulon, Université Paris-Saclay, Gif-sur-Yvette 91190, France
| | | | - Virginie Huteau
- IGEPP, INRAE, Institut Agro, Univ Rennes, Le Rheu 35653, France
| | - Jérôme Morice
- IGEPP, INRAE, Institut Agro, Univ Rennes, Le Rheu 35653, France
| | - Olivier Coriton
- IGEPP, INRAE, Institut Agro, Univ Rennes, Le Rheu 35653, France
| | - Olivier C Martin
- Université Paris-Saclay, CNRS, INRAE, Université Evry, Institute of Plant Sciences Paris-Saclay (IPS2), Gif-sur-Yvette 91190, France
- Université Paris Cité, CNRS, INRAE, Institute of Plant Sciences Paris-Saclay (IPS2), Gif-sur-Yvette 91190, France
| | | | | |
Collapse
|
2
|
Liu K, Wang M, Wang L, Wang X, Feng H, Dai Q, Zhang C, Yu H. RMI1 is essential for maintaining rice genome stability at high temperature. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024; 120:1735-1750. [PMID: 39569466 DOI: 10.1111/tpj.17076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 07/22/2024] [Accepted: 10/01/2024] [Indexed: 11/22/2024]
Abstract
Heat is a critical environmental stress for plant survival. One of its harmful effects on the cells is the disruption of genome integrity. However, the mechanisms by which plants cope with heat-induced DNA damage remain largely unknown. RMI1, a component of the RTR (RECQ4-TOP3α-RMI1) complex, plays a pivotal role in maintaining genome stability. In this study, we identified the target gene RMI1 by characterizing a high-temperature-sensitive mutant. The growth and development of rmi1-1 seedlings carrying a non-frameshift mutation in RMI1 were hindered at 38°C. Abnormal mitotic chromosome behaviours ultimately led to the cell death of root tips. Additionally, the presence of chromosome fragments during anaphase I caused pollen abortion and sterility in rmi1-1 plants. Yeast two-hybrid assays revealed that the interactions between RMI1-1 and RECQ4 or TOP3α were weakened with increasing temperature and entirely ceased at 36°C. In contrast, the functional RMI1 maintained its interactions with RECQ4 or TOP3α under the same conditions. These results indicate that the non-frameshift mutation in RMI1 disrupts the formation of the RTR complex at high temperatures, leading to defects in DNA repair and increased sensitivity of rmi1-1 under heat stress. However, embryos of the rmi1-cr2 mutant with a frameshift mutation in RMI1 exhibited complete lethality. In addition, the overexpression of RMI1 enhanced the heat tolerance in rice. These findings provide insights into the molecular mechanisms that RMI1 responds to high temperatures by maintaining genome stability in rice.
Collapse
Affiliation(s)
- Kangwei Liu
- Key Laboratory of Plant Functional Genomics of the Ministry of Education/Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding/Jiangsu Key Laboratory of Crop Genetics and Physiology/Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China/Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Agricultural College of Yangzhou University, Yangzhou, 225009, China
| | - Mengna Wang
- Key Laboratory of Plant Functional Genomics of the Ministry of Education/Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding/Jiangsu Key Laboratory of Crop Genetics and Physiology/Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China/Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Agricultural College of Yangzhou University, Yangzhou, 225009, China
| | - Lengjing Wang
- Key Laboratory of Plant Functional Genomics of the Ministry of Education/Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding/Jiangsu Key Laboratory of Crop Genetics and Physiology/Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China/Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Agricultural College of Yangzhou University, Yangzhou, 225009, China
| | - Xiaofeng Wang
- Key Laboratory of Plant Functional Genomics of the Ministry of Education/Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding/Jiangsu Key Laboratory of Crop Genetics and Physiology/Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China/Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Agricultural College of Yangzhou University, Yangzhou, 225009, China
| | - Haiyang Feng
- Key Laboratory of Plant Functional Genomics of the Ministry of Education/Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding/Jiangsu Key Laboratory of Crop Genetics and Physiology/Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China/Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Agricultural College of Yangzhou University, Yangzhou, 225009, China
| | - Qiang Dai
- Key Laboratory of Plant Functional Genomics of the Ministry of Education/Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding/Jiangsu Key Laboratory of Crop Genetics and Physiology/Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China/Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Agricultural College of Yangzhou University, Yangzhou, 225009, China
| | - Chao Zhang
- Key Laboratory of Plant Functional Genomics of the Ministry of Education/Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding/Jiangsu Key Laboratory of Crop Genetics and Physiology/Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China/Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Agricultural College of Yangzhou University, Yangzhou, 225009, China
| | - Hengxiu Yu
- Key Laboratory of Plant Functional Genomics of the Ministry of Education/Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding/Jiangsu Key Laboratory of Crop Genetics and Physiology/Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China/Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Agricultural College of Yangzhou University, Yangzhou, 225009, China
| |
Collapse
|
3
|
Strelnikova SR, Komakhin RA. Control of meiotic crossing over in plant breeding. Vavilovskii Zhurnal Genet Selektsii 2023; 27:99-110. [PMID: 37063511 PMCID: PMC10090103 DOI: 10.18699/vjgb-23-15] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 09/11/2022] [Accepted: 09/26/2022] [Indexed: 04/18/2023] Open
Abstract
Meiotic crossing over is the main mechanism for constructing a new allelic composition of individual chromosomes and is necessary for the proper distribution of homologous chromosomes between gametes. The parameters of meiotic crossing over that have developed in the course of evolution are determined by natural selection and do not fully suit the tasks of selective breeding research. This review summarizes the results of experimental studies aimed at increasing the frequency of crossovers and redistributing their positions along chromosomes using genetic manipulations at different stages of meiotic recombination. The consequences of inactivation and/or overexpression of the SPO11 genes, the products of which generate meiotic double-strand breaks in DNA, for the redistribution of crossover positions in the genome of various organisms are discussed. The results of studies concerning the effect of inactivation or overexpression of genes encoding RecA-like recombinases on meiotic crossing over, including those in cultivated tomato (Solanum lycopersicum L.) and its interspecific hybrids, are summarized. The consequences of inactivation of key genes of the mismatch repair system are discussed. Their suppression made it possible to significantly increase the frequency of meiotic recombination between homeologues in the interspecific hybrid yeast Saccharomyces cerevisiae × S. paradoxus and between homologues in arabidopsis plants (Arabidopsis thaliana L.). Also discussed are attempts to extrapolate these results to other plant species, in which a decrease in reproductive properties and microsatellite instability in the genome have been noted. The most significant results on the meiotic recombination frequency increase upon inactivation of the FANCM, TOP3α, RECQ4, FIGL1 crossover repressor genes and upon overexpression of the HEI10 crossover enhancer gene are separately described. In some experiments, the increase of meiotic recombination frequency by almost an order of magnitude and partial redistribution of the crossover positions along chromosomes were achieved in arabidopsis while fully preserving fecundity. Similar results have been obtained for some crops.
Collapse
Affiliation(s)
- S R Strelnikova
- All-Russia Research Institute of Agricultural Biotechnology, Moscow, Russia
| | - R A Komakhin
- All-Russia Research Institute of Agricultural Biotechnology, Moscow, Russia
| |
Collapse
|
4
|
Female meiosis in plants, and differential recombination in the two sexes: a perspective. THE NUCLEUS 2023. [DOI: 10.1007/s13237-023-00417-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2023] Open
|
5
|
Cai C, Pelé A, Bucher J, Finkers R, Bonnema G. Fine mapping of meiotic crossovers in Brassica oleracea reveals patterns and variations depending on direction and combination of crosses. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2023; 113:1192-1210. [PMID: 36626115 DOI: 10.1111/tpj.16104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 01/03/2023] [Accepted: 01/05/2023] [Indexed: 06/17/2023]
Abstract
Meiotic recombination is crucial for assuring proper segregation of parental chromosomes and generation of novel allelic combinations. As this process is tightly regulated, identifying factors influencing rate, and distribution of meiotic crossovers (COs) is of major importance, notably for plant breeding programs. However, high-resolution recombination maps are sparse in most crops including the Brassica genus and knowledge about intraspecific variation and sex differences is lacking. Here, we report fine-scale resolution recombination landscapes for 10 female and 10 male crosses in Brassica oleracea, by analyzing progenies of five large four-way-cross populations from two reciprocally crossed F1s per population. Parents are highly diverse inbred lines representing major crops, including broccoli, cauliflower, cabbage, kohlrabi, and kale. We produced approximately 4.56T Illumina data from 1248 progenies and identified 15 353 CO across the 10 reciprocal crosses, 51.13% of which being mapped to <10 kb. We revealed fairly similar Mb-scale recombination landscapes among all cross combinations and between the sexes, and provided evidence that these landscapes are largely independent of sequence divergence. We evidenced strong influence of gene density and large structural variations on CO formation in B. oleracea. Moreover, we found extensive variations in CO number depending on the direction and combination of the initial parents crossed with, for the first time, a striking interdependency between these factors. These data improve our current knowledge on meiotic recombination and are important for Brassica breeders.
Collapse
Affiliation(s)
- Chengcheng Cai
- Plant Breeding, Wageningen University and Research, 6708 PB, Wageningen, The Netherlands
- Graduate School Experimental Plant Sciences, Wageningen University and Research, 6708 PB, Wageningen, The Netherlands
| | - Alexandre Pelé
- Laboratory of Genome Biology, Institute of Molecular Biology and Biotechnology, Adam Mickiewicz University in Poznan, 61-614, Poznan, Poland
| | - Johan Bucher
- Plant Breeding, Wageningen University and Research, 6708 PB, Wageningen, The Netherlands
| | - Richard Finkers
- Plant Breeding, Wageningen University and Research, 6708 PB, Wageningen, The Netherlands
- Gennovation B.V., Agro Business Park 10, 6708 PW, Wageningen, The Netherlands
| | - Guusje Bonnema
- Plant Breeding, Wageningen University and Research, 6708 PB, Wageningen, The Netherlands
- Graduate School Experimental Plant Sciences, Wageningen University and Research, 6708 PB, Wageningen, The Netherlands
| |
Collapse
|
6
|
Li Z, Zhao W, Zhang J, Pan Z, Bai S, Tong C. A Novel Strategy to Reveal the Landscape of Crossovers in an F1 Hybrid Population of Populus deltoides and Populus simonii. PLANTS 2022; 11:plants11081046. [PMID: 35448774 PMCID: PMC9025136 DOI: 10.3390/plants11081046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 04/03/2022] [Accepted: 04/07/2022] [Indexed: 11/16/2022]
Abstract
Although the crossover (CO) patterns of different species have been extensively investigated, little is known about the landscape of CO patterns in Populus because of its high heterozygosity and long-time generation. A novel strategy was proposed to reveal the difference of CO rate and interference between Populus deltoides and Populus simonii using their F1 hybrid population. We chose restriction site-associated DNA (RAD) tags that contained two SNPs, one only receiving the CO information from the female P. deltoides and the other from the male P. simonii. These RAD tags allowed us to investigate the CO patterns between the two outbred species, instead of using the traditional backcross populations in inbred lines. We found that the CO rate in P. deltoides was generally greater than that in P. simonii, and that the CO interference was a common phenomenon across the two genomes. The COs landscape of the different Populus species facilitates not only to understand the evolutionary mechanism for adaptability but also to rebuild the statistical model for precisely constructing genetic linkage maps that are critical in genome assembly in Populus. Additionally, the novel strategy could be applied in other outbred species for investigating the CO patterns.
Collapse
Affiliation(s)
| | | | | | | | | | - Chunfa Tong
- Correspondence: ; Tel.: +86-025-85428817 (ext. 815)
| |
Collapse
|
7
|
Soares NR, Mollinari M, Oliveira GK, Pereira GS, Vieira MLC. Meiosis in Polyploids and Implications for Genetic Mapping: A Review. Genes (Basel) 2021; 12:genes12101517. [PMID: 34680912 PMCID: PMC8535482 DOI: 10.3390/genes12101517] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Revised: 09/24/2021] [Accepted: 09/24/2021] [Indexed: 02/06/2023] Open
Abstract
Plant cytogenetic studies have provided essential knowledge on chromosome behavior during meiosis, contributing to our understanding of this complex process. In this review, we describe in detail the meiotic process in auto- and allopolyploids from the onset of prophase I through pairing, recombination, and bivalent formation, highlighting recent findings on the genetic control and mode of action of specific proteins that lead to diploid-like meiosis behavior in polyploid species. During the meiosis of newly formed polyploids, related chromosomes (homologous in autopolyploids; homologous and homoeologous in allopolyploids) can combine in complex structures called multivalents. These structures occur when multiple chromosomes simultaneously pair, synapse, and recombine. We discuss the effectiveness of crossover frequency in preventing multivalent formation and favoring regular meiosis. Homoeologous recombination in particular can generate new gene (locus) combinations and phenotypes, but it may destabilize the karyotype and lead to aberrant meiotic behavior, reducing fertility. In crop species, understanding the factors that control pairing and recombination has the potential to provide plant breeders with resources to make fuller use of available chromosome variations in number and structure. We focused on wheat and oilseed rape, since there is an abundance of elucidating studies on this subject, including the molecular characterization of the Ph1 (wheat) and PrBn (oilseed rape) loci, which are known to play a crucial role in regulating meiosis. Finally, we exploited the consequences of chromosome pairing and recombination for genetic map construction in polyploids, highlighting two case studies of complex genomes: (i) modern sugarcane, which has a man-made genome harboring two subgenomes with some recombinant chromosomes; and (ii) hexaploid sweet potato, a naturally occurring polyploid. The recent inclusion of allelic dosage information has improved linkage estimation in polyploids, allowing multilocus genetic maps to be constructed.
Collapse
Affiliation(s)
- Nina Reis Soares
- Escola Superior de Agricultura “Luiz de Queiroz”, Universidade de São Paulo, Piracicaba 13400-918, Brazil; (N.R.S.); (G.K.O.); (G.S.P.)
| | - Marcelo Mollinari
- Bioinformatics Research Center, North Carolina State University, Raleigh, NC 27695-7566, USA;
- Department of Horticultural Science, North Carolina State University, Raleigh, NC 27695-7555, USA
| | - Gleicy K. Oliveira
- Escola Superior de Agricultura “Luiz de Queiroz”, Universidade de São Paulo, Piracicaba 13400-918, Brazil; (N.R.S.); (G.K.O.); (G.S.P.)
| | - Guilherme S. Pereira
- Escola Superior de Agricultura “Luiz de Queiroz”, Universidade de São Paulo, Piracicaba 13400-918, Brazil; (N.R.S.); (G.K.O.); (G.S.P.)
- Department of Agronomy, Federal University of Viçosa, Viçosa 36570-900, Brazil
| | - Maria Lucia Carneiro Vieira
- Escola Superior de Agricultura “Luiz de Queiroz”, Universidade de São Paulo, Piracicaba 13400-918, Brazil; (N.R.S.); (G.K.O.); (G.S.P.)
- Correspondence:
| |
Collapse
|
8
|
Bergero R, Ellis P, Haerty W, Larcombe L, Macaulay I, Mehta T, Mogensen M, Murray D, Nash W, Neale MJ, O'Connor R, Ottolini C, Peel N, Ramsey L, Skinner B, Suh A, Summers M, Sun Y, Tidy A, Rahbari R, Rathje C, Immler S. Meiosis and beyond - understanding the mechanistic and evolutionary processes shaping the germline genome. Biol Rev Camb Philos Soc 2021; 96:822-841. [PMID: 33615674 PMCID: PMC8246768 DOI: 10.1111/brv.12680] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Revised: 12/15/2020] [Accepted: 12/15/2020] [Indexed: 12/11/2022]
Abstract
The separation of germ cell populations from the soma is part of the evolutionary transition to multicellularity. Only genetic information present in the germ cells will be inherited by future generations, and any molecular processes affecting the germline genome are therefore likely to be passed on. Despite its prevalence across taxonomic kingdoms, we are only starting to understand details of the underlying micro-evolutionary processes occurring at the germline genome level. These include segregation, recombination, mutation and selection and can occur at any stage during germline differentiation and mitotic germline proliferation to meiosis and post-meiotic gamete maturation. Selection acting on germ cells at any stage from the diploid germ cell to the haploid gametes may cause significant deviations from Mendelian inheritance and may be more widespread than previously assumed. The mechanisms that affect and potentially alter the genomic sequence and allele frequencies in the germline are pivotal to our understanding of heritability. With the rise of new sequencing technologies, we are now able to address some of these unanswered questions. In this review, we comment on the most recent developments in this field and identify current gaps in our knowledge.
Collapse
Affiliation(s)
- Roberta Bergero
- Institute of Evolutionary BiologyUniversity of EdinburghEdinburghEH9 3JTU.K.
| | - Peter Ellis
- School of BiosciencesUniversity of KentCanterburyCT2 7NJU.K.
| | | | - Lee Larcombe
- Applied Exomics LtdStevenage Bioscience CatalystStevenageSG1 2FXU.K.
| | - Iain Macaulay
- Earlham InstituteNorwich Research ParkNorwichNR4 7UZU.K.
| | - Tarang Mehta
- Earlham InstituteNorwich Research ParkNorwichNR4 7UZU.K.
| | - Mette Mogensen
- School of Biological SciencesUniversity of East AngliaNorwich Research ParkNorwichNR4 7TJU.K.
| | - David Murray
- School of Biological SciencesUniversity of East AngliaNorwich Research ParkNorwichNR4 7TJU.K.
| | - Will Nash
- Earlham InstituteNorwich Research ParkNorwichNR4 7UZU.K.
| | - Matthew J. Neale
- Genome Damage and Stability Centre, School of Life SciencesUniversity of SussexBrightonBN1 9RHU.K.
| | | | | | - Ned Peel
- Earlham InstituteNorwich Research ParkNorwichNR4 7UZU.K.
| | - Luke Ramsey
- The James Hutton InstituteInvergowrieDundeeDD2 5DAU.K.
| | - Ben Skinner
- School of Life SciencesUniversity of EssexColchesterCO4 3SQU.K.
| | - Alexander Suh
- School of Biological SciencesUniversity of East AngliaNorwich Research ParkNorwichNR4 7TJU.K.
- Department of Organismal BiologyUppsala UniversityNorbyvägen 18DUppsala752 36Sweden
| | - Michael Summers
- School of BiosciencesUniversity of KentCanterburyCT2 7NJU.K.
- The Bridge Centre1 St Thomas Street, London BridgeLondonSE1 9RYU.K.
| | - Yu Sun
- Norwich Medical SchoolUniversity of East AngliaNorwich Research Park, Colney LnNorwichNR4 7UGU.K.
| | - Alison Tidy
- School of BiosciencesUniversity of Nottingham, Plant Science, Sutton Bonington CampusSutton BoningtonLE12 5RDU.K.
| | | | - Claudia Rathje
- School of BiosciencesUniversity of KentCanterburyCT2 7NJU.K.
| | - Simone Immler
- School of Biological SciencesUniversity of East AngliaNorwich Research ParkNorwichNR4 7TJU.K.
| |
Collapse
|
9
|
Zhou H, Xia D, Zhao D, Li Y, Li P, Wu B, Gao G, Zhang Q, Wang G, Xiao J, Li X, Yu S, Lian X, He Y. The origin of Wx la provides new insights into the improvement of grain quality in rice. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2021; 63:878-888. [PMID: 32886450 PMCID: PMC8252478 DOI: 10.1111/jipb.13011] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Accepted: 09/03/2020] [Indexed: 05/23/2023]
Abstract
Appearance and taste are important factors in rice (Oryza sativa) grain quality. Here, we investigated the taste scores and related eating-quality traits of 533 diverse cultivars to assess the relationships between-and genetic basis of-rice taste and eating-quality. A genome-wide association study highlighted the Wx gene as the major factor underlying variation in taste and eating quality. Notably, a novel waxy (Wx) allele, Wxla , which combined two mutations from Wxb and Wxin , exhibited a unique phenotype. Reduced GBSSI activity conferred Wxla rice with both a transparent appearance and good eating quality. Haplotype analysis revealed that Wxla was derived from intragenic recombination. In fact, the recombination rate at the Wx locus was estimated to be 3.34 kb/cM, which was about 75-fold higher than the genome-wide mean, indicating that intragenic recombination is a major force driving diversity at the Wx locus. Based on our results, we propose a new network for Wx evolution, noting that new Wx alleles could easily be generated by crossing genotypes with different Wx alleles. This study thus provides insights into the evolution of the Wx locus and facilitates molecular breeding for quality in rice.
Collapse
Affiliation(s)
- Hao Zhou
- National Key Laboratory of Crop Genetic Improvement and National Centre of Plant Gene Research (Wuhan)Huazhong Agricultural UniversityWuhan 430070China
| | - Duo Xia
- National Key Laboratory of Crop Genetic Improvement and National Centre of Plant Gene Research (Wuhan)Huazhong Agricultural UniversityWuhan 430070China
| | - Da Zhao
- National Key Laboratory of Crop Genetic Improvement and National Centre of Plant Gene Research (Wuhan)Huazhong Agricultural UniversityWuhan 430070China
| | - Yanhua Li
- National Key Laboratory of Crop Genetic Improvement and National Centre of Plant Gene Research (Wuhan)Huazhong Agricultural UniversityWuhan 430070China
| | - Pingbo Li
- National Key Laboratory of Crop Genetic Improvement and National Centre of Plant Gene Research (Wuhan)Huazhong Agricultural UniversityWuhan 430070China
| | - Bian Wu
- National Key Laboratory of Crop Genetic Improvement and National Centre of Plant Gene Research (Wuhan)Huazhong Agricultural UniversityWuhan 430070China
| | - Guanjun Gao
- National Key Laboratory of Crop Genetic Improvement and National Centre of Plant Gene Research (Wuhan)Huazhong Agricultural UniversityWuhan 430070China
| | - Qinglu Zhang
- National Key Laboratory of Crop Genetic Improvement and National Centre of Plant Gene Research (Wuhan)Huazhong Agricultural UniversityWuhan 430070China
| | - Gongwei Wang
- National Key Laboratory of Crop Genetic Improvement and National Centre of Plant Gene Research (Wuhan)Huazhong Agricultural UniversityWuhan 430070China
| | - Jinghua Xiao
- National Key Laboratory of Crop Genetic Improvement and National Centre of Plant Gene Research (Wuhan)Huazhong Agricultural UniversityWuhan 430070China
| | - Xianghua Li
- National Key Laboratory of Crop Genetic Improvement and National Centre of Plant Gene Research (Wuhan)Huazhong Agricultural UniversityWuhan 430070China
| | - Sibin Yu
- National Key Laboratory of Crop Genetic Improvement and National Centre of Plant Gene Research (Wuhan)Huazhong Agricultural UniversityWuhan 430070China
| | - Xingming Lian
- National Key Laboratory of Crop Genetic Improvement and National Centre of Plant Gene Research (Wuhan)Huazhong Agricultural UniversityWuhan 430070China
| | - Yuqing He
- National Key Laboratory of Crop Genetic Improvement and National Centre of Plant Gene Research (Wuhan)Huazhong Agricultural UniversityWuhan 430070China
| |
Collapse
|
10
|
Diop SI, Subotic O, Giraldo-Fonseca A, Waller M, Kirbis A, Neubauer A, Potente G, Murray-Watson R, Boskovic F, Bont Z, Hock Z, Payton AC, Duijsings D, Pirovano W, Conti E, Grossniklaus U, McDaniel SF, Szövényi P. A pseudomolecule-scale genome assembly of the liverwort Marchantia polymorpha. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2020; 101:1378-1396. [PMID: 31692190 DOI: 10.1111/tpj.14602] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Accepted: 10/28/2019] [Indexed: 05/07/2023]
Abstract
Marchantia polymorpha has recently become a prime model for cellular, evo-devo, synthetic biological, and evolutionary investigations. We present a pseudomolecule-scale assembly of the M. polymorpha genome, making comparative genome structure analysis and classical genetic mapping approaches feasible. We anchored 88% of the M. polymorpha draft genome to a high-density linkage map resulting in eight pseudomolecules. We found that the overall genome structure of M. polymorpha is in some respects different from that of the model moss Physcomitrella patens. Specifically, genome collinearity between the two bryophyte genomes and vascular plants is limited, suggesting extensive rearrangements since divergence. Furthermore, recombination rates are greatest in the middle of the chromosome arms in M. polymorpha like in most vascular plant genomes, which is in contrast with P. patens where recombination rates are evenly distributed along the chromosomes. Nevertheless, some other properties of the genome are shared with P. patens. As in P. patens, DNA methylation in M. polymorpha is spread evenly along the chromosomes, which is in stark contrast with the angiosperm model Arabidopsis thaliana, where DNA methylation is strongly enriched at the centromeres. Nevertheless, DNA methylation and recombination rate are anticorrelated in all three species. Finally, M. polymorpha and P. patens centromeres are of similar structure and marked by high abundance of retroelements unlike in vascular plants. Taken together, the highly contiguous genome assembly we present opens unexplored avenues for M. polymorpha research by linking the physical and genetic maps, making novel genomic and genetic analyses, including map-based cloning, feasible.
Collapse
Affiliation(s)
- Seydina I Diop
- Department of Systematic and Evolutionary Botany & Zurich-Basel Plant Science Center, University of Zurich, Zollikerstrasse 107, 8008, Zurich, Switzerland
- BaseClear B.V., Sylviusweg 74, 2333 BE, Leiden, the Netherlands
| | - Oliver Subotic
- Department of Systematic and Evolutionary Botany & Zurich-Basel Plant Science Center, University of Zurich, Zollikerstrasse 107, 8008, Zurich, Switzerland
- BaseClear B.V., Sylviusweg 74, 2333 BE, Leiden, the Netherlands
| | - Alejandro Giraldo-Fonseca
- Department of Plant and Microbial Biology & Zurich-Basel Plant Science Center, University of Zurich, Zollikerstrasse 107, 8008, Zurich, Switzerland
| | - Manuel Waller
- Department of Systematic and Evolutionary Botany & Zurich-Basel Plant Science Center, University of Zurich, Zollikerstrasse 107, 8008, Zurich, Switzerland
| | - Alexander Kirbis
- Department of Systematic and Evolutionary Botany & Zurich-Basel Plant Science Center, University of Zurich, Zollikerstrasse 107, 8008, Zurich, Switzerland
| | - Anna Neubauer
- Department of Systematic and Evolutionary Botany & Zurich-Basel Plant Science Center, University of Zurich, Zollikerstrasse 107, 8008, Zurich, Switzerland
| | - Giacomo Potente
- Department of Systematic and Evolutionary Botany & Zurich-Basel Plant Science Center, University of Zurich, Zollikerstrasse 107, 8008, Zurich, Switzerland
- BaseClear B.V., Sylviusweg 74, 2333 BE, Leiden, the Netherlands
| | - Rachel Murray-Watson
- Department of Systematic and Evolutionary Botany & Zurich-Basel Plant Science Center, University of Zurich, Zollikerstrasse 107, 8008, Zurich, Switzerland
| | - Filip Boskovic
- Department of Systematic and Evolutionary Botany & Zurich-Basel Plant Science Center, University of Zurich, Zollikerstrasse 107, 8008, Zurich, Switzerland
- Cavendish Laboratory, University of Cambridge, JJ Thompson Avenue, CB3 0HE, Cambridge, UK
| | - Zoe Bont
- Department of Systematic and Evolutionary Botany & Zurich-Basel Plant Science Center, University of Zurich, Zollikerstrasse 107, 8008, Zurich, Switzerland
- Institute of Plant Sciences, University of Bern, Altenbergrain 21, 3013, Bern, Switzerland
| | - Zsofia Hock
- Department of Systematic and Evolutionary Botany & Zurich-Basel Plant Science Center, University of Zurich, Zollikerstrasse 107, 8008, Zurich, Switzerland
| | - Adam C Payton
- Department of Biology, University of Florida, 876 Newell Drive, Gainesville, FL, 32611, USA
| | | | - Walter Pirovano
- BaseClear B.V., Sylviusweg 74, 2333 BE, Leiden, the Netherlands
| | - Elena Conti
- Department of Systematic and Evolutionary Botany & Zurich-Basel Plant Science Center, University of Zurich, Zollikerstrasse 107, 8008, Zurich, Switzerland
| | - Ueli Grossniklaus
- Department of Plant and Microbial Biology & Zurich-Basel Plant Science Center, University of Zurich, Zollikerstrasse 107, 8008, Zurich, Switzerland
| | - Stuart F McDaniel
- Department of Biology, University of Florida, 876 Newell Drive, Gainesville, FL, 32611, USA
| | - Péter Szövényi
- Department of Systematic and Evolutionary Botany & Zurich-Basel Plant Science Center, University of Zurich, Zollikerstrasse 107, 8008, Zurich, Switzerland
| |
Collapse
|
11
|
Raz A, Dahan-Meir T, Melamed-Bessudo C, Leshkowitz D, Levy AA. Redistribution of Meiotic Crossovers Along Wheat Chromosomes by Virus-Induced Gene Silencing. FRONTIERS IN PLANT SCIENCE 2020; 11:635139. [PMID: 33613593 PMCID: PMC7890124 DOI: 10.3389/fpls.2020.635139] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2020] [Accepted: 12/31/2020] [Indexed: 05/08/2023]
Abstract
Meiotic recombination is the main driver of genetic diversity in wheat breeding. The rate and location of crossover (CO) events are regulated by genetic and epigenetic factors. In wheat, most COs occur in subtelomeric regions but are rare in centromeric and pericentric areas. The aim of this work was to increase COs in both "hot" and "cold" chromosomal locations. We used Virus-Induced gene Silencing (VIGS) to downregulate the expression of recombination-suppressing genes XRCC2 and FANCM and of epigenetic maintenance genes MET1 and DDM1 during meiosis. VIGS suppresses genes in a dominant, transient and non-transgenic manner, which is convenient in wheat, a hard-to-transform polyploid. F1 hybrids of a cross between two tetraploid lines whose genome was fully sequenced (wild emmer and durum wheat), were infected with a VIGS vector ∼ 2 weeks before meiosis. Recombination was measured in F2 seedlings derived from F1-infected plants and non-infected controls. We found significant up and down-regulation of CO rates along subtelomeric regions as a result of silencing either MET1, DDM1 or XRCC2 during meiosis. In addition, we found up to 93% increase in COs in XRCC2-VIGS treatment in the pericentric regions of some chromosomes. Silencing FANCM showed no effect on CO. Overall, we show that CO distribution was affected by VIGS treatments rather than the total number of COs which did not change. We conclude that transient silencing of specific genes during meiosis can be used as a simple, fast and non-transgenic strategy to improve breeding abilities in specific chromosomal regions.
Collapse
Affiliation(s)
- Amir Raz
- Department of Plant and Environmental Sciences, Weizmann Institute of Science, Rehovot, Israel
- Department of Plant Science, MIGAL Galilee Research Institute, Kiryat Shmona, Israel
- Amir Raz,
| | - Tal Dahan-Meir
- Department of Plant and Environmental Sciences, Weizmann Institute of Science, Rehovot, Israel
| | - Cathy Melamed-Bessudo
- Department of Plant and Environmental Sciences, Weizmann Institute of Science, Rehovot, Israel
| | - Dena Leshkowitz
- Bioinformatics Unit, Life Sciences Core Facilities, Weizmann Institute of Science, Rehovot, Israel
| | - Avraham A. Levy
- Department of Plant and Environmental Sciences, Weizmann Institute of Science, Rehovot, Israel
- *Correspondence: Avraham A. Levy,
| |
Collapse
|
12
|
Advances Towards How Meiotic Recombination Is Initiated: A Comparative View and Perspectives for Plant Meiosis Research. Int J Mol Sci 2019; 20:ijms20194718. [PMID: 31547623 PMCID: PMC6801837 DOI: 10.3390/ijms20194718] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Revised: 09/19/2019] [Accepted: 09/19/2019] [Indexed: 12/14/2022] Open
Abstract
Meiosis is an essential cell-division process for ensuring genetic diversity across generations. Meiotic recombination ensures the accuracy of genetic interchange between homolous chromosomes and segregation of parental alleles. Programmed DNA double-strand breaks (DSBs), catalyzed by the evolutionarily conserved topoisomerase VIA (a subunit of the archaeal type II DNA topoisomerase)-like enzyme Spo11 and several other factors, is a distinctive feature of meiotic recombination initiation. The meiotic DSB formation and its regulatory mechanisms are similar among species, but certain aspects are distinct. In this review, we introduced the cumulative knowledge of the plant proteins crucial for meiotic DSB formation and technical advances in DSB detection. We also summarized the genome-wide DSB hotspot profiles for different model organisms. Moreover, we highlighted the classical views and recent advances in our knowledge of the regulatory mechanisms that ensure the fidelity of DSB formation, such as multifaceted kinase-mediated phosphorylation and the consequent high-dimensional changes in chromosome structure. We provided an overview of recent findings concerning DSB formation, distribution and regulation, all of which will help us to determine whether meiotic DSB formation is evolutionarily conserved or varies between plants and other organisms.
Collapse
|
13
|
Komakhin RA, Strelnikova SR, Zhuchenko AA. Genetic Features of the Tomato Marker Line Мо938. RUSS J GENET+ 2019. [DOI: 10.1134/s1022795419010083] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
14
|
Chouaref J, de Boer E, Fransz P, Stam M. Protocol for Chromatin Immunoprecipitation of Meiotic-Stage-Specific Tomato Anthers. ACTA ACUST UNITED AC 2018; 3:e20074. [PMID: 30208267 DOI: 10.1002/cppb.20074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Interactions occurring between DNA and proteins across the nuclear genome regulate numerous processes, including meiosis. Meiosis ensures genetic variation and balanced segregation of homologous chromosomes. It involves complex DNA-protein interactions across the entire genome to regulate a broad range of processes, including formation and repair of double-strand DNA breaks (DSBs), chromosome compaction, homolog pairing, synapsis, and homologous recombination. The latter meiotic event, meiotic recombination, often occurs at discrete locations in a genome, within a tight time window. The identification of genomic binding sites of meiotic proteins is a major step toward understanding the molecular mechanisms underlying meiotic recombination and provides important information for plant breeding. Collecting meiotic cells from plants is challenging, tedious, and time consuming, since the meiocyte-producing organs, the anthers, are generally small and limited to certain developmental stages of plants. Here we provide a protocol to isolate meiotic-stage-specific anthers and perform ChIP on this material. We have developed a ChIP protocol specifically suited to (1) small amounts of input material and (2) proteins that bind transiently to chromatin and at very low frequency. © 2018 by John Wiley & Sons, Inc.
Collapse
Affiliation(s)
- Jihed Chouaref
- Plant Development and (Epi) Genetics, Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, The Netherlands
| | - Esther de Boer
- Plant Development and (Epi) Genetics, Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, The Netherlands
| | - Paul Fransz
- Plant Development and (Epi) Genetics, Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, The Netherlands
| | - Maike Stam
- Plant Development and (Epi) Genetics, Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, The Netherlands
| |
Collapse
|
15
|
|
16
|
Blair MW, Cortés AJ, Farmer AD, Huang W, Ambachew D, Penmetsa RV, Carrasquilla-Garcia N, Assefa T, Cannon SB. Uneven recombination rate and linkage disequilibrium across a reference SNP map for common bean (Phaseolus vulgaris L.). PLoS One 2018; 13:e0189597. [PMID: 29522524 PMCID: PMC5844515 DOI: 10.1371/journal.pone.0189597] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2017] [Accepted: 11/28/2017] [Indexed: 12/20/2022] Open
Abstract
Recombination (R) rate and linkage disequilibrium (LD) analyses are the basis for plant breeding. These vary by breeding system, by generation of inbreeding or outcrossing and by region in the chromosome. Common bean (Phaseolus vulgaris L.) is a favored food legume with a small sequenced genome (514 Mb) and n = 11 chromosomes. The goal of this study was to describe R and LD in the common bean genome using a 768-marker array of single nucleotide polymorphisms (SNP) based on Trans-legume Orthologous Group (TOG) genes along with an advanced-generation Recombinant Inbred Line reference mapping population (BAT93 x Jalo EEP558) and an internationally available diversity panel. A whole genome genetic map was created that covered all eleven linkage groups (LG). The LGs were linked to the physical map by sequence data of the TOGs compared to each chromosome sequence of common bean. The genetic map length in total was smaller than for previous maps reflecting the precision of allele calling and mapping with SNP technology as well as the use of gene-based markers. A total of 91.4% of TOG markers had singleton hits with annotated Pv genes and all mapped outside of regions of resistance gene clusters. LD levels were found to be stronger within the Mesoamerican genepool and decay more rapidly within the Andean genepool. The recombination rate across the genome was 2.13 cM / Mb but R was found to be highly repressed around centromeres and frequent outside peri-centromeric regions. These results have important implications for association and genetic mapping or crop improvement in common bean.
Collapse
Affiliation(s)
- Matthew W. Blair
- Department of Agricultural & Environmental Science, Tennessee State University (TSU), Nashville, Tennessee, United States of America
| | - Andrés J. Cortés
- Colombian Corporation for Agricultural Research (CORPOICA), C.I. La Selva, Rionegro, Department of Antioquia, Colombia
| | - Andrew D. Farmer
- National Center for Genome Resources (NCGR), Santa Fe, New Mexico, United States of America
| | - Wei Huang
- Iowa State University (ISU), Ames, Iowa, United States of America
| | - Daniel Ambachew
- Department of Agricultural & Environmental Science, Tennessee State University (TSU), Nashville, Tennessee, United States of America
| | - R. Varma Penmetsa
- University of California, Davis (US-D), California, United States of America
| | | | - Teshale Assefa
- Iowa State University (ISU), Ames, Iowa, United States of America
- United States Department of Agriculture - Agricultural Research Service (USDA-ARS), Corn Insects and Crop Genetics Research Unit, Ames, Iowa, United States of America
| | - Steven B. Cannon
- Iowa State University (ISU), Ames, Iowa, United States of America
- United States Department of Agriculture - Agricultural Research Service (USDA-ARS), Corn Insects and Crop Genetics Research Unit, Ames, Iowa, United States of America
| |
Collapse
|
17
|
Griswold CK, Williamson MW. A two-locus model of selection in autotetraploids: Chromosomal gametic disequilibrium and selection for an adaptive epistatic gene combination. Heredity (Edinb) 2017; 119:314-327. [PMID: 28832578 PMCID: PMC5637366 DOI: 10.1038/hdy.2017.44] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2017] [Revised: 06/23/2017] [Accepted: 06/23/2017] [Indexed: 11/08/2022] Open
Abstract
In this paper, we present a two-locus model of selection for an autotetraploid population. We also investigate a measure of disequilibrium that occurs between homologous chromosomes in the diploid gametes of autotetraploids, namely chromosomal gametic disequilibrium. We apply the model and measure of disequilibrium to compare how an adaptive epistatic gene combination is inherited and selected for in an autotetraploid versus diploid population. Autotetraploids are expected to have higher genomic mutation and recombination rates relative to diploids, due to a greater ploidy level. These two processes can work in opposition in terms of selection for adaptive epistatic gene combinations. While a higher genomic mutation rate can generate the alleles that confer an epistatic combination more quickly, a higher recombination rate is expected to break the combination down more quickly. We show that chromosomal gametic disequilibrium in autotetraploids can potentially compensate for less linkage disequilibrium in autotetraploids. We also explore how double reduction affects the inheritance of and selection for an epistatic gene combination. Over all, our analysis provides theoretical evidence that adaptive epistatic combinations can be selected for more efficiently in autotetraploids versus diploids. This may provide insight into empirical work that finds epistasis has a role in causing population differentiation between autotetraploid plant populations.
Collapse
Affiliation(s)
- C K Griswold
- Department of Integrative Biology, University of Guelph, Guelph, ON, Canada
| | - M W Williamson
- Department of Integrative Biology, University of Guelph, Guelph, ON, Canada
| |
Collapse
|
18
|
Ye L, Jiao N, Tang X, Chen Y, Ye X, Ren L, Hu F, Wang S, Wen M, Zhang C, Tao M, Liu S. Chimeras Linked to Tandem Repeats and Transposable Elements in Tetraploid Hybrid Fish. MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2017; 19:401-409. [PMID: 28681105 DOI: 10.1007/s10126-017-9764-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2017] [Accepted: 06/09/2017] [Indexed: 06/07/2023]
Abstract
The formation of the allotetraploid hybrid lineage (4nAT) encompasses both distant hybridization and polyploidization processes. The allotetraploid offspring have two sets of sub-genomes inherited from both parental species, and therefore, it is important to explore its genetic structure. Herein, we construct a bacterial artificial chromosome library of allotetraploids, and then sequence and analyze the full-length sequences of 19 bacterial artificial chromosomes. Sixty-eight DNA chimeras are identified, which are divided into four models according to the distribution of the genomic DNA derived from the parents. Among the 68 genetic chimeras, 44 (64.71%) are linked to tandem repeats (TRs) and 23 (33.82%) are linked to transposable elements (TEs). The chimeras linked to TRs are related to slipped-strand mispairing and double-strand break repair while the chimeras linked to TEs benefit from the intervention of recombinases. In addition, TRs and TEs can also result in insertions/deletions of DNA segments. We conclude that DNA chimeras accompanied by TRs and TEs coordinate a balance between the sub-genomes derived from the parents. It is the first report on the relationship between formation of the DNA chimeras and TRs and TEs in the polyploid animals.
Collapse
Affiliation(s)
- Lihai Ye
- State Key Laboratory of Developmental Biology of Freshwater Fish, Hunan Normal University, Changsha, 410081, Hunan, People's Republic of China
- College of Life Sciences, Hunan Normal University, Changsha, 410081, People's Republic of China
| | - Ni Jiao
- State Key Laboratory of Developmental Biology of Freshwater Fish, Hunan Normal University, Changsha, 410081, Hunan, People's Republic of China
- College of Life Sciences, Hunan Normal University, Changsha, 410081, People's Republic of China
| | - Xiaojun Tang
- State Key Laboratory of Developmental Biology of Freshwater Fish, Hunan Normal University, Changsha, 410081, Hunan, People's Republic of China
- College of Life Sciences, Hunan Normal University, Changsha, 410081, People's Republic of China
| | - Yiyi Chen
- State Key Laboratory of Developmental Biology of Freshwater Fish, Hunan Normal University, Changsha, 410081, Hunan, People's Republic of China
- College of Life Sciences, Hunan Normal University, Changsha, 410081, People's Republic of China
| | - Xiaolan Ye
- State Key Laboratory of Developmental Biology of Freshwater Fish, Hunan Normal University, Changsha, 410081, Hunan, People's Republic of China
- College of Life Sciences, Hunan Normal University, Changsha, 410081, People's Republic of China
| | - Li Ren
- State Key Laboratory of Developmental Biology of Freshwater Fish, Hunan Normal University, Changsha, 410081, Hunan, People's Republic of China
- College of Life Sciences, Hunan Normal University, Changsha, 410081, People's Republic of China
| | - Fangzhou Hu
- State Key Laboratory of Developmental Biology of Freshwater Fish, Hunan Normal University, Changsha, 410081, Hunan, People's Republic of China
- College of Life Sciences, Hunan Normal University, Changsha, 410081, People's Republic of China
| | - Shi Wang
- State Key Laboratory of Developmental Biology of Freshwater Fish, Hunan Normal University, Changsha, 410081, Hunan, People's Republic of China
- College of Life Sciences, Hunan Normal University, Changsha, 410081, People's Republic of China
| | - Ming Wen
- State Key Laboratory of Developmental Biology of Freshwater Fish, Hunan Normal University, Changsha, 410081, Hunan, People's Republic of China
- College of Life Sciences, Hunan Normal University, Changsha, 410081, People's Republic of China
| | - Chun Zhang
- State Key Laboratory of Developmental Biology of Freshwater Fish, Hunan Normal University, Changsha, 410081, Hunan, People's Republic of China
- College of Life Sciences, Hunan Normal University, Changsha, 410081, People's Republic of China
| | - Min Tao
- State Key Laboratory of Developmental Biology of Freshwater Fish, Hunan Normal University, Changsha, 410081, Hunan, People's Republic of China
- College of Life Sciences, Hunan Normal University, Changsha, 410081, People's Republic of China
| | - Shaojun Liu
- State Key Laboratory of Developmental Biology of Freshwater Fish, Hunan Normal University, Changsha, 410081, Hunan, People's Republic of China.
- College of Life Sciences, Hunan Normal University, Changsha, 410081, People's Republic of China.
| |
Collapse
|
19
|
Homoeologous chromosome pairing across the eukaryote phylogeny. Mol Phylogenet Evol 2017; 117:83-94. [PMID: 28602622 DOI: 10.1016/j.ympev.2017.05.025] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2016] [Revised: 05/25/2017] [Accepted: 05/26/2017] [Indexed: 11/21/2022]
Abstract
During the past quarter century, molecular phylogenetic inferences have significantly resolved evolutionary relationships spanning the eukaryotic tree of life. With improved phylogenies in hand, the focus of systematics will continue to expand from estimating species relationships toward examining the evolution of specific, fundamental traits across the eukaryotic tree. Undoubtedly, this will expose knowledge gaps in the evolution of key traits, particularly with respect to non-model lineages. Here, we examine one such trait across eukaryotes-the regulation of homologous chromosome pairing during meiosis-as an illustrative example. Specifically, we present an overview of the breakdown of homologous chromosome pairing in model eukaryotes and provide a discussion of various meiotic aberrations that result in the failure of homolog recognition, with a particular focus on lineages with a history of hybridization and polyploidization, across major eukaryotic clades. We then explore what is known about these processes in natural and non-model eukaryotic taxa, thereby exposing disparities in our understanding of this key trait among non-model groups.
Collapse
|
20
|
Pelé A, Falque M, Trotoux G, Eber F, Nègre S, Gilet M, Huteau V, Lodé M, Jousseaume T, Dechaumet S, Morice J, Poncet C, Coriton O, Martin OC, Rousseau-Gueutin M, Chèvre AM. Amplifying recombination genome-wide and reshaping crossover landscapes in Brassicas. PLoS Genet 2017; 13:e1006794. [PMID: 28493942 PMCID: PMC5444851 DOI: 10.1371/journal.pgen.1006794] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2016] [Revised: 05/25/2017] [Accepted: 05/02/2017] [Indexed: 11/19/2022] Open
Abstract
Meiotic recombination by crossovers (COs) is tightly regulated, limiting its key role in producing genetic diversity. However, while COs are usually restricted in number and not homogenously distributed along chromosomes, we show here how to disrupt these rules in Brassica species by using allotriploid hybrids (AAC, 2n = 3x = 29), resulting from the cross between the allotetraploid rapeseed (B. napus, AACC, 2n = 4x = 38) and one of its diploid progenitors (B. rapa, AA, 2n = 2x = 20). We produced mapping populations from different genotypes of both diploid AA and triploid AAC hybrids, used as female and/or as male. Each population revealed nearly 3,000 COs that we studied with SNP markers well distributed along the A genome (on average 1 SNP per 1.25 Mbp). Compared to the case of diploids, allotriploid hybrids showed 1.7 to 3.4 times more overall COs depending on the sex of meiosis and the genetic background. Most surprisingly, we found that such a rise was always associated with (i) dramatic changes in the shape of recombination landscapes and (ii) a strong decrease of CO interference. Hybrids carrying an additional C genome exhibited COs all along the A chromosomes, even in the vicinity of centromeres that are deprived of COs in diploids as well as in most studied species. Moreover, in male allotriploid hybrids we found that Class I COs are mostly responsible for the changes of CO rates, landscapes and interference. These results offer the opportunity for geneticists and plant breeders to dramatically enhance the generation of diversity in Brassica species by disrupting the linkage drag coming from limits on number and distribution of COs.
Collapse
Affiliation(s)
- Alexandre Pelé
- IGEPP, INRA, Agrocampus Ouest, Université de Rennes 1, Le Rheu, France
| | - Matthieu Falque
- GQE-Le Moulon, INRA, Université Paris-Sud, CNRS, AgroParisTech, Université Paris-Saclay, Gif sur Yvette, France
| | - Gwenn Trotoux
- IGEPP, INRA, Agrocampus Ouest, Université de Rennes 1, Le Rheu, France
| | - Frédérique Eber
- IGEPP, INRA, Agrocampus Ouest, Université de Rennes 1, Le Rheu, France
| | - Sylvie Nègre
- IGEPP, INRA, Agrocampus Ouest, Université de Rennes 1, Le Rheu, France
| | - Marie Gilet
- IGEPP, INRA, Agrocampus Ouest, Université de Rennes 1, Le Rheu, France
| | - Virginie Huteau
- IGEPP, INRA, Agrocampus Ouest, Université de Rennes 1, Le Rheu, France
| | - Maryse Lodé
- IGEPP, INRA, Agrocampus Ouest, Université de Rennes 1, Le Rheu, France
| | | | - Sylvain Dechaumet
- IGEPP, INRA, Agrocampus Ouest, Université de Rennes 1, Le Rheu, France
| | - Jérôme Morice
- IGEPP, INRA, Agrocampus Ouest, Université de Rennes 1, Le Rheu, France
| | | | - Olivier Coriton
- IGEPP, INRA, Agrocampus Ouest, Université de Rennes 1, Le Rheu, France
| | - Olivier C. Martin
- GQE-Le Moulon, INRA, Université Paris-Sud, CNRS, AgroParisTech, Université Paris-Saclay, Gif sur Yvette, France
| | | | - Anne-Marie Chèvre
- IGEPP, INRA, Agrocampus Ouest, Université de Rennes 1, Le Rheu, France
- * E-mail:
| |
Collapse
|
21
|
Complexity of genetic mechanisms conferring nonuniformity of recombination in maize. Sci Rep 2017; 7:1205. [PMID: 28446764 PMCID: PMC5430679 DOI: 10.1038/s41598-017-01240-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2017] [Accepted: 03/28/2017] [Indexed: 11/10/2022] Open
Abstract
Recombinations occur nonuniformly across the maize genome. To dissect the genetic mechanisms underlying the nonuniformity of recombination, we performed quantitative trait locus (QTL) mapping using recombinant inbred line populations. Genome-wide QTL scan identified hundreds of QTLs with both cis-prone and trans- effects for recombination number variation. To provide detailed insights into cis- factors associated with recombination variation, we examined the genomic features around recombination hot regions, including density of genes, DNA transposons, retrotransposons, and some specific motifs. Compared to recombination variation in whole genome, more QTLs were mapped for variations in recombination hot regions. The majority QTLs for recombination hot regions are trans-QTLs and co-localized with genes from the recombination pathway. We also found that recombination variation was positively associated with the presence of genes and DNA transposons, but negatively related to the presence of long terminal repeat retrotransposons. Additionally, 41 recombination hot regions were fine-mapped. The high-resolution genotyping of five randomly selected regions in two F2 populations verified that they indeed have ultra-high recombination frequency, which is even higher than that of the well-known recombination hot regions sh1-bz and a1-sh2. Taken together, our results further our understanding of recombination variation in plants.
Collapse
|
22
|
Martín AC, Rey MD, Shaw P, Moore G. Dual effect of the wheat Ph1 locus on chromosome synapsis and crossover. Chromosoma 2017; 126:669-680. [PMID: 28365783 PMCID: PMC5688220 DOI: 10.1007/s00412-017-0630-0] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2017] [Revised: 03/15/2017] [Accepted: 03/20/2017] [Indexed: 11/28/2022]
Abstract
Allopolyploids must possess a mechanism for facilitating synapsis and crossover (CO) between homologues, in preference to homoeologues (related chromosomes), to ensure successful meiosis. In hexaploid wheat, the Ph1 locus has a major effect on the control of these processes. Studying a wheat mutant lacking Ph1 provides an opportunity to explore the underlying mechanisms. Recently, it was proposed that Ph1 stabilises wheat during meiosis, both by promoting homologue synapsis during early meiosis and preventing MLH1 sites on synapsed homoeologues from becoming COs later in meiosis. Here, we explore these two effects and demonstrate firstly that whether or not Ph1 is present, synapsis between homoeologues does not take place during the telomere bouquet stage, with only homologous synapsis taking place during this stage. Furthermore, in wheat lacking Ph1, overall synapsis is delayed with respect to the telomere bouquet, with more synapsis occurring after the bouquet stage, when homoeologous synapsis is also possible. Secondly, we show that in the absence of Ph1, we can increase the number of MLH1 sites progressing to COs by altering environmental growing conditions; we show that higher nutrient levels in the soil or lower temperatures increase the level of both homologue and homoeologue COs. These observations suggest opportunities to improve the exploitation of the Ph1 wheat mutant in breeding programmes.
Collapse
Affiliation(s)
| | | | - Peter Shaw
- John Innes Centre, Norwich Research Park, Norwich, NR4 7UH, UK
| | - Graham Moore
- John Innes Centre, Norwich Research Park, Norwich, NR4 7UH, UK.
| |
Collapse
|
23
|
Demirci S, van Dijk ADJ, Sanchez Perez G, Aflitos SA, de Ridder D, Peters SA. Distribution, position and genomic characteristics of crossovers in tomato recombinant inbred lines derived from an interspecific cross between Solanum lycopersicum and Solanum pimpinellifolium. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2017; 89:554-564. [PMID: 27797425 DOI: 10.1111/tpj.13406] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2016] [Revised: 10/21/2016] [Accepted: 10/21/2016] [Indexed: 05/20/2023]
Abstract
We determined the crossover (CO) distribution, frequency and genomic sequences involved in interspecies meiotic recombination by using parent-assigned variants of 52 F6 recombinant inbred lines obtained from a cross between tomato, Solanum lycopersicum, and its wild relative, Solanum pimpinellifolium. The interspecific CO frequency was 80% lower than reported for intraspecific tomato crosses. We detected regions showing a relatively high and low CO frequency, so-called hot and cold regions. Cold regions coincide to a large extent with the heterochromatin, although we found a limited number of smaller cold regions in the euchromatin. The CO frequency was higher at the distal ends of chromosomes than in pericentromeric regions and higher in short arm euchromatin. Hot regions of CO were detected in euchromatin, and COs were more often located in non-coding regions near the 5' untranslated region of genes than expected by chance. Besides overrepresented CCN repeats, we detected poly-A/T and AT-rich motifs enriched in 1-kb promoter regions flanking the CO sites. The most abundant sequence motifs at CO sites share weak similarity to transcription factor-binding sites, such as for the C2H2 zinc finger factors class and MADS box factors, while InterPro scans detected enrichment for genes possibly involved in the repair of DNA breaks.
Collapse
Affiliation(s)
- Sevgin Demirci
- Bioinformatics Group, Wageningen University and Research, Wageningen, The Netherlands
- Business Unit of Bioscience, Cluster Applied Bioinformatics, Wageningen University and Research, Droevendaalsesteeg 1, 6708 PB, Wageningen, The Netherlands
| | - Aalt D J van Dijk
- Business Unit of Bioscience, Cluster Applied Bioinformatics, Wageningen University and Research, Droevendaalsesteeg 1, 6708 PB, Wageningen, The Netherlands
- Biometris, Wageningen University and Research, Droevendaalsesteeg 1, 6708 PB, Wageningen, The Netherlands
| | - Gabino Sanchez Perez
- Bioinformatics Group, Wageningen University and Research, Wageningen, The Netherlands
- Business Unit of Bioscience, Cluster Applied Bioinformatics, Wageningen University and Research, Droevendaalsesteeg 1, 6708 PB, Wageningen, The Netherlands
| | - Saulo A Aflitos
- Business Unit of Bioscience, Cluster Applied Bioinformatics, Wageningen University and Research, Droevendaalsesteeg 1, 6708 PB, Wageningen, The Netherlands
| | - Dick de Ridder
- Bioinformatics Group, Wageningen University and Research, Wageningen, The Netherlands
| | - Sander A Peters
- Business Unit of Bioscience, Cluster Applied Bioinformatics, Wageningen University and Research, Droevendaalsesteeg 1, 6708 PB, Wageningen, The Netherlands
| |
Collapse
|
24
|
Pan Q, Li L, Yang X, Tong H, Xu S, Li Z, Li W, Muehlbauer GJ, Li J, Yan J. Genome-wide recombination dynamics are associated with phenotypic variation in maize. THE NEW PHYTOLOGIST 2016; 210:1083-94. [PMID: 26720856 DOI: 10.1111/nph.13810] [Citation(s) in RCA: 65] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2015] [Accepted: 11/11/2015] [Indexed: 05/04/2023]
Abstract
Meiotic recombination is a major driver of genetic diversity, species evolution, and agricultural improvement. Thus, an understanding of the genetic recombination landscape across the maize (Zea mays) genome will provide insight and tools for further study of maize evolution and improvement. Here, we used c. 50 000 single nucleotide polymorphisms to precisely map recombination events in 12 artificial maize segregating populations. We observed substantial variation in the recombination frequency and distribution along the ten maize chromosomes among the 12 populations and identified 143 recombination hot regions. Recombination breakpoints were partitioned into intragenic and intergenic events. Interestingly, an increase in the number of genes containing recombination events was accompanied by a decrease in the number of recombination events per gene. This kept the overall number of intragenic recombination events nearly invariable in a given population, suggesting that the recombination variation observed among populations was largely attributed to intergenic recombination. However, significant associations between intragenic recombination events and variation in gene expression and agronomic traits were observed, suggesting potential roles for intragenic recombination in plant phenotypic diversity. Our results provide a comprehensive view of the maize recombination landscape, and show an association between recombination, gene expression and phenotypic variation, which may enhance crop genetic improvement.
Collapse
Affiliation(s)
- Qingchun Pan
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China
| | - Lin Li
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China
- Department of Agronomy and Plant Genetics, University of Minnesota, Saint Paul, MN, 55108, USA
| | - Xiaohong Yang
- National Maize Improvement Center of China, China Agricultural University, Beijing, 100193, China
| | - Hao Tong
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China
| | - Shutu Xu
- National Maize Improvement Center of China, China Agricultural University, Beijing, 100193, China
| | - Zhigang Li
- National Maize Improvement Center of China, China Agricultural University, Beijing, 100193, China
| | - Weiya Li
- National Maize Improvement Center of China, China Agricultural University, Beijing, 100193, China
| | - Gary J Muehlbauer
- Department of Agronomy and Plant Genetics, University of Minnesota, Saint Paul, MN, 55108, USA
- Department of Plant Biology, University of Minnesota, Saint Paul, MN, 55108, USA
| | - Jiansheng Li
- National Maize Improvement Center of China, China Agricultural University, Beijing, 100193, China
| | - Jianbing Yan
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China
| |
Collapse
|
25
|
Wang C, Wang Y, Cheng Z, Zhao Z, Chen J, Sheng P, Yu Y, Ma W, Duan E, Wu F, Liu L, Qin R, Zhang X, Guo X, Wang J, Jiang L, Wan J. The role of OsMSH4 in male and female gamete development in rice meiosis. JOURNAL OF EXPERIMENTAL BOTANY 2016; 67:1447-59. [PMID: 26712826 PMCID: PMC4762385 DOI: 10.1093/jxb/erv540] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Meiosis is essential for gametogenesis in sexual reproduction in rice (Oryza sativa L.). We identified a MutS-homolog (MSH) family gene OsMSH4 in a trisomic plant. Cytological analysis showed that developments of both pollen and embryo sacs in an Osmsh4 mutant were blocked due to defective chromosome pairing. Compared with the wild type, the Osmsh4 mutant displayed a significant ~21.9% reduction in chiasma frequency, which followed a Poisson distribution, suggesting that class I crossover formation in the mutant was impaired. Temporal and spatial expression pattern analyses showed that OsMSH4 was preferentially expressed in meiocytes during their meiosis, indicating a critical role in gametogenesis. Subcellular localization showed that OsMSH4-green fluorescent protein was predominantly located in the nucleus. OsMSH4 could interact with another MSH member (OsMSH5) through the N-terminus and C-terminus, respectively. Direct physical interaction between OsMSH5, OsRPA1a, OsRPA2b, OsRPA1c, and OsRPA2c was identified by yeast two-hybrid assays and further validated by pull-down assays. Our results supported the conclusion that the OsMSH4/5 heterodimer plays a key role in regulation of crossover formation during rice meiosis by interaction with the RPA complex.
Collapse
Affiliation(s)
- Chaolong Wang
- National Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Yang Wang
- National Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Zhijun Cheng
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing 100081, PR China
| | - Zhigang Zhao
- National Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Jun Chen
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing 100081, PR China
| | - Peike Sheng
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing 100081, PR China
| | - Yang Yu
- National Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Weiwei Ma
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing 100081, PR China
| | - Erchao Duan
- National Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Fuqing Wu
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing 100081, PR China
| | - Linglong Liu
- National Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Ruizhen Qin
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing 100081, PR China
| | - Xin Zhang
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing 100081, PR China
| | - Xiuping Guo
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing 100081, PR China
| | - Jiulin Wang
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing 100081, PR China
| | - Ling Jiang
- National Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Jianmin Wan
- National Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing 210095, PR China National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing 100081, PR China
| |
Collapse
|
26
|
Zickler D, Espagne E. Sordaria, a model system to uncover links between meiotic pairing and recombination. Semin Cell Dev Biol 2016; 54:149-57. [PMID: 26877138 DOI: 10.1016/j.semcdb.2016.02.012] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2016] [Accepted: 02/08/2016] [Indexed: 11/20/2022]
Abstract
The mycelial fungus Sordaria macrospora was first used as experimental system for meiotic recombination. This review shows that it provides also a powerful cytological system for dissecting chromosome dynamics in wild-type and mutant meioses. Fundamental cytogenetic findings include: (1) the identification of presynaptic alignment as a key step in pairing of homologous chromosomes. (2) The discovery that biochemical complexes that mediate recombination at the DNA level concomitantly mediate pairing of homologs. (3) This pairing process involves not only resolution but also avoidance of chromosomal entanglements and the resolution system includes dissolution of constraining DNA recombination interactions, achieved by a unique role of Mlh1. (4) Discovery that the central components of the synaptonemal complex directly mediate the re-localization of the recombination proteins from on-axis to in-between homologue axis positions. (5) Identification of putative STUbL protein Hei10 as a structure-based signal transduction molecule that coordinates progression and differentiation of recombinational interactions at multiple stages. (6) Discovery that a single interference process mediates both nucleation of the SC and designation of crossover sites, thereby ensuring even spacing of both features. (7) Discovery of local modulation of sister-chromatid cohesion at sites of crossover recombination.
Collapse
Affiliation(s)
- Denise Zickler
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Université Paris-Sud, Université Paris-Saclay, 91198 Gif-sur-Yvette Cedex, France.
| | - Eric Espagne
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Université Paris-Sud, Université Paris-Saclay, 91198 Gif-sur-Yvette Cedex, France
| |
Collapse
|
27
|
He Y, Wang M, Sun Q, Pawlowski WP. Mapping Recombination Initiation Sites Using Chromatin Immunoprecipitation. Methods Mol Biol 2016; 1429:177-88. [PMID: 27511175 DOI: 10.1007/978-1-4939-3622-9_14] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Genome-wide maps of recombination sites provide valuable information not only on the recombination pathway itself but also facilitate the understanding of genome dynamics and evolution. Here, we describe a chromatin immunoprecipitation (ChIP) protocol to map the sites of recombination initiation in plants with maize used as an example. ChIP is a method that allows identification of chromosomal sites occupied by specific proteins. Our protocol utilizes RAD51, a protein involved in repair of double-strand breaks (DSBs) that initiate meiotic recombination, to identify DSB formation hotspots. Chromatin is extracted from meiotic flowers, sheared and enriched in fragments bound to RAD51. Genomic location of the protein is then identified by next-generation sequencing. This protocol can also be used in other species of plants, animals, and fungi.
Collapse
Affiliation(s)
- Yan He
- National Maize Improvement Center of China, Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing, 100083, China
| | - Minghui Wang
- Institute of Biotechnology, Biotechnology Resource Center and Section of Plant Biology in School of IntegrativePlant Science, Cornell University, Ithaca, NY, 14853, USA
| | - Qi Sun
- Institute of Biotechnology, Biotechnology Resource Center, Cornell University, Ithaca, NY, 14853, USA
| | - Wojciech P Pawlowski
- Section of Plant Biology, School of Integrative Plant Science, Cornell University, Ithaca, NY, 14853, USA.
| |
Collapse
|
28
|
Barabaschi D, Tondelli A, Desiderio F, Volante A, Vaccino P, Valè G, Cattivelli L. Next generation breeding. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2016; 242:3-13. [PMID: 26566820 DOI: 10.1016/j.plantsci.2015.07.010] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2015] [Revised: 07/10/2015] [Accepted: 07/11/2015] [Indexed: 05/18/2023]
Abstract
The genomic revolution of the past decade has greatly improved our understanding of the genetic make-up of living organisms. The sequencing of crop genomes has completely changed our vision and interpretation of genome organization and evolution. Re-sequencing allows the identification of an unlimited number of markers as well as the analysis of germplasm allelic diversity based on allele mining approaches. High throughput marker technologies coupled with advanced phenotyping platforms provide new opportunities for discovering marker-trait associations which can sustain genomic-assisted breeding. The availability of genome sequencing information is enabling genome editing (site-specific mutagenesis), to obtain gene sequences desired by breeders. This review illustrates how next generation sequencing-derived information can be used to tailor genomic tools for different breeders' needs to revolutionize crop improvement.
Collapse
Affiliation(s)
- Delfina Barabaschi
- Consiglio per la ricerca in agricoltura e l'analisi dell'economia agraria, Genomics Research Centre, Via San Protaso 302, 29017 Fiorenzuola d'Arda, Italy
| | - Alessandro Tondelli
- Consiglio per la ricerca in agricoltura e l'analisi dell'economia agraria, Genomics Research Centre, Via San Protaso 302, 29017 Fiorenzuola d'Arda, Italy
| | - Francesca Desiderio
- Consiglio per la ricerca in agricoltura e l'analisi dell'economia agraria, Genomics Research Centre, Via San Protaso 302, 29017 Fiorenzuola d'Arda, Italy
| | - Andrea Volante
- Consiglio per la ricerca in agricoltura e l'analisi dell'economia agraria, Rice Research Unit, SS 11 to Torino Km 2.5, 13100 Vercelli, Italy
| | - Patrizia Vaccino
- Consiglio per la ricerca in agricoltura e l'analisi dell'economia agraria, Research Unit for Cereal Selection in Continental areas, via R. Forlani, e, 26866 S. Angelo Lodigiano, Italy
| | - Giampiero Valè
- Consiglio per la ricerca in agricoltura e l'analisi dell'economia agraria, Rice Research Unit, SS 11 to Torino Km 2.5, 13100 Vercelli, Italy
| | - Luigi Cattivelli
- Consiglio per la ricerca in agricoltura e l'analisi dell'economia agraria, Genomics Research Centre, Via San Protaso 302, 29017 Fiorenzuola d'Arda, Italy.
| |
Collapse
|
29
|
Bayer PE, Ruperao P, Mason AS, Stiller J, Chan CKK, Hayashi S, Long Y, Meng J, Sutton T, Visendi P, Varshney RK, Batley J, Edwards D. High-resolution skim genotyping by sequencing reveals the distribution of crossovers and gene conversions in Cicer arietinum and Brassica napus. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2015; 128:1039-47. [PMID: 25754422 DOI: 10.1007/s00122-015-2488-y] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2014] [Accepted: 02/24/2015] [Indexed: 05/03/2023]
Abstract
We characterise the distribution of crossover and non-crossover recombination in Brassica napus and Cicer arietinum using a low-coverage genotyping by sequencing pipeline SkimGBS. The growth of next-generation DNA sequencing technologies has led to a rapid increase in sequence-based genotyping for applications including diversity assessment, genome structure validation and gene-trait association. We have established a skim-based genotyping by sequencing method for crop plants and applied this approach to genotype-segregating populations of Brassica napus and Cicer arietinum. Comparison of progeny genotypes with those of the parental individuals allowed the identification of crossover and non-crossover (gene conversion) events. Our results identify the positions of recombination events with high resolution, permitting the mapping and frequency assessment of recombination in segregating populations.
Collapse
Affiliation(s)
- Philipp E Bayer
- School of Agriculture and Food Sciences, University of Queensland, Brisbane, 4072, Australia
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Duroc Y, Lemhemdi A, Larchevêque C, Hurel A, Cuacos M, Cromer L, Horlow C, Armstrong SJ, Chelysheva L, Mercier R. The kinesin AtPSS1 promotes synapsis and is required for proper crossover distribution in meiosis. PLoS Genet 2014; 10:e1004674. [PMID: 25330379 PMCID: PMC4199493 DOI: 10.1371/journal.pgen.1004674] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2014] [Accepted: 08/14/2014] [Indexed: 11/19/2022] Open
Abstract
Meiotic crossovers (COs) shape genetic diversity by mixing homologous chromosomes at each generation. CO distribution is a highly regulated process. CO assurance forces the occurrence of at least one obligatory CO per chromosome pair, CO homeostasis smoothes out the number of COs when faced with variation in precursor number and CO interference keeps multiple COs away from each other along a chromosome. In several organisms, it has been shown that cytoskeleton forces are transduced to the meiotic nucleus via KASH- and SUN-domain proteins, to promote chromosome synapsis and recombination. Here we show that the Arabidopsis kinesin AtPSS1 plays a major role in chromosome synapsis and regulation of CO distribution. In Atpss1 meiotic cells, chromosome axes and DNA double strand breaks (DSBs) appear to form normally but only a variable portion of the genome synapses and is competent for CO formation. Some chromosomes fail to form the obligatory CO, while there is an increased CO density in competent regions. However, the total number of COs per cell is unaffected. We further show that the kinesin motor domain of AtPSS1 is required for its meiotic function, and that AtPSS1 interacts directly with WIP1 and WIP2, two KASH-domain proteins. Finally, meiocytes missing AtPSS1 and/or SUN proteins show similar meiotic defects suggesting that AtPSS1 and SUNs act in the same pathway. This suggests that forces produced by the AtPSS1 kinesin and transduced by WIPs/SUNs, are required to authorize complete synapsis and regulate maturation of recombination intermediates into COs. We suggest that a form of homeostasis applies, which maintains the total number of COs per cell even if only a part of the genome is competent for CO formation. In species that reproduce sexually, diploid individuals have two copies of each chromosome, inherited from their father and mother. During a special cell division called meiosis, these two sets of chromosomes are mixed by homologous recombination to give genetically unique chromosomes that will be transmitted to the next generation. Homologous recombination processes are highly controlled in terms of number and localization of events within and among chromosomes. Disruption of this control (a lack of or improper positioning of homologous recombination events) causes deleterious chromosome associations in the offspring. Using the model plant Arabidopsis thaliana we reveal here that the AtPSS1 gene is required for proper localization of these homologous recombination events along the genome. We also show that AtPSS1, which belongs to a family of proteins able to move along the cytoskeleton, is likely part of a module that allows cytoplasmic forces to be transmitted through the nucleus envelope to promote chromosome movements during homologous recombination progression.
Collapse
Affiliation(s)
- Yann Duroc
- The French National Institute for Agricultural Research (INRA), Institut Jean-Pierre Bourgin, UMR 1318, ERL CNRS 3559, Saclay Plant Sciences, RD10, Versailles, France
- AgroParisTech, Institut Jean-Pierre Bourgin, UMR 1318, ERL CNRS 3559, Saclay Plant Sciences, RD10, Versailles, France
| | - Afef Lemhemdi
- The French National Institute for Agricultural Research (INRA), Institut Jean-Pierre Bourgin, UMR 1318, ERL CNRS 3559, Saclay Plant Sciences, RD10, Versailles, France
- AgroParisTech, Institut Jean-Pierre Bourgin, UMR 1318, ERL CNRS 3559, Saclay Plant Sciences, RD10, Versailles, France
| | - Cécile Larchevêque
- The French National Institute for Agricultural Research (INRA), Institut Jean-Pierre Bourgin, UMR 1318, ERL CNRS 3559, Saclay Plant Sciences, RD10, Versailles, France
- AgroParisTech, Institut Jean-Pierre Bourgin, UMR 1318, ERL CNRS 3559, Saclay Plant Sciences, RD10, Versailles, France
| | - Aurélie Hurel
- The French National Institute for Agricultural Research (INRA), Institut Jean-Pierre Bourgin, UMR 1318, ERL CNRS 3559, Saclay Plant Sciences, RD10, Versailles, France
- AgroParisTech, Institut Jean-Pierre Bourgin, UMR 1318, ERL CNRS 3559, Saclay Plant Sciences, RD10, Versailles, France
| | - Maria Cuacos
- School of Biosciences, University of Birmingham, Birmingham, United Kingdom
| | - Laurence Cromer
- The French National Institute for Agricultural Research (INRA), Institut Jean-Pierre Bourgin, UMR 1318, ERL CNRS 3559, Saclay Plant Sciences, RD10, Versailles, France
- AgroParisTech, Institut Jean-Pierre Bourgin, UMR 1318, ERL CNRS 3559, Saclay Plant Sciences, RD10, Versailles, France
| | - Christine Horlow
- The French National Institute for Agricultural Research (INRA), Institut Jean-Pierre Bourgin, UMR 1318, ERL CNRS 3559, Saclay Plant Sciences, RD10, Versailles, France
- AgroParisTech, Institut Jean-Pierre Bourgin, UMR 1318, ERL CNRS 3559, Saclay Plant Sciences, RD10, Versailles, France
| | - Susan J. Armstrong
- School of Biosciences, University of Birmingham, Birmingham, United Kingdom
| | - Liudmila Chelysheva
- The French National Institute for Agricultural Research (INRA), Institut Jean-Pierre Bourgin, UMR 1318, ERL CNRS 3559, Saclay Plant Sciences, RD10, Versailles, France
- AgroParisTech, Institut Jean-Pierre Bourgin, UMR 1318, ERL CNRS 3559, Saclay Plant Sciences, RD10, Versailles, France
| | - Raphael Mercier
- The French National Institute for Agricultural Research (INRA), Institut Jean-Pierre Bourgin, UMR 1318, ERL CNRS 3559, Saclay Plant Sciences, RD10, Versailles, France
- AgroParisTech, Institut Jean-Pierre Bourgin, UMR 1318, ERL CNRS 3559, Saclay Plant Sciences, RD10, Versailles, France
- * E-mail:
| |
Collapse
|
31
|
Jahns MT, Vezon D, Chambon A, Pereira L, Falque M, Martin OC, Chelysheva L, Grelon M. Crossover localisation is regulated by the neddylation posttranslational regulatory pathway. PLoS Biol 2014; 12:e1001930. [PMID: 25116939 PMCID: PMC4130666 DOI: 10.1371/journal.pbio.1001930] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2014] [Accepted: 07/03/2014] [Indexed: 12/21/2022] Open
Abstract
A genetic study finds the neddylation pathway (known to-date for post-translational protein modification) is involved in regulating crossover localization but not crossover number during meiosis in Arabidopsis. Crossovers (COs) are at the origin of genetic variability, occurring across successive generations, and they are also essential for the correct segregation of chromosomes during meiosis. Their number and position are precisely controlled, however the mechanisms underlying these controls are poorly understood. Neddylation/rubylation is a regulatory pathway of posttranslational protein modification that is required for numerous cellular processes in eukaryotes, but has not yet been linked to homologous recombination. In a screen for meiotic recombination-defective mutants, we identified several axr1 alleles, disrupting the gene encoding the E1 enzyme of the neddylation complex in Arabidopsis. Using genetic and cytological approaches we found that axr1 mutants are characterised by a shortage in bivalent formation correlated with strong synapsis defects. We determined that the bivalent shortage in axr1 is not due to a general decrease in CO formation but rather due to a mislocalisation of class I COs. In axr1, as in wild type, COs are still under the control of the ZMM group of proteins. However, in contrast to wild type, they tend to cluster together and no longer follow the obligatory CO rule. Lastly, we showed that this deregulation of CO localisation is likely to be mediated by the activity of a cullin 4 RING ligase, known to be involved in DNA damage sensing during somatic DNA repair and mouse spermatogenesis. In conclusion, we provide evidence that the neddylation/rubylation pathway of protein modification is a key regulator of meiotic recombination. We propose that rather than regulating the number of recombination events, this pathway regulates their localisation, through the activation of cullin 4 RING ligase complexes. Possible targets for these ligases are discussed. During meiosis, two successive chromosomal divisions follow a single S phase, resulting in the formation of four haploid cells, each with half of the parental genetic material. This reduction in chromosome number occurs during the first meiotic division, when homologous chromosomes (paternal and maternal) are separated from each other. For this to happen, homologous chromosomes associate in structures called bivalents, where each chromosome is linked to its homologue by a point of contact known as chiasmata. These chiasmata reflect the formation of crossovers (COs), one of the manifestations of the exchange of genetic material occurring during homologous recombination. CO number varies little at around two per chromosome pair, and they tend to be evenly spaced on chromosomes. Thus, CO number and distribution are very tightly controlled. However, the mechanisms underlying these controls are very poorly understood. In this study, we identified a regulatory pathway of meiotic recombination. We show that this pathway does not regulate the amount of recombination events per se, but instead controls their localisation, as when it is defective, CO events cluster together in a few regions of the genome, leading to bivalent shortage and progeny aneuploidy with incorrect numbers of chromosomes. This regulatory pathway is a posttranslational protein modification system called neddylation (or rubylation in plants), known to be required for numerous cellular processes in eukaryotes. We identify an enzyme of the neddylation complex as a major regulator of meiotic recombination in Arabidopsis and show that this process may be also conserved in mammals.
Collapse
Affiliation(s)
- Marina Tagliaro Jahns
- INRA, Institut Jean-Pierre Bourgin, UMR 1318, ERL CNRS 3559, Saclay Plant Sciences, RD10, Versailles, France
- AgroParisTech, Institut Jean-Pierre Bourgin, UMR 1318, ERL CNRS 3559, Saclay Plant Sciences, RD10, Versailles, France
| | - Daniel Vezon
- INRA, Institut Jean-Pierre Bourgin, UMR 1318, ERL CNRS 3559, Saclay Plant Sciences, RD10, Versailles, France
- AgroParisTech, Institut Jean-Pierre Bourgin, UMR 1318, ERL CNRS 3559, Saclay Plant Sciences, RD10, Versailles, France
| | - Aurélie Chambon
- INRA, Institut Jean-Pierre Bourgin, UMR 1318, ERL CNRS 3559, Saclay Plant Sciences, RD10, Versailles, France
- AgroParisTech, Institut Jean-Pierre Bourgin, UMR 1318, ERL CNRS 3559, Saclay Plant Sciences, RD10, Versailles, France
| | - Lucie Pereira
- INRA, Institut Jean-Pierre Bourgin, UMR 1318, ERL CNRS 3559, Saclay Plant Sciences, RD10, Versailles, France
- AgroParisTech, Institut Jean-Pierre Bourgin, UMR 1318, ERL CNRS 3559, Saclay Plant Sciences, RD10, Versailles, France
| | - Matthieu Falque
- Institut National de la Recherche Agronomique, Unité Mixte de Recherche de Génétique Végétale, Université Paris-Sud, Gif-sur-Yvette, France
| | - Olivier C. Martin
- Institut National de la Recherche Agronomique, Unité Mixte de Recherche de Génétique Végétale, Université Paris-Sud, Gif-sur-Yvette, France
| | - Liudmila Chelysheva
- INRA, Institut Jean-Pierre Bourgin, UMR 1318, ERL CNRS 3559, Saclay Plant Sciences, RD10, Versailles, France
- AgroParisTech, Institut Jean-Pierre Bourgin, UMR 1318, ERL CNRS 3559, Saclay Plant Sciences, RD10, Versailles, France
| | - Mathilde Grelon
- INRA, Institut Jean-Pierre Bourgin, UMR 1318, ERL CNRS 3559, Saclay Plant Sciences, RD10, Versailles, France
- AgroParisTech, Institut Jean-Pierre Bourgin, UMR 1318, ERL CNRS 3559, Saclay Plant Sciences, RD10, Versailles, France
- * E-mail:
| |
Collapse
|
32
|
Licensing MLH1 sites for crossover during meiosis. Nat Commun 2014; 5:4580. [PMID: 25098240 PMCID: PMC4143925 DOI: 10.1038/ncomms5580] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2014] [Accepted: 07/02/2014] [Indexed: 11/29/2022] Open
Abstract
During meiosis, homologous chromosomes synapse and recombine at sites marked by the binding of the mismatch repair protein MLH1. In hexaploid wheat, the Ph1 locus has a major effect on whether crossover occurs between homologues or between related homoeologues. Here we report that—in wheat–rye hybrids where homologues are absent—Ph1 affects neither the level of synapsis nor the number of MLH1. Thus in the case of wheat–wild relative hybrids, Ph1 must affect whether MLH1 sites are able to progress to crossover. The observed level of synapsis implies that Ph1 functions to promote homologue pairing rather than suppress homoeologue pairing in wheat. Therefore, Ph1 stabilises polyploidy in wheat by both promoting homologue pairing and preventing MLH1 sites from becoming crossovers on paired homoeologues during meiosis. Fertility in polyploid species relies on pairing and recombination occurring only between true homologues rather than the diverged homoeologous chromosomes also present. Here, Martin et al. show that Ph1 stabilises polyploidy in wheat by promoting homologue pairing and preventing crossovers on paired homoeologues during meiosis.
Collapse
|
33
|
|
34
|
Grandont L, Cuñado N, Coriton O, Huteau V, Eber F, Chèvre AM, Grelon M, Chelysheva L, Jenczewski E. Homoeologous Chromosome Sorting and Progression of Meiotic Recombination in Brassica napus: Ploidy Does Matter! THE PLANT CELL 2014; 26:1448-1463. [PMID: 24737673 PMCID: PMC4036564 DOI: 10.1105/tpc.114.122788] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2014] [Revised: 03/04/2014] [Accepted: 03/26/2014] [Indexed: 05/18/2023]
Abstract
Meiotic recombination is the fundamental process that produces balanced gametes and generates diversity within species. For successful meiosis, crossovers must form between homologous chromosomes. This condition is more difficult to fulfill in allopolyploid species, which have more than two sets of related chromosomes (homoeologs). Here, we investigated the formation, progression, and completion of several key hallmarks of meiosis in Brassica napus (AACC), a young polyphyletic allotetraploid crop species with closely related homoeologous chromosomes. Altogether, our results demonstrate a precocious and efficient sorting of homologous versus homoeologous chromosomes during early prophase I in two representative B. napus accessions that otherwise show a genotypic difference in the progression of homologous recombination. More strikingly, our detailed comparison of meiosis in near isogenic allohaploid and euploid plants showed that the mechanism(s) promoting efficient chromosome sorting in euploids is adjusted to promote crossover formation between homoeologs in allohaploids. This suggests that, in contrast to other polyploid species, chromosome sorting is context dependent in B. napus.
Collapse
Affiliation(s)
- Laurie Grandont
- INRA, UMR1318, Institut Jean-Pierre Bourgin, F-78000 Versailles, France AgroParisTech, Institut Jean-Pierre Bourgin, F-78000 Versailles, France
| | - Nieves Cuñado
- Departamento de Génetica, Facultad de Biología, Universidad Complutense, 28040 Madrid, Spain
| | - Olivier Coriton
- INRA, UMR 1349, Institut de Génétique, Environnement et Protection des Plantes, F-35653 Le Rheu Cedex, France
| | - Virgine Huteau
- INRA, UMR 1349, Institut de Génétique, Environnement et Protection des Plantes, F-35653 Le Rheu Cedex, France
| | - Frédérique Eber
- INRA, UMR 1349, Institut de Génétique, Environnement et Protection des Plantes, F-35653 Le Rheu Cedex, France
| | - Anne Marie Chèvre
- INRA, UMR 1349, Institut de Génétique, Environnement et Protection des Plantes, F-35653 Le Rheu Cedex, France
| | - Mathilde Grelon
- INRA, UMR1318, Institut Jean-Pierre Bourgin, F-78000 Versailles, France AgroParisTech, Institut Jean-Pierre Bourgin, F-78000 Versailles, France
| | - Liudmila Chelysheva
- INRA, UMR1318, Institut Jean-Pierre Bourgin, F-78000 Versailles, France AgroParisTech, Institut Jean-Pierre Bourgin, F-78000 Versailles, France
| | - Eric Jenczewski
- INRA, UMR1318, Institut Jean-Pierre Bourgin, F-78000 Versailles, France AgroParisTech, Institut Jean-Pierre Bourgin, F-78000 Versailles, France
| |
Collapse
|
35
|
Suay L, Zhang D, Eber F, Jouy H, Lodé M, Huteau V, Coriton O, Szadkowski E, Leflon M, Martin OC, Falque M, Jenczewski E, Paillard S, Chèvre AM. Crossover rate between homologous chromosomes and interference are regulated by the addition of specific unpaired chromosomes in Brassica. THE NEW PHYTOLOGIST 2014; 201:645-656. [PMID: 24117470 DOI: 10.1111/nph.12534] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2013] [Accepted: 08/22/2013] [Indexed: 05/25/2023]
Abstract
Recombination is a major mechanism generating genetic diversity, but the control of the crossover rate remains a key question. In Brassica napus (AACC, 2n = 38), we can increase the homologous recombination between A genomes in AAC hybrids. Hypotheses for this effect include the number of C univalent chromosomes, the ratio between univalents and bivalents and, finally, which of the chromosomes are univalents. To test these hypotheses, we produced AA hybrids with zero, one, three, six or nine additional C chromosomes and four different hybrids carrying 2n = 32 and 2n = 35 chromosomes. The genetic map lengths for each hybrid were established to compare their recombination rates. The rates were 1.4 and 2.7 times higher in the hybrids having C6 or C9 alone than in the control (0C). This enhancement reached 3.1 and 4.1 times in hybrids carrying six and nine C chromosomes, and it was also higher for each pair of hybrids carrying 2n = 32 or 2n = 35 chromosomes, with a dependence on which chromosomes remained as univalents. We have shown, for the first time, that the presence of one chromosome, C9 , affects significantly the recombination rate and reduces crossover interference. This result will have fundamental implications on the regulation of crossover frequency.
Collapse
Affiliation(s)
- Loreto Suay
- INRA, UMR 1349, Institut de Génétique, Environnement et Protection des plantes, BP 35327, F-35653, Le Rheu Cedex, France
| | - Deshuang Zhang
- INRA, UMR 1349, Institut de Génétique, Environnement et Protection des plantes, BP 35327, F-35653, Le Rheu Cedex, France
- Beijing Vegetable Research Center (BVRC) of BAAFS, National Engineering Research Center for Vegetables (NERCV), 50 Zhanghua Street, Haidian District, PO Box 2443, Beijing , 100097, China
| | - Frédérique Eber
- INRA, UMR 1349, Institut de Génétique, Environnement et Protection des plantes, BP 35327, F-35653, Le Rheu Cedex, France
| | - Hélène Jouy
- INRA, UMR 1349, Institut de Génétique, Environnement et Protection des plantes, BP 35327, F-35653, Le Rheu Cedex, France
| | - Maryse Lodé
- INRA, UMR 1349, Institut de Génétique, Environnement et Protection des plantes, BP 35327, F-35653, Le Rheu Cedex, France
| | - Virginie Huteau
- INRA, UMR 1349, Institut de Génétique, Environnement et Protection des plantes, BP 35327, F-35653, Le Rheu Cedex, France
| | - Olivier Coriton
- INRA, UMR 1349, Institut de Génétique, Environnement et Protection des plantes, BP 35327, F-35653, Le Rheu Cedex, France
| | - Emmanuel Szadkowski
- INRA, UMR 1349, Institut de Génétique, Environnement et Protection des plantes, BP 35327, F-35653, Le Rheu Cedex, France
| | - Martine Leflon
- CETIOM, Avenue Lucien Brétignières, Campus de Grignon, F-78850, Thiverval Grignon, France
| | - Olivier C Martin
- INRA, UMR0320 INRA-CNRS-Université Paris XI-AgroParisTech, Génétique Végétale, Ferme du Moulon, 91190, Gif sur Yvette, France
| | - Matthieu Falque
- INRA, UMR0320 INRA-CNRS-Université Paris XI-AgroParisTech, Génétique Végétale, Ferme du Moulon, 91190, Gif sur Yvette, France
| | - Eric Jenczewski
- INRA, Institut Jean-Pierre Bourgin, UMR1318 INRA-AgroParisTech, Bâtiment 7, INRA Centre de Versailles-Grignon, Route de St-Cyr (RD10), 78026, Versailles Cedex, France
| | - Sophie Paillard
- INRA, UMR 1349, Institut de Génétique, Environnement et Protection des plantes, BP 35327, F-35653, Le Rheu Cedex, France
| | - Anne-Marie Chèvre
- INRA, UMR 1349, Institut de Génétique, Environnement et Protection des plantes, BP 35327, F-35653, Le Rheu Cedex, France
| |
Collapse
|
36
|
Contrasted patterns of crossover and non-crossover at Arabidopsis thaliana meiotic recombination hotspots. PLoS Genet 2013; 9:e1003922. [PMID: 24244190 PMCID: PMC3828143 DOI: 10.1371/journal.pgen.1003922] [Citation(s) in RCA: 78] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2013] [Accepted: 09/11/2013] [Indexed: 11/25/2022] Open
Abstract
The vast majority of meiotic recombination events (crossovers (COs) and non-crossovers (NCOs)) cluster in narrow hotspots surrounded by large regions devoid of recombinational activity. Here, using a new molecular approach in plants, called “pollen-typing”, we detected and characterized hundreds of CO and NCO molecules in two different hotspot regions in Arabidopsis thaliana. This analysis revealed that COs are concentrated in regions of a few kilobases where their rates reach up to 50 times the genome average. The hotspots themselves tend to cluster in regions less than 8 kilobases in size with overlapping CO distribution. Non-crossover (NCO) events also occurred in the two hotspots but at very different levels (local CO/NCO ratios of 1/1 and 30/1) and their track lengths were quite small (a few hundred base pairs). We also showed that the ZMM protein MSH4 plays a role in CO formation and somewhat unexpectedly we also found that it is involved in the generation of NCOs but with a different level of effect. Finally, factors acting in cis and in trans appear to shape the rate and distribution of COs at meiotic recombination hotspots. During meiosis, genomes are reshuffled by recombination between homologous chromosomes. Reciprocal recombination events called crossovers are clustered in several kilobase-wide regions called hotspots, where their frequency is greatly enhanced compared to adjacent regions. Our understanding of hotspot organization is based on analyses performed in only a few species and rules differ between species. For the first time, hundreds of recombination events were analyzed in Arabidopsis thaliana revealing several new features: (i) crossovers are concentrated in hotspots where their rate reaches up to 50 times the genome average; (ii) non-crossovers events, (also called gene conversions not associated with crossovers) also occur in hotspots but at very different levels; and (iii) in the absence of the recombination protein MSH4, the crossover rate is dramatically reduced (70 times less than the wild-type level) and the crossover distribution within a hotspot is also largely modified; unexpectedly, the non-crossover rate was also altered (15% of the wild-type level at a hotspot). Finally we showed that factors acting in cis and in trans may influence the level and distribution of crossovers at and between hotspots.
Collapse
|
37
|
Diener AC. Routine mapping of Fusarium wilt resistance in BC(1) populations of Arabidopsis thaliana. BMC PLANT BIOLOGY 2013; 13:171. [PMID: 24172069 PMCID: PMC3819736 DOI: 10.1186/1471-2229-13-171] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2013] [Accepted: 10/26/2013] [Indexed: 05/05/2023]
Abstract
BACKGROUND Susceptibility to Fusarium wilt disease varies among wild accessions of Arabidopsis thaliana. Six RESISTANCE TO FUSARIUM OXYSPORUM (RFO) quantitative trait loci (QTLs) controlling the resistance of accession Columbia-0 (Col-0) and susceptibility of Taynuilt-0 to Fusarium oxysporum forma specialis matthioli (FOM) are detected in a recombinant population derived from a single backcross of the F1 hybrid (BC1). In particular, the RFO1 QTL appears to interact with three other loci, RFO2, RFO4 and RFO6, and is attributed to the gene At1g79670. RESULTS When resistance to FOM was mapped in a new BC(1) population, in which the loss-of-function mutant of At1g79670 replaced wild type as the Col-0 parent, RFO1's major effect and RFO1's interaction with RFO2, RFO4 and RFO6 were absent, showing that At1g79670 alone accounts for the RFO1 QTL. Resistance of two QTLs, RFO3 and RFO5, was independent of RFO1 and was reproduced in the new BC(1) population. In analysis of a third BC1 population, resistance to a second pathogen, F. oxysporum forma specialis conglutinans race 1 (FOC1), was mapped and the major effect locus RFO7 was identified. CONCLUSIONS Natural quantitative resistance to F. oxysporum is largely specific to the infecting forma specialis because different RFO loci were responsible for resistance to FOM and FOC1. The mapping of quantitative disease resistance traits in BC(1) populations, generated from crosses between sequenced Arabidopsis accessions, can be a routine procedure when genome-wide genotyping is efficient, economical and accessible.
Collapse
Affiliation(s)
- Andrew C Diener
- Department of Molecular, Cell and Developmental Biology, University of California, Terasaki Life Sciences Building, 610 Charles E, Young Drive East, Los Angeles, CA 90095, USA.
| |
Collapse
|
38
|
Identifying crossover-rich regions and their effect on meiotic homologous interactions by partitioning chromosome arms of wheat and rye. Chromosome Res 2013; 21:433-45. [PMID: 23843032 DOI: 10.1007/s10577-013-9372-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2013] [Revised: 06/21/2013] [Accepted: 06/26/2013] [Indexed: 10/26/2022]
Abstract
Chiasmata are usually formed in the distal half of cereal chromosomes. Previous studies showed that the crossover-rich region displays a more active role in homologous recognition at early meiosis than crossover-poor regions in the long arm of rye chromosome 1R, but not in the long arm of chromosome 5R. In order to determine what happens in other chromosomes of rye and wheat, we have partitioned, by wheat-rye translocations of variable-size, the distal fourth part of chromosome arms 1BS and 2BL of wheat and 1RS and 2RL of rye. Synapsis and chiasma formation in chromosome pairs with homologous (wheat-wheat or rye-rye) and homoeologous (wheat-rye) stretches, positioned distally and proximally, respectively, or vice versa, have been studied by rye chromatin labelling using fluorescence in situ hybridisation. Chromosome arm partitioning showed that the distal 12 % of 1BS form one crossover in 50 % of the cells, while the distal 6.7 % of 2RL and the distal 10.5 % of 2BL account for 94 % and 81 % of chiasmata formed in these arms. Distal homoeologous segments reduce the frequency of chiasmata and the possibility of interaction between the intercalary/proximal homologous segments. Such a reduction is related to the size of the homoeologous (translocated) segment. The effect on synapsis and chiasma formation was much lower in chromosome constructions with distal homology and proximal homoeology. All of these data support that among wheat and rye chromosomes, recombining regions are more often involved in homologous recognition and pairing than crossover-poor regions.
Collapse
|
39
|
Crismani W, Portemer V, Froger N, Chelysheva L, Horlow C, Vrielynck N, Mercier R. MCM8 is required for a pathway of meiotic double-strand break repair independent of DMC1 in Arabidopsis thaliana. PLoS Genet 2013; 9:e1003165. [PMID: 23300481 PMCID: PMC3536722 DOI: 10.1371/journal.pgen.1003165] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2012] [Accepted: 10/28/2012] [Indexed: 11/25/2022] Open
Abstract
Mini-chromosome maintenance (MCM) 2–9 proteins are related helicases. The first six, MCM2–7, are essential for DNA replication in all eukaryotes. In contrast, MCM8 is not always conserved in eukaryotes but is present in Arabidopsis thaliana. MCM8 is required for 95% of meiotic crossovers (COs) in Drosophila and is essential for meiosis completion in mouse, prompting us to study this gene in Arabidopsis meiosis. Three allelic Atmcm8 mutants showed a limited level of chromosome fragmentation at meiosis. This defect was dependent on programmed meiotic double-strand break (DSB) formation, revealing a role for AtMCM8 in meiotic DSB repair. In contrast, CO formation was not affected, as shown both genetically and cytologically. The Atmcm8 DSB repair defect was greatly amplified in the absence of the DMC1 recombinase or in mutants affected in DMC1 dynamics (sds, asy1). The Atmcm8 fragmentation defect was also amplified in plants heterozygous for a mutation in either recombinase, DMC1 or RAD51. Finally, in the context of absence of homologous chromosomes (i.e. haploid), mutation of AtMCM8 also provoked a low level of chromosome fragmentation. This fragmentation was amplified by the absence of DMC1 showing that both MCM8 and DMC1 can promote repair on the sister chromatid in Arabidopsis haploids. Altogether, this establishes a role for AtMCM8 in meiotic DSB repair, in parallel to DMC1. We propose that MCM8 is involved with RAD51 in a backup pathway that repairs meiotic DSB without giving CO when the major pathway, which relies on DMC1, fails. Species that reproduce sexually have two copies of each chromosome, inherited from their father and mother. During a special cell division called meiosis, these two chromosomes are mixed by homologous recombination to give genetically unique chromosomes that will be transmitted to the next generation. This recombination process is initiated by DNA breaks that must be repaired efficiently to maintain fertility. Using the model plant Arabidopsis thaliana we revealed here that the gene AtMCM8 is required to repair a subset of these DNA breaks. However MCM8 appears to not be required for recombination with the homologous chromosome. Instead MCM8 appears to be involved in a safety system that operates to repair DNA breaks that have not been used for homologous recombination. Interestingly the equivalent gene also has an essential meiotic function in the fly and the mouse. However the three species require MCM8 for different aspects of meiosis.
Collapse
Affiliation(s)
- Wayne Crismani
- INRA, UMR1318, Institut Jean-Pierre Bourgin, RD10, Versailles, France
- AgroParisTech, Institut Jean-Pierre Bourgin, RD10, Versailles, France
| | - Virginie Portemer
- INRA, UMR1318, Institut Jean-Pierre Bourgin, RD10, Versailles, France
- AgroParisTech, Institut Jean-Pierre Bourgin, RD10, Versailles, France
| | - Nicole Froger
- INRA, UMR1318, Institut Jean-Pierre Bourgin, RD10, Versailles, France
- AgroParisTech, Institut Jean-Pierre Bourgin, RD10, Versailles, France
| | - Liudmila Chelysheva
- INRA, UMR1318, Institut Jean-Pierre Bourgin, RD10, Versailles, France
- AgroParisTech, Institut Jean-Pierre Bourgin, RD10, Versailles, France
| | - Christine Horlow
- INRA, UMR1318, Institut Jean-Pierre Bourgin, RD10, Versailles, France
- AgroParisTech, Institut Jean-Pierre Bourgin, RD10, Versailles, France
| | - Nathalie Vrielynck
- INRA, UMR1318, Institut Jean-Pierre Bourgin, RD10, Versailles, France
- AgroParisTech, Institut Jean-Pierre Bourgin, RD10, Versailles, France
| | - Raphaël Mercier
- INRA, UMR1318, Institut Jean-Pierre Bourgin, RD10, Versailles, France
- AgroParisTech, Institut Jean-Pierre Bourgin, RD10, Versailles, France
- * E-mail:
| |
Collapse
|
40
|
Wang Y, Cheng Z, Huang J, Shi Q, Hong Y, Copenhaver GP, Gong Z, Ma H. The DNA replication factor RFC1 is required for interference-sensitive meiotic crossovers in Arabidopsis thaliana. PLoS Genet 2012; 8:e1003039. [PMID: 23144629 PMCID: PMC3493451 DOI: 10.1371/journal.pgen.1003039] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2012] [Accepted: 09/05/2012] [Indexed: 11/18/2022] Open
Abstract
During meiotic recombination, induced double-strand breaks (DSBs) are processed into crossovers (COs) and non-COs (NCO); the former are required for proper chromosome segregation and fertility. DNA synthesis is essential in current models of meiotic recombination pathways and includes only leading strand DNA synthesis, but few genes crucial for DNA synthesis have been tested genetically for their functions in meiosis. Furthermore, lagging strand synthesis has been assumed to be unnecessary. Here we show that the Arabidopsis thaliana DNA REPLICATION FACTOR C1 (RFC1) important for lagging strand synthesis is necessary for fertility, meiotic bivalent formation, and homolog segregation. Loss of meiotic RFC1 function caused abnormal meiotic chromosome association and other cytological defects; genetic analyses with other meiotic mutations indicate that RFC1 acts in the MSH4-dependent interference-sensitive pathway for CO formation. In a rfc1 mutant, residual pollen viability is MUS81-dependent and COs exhibit essentially no interference, indicating that these COs form via the MUS81-dependent interference-insensitive pathway. We hypothesize that lagging strand DNA synthesis is important for the formation of double Holliday junctions, but not alternative recombination intermediates. That RFC1 is found in divergent eukaryotes suggests a previously unrecognized and highly conserved role for DNA synthesis in discriminating between recombination pathways. Meiotic recombination is important for pairing and sustained association of homologous chromosomes (homologs), thereby ensuring proper homolog segregation and normal fertility. DNA synthesis is thought to be required for meiotic recombination, but few genes coding for DNA synthesis factors have been studied for possible meiotic functions because their essential roles in the mitotic cell cycle make it difficult to study their meiotic functions due to the lethality of corresponding null mutations. Current models for meiotic recombination only include leading strand DNA synthesis. We found that the Arabidopsis gene encoding the DNA REPLICATION FACTOR C1 (RFC1) important for lagging strand synthesis promotes meiotic recombination via a specific pathway for crossovers (COs) that involves the formation of double Holliday Junction (dHJ) intermediates. Therefore, lagging strand DNA synthesis is likely important for meiotic recombination. Because DNA synthesis is a highly conserved process and meiotic recombination is highly similar among budding yeast, mammals, and flowering plants, the proposed function of lagging strand synthesis for meiotic recombination might be a general feature of meiosis.
Collapse
Affiliation(s)
- Yingxiang Wang
- State Key Laboratory of Genetic Engineering, Institute of Plant Biology, Center for Evolutionary Biology, School of Life Sciences, Fudan University, Shanghai, China
| | - Zhihao Cheng
- State Key Laboratory of Genetic Engineering, Institute of Plant Biology, Center for Evolutionary Biology, School of Life Sciences, Fudan University, Shanghai, China
| | - Jiyue Huang
- State Key Laboratory of Genetic Engineering, Institute of Plant Biology, Center for Evolutionary Biology, School of Life Sciences, Fudan University, Shanghai, China
| | - Qian Shi
- State Key Laboratory of Genetic Engineering, Institute of Plant Biology, Center for Evolutionary Biology, School of Life Sciences, Fudan University, Shanghai, China
| | - Yue Hong
- State Key Laboratory of Genetic Engineering, Institute of Plant Biology, Center for Evolutionary Biology, School of Life Sciences, Fudan University, Shanghai, China
| | - Gregory P. Copenhaver
- Department of Biology and the Carolina Center for Genome Sciences, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
- Lineberger Comprehensive Cancer Center, University of North Carolina School of Medicine, Chapel Hill, North Carolina, United States of America
| | - Zhizhong Gong
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Hong Ma
- State Key Laboratory of Genetic Engineering, Institute of Plant Biology, Center for Evolutionary Biology, School of Life Sciences, Fudan University, Shanghai, China
- Institutes of Biomedical Sciences, Fudan University, Shanghai, China
- * E-mail:
| |
Collapse
|
41
|
Features of the Arabidopsis recombination landscape resulting from the combined loss of sequence variation and DNA methylation. Proc Natl Acad Sci U S A 2012; 109:16240-5. [PMID: 22988127 DOI: 10.1073/pnas.1212955109] [Citation(s) in RCA: 105] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The rate of meiotic crossing over (CO) varies considerably along chromosomes, leading to marked distortions between physical and genetic distances. The causes underlying this variation are being unraveled, and DNA sequence and chromatin states have emerged as key factors. However, the extent to which the suppression of COs within the repeat-rich pericentromeric regions of plant and mammalian chromosomes results from their high level of DNA polymorphisms and from their heterochromatic state, notably their dense DNA methylation, remains unknown. Here, we test the combined effect of removing sequence polymorphisms and repeat-associated DNA methylation on the meiotic recombination landscape of an Arabidopsis mapping population. To do so, we use genome-wide DNA methylation data from a large panel of isogenic epigenetic recombinant inbred lines (epiRILs) to derive a recombination map based on 126 meiotically stable, differentially methylated regions covering 81.9% of the genome. We demonstrate that the suppression of COs within pericentromeric regions of chromosomes persists in this experimental setting. Moreover, suppression is reinforced within 3-Mb regions flanking pericentromeric boundaries, and this effect appears to be compensated by increased recombination activity in chromosome arms. A direct comparison with 17 classical Arabidopsis crosses shows that these recombination changes place the epiRILs at the boundary of the range of natural variation but are not severe enough to transgress that boundary significantly. This level of robustness is remarkable, considering that this population represents an extreme with key recombination barriers having been forced to a minimum.
Collapse
|
42
|
Valenzuela NT, Perera E, Naranjo T. Dynamics of rye chromosome 1R regions with high or low crossover frequency in homology search and synapsis development. PLoS One 2012; 7:e36385. [PMID: 22558456 PMCID: PMC3340359 DOI: 10.1371/journal.pone.0036385] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2012] [Accepted: 04/01/2012] [Indexed: 02/02/2023] Open
Abstract
In many organisms, homologous pairing and synapsis depend on the meiotic recombination machinery that repairs double-strand DNA breaks (DSBs) produced at the onset of meiosis. The culmination of recombination via crossover gives rise to chiasmata, which locate distally in many plant species such as rye, Secale cereale. Although, synapsis initiates close to the chromosome ends, a direct effect of regions with high crossover frequency on partner identification and synapsis initiation has not been demonstrated. Here, we analyze the dynamics of distal and proximal regions of a rye chromosome introgressed into wheat to define their role on meiotic homology search and synapsis. We have used lines with a pair of two-armed chromosome 1R of rye, or a pair of telocentrics of its long arm (1RL), which were homozygous for the standard 1RL structure, homozygous for an inversion of 1RL that changes chiasma location from distal to proximal, or heterozygous for the inversion. Physical mapping of recombination produced in the ditelocentric heterozygote (1RL/1RLinv) showed that 70% of crossovers in the arm were confined to a terminal segment representing 10% of the 1RL length. The dynamics of the arms 1RL and 1RLinv during zygotene demonstrates that crossover-rich regions are more active in recognizing the homologous partner and developing synapsis than crossover-poor regions. When the crossover-rich regions are positioned in the vicinity of chromosome ends, their association is facilitated by telomere clustering; when they are positioned centrally in one of the two-armed chromosomes and distally in the homolog, their association is probably derived from chromosome elongation. On the other hand, chromosome movements that disassemble the bouquet may facilitate chromosome pairing correction by dissolution of improper chromosome associations. Taken together, these data support that repair of DSBs via crossover is essential in both the search of the homologous partner and consolidation of homologous synapsis.
Collapse
Affiliation(s)
- Nohelia T. Valenzuela
- Departamento de Genética, Facultad de Biología, Universidad Complutense, Madrid, Spain
| | - Esther Perera
- Departamento de Biología Vegetal, Facultad de Biología, Universidad Complutense, Madrid, Spain
| | - Tomás Naranjo
- Departamento de Genética, Facultad de Biología, Universidad Complutense, Madrid, Spain
- * E-mail:
| |
Collapse
|
43
|
Loss of DNA methylation affects the recombination landscape in Arabidopsis. Proc Natl Acad Sci U S A 2012; 109:5880-5. [PMID: 22451936 DOI: 10.1073/pnas.1120841109] [Citation(s) in RCA: 149] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
During sexual reproduction, one-half of the genetic material is deposited in gametes, and a complete set of chromosomes is restored upon fertilization. Reduction of the genetic information before gametogenesis occurs in meiosis, when cross-overs (COs) between homologous chromosomes secure an exchange of their genetic information. COs are not evenly distributed along chromosomes and are suppressed in chromosomal regions encompassing compact, hypermethylated centromeric and pericentromeric DNA. Therefore, it was postulated that DNA hypermethylation is inhibitory to COs. Here, when analyzing meiotic recombination in mutant plants with hypomethylated DNA, we observed unexpected and counterintuitive effects of DNA methylation losses on CO distribution. Recombination was further promoted in the hypomethylated chromosome arms while it was inhibited in heterochromatic regions encompassing pericentromeric DNA. Importantly, the total number of COs was not affected, implying that loss of DNA methylation led to a global redistribution of COs along chromosomes. To determine by which mechanisms altered levels of DNA methylation influence recombination--whether directly in cis or indirectly in trans by changing expression of genes encoding recombination components--we analyzed CO distribution in wild-type lines with randomly scattered and well-mapped hypomethylated chromosomal segments. The results of these experiments, supported by expression profiling data, suggest that DNA methylation affects meiotic recombination in cis. Because DNA methylation exhibits significant variation even within a single species, our results imply that it may influence the evolution of plant genomes through the control of meiotic recombination.
Collapse
|
44
|
Lu P, Han X, Qi J, Yang J, Wijeratne AJ, Li T, Ma H. Analysis of Arabidopsis genome-wide variations before and after meiosis and meiotic recombination by resequencing Landsberg erecta and all four products of a single meiosis. Genome Res 2012; 22:508-18. [PMID: 22106370 PMCID: PMC3290786 DOI: 10.1101/gr.127522.111] [Citation(s) in RCA: 94] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2011] [Accepted: 11/17/2011] [Indexed: 11/24/2022]
Abstract
Meiotic recombination, including crossovers (COs) and gene conversions (GCs), impacts natural variation and is an important evolutionary force. COs increase genetic diversity by redistributing existing variation, whereas GCs can alter allelic frequency. Here, we sequenced Arabidopsis Landsberg erecta (Ler) and two sets of all four meiotic products from a Columbia (Col)/Ler hybrid to investigate genome-wide variation and meiotic recombination at nucleotide resolution. Comparing Ler and Col sequences uncovered 349,171 Single Nucleotide Polymorphisms (SNPs), 58,085 small and 2315 large insertions/deletions (indels), with highly correlated genome-wide distributions of SNPs, and small indels. A total of 443 genes have at least 10 nonsynonymous substitutions in protein-coding regions, with enrichment for disease-resistance genes. Another 316 genes are affected by large indels, including 130 genes with complete deletion of coding regions in Ler. Using the Arabidopsis qrt1 mutant, two sets of four meiotic products were generated and analyzed by sequencing for meiotic recombination, representing the first tetrad analysis with whole-genome sequencing in a nonfungal species. We detected 18 COs, six of which had an associated GC event, and four GCs without COs (NCOs), and revealed that Arabidopsis GCs are likely fewer and with shorter tracts than those in yeast. Meiotic recombination and chromosome assortment events dramatically redistributed genome variation in meiotic products, contributing to population diversity. In particular, meiosis provides a rapid mechanism to generate copy-number variation (CNV) of sequences that have different chromosomal positions in Col and Ler.
Collapse
Affiliation(s)
- Pingli Lu
- Department of Biology and the Huck Institutes of the Life Sciences, the Pennsylvania State University, University Park, Pennsylvania 16802, USA
| | - Xinwei Han
- Department of Biology and the Huck Institutes of the Life Sciences, the Pennsylvania State University, University Park, Pennsylvania 16802, USA
- Intercollege Graduate Program in Genetics, the Pennsylvania State University, University Park, Pennsylvania 16802, USA
| | - Ji Qi
- State Key Laboratory of Genetic Engineering, Institute of Plant Biology, Center for Evolutionary Biology, School of Life Sciences, Fudan University, Shanghai 200433, China
- Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, China
| | - Jiange Yang
- Department of Biology and the Huck Institutes of the Life Sciences, the Pennsylvania State University, University Park, Pennsylvania 16802, USA
| | - Asela J. Wijeratne
- Department of Biology and the Huck Institutes of the Life Sciences, the Pennsylvania State University, University Park, Pennsylvania 16802, USA
- Intercollege Graduate Program in Plant Biology, the Pennsylvania State University, University Park, Pennsylvania 16802, USA
| | - Tao Li
- Institute of Hydrobiology, Chinese Academy of Science, Wuhan 430072, China
| | - Hong Ma
- State Key Laboratory of Genetic Engineering, Institute of Plant Biology, Center for Evolutionary Biology, School of Life Sciences, Fudan University, Shanghai 200433, China
- Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, China
| |
Collapse
|
45
|
López E, Pradillo M, Oliver C, Romero C, Cuñado N, Santos JL. Looking for natural variation in chiasma frequency in Arabidopsis thaliana. JOURNAL OF EXPERIMENTAL BOTANY 2012; 63:887-94. [PMID: 22048037 DOI: 10.1093/jxb/err319] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Information concerning natural variation either in chiasma frequency or in the genetic basis of any such variation is a valuable tool to characterize phenotypic traits and their genetic control. Here meiotic recombination frequencies are analysed in nine geographically and ecologically diverse accessions of Arabidopsis thaliana, and a comparative study was carried out incorporating previous data from another eight accessions. Chiasma frequencies, estimated by counting rod and ring bivalents at metaphase I, varied up to 22% among accessions. However, no differences were found among plants of the same accession. There was a relationship, which does not necessarily imply direct proportionality, between the size of the chromosomes and their mean chiasma frequency. Chiasma frequency and distribution between arms and among chromosomes were not consistent over accessions. These findings indicate the existence of genetic factors controlling meiotic recombination both throughout the whole genome and at the whole chromosome level. The reliability of chiasma scoring as an indicator of reciprocal recombination events is also discussed.
Collapse
Affiliation(s)
- E López
- Departamento de Genética, Facultad de Biología, Universidad Complutense de Madrid, 28040 Madrid, Spain
| | | | | | | | | | | |
Collapse
|
46
|
Komakhin RA, Komakhina VV, Milyukova NA, Zhuchenko AA. Analysis of the meiotic recombination frequency in transgenic tomato hybrids expressing recA and NLS-recA-licBM3 genes. RUSS J GENET+ 2012. [DOI: 10.1134/s1022795411110093] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
47
|
Molecular characterization of a genomic interval with highly uneven recombination distribution on maize chromosome 10 L. Genetica 2011; 139:1109-18. [PMID: 22057628 DOI: 10.1007/s10709-011-9613-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2011] [Accepted: 10/22/2011] [Indexed: 10/15/2022]
Abstract
Homologous recombination in meiosis provides the evolutionary driving force in eukaryotic organisms by generating genetic variability. Meiotic recombination does not always occur evenly across the chromosome, and therefore genetic and physical distances are not consistently in proportion. We discovered a 278 kb interval on the long arm of chromosome 10 (10 L) through analyzed 13,933 descendants of backcross population. The recombinant events distributed unevenly in the interval. The ratio of genetic to physical distance in the interval fluctuated about 47-fold. With the assistance of molecular markers, the interval was divided into several subintervals for further characterization. In agreement with previous observations, high gene-density regions such as subinterval A and B were also genetic recombination hot subintervals, and repetitive sequence-riched region such as subinterval C was also found to be recombination inert at the detection level of the study. However, we found an unusual subinterval D, in which the 72-kb region contained 6 genes. The gene-density of subinterval D was 5.8 times that of the genome-wide average. The ratio of genetic to physical distance in subinterval D was 0.58 cM/Mb, only about 3/4 of the genome average. We carried out an analysis of sequence polymorphisms and methylation status in subinterval D, and the potential causes of recombination suppression were discussed. This study was another case of a detailed genetic analysis of an unusual recombination region in the maize genome.
Collapse
|
48
|
Giraut L, Falque M, Drouaud J, Pereira L, Martin OC, Mézard C. Genome-wide crossover distribution in Arabidopsis thaliana meiosis reveals sex-specific patterns along chromosomes. PLoS Genet 2011; 7:e1002354. [PMID: 22072983 PMCID: PMC3207851 DOI: 10.1371/journal.pgen.1002354] [Citation(s) in RCA: 180] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2011] [Accepted: 09/08/2011] [Indexed: 11/19/2022] Open
Abstract
In most species, crossovers (COs) are essential for the accurate segregation of homologous chromosomes at the first meiotic division. Their number and location are tightly regulated. Here, we report a detailed, genome-wide characterization of the rate and localization of COs in Arabidopsis thaliana, in male and female meiosis. We observed dramatic differences between male and female meiosis which included: (i) genetic map length; 575 cM versus 332 cM respectively; (ii) CO distribution patterns: male CO rates were very high at both ends of each chromosome, whereas female CO rates were very low; (iii) correlations between CO rates and various chromosome features: female CO rates correlated strongly and negatively with GC content and gene density but positively with transposable elements (TEs) density, whereas male CO rates correlated positively with the CpG ratio. However, except for CpG, the correlations could be explained by the unequal repartition of these sequences along the Arabidopsis chromosome. For both male and female meiosis, the number of COs per chromosome correlates with chromosome size expressed either in base pairs or as synaptonemal complex length. Finally, we show that interference modulates the CO distribution both in male and female meiosis.
Collapse
Affiliation(s)
- Laurène Giraut
- Institut Jean-Pierre Bourgin, UMR1318 INRA-AgroParisTech, INRA Centre de Versailles-Grignon, Versailles, France
| | - Matthieu Falque
- UMR de Génétique Végétale du Moulon, INRA/CNRS/Univ Paris-Sud/AgroParisTech, Gif sur Yvette, France
| | - Jan Drouaud
- Institut Jean-Pierre Bourgin, UMR1318 INRA-AgroParisTech, INRA Centre de Versailles-Grignon, Versailles, France
| | - Lucie Pereira
- Institut Jean-Pierre Bourgin, UMR1318 INRA-AgroParisTech, INRA Centre de Versailles-Grignon, Versailles, France
| | - Olivier C. Martin
- UMR de Génétique Végétale du Moulon, INRA/CNRS/Univ Paris-Sud/AgroParisTech, Gif sur Yvette, France
| | - Christine Mézard
- Institut Jean-Pierre Bourgin, UMR1318 INRA-AgroParisTech, INRA Centre de Versailles-Grignon, Versailles, France
- * E-mail:
| |
Collapse
|
49
|
Boyko A, Kovalchuk I. Genetic and epigenetic effects of plant-pathogen interactions: an evolutionary perspective. MOLECULAR PLANT 2011; 4:1014-23. [PMID: 21459830 DOI: 10.1093/mp/ssr022] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Recent reports suggest that exposure to stress is capable of influencing the frequency and pattern of inherited changes in various parts of the genome. In this review, we will discuss the influence of viral pathogens on somatic and meiotic genome stability of Nicotiana tabacum and Arabidopsis thaliana. Plants infected with a compatible pathogen generate a systemic recombination signal that precedes the spread of pathogens and results in changes in the somatic and meiotic recombination frequency. The progeny of infected plants exhibit changes in global and locus-specific DNA methylation patterns, genomic rearrangements at transgenic reporter loci and resistance gene-like-loci, and even tolerance to pathogen infection and abiotic stress. Here, we will discuss the contribution of environmental stresses to genome evolution and will focus on the role of heritable epigenetic changes in response to pathogen infection.
Collapse
Affiliation(s)
- Alex Boyko
- Institute of Plant Biology, Zurich, Switzerland
| | | |
Collapse
|
50
|
|