1
|
Liu B, Zhao Y, Zhou H, Zhang J. Enhancing xylanase expression of Komagataella phaffii induced by formate through Mit1 co-expression. Bioprocess Biosyst Eng 2022; 45:1515-1525. [PMID: 35881246 DOI: 10.1007/s00449-022-02760-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2022] [Accepted: 07/16/2022] [Indexed: 11/02/2022]
Abstract
Komagataella phaffii (K. phaffii) is a famous microbial cell of heterologous protein and value-added chemicals production because of its strict and strong promoter (alcohol oxidase 1 promoter, PAOX1). Formate is an attractive substitute of traditional inducer methanol because methanol is toxic and explosive. To obtain high level of Aspergillus niger ATCC1015 xylanase as a model of heterologous protein by K. phaffii at formate induction, insertion of three-copy cis-acting element W3A into PAOX1 additionally, and co-expression of transcription factor Mit1 under another PAOX1 were carried out separately and simultaneously. The yield of xylanase increased by 41% at formate induction when Mit1 was co-expressed. Furtherly, the yield of xylanase increased by 42% using sorbitol as supplemental carbon source with the result of 408.3 × 103 U‧L-1 xylanase. Therefore, a non-methanol needed and inducible heterologous protein expression system of Komagataella phaffii was developed successfully.
Collapse
Affiliation(s)
- Bing Liu
- Shanghai Engineering Research Center for Food Rapid DetectionInstitute of Food Science and EngineeringSchool of Health Science and Engineering, University of Shanghai for Science and Technology, 516 Jungong Road, Shanghai, People's Republic of China, 200093
| | - Yixin Zhao
- Shanghai Engineering Research Center for Food Rapid DetectionInstitute of Food Science and EngineeringSchool of Health Science and Engineering, University of Shanghai for Science and Technology, 516 Jungong Road, Shanghai, People's Republic of China, 200093
| | - Hualan Zhou
- Shanghai Engineering Research Center for Food Rapid DetectionInstitute of Food Science and EngineeringSchool of Health Science and Engineering, University of Shanghai for Science and Technology, 516 Jungong Road, Shanghai, People's Republic of China, 200093
| | - Jianguo Zhang
- Shanghai Engineering Research Center for Food Rapid DetectionInstitute of Food Science and EngineeringSchool of Health Science and Engineering, University of Shanghai for Science and Technology, 516 Jungong Road, Shanghai, People's Republic of China, 200093.
| |
Collapse
|
2
|
Li F, Wang M, Chi Z, Zhang Z, Wang X, Xing M, Chi Z, Liu G. A novel transcriptional activation mechanism of inulinase gene in Kluyveromyces marxianus involving a glycolysis regulator KmGcr1p with unique and functional Q-rich repeats. Mol Microbiol 2022; 117:1063-1079. [PMID: 35218085 DOI: 10.1111/mmi.14889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Revised: 02/18/2022] [Accepted: 02/21/2022] [Indexed: 11/28/2022]
Abstract
Kluyveromyces marxianus is the most suitable fungus for inulinase industrial production. However, the underlying transcriptional activation mechanism of the inulinase gene (INU1) is hitherto unclear. Here, we undertook genetic and biochemical analyses to elucidate that a glycolysis regulator KmGcr1p with unique Q-rich repeats is the key transcriptional activator of INU1. We determined that INU1 and glycolytic genes share similar transcriptional activation patterns, and that inulinase activity is induced by fermentable carbon sources including the hydrolysis products of inulin (fructose and glucose), which suggests a novel model of product feedback activation. Furthermore, all four CT-boxes in the INU1 promoter are important for KmGcr1p DNA binding in vitro, but the most downstream CT-box 1 primarily confers upstream activating sequence activity in vivo. More intriguingly, the use of artificial and natural GCR1 mutants suggests that the Q-rich repeats act as a functional module to maintain KmGcr1p transcriptional activity by contributing to its solubility and DNA binding affinity. Altogether, this study uncovers a novel transcriptional activation mechanism for the inulinase gene that is different from the previous understanding for filamentous fungi, but might have universal significance among inulinase-producing yeasts, thereby leading to a better understanding of the regulation mechanism of yeast inulinase genes.
Collapse
Affiliation(s)
- Fengyi Li
- College of Marine Life Science, Ocean University of China, Yushan Road, No. 5, Qingdao, Shandong, China
| | - Mengqi Wang
- College of Marine Life Science, Ocean University of China, Yushan Road, No. 5, Qingdao, Shandong, China
| | - Zhe Chi
- College of Marine Life Science, Ocean University of China, Yushan Road, No. 5, Qingdao, Shandong, China.,Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Zhaoxuan Zhang
- College of Marine Life Science, Ocean University of China, Yushan Road, No. 5, Qingdao, Shandong, China
| | - Xiaoxiang Wang
- College of Marine Life Science, Ocean University of China, Yushan Road, No. 5, Qingdao, Shandong, China
| | - Mengdan Xing
- College of Marine Life Science, Ocean University of China, Yushan Road, No. 5, Qingdao, Shandong, China
| | - Zhenming Chi
- College of Marine Life Science, Ocean University of China, Yushan Road, No. 5, Qingdao, Shandong, China.,Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China.,Key Laboratory of Marine Genetics and Breeding (Ocean University of China), Ministry of Education, Qingdao, China
| | - Guanglei Liu
- College of Marine Life Science, Ocean University of China, Yushan Road, No. 5, Qingdao, Shandong, China.,Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China.,Key Laboratory of Marine Genetics and Breeding (Ocean University of China), Ministry of Education, Qingdao, China
| |
Collapse
|
3
|
Vanaja A, Yella VR. Delineation of the DNA Structural Features of Eukaryotic Core Promoter Classes. ACS OMEGA 2022; 7:5657-5669. [PMID: 35224327 PMCID: PMC8867553 DOI: 10.1021/acsomega.1c04603] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Accepted: 01/27/2022] [Indexed: 05/02/2023]
Abstract
The eukaryotic transcription is orchestrated from a chunk of the DNA region stated as the core promoter. Multifarious and punctilious core promoter signals, viz., TATA-box, Inr, BREs, and Pause Button, are associated with a subset of genes and regulate their spatiotemporal expression. However, the core promoter architecture linked with these signals has not been investigated exhaustively for several species. In this study, we attempted to envisage the adaptive binding landscape of the transcription initiation machinery as a function of DNA structure. To this end, we deployed a set of k-mer based DNA structural estimates and regular expression models derived from experiments, molecular dynamic simulations, and theoretical frameworks, and high-throughout promoter data sets retrieved from the eukaryotic promoter database. We categorized protein-coding gene core promoters based on characteristic motifs at precise locations and analyzed the B-DNA structural properties and non-B-DNA structural motifs for 15 different eukaryotic genomes. We observed that Inr, BREd, and no-motif classes display common patterns of DNA sequence and structural environment. TATA-containing, BREu, and Pause Button classes show a deviant behavior with the TATA class displaying varied axial and twisting flexibility while BREu and Pause Button leaned toward G-quadruplex motif enrichment. Intriguingly, DNA meltability and shape signals are conserved irrespective of the presence or absence of distinct core promoter motifs in the majority of species. Altogether, here we delineated the conserved DNA structural signals associated with several promoter classes that may contribute to the chromatin configuration, orchestration of transcription machinery, and DNA duplex melting during the transcription process.
Collapse
Affiliation(s)
- Akkinepally Vanaja
- Department
of Biotechnology, Koneru Lakshmaiah Education
Foundation, Vaddeswaram, Guntur 522502, Andhra
Pradesh, India
- KL
College of Pharmacy, Koneru Lakshmaiah Education
Foundation, Vaddeswaram, Guntur 522502, Andhra
Pradesh, India
| | - Venkata Rajesh Yella
- Department
of Biotechnology, Koneru Lakshmaiah Education
Foundation, Vaddeswaram, Guntur 522502, Andhra
Pradesh, India
| |
Collapse
|
4
|
Martinez GS, Sarkar S, Kumar A, Pérez‐Rueda E, de Avila e Silva S. Characterization of promoters in archaeal genomes based on DNA structural parameters. Microbiologyopen 2021; 10:e1230. [PMID: 34713600 PMCID: PMC8553660 DOI: 10.1002/mbo3.1230] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 07/27/2021] [Accepted: 07/29/2021] [Indexed: 11/10/2022] Open
Abstract
The transcription machinery of archaea can be roughly classified as a simplified version of eukaryotic organisms. The basal transcription factor machinery binds to the TATA box found around 28 nucleotides upstream of the transcription start site; however, some transcription units lack a clear TATA box and still have TBP/TFB binding over them. This apparent absence of conserved sequences could be a consequence of sequence divergence associated with the upstream region, operon, and gene organization. Furthermore, earlier studies have found that a structural analysis gains more information compared with a simple sequence inspection. In this work, we evaluated and coded 3630 archaeal promoter sequences of three organisms, Haloferax volcanii, Thermococcus kodakarensis, and Sulfolobus solfataricus into DNA duplex stability, enthalpy, curvature, and bendability parameters. We also split our dataset into conserved TATA and degenerated TATA promoters to identify differences among these two classes of promoters. The structural analysis reveals variations in archaeal promoter architecture, that is, a distinctive signal is observed in the TFB, TBP, and TFE binding sites independently of these being TATA-conserved or TATA-degenerated. In addition, the promoter encountering method was validated with upstream regions of 13 other archaea, suggesting that there might be promoter sequences among them. Therefore, we suggest a novel method for locating promoters within the genome of archaea based on DNA energetic/structural features.
Collapse
Affiliation(s)
| | - Sharmilee Sarkar
- Department of Molecular Biology and BiotechnologyTezpur UniversityTezpurAssamIndia
| | - Aditya Kumar
- Department of Molecular Biology and BiotechnologyTezpur UniversityTezpurAssamIndia
| | - Ernesto Pérez‐Rueda
- Unidad Académica de YucatánInstituto de Investigaciones en Matemáticas Aplicadas y en SistemasUniversidad Nacional Autónoma de MéxicoMéridaYucatánMéxico
| | | |
Collapse
|
5
|
Ramalingam V, Natarajan M, Johnston J, Zeitlinger J. TATA and paused promoters active in differentiated tissues have distinct expression characteristics. Mol Syst Biol 2021; 17:e9866. [PMID: 33543829 PMCID: PMC7863008 DOI: 10.15252/msb.20209866] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Revised: 12/22/2020] [Accepted: 01/07/2021] [Indexed: 12/18/2022] Open
Abstract
Core promoter types differ in the extent to which RNA polymerase II (Pol II) pauses after initiation, but how this affects their tissue-specific gene expression characteristics is not well understood. While promoters with Pol II pausing elements are active throughout development, TATA promoters are highly active in differentiated tissues. We therefore used a genomics approach on late-stage Drosophila embryos to analyze the properties of promoter types. Using tissue-specific Pol II ChIP-seq, we found that paused promoters have high levels of paused Pol II throughout the embryo, even in tissues where the gene is not expressed, while TATA promoters only show Pol II occupancy when the gene is active. The promoter types are associated with different chromatin accessibility in ATAC-seq data and have different expression characteristics in single-cell RNA-seq data. The two promoter types may therefore be optimized for different properties: paused promoters show more consistent expression when active, while TATA promoters have lower background expression when inactive. We propose that tissue-specific genes have evolved to use two different strategies for their differential expression across tissues.
Collapse
Affiliation(s)
- Vivekanandan Ramalingam
- Stowers Institute for Medical ResearchKansas CityMOUSA
- Department of Pathology and Laboratory MedicineUniversity of Kansas Medical CenterKansas CityKSUSA
- Present address:
Department of GeneticsStanford UniversityStanfordCAUSA
| | - Malini Natarajan
- Stowers Institute for Medical ResearchKansas CityMOUSA
- Present address:
Department of Molecular Biology, Cell Biology and BiochemistryBrown UniversityProvidenceRIUSA
| | - Jeff Johnston
- Stowers Institute for Medical ResearchKansas CityMOUSA
- Present address:
Center for Pediatric Genomic MedicineChildren's MercyKansas CityMOUSA
| | - Julia Zeitlinger
- Stowers Institute for Medical ResearchKansas CityMOUSA
- Department of Pathology and Laboratory MedicineUniversity of Kansas Medical CenterKansas CityKSUSA
| |
Collapse
|
6
|
Fischer J, Song YS, Yosef N, di Iulio J, Churchman LS, Choder M. The yeast exoribonuclease Xrn1 and associated factors modulate RNA polymerase II processivity in 5' and 3' gene regions. J Biol Chem 2020; 295:11435-11454. [PMID: 32518159 DOI: 10.1074/jbc.ra120.013426] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2020] [Revised: 06/05/2020] [Indexed: 11/06/2022] Open
Abstract
mRNA levels are determined by the balance between mRNA synthesis and decay. Protein factors that mediate both processes, including the 5'-3' exonuclease Xrn1, are responsible for a cross-talk between the two processes that buffers steady-state mRNA levels. However, the roles of these proteins in transcription remain elusive and controversial. Applying native elongating transcript sequencing (NET-seq) to yeast cells, we show that Xrn1 functions mainly as a transcriptional activator and that its disruption manifests as a reduction of RNA polymerase II (Pol II) occupancy downstream of transcription start sites. By combining our sequencing data and mathematical modeling of transcription, we found that Xrn1 modulates transcription initiation and elongation of its target genes. Furthermore, Pol II occupancy markedly increased near cleavage and polyadenylation sites in xrn1Δ cells, whereas its activity decreased, a characteristic feature of backtracked Pol II. We also provide indirect evidence that Xrn1 is involved in transcription termination downstream of polyadenylation sites. We noted that two additional decay factors, Dhh1 and Lsm1, seem to function similarly to Xrn1 in transcription, perhaps as a complex, and that the decay factors Ccr4 and Rpb4 also perturb transcription in other ways. Interestingly, the decay factors could differentiate between SAGA- and TFIID-dominated promoters. These two classes of genes responded differently to XRN1 deletion in mRNA synthesis and were differentially regulated by mRNA decay pathways, raising the possibility that one distinction between these two gene classes lies in the mechanisms that balance mRNA synthesis with mRNA decay.
Collapse
Affiliation(s)
- Jonathan Fischer
- Computer Science Division, University of California, Berkeley, California, USA.,Department of Statistics, University of California, Berkeley, California, USA
| | - Yun S Song
- Computer Science Division, University of California, Berkeley, California, USA.,Department of Statistics, University of California, Berkeley, California, USA.,Chan Zuckerberg BioHub, San Francisco, California, USA
| | - Nir Yosef
- Chan Zuckerberg BioHub, San Francisco, California, USA.,Department of Electrical Engineering and Computer Sciences, University of California, Berkeley, California, USA.,Ragon Institute of MGH, MIT, and Harvard, Cambridge, Massachusetts, USA
| | - Julia di Iulio
- Department of Genetics, Harvard Medical School, Boston, Massachusetts, USA
| | | | - Mordechai Choder
- Department of Molecular Microbiology, Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel
| |
Collapse
|
7
|
Xu N, Wei L, Liu J. Recent advances in the applications of promoter engineering for the optimization of metabolite biosynthesis. World J Microbiol Biotechnol 2019; 35:33. [DOI: 10.1007/s11274-019-2606-0] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2018] [Accepted: 01/23/2019] [Indexed: 01/24/2023]
|
8
|
Lecellier CH, Wasserman WW, Mathelier A. Human Enhancers Harboring Specific Sequence Composition, Activity, and Genome Organization Are Linked to the Immune Response. Genetics 2018; 209:1055-1071. [PMID: 29871881 PMCID: PMC6063234 DOI: 10.1534/genetics.118.301116] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2018] [Accepted: 06/01/2018] [Indexed: 12/15/2022] Open
Abstract
The FANTOM5 consortium recently characterized 65,423 human enhancers from 1829 cell and tissue samples using the Cap Analysis of Gene Expression technology. We showed that the guanine and cytosine content at enhancer regions distinguishes two classes of enhancers harboring distinct DNA structural properties at flanking regions. A functional analysis of their predicted gene targets highlighted one class of enhancers as significantly enriched for associations with immune response genes. Moreover, these enhancers were specifically enriched for regulatory motifs recognized by transcription factors involved in immune response. We observed that enhancers enriched for links to immune response genes were more cell-type specific, preferentially activated upon bacterial infection, and with specific response activity. Looking at chromatin capture data, we found that the two classes of enhancers were lying in distinct topologically associating domains and chromatin loops. Our results suggest that specific nucleotide compositions encode for classes of enhancers that are functionally distinct and specifically organized in the human genome.
Collapse
Affiliation(s)
- Charles-Henri Lecellier
- Institut de Génétique Moléculaire de Montpellier, University of Montpellier, Centre National de la Recherche Scientifique (CNRS), 34293 Montpellier cedex5, France
- Institut de Biologie Computationnelle, 34095 Montpellier, France
- Centre for Molecular Medicine and Therapeutics at the Child and Family Research Institute, Department of Medical Genetics, University of British Columbia, Vancouver, V5Z 4H4, Canada
| | - Wyeth W Wasserman
- Centre for Molecular Medicine and Therapeutics at the Child and Family Research Institute, Department of Medical Genetics, University of British Columbia, Vancouver, V5Z 4H4, Canada
| | - Anthony Mathelier
- Centre for Molecular Medicine and Therapeutics at the Child and Family Research Institute, Department of Medical Genetics, University of British Columbia, Vancouver, V5Z 4H4, Canada
- Centre for Molecular Medicine Norway (NCMM), Nordic EMBL Partnership, Faculty of Medicine, University of Oslo, 0349 Oslo, Norway
- Department of Cancer Genetics, Institute for Cancer Research, Oslo University Hospital Radiumhospitalet, 0372 Oslo, Norway
| |
Collapse
|
9
|
Tan C, Takada S. Dynamic and Structural Modeling of the Specificity in Protein–DNA Interactions Guided by Binding Assay and Structure Data. J Chem Theory Comput 2018; 14:3877-3889. [DOI: 10.1021/acs.jctc.8b00299] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Cheng Tan
- Department of Biophysics, Graduate School of Science, Kyoto University, Kyoto 606-8502, Japan
| | - Shoji Takada
- Department of Biophysics, Graduate School of Science, Kyoto University, Kyoto 606-8502, Japan
| |
Collapse
|
10
|
Abstract
Transcription is an intricate mechanism and is orchestrated at the promoter region. The cognate motifs in the promoters are observed in only a subset of total genes across different domains of life. Hence, sequence-motif based promoter prediction may not be a holistic approach for whole genomes. Conversely, the DNA structural property, duplex stability is a characteristic of promoters and can be used to delineate them from other genomic sequences. In this study, we have used a DNA duplex stability based algorithm ‘PromPredict’ for promoter prediction in a broad range of eukaryotes, representing various species of yeast, worm, fly, fish, and mammal. Efficiency of the software has been tested in promoter regions of 48 eukaryotic systems. PromPredict achieves recall values, which range from 68 to 92% in various eukaryotes. PromPredict performs well in mammals, although their core promoter regions are GC rich. ‘PromPredict’ has also been tested for its ability to predict promoter regions for various transcript classes (coding and non-coding), TATA-containing and TATA-less promoters as well as on promoter sequences belonging to different gene expression variability categories. The results support the idea that differential DNA duplex stability is a potential predictor of promoter regions in various genomes.
Collapse
|
11
|
Cortés-Acosta E, Ibarra JA, Ramírez-Saad H, Vargas-Mendoza CF, Villa-Tanaca L, Hernández-Rodríguez C. Polymorphism in the regulatory regions of genes CgYPS1 and CgYPS7 encoding yapsins in Candida glabrata is associated with changes in expression levels. FEMS Yeast Res 2017; 17:4562591. [PMID: 29069395 DOI: 10.1093/femsyr/fox077] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2017] [Accepted: 09/27/2017] [Indexed: 12/29/2022] Open
Abstract
Candida glabrata is an opportunistic fungus infecting mainly immunocompromised people. Its adherence capacity and exoenzymes contribute to damaging host cells. In particular, the yapsins are a family of aspartyl proteases involved in maturation of proteins and cell wall function, and yapsins 1 and 7, respectively encoded by genes CgYPS1 and CgYPS7, are potential virulence factors. In this study, the polymorphism of regulatory regions and the expression profiles of both genes were compared in C. glabrata clinical strains. The sequence analysis of regulatory regions revealed that the distribution of transcription factor binding sites (TFBSs) was similar, although some TFBSs were not universally distributed. The quantita-tive expression of CgYPS1 and CgYPS7 genes of different C. glabrata strains in rich and poor media was estimated by RT-qPCR. The primary sequences of genes CgYPS1 and CgYPS7 of C. glabrata strains were highly conserved among different strains, but the regulatory regions were polymorphic, harboring different TFBS arrays, and showing differential expression profiles.
Collapse
Affiliation(s)
- Elías Cortés-Acosta
- Departamento de Microbiología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Ciudad de México
| | - José Antonio Ibarra
- Departamento de Microbiología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Ciudad de México
| | - Hugo Ramírez-Saad
- Departamento de Sistemas Biológicos, Universidad Autónoma Metropolitana-Xochimilco, 04960 Ciudad de México
| | - Carlos Fabián Vargas-Mendoza
- Departamento de Zoología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Ciudad de México
| | - Lourdes Villa-Tanaca
- Departamento de Microbiología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Ciudad de México
| | - César Hernández-Rodríguez
- Departamento de Microbiología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Ciudad de México
| |
Collapse
|
12
|
Baptista T, Grünberg S, Minoungou N, Koster MJE, Timmers HTM, Hahn S, Devys D, Tora L. SAGA Is a General Cofactor for RNA Polymerase II Transcription. Mol Cell 2017; 68:130-143.e5. [PMID: 28918903 PMCID: PMC5632562 DOI: 10.1016/j.molcel.2017.08.016] [Citation(s) in RCA: 133] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2017] [Revised: 06/28/2017] [Accepted: 08/18/2017] [Indexed: 12/13/2022]
Abstract
Prior studies suggested that SAGA and TFIID are alternative factors that promote RNA polymerase II transcription with about 10% of genes in S. cerevisiae dependent on SAGA. We reassessed the role of SAGA by mapping its genome-wide location and role in global transcription in budding yeast. We find that SAGA maps to the UAS elements of most genes, overlapping with Mediator binding and irrespective of previous designations of SAGA or TFIID-dominated genes. Disruption of SAGA through mutation or rapid subunit depletion reduces transcription from nearly all genes, measured by newly-synthesized RNA. We also find that the acetyltransferase Gcn5 synergizes with Spt3 to promote global transcription and that Spt3 functions to stimulate TBP recruitment at all tested genes. Our data demonstrate that SAGA acts as a general cofactor required for essentially all RNA polymerase II transcription and is not consistent with the previous classification of SAGA and TFIID-dominated genes.
Collapse
Affiliation(s)
- Tiago Baptista
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, 67404 Illkirch, France; Centre National de la Recherche Scientifique, UMR7104, 67404 Illkirch, France; Institut National de la Santé et de la Recherche Médicale, U964, 67404 Illkirch, France; Université de Strasbourg, 67404 Illkirch, France
| | - Sebastian Grünberg
- Basic Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | - Nadège Minoungou
- Basic Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA; Université Paris Diderot, Sorbonne Paris Cité, 75205 Paris, France
| | - Maria J E Koster
- Molecular Cancer Research and Stem Cell Section, Regenerative Medicine Center and Center for Molecular Medicine, University Medical Center Utrecht c/o Hubrecht Institute, Uppsalalaan 8, 3584 CT Utrecht, the Netherlands
| | - H T Marc Timmers
- Molecular Cancer Research and Stem Cell Section, Regenerative Medicine Center and Center for Molecular Medicine, University Medical Center Utrecht c/o Hubrecht Institute, Uppsalalaan 8, 3584 CT Utrecht, the Netherlands; German Cancer Consortium (DKTK) partner site Freiburg, German Cancer Research Center (DKFZ) and Department of Urology, Medical Center-University of Freiburg, 79106 Freiburg, Germany
| | - Steve Hahn
- Basic Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | - Didier Devys
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, 67404 Illkirch, France; Centre National de la Recherche Scientifique, UMR7104, 67404 Illkirch, France; Institut National de la Santé et de la Recherche Médicale, U964, 67404 Illkirch, France; Université de Strasbourg, 67404 Illkirch, France.
| | - László Tora
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, 67404 Illkirch, France; Centre National de la Recherche Scientifique, UMR7104, 67404 Illkirch, France; Institut National de la Santé et de la Recherche Médicale, U964, 67404 Illkirch, France; Université de Strasbourg, 67404 Illkirch, France.
| |
Collapse
|
13
|
Yella VR, Bansal M. DNA structural features of eukaryotic TATA-containing and TATA-less promoters. FEBS Open Bio 2017; 7:324-334. [PMID: 28286728 PMCID: PMC5337902 DOI: 10.1002/2211-5463.12166] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2016] [Accepted: 11/16/2016] [Indexed: 01/26/2023] Open
Abstract
Eukaryotic genes can be broadly classified as TATA‐containing and TATA‐less based on the presence of TATA box in their promoters. Experiments on both classes of genes have revealed a disparity in the regulation of gene expression and cellular functions between the two classes. In this study, we report characteristic differences in promoter sequences and associated structural properties of the two categories of genes in six different eukaryotes. We have analyzed three structural features, DNA duplex stability, bendability, and curvature along with the distribution of A‐tracts, G‐quadruplex motifs, and CpG islands. The structural feature analyses reveal that while the two classes of gene promoters are distinctly different from each other, the properties are also distinguishable across the six organisms.
Collapse
Affiliation(s)
- Venkata Rajesh Yella
- Molecular Biophysics Unit Indian Institute of Science Bangalore India; Present address: Department of Biotechnology K L University, Vaddeswaram Guntur 522502 India
| | - Manju Bansal
- Molecular Biophysics Unit Indian Institute of Science Bangalore India
| |
Collapse
|
14
|
de Jonge WJ, O'Duibhir E, Lijnzaad P, van Leenen D, Groot Koerkamp MJ, Kemmeren P, Holstege FC. Molecular mechanisms that distinguish TFIID housekeeping from regulatable SAGA promoters. EMBO J 2016; 36:274-290. [PMID: 27979920 PMCID: PMC5286361 DOI: 10.15252/embj.201695621] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2016] [Revised: 10/18/2016] [Accepted: 11/01/2016] [Indexed: 11/28/2022] Open
Abstract
An important distinction is frequently made between constitutively expressed housekeeping genes versus regulated genes. Although generally characterized by different DNA elements, chromatin architecture and cofactors, it is not known to what degree promoter classes strictly follow regulatability rules and which molecular mechanisms dictate such differences. We show that SAGA‐dominated/TATA‐box promoters are more responsive to changes in the amount of activator, even compared to TFIID/TATA‐like promoters that depend on the same activator Hsf1. Regulatability is therefore an inherent property of promoter class. Further analyses show that SAGA/TATA‐box promoters are more dynamic because TATA‐binding protein recruitment through SAGA is susceptible to removal by Mot1. In addition, the nucleosome configuration upon activator depletion shifts on SAGA/TATA‐box promoters and seems less amenable to preinitiation complex formation. The results explain the fundamental difference between housekeeping and regulatable genes, revealing an additional facet of combinatorial control: an activator can elicit a different response dependent on core promoter class.
Collapse
Affiliation(s)
- Wim J de Jonge
- Molecular Cancer Research, University Medical Center Utrecht, Utrecht, The Netherlands.,Princess Máxima Center for Pediatric Oncology, Utrecht, The Netherlands
| | - Eoghan O'Duibhir
- Molecular Cancer Research, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Philip Lijnzaad
- Molecular Cancer Research, University Medical Center Utrecht, Utrecht, The Netherlands.,Princess Máxima Center for Pediatric Oncology, Utrecht, The Netherlands
| | - Dik van Leenen
- Molecular Cancer Research, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Marian Ja Groot Koerkamp
- Molecular Cancer Research, University Medical Center Utrecht, Utrecht, The Netherlands.,Princess Máxima Center for Pediatric Oncology, Utrecht, The Netherlands
| | - Patrick Kemmeren
- Molecular Cancer Research, University Medical Center Utrecht, Utrecht, The Netherlands.,Princess Máxima Center for Pediatric Oncology, Utrecht, The Netherlands
| | - Frank Cp Holstege
- Molecular Cancer Research, University Medical Center Utrecht, Utrecht, The Netherlands .,Princess Máxima Center for Pediatric Oncology, Utrecht, The Netherlands
| |
Collapse
|
15
|
Jeffers TE, Lieb JD. Nucleosome fragility is associated with future transcriptional response to developmental cues and stress in C. elegans. Genome Res 2016; 27:75-86. [PMID: 27979995 PMCID: PMC5204346 DOI: 10.1101/gr.208173.116] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2016] [Accepted: 11/14/2016] [Indexed: 02/03/2023]
Abstract
Nucleosomes have structural and regulatory functions in all eukaryotic DNA-templated processes. The position of nucleosomes on DNA and the stability of the underlying histone–DNA interactions affect the access of regulatory proteins to DNA. Both stability and position are regulated through DNA sequence, histone post-translational modifications, histone variants, chromatin remodelers, and transcription factors. Here, we explored the functional implications of nucleosome properties on gene expression and development in Caenorhabditis elegans embryos. We performed a time-course of micrococcal nuclease (MNase) digestion and measured the relative sensitivity or resistance of nucleosomes throughout the genome. Fragile nucleosomes were defined by nucleosomal DNA fragments that were recovered preferentially in early MNase-digestion time points. Nucleosome fragility was strongly and positively correlated with the AT content of the underlying DNA sequence. There was no correlation between promoter nucleosome fragility and the levels of histone modifications or histone variants. Genes with fragile nucleosomes in their promoters tended to be lowly expressed and expressed in a context-specific way, operating in neuronal response, the immune system, and stress response. In addition to DNA-encoded nucleosome fragility, we also found fragile nucleosomes at locations where we expected to find destabilized nucleosomes, for example, at transcription factor binding sites where nucleosomes compete with DNA-binding factors. Our data suggest that in C. elegans promoters, nucleosome fragility is in large part DNA-encoded and that it poises genes for future context-specific activation in response to environmental stress and developmental cues.
Collapse
Affiliation(s)
- Tess E Jeffers
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, New Jersey 08544, USA
| | - Jason D Lieb
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, New Jersey 08544, USA
| |
Collapse
|
16
|
Dai Z, Xiong Y, Dai X. DNA signals at isoform promoters. Sci Rep 2016; 6:28977. [PMID: 27353836 PMCID: PMC4926256 DOI: 10.1038/srep28977] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2015] [Accepted: 06/08/2016] [Indexed: 11/14/2022] Open
Abstract
Transcriptional heterogeneity is extensive in the genome, and most genes express variable transcript isoforms. However, whether variable transcript isoforms of one gene are regulated by common promoter elements remain to be elucidated. Here, we investigated whether isoform promoters of one gene have separated DNA signals for transcription and translation initiation. We found that TATA box and nucleosome-disfavored DNA sequences are prevalent in distinct transcript isoform promoters of one gene. These DNA signals are conserved among species. Transcript isoform has a RNA-determined unstructured region around its start site. We found that these DNA/RNA features facilitate isoform transcription and translation. These results suggest a DNA-encoded mechanism by which transcript isoform is generated.
Collapse
Affiliation(s)
- Zhiming Dai
- School of Data and Computer Science, Sun Yat-Sen University, Guangzhou 510006, China.,Guangdong Province Key Laboratory of Big Data Analysis and Processing, Sun Yat-Sen University, Guangzhou 510006, China
| | - Yuanyan Xiong
- Key Laboratory of Gene Engineering of the Ministry of Education and State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-Sen University, Guangzhou 510006, China.,SYSU-CMU Shunde International Joint Research Institute, Shunde, China
| | - Xianhua Dai
- School of Electronics and Information Technology, Sun Yat-Sen University, Guangzhou 510006, China
| |
Collapse
|
17
|
Dror I, Rohs R, Mandel-Gutfreund Y. How motif environment influences transcription factor search dynamics: Finding a needle in a haystack. Bioessays 2016; 38:605-12. [PMID: 27192961 PMCID: PMC5023137 DOI: 10.1002/bies.201600005] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Transcription factors (TFs) have to find their binding sites, which are distributed throughout the genome. Facilitated diffusion is currently the most widely accepted model for this search process. Based on this model the TF alternates between one-dimensional sliding along the DNA, and three-dimensional bulk diffusion. In this view, the non-specific associations between the proteins and the DNA play a major role in the search dynamics. However, little is known about how the DNA properties around the motif contribute to the search. Accumulating evidence showing that TF binding sites are embedded within a unique environment, specific to each TF, leads to the hypothesis that the search process is facilitated by favorable DNA features that help to improve the search efficiency. Here, we review the field and present the hypothesis that TF-DNA recognition is dictated not only by the motif, but is also influenced by the environment in which the motif resides.
Collapse
Affiliation(s)
- Iris Dror
- Department of Biology, Technion - Israel Institute of Technology, Technion City, Haifa, Israel.,Departments of Biological Sciences, Chemistry, Physics, and Computer Science, Molecular and Computational Biology Program, University of Southern California, Los Angeles, CA, USA
| | - Remo Rohs
- Departments of Biological Sciences, Chemistry, Physics, and Computer Science, Molecular and Computational Biology Program, University of Southern California, Los Angeles, CA, USA
| | - Yael Mandel-Gutfreund
- Department of Biology, Technion - Israel Institute of Technology, Technion City, Haifa, Israel
| |
Collapse
|
18
|
Fortin CH, Schulze KV, Babbitt GA. TRX-LOGOS - a graphical tool to demonstrate DNA information content dependent upon backbone dynamics in addition to base sequence. SOURCE CODE FOR BIOLOGY AND MEDICINE 2015; 10:10. [PMID: 26413153 PMCID: PMC4583169 DOI: 10.1186/s13029-015-0040-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/06/2015] [Accepted: 09/11/2015] [Indexed: 01/26/2023]
Abstract
BACKGROUND It is now widely-accepted that DNA sequences defining DNA-protein interactions functionally depend upon local biophysical features of DNA backbone that are important in defining sites of binding interaction in the genome (e.g. DNA shape, charge and intrinsic dynamics). However, these physical features of DNA polymer are not directly apparent when analyzing and viewing Shannon information content calculated at single nucleobases in a traditional sequence logo plot. Thus, sequence logos plots are severely limited in that they convey no explicit information regarding the structural dynamics of DNA backbone, a feature often critical to binding specificity. SOFTWARE AND IMPLEMENTATION We present TRX-LOGOS, an R software package and Perl wrapper code that interfaces the JASPAR database for computational regulatory genomics. TRX-LOGOS extends the traditional sequence logo plot to include Shannon information content calculated with regard to the dinucleotide-based BI-BII conformation shifts in phosphate linkages on the DNA backbone, thereby adding a visual measure of intrinsic DNA flexibility that can be critical for many DNA-protein interactions. TRX-LOGOS is available as an R graphics module offered at both SourceForge and as a download supplement at this journal. RESULTS To demonstrate the general utility of TRX logo plots, we first calculated the information content for 416 Saccharomyces cerevisiae transcription factor binding sites functionally confirmed in the Yeastract database and matched to previously published yeast genomic alignments. We discovered that flanking regions contain significantly elevated information content at phosphate linkages than can be observed at nucleobases. We also examined broader transcription factor classifications defined by the JASPAR database, and discovered that many general signatures of transcription factor binding are locally more information rich at the level of DNA backbone dynamics than nucleobase sequence. We used TRX-logos in combination with MEGA 6.0 software for molecular evolutionary genetics analysis to visually compare the human Forkhead box/FOX protein evolution to its binding site evolution. We also compared the DNA binding signatures of human TP53 tumor suppressor determined by two different laboratory methods (SELEX and ChIP-seq). Further analysis of the entire yeast genome, center aligned at the start codon, also revealed a distinct sequence-independent 3 bp periodic pattern in information content, present only in coding region, and perhaps indicative of the non-random organization of the genetic code. CONCLUSION TRX-LOGOS is useful in any situation in which important information content in DNA can be better visualized at the positions of phosphate linkages (i.e. dinucleotides) where the dynamic properties of the DNA backbone functions to facilitate DNA-protein interaction.
Collapse
Affiliation(s)
- Connor H Fortin
- Thomas H. Gosnell School of Life Sciences, Rochester Institute of Technology, Rochester, NY 14623 USA
| | - Katharina V Schulze
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030 USA
| | - Gregory A Babbitt
- Thomas H. Gosnell School of Life Sciences, Rochester Institute of Technology, Rochester, NY 14623 USA
| |
Collapse
|
19
|
Yuan GC. Prediction of Epigenetic Target Sites by Using Genomic DNA Sequence. Bioinformatics 2013. [DOI: 10.4018/978-1-4666-3604-0.ch028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Epigenetic regulation provides an extra layer of gene control in addition to the genomic sequence and is critical for the maintenance of cell-type specific gene expression programs. Significant changes of epigenetic patterns have been linked to developmental stages, environmental exposure, ageing, and diet. However, the regulatory mechanisms for epigenetic recruitment, maintenance, and switch are still poorly understood. Computational biology provides tools to deeply uncover hidden connections and these tools have played a major role in shaping the current understanding of gene regulation, but its application in epigenetics is still in the infancy. This chapter reviews some recent developments of computational approaches to predict epigenetic target sites.
Collapse
Affiliation(s)
- Guo-Cheng Yuan
- Harvard School of Public Health, USA & Dana-Farber Cancer Institute, USA
| |
Collapse
|
20
|
Chang DTH, Li WS, Bai YH, Wu WS. YGA: identifying distinct biological features between yeast gene sets. Gene 2012; 518:26-34. [PMID: 23266802 DOI: 10.1016/j.gene.2012.11.089] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2012] [Accepted: 11/27/2012] [Indexed: 12/01/2022]
Abstract
The advance of high-throughput experimental technologies generates many gene sets with different biological meanings, where many important insights can only be extracted by identifying the biological (regulatory/functional) features that are distinct between different gene sets (e.g. essential vs. non-essential genes, TATA box-containing vs. TATA box-less genes, induced vs. repressed genes under certain biological conditions). Although many servers have been developed to identify enriched features in a gene set, most of them were designed to analyze one gene set at a time but cannot compare two gene sets. Moreover, the features used in existing servers were mainly focused on functional annotations (GO terms), pathways, transcription factor binding sites (TFBSs) and/or protein-protein interactions (PPIs). In yeast, various important regulatory features, including promoter bendability, nucleosome occupancy, 5'-UTR length, and TF-gene regulation evidence, are available but have not been used in any enrichment analysis servers. This motivates us to develop the Yeast Genes Analyzer (YGA), a web server that simultaneously analyzes various biological (regulatory/functional) features of two gene sets and performs statistical tests to identify the distinct features between them. Many well-studied gene sets such as essential, stress-response, TATA box-containing and cell cycle genes were pre-compiled in YGA for users, if they have only one gene set, to compare with. In comparison with the existing enrichment analysis servers, YGA tests more comprehensive regulatory features (e.g. promoter bendability, nucleosome occupancy, 5'-UTR length, experimental evidence of TF-gene binding and TF-gene regulation) and functional features (e.g. PPI, GO terms, pathways and functional groups of genes, including essential/non-essential genes, stress-induced/-repressed genes, TATA box-containing/-less genes, occupied/depleted proximal-nucleosome genes and cell cycle genes). Furthermore, YGA uses various statistical tests to provide objective comparison measures. The two major contributions of YGA, comprehensive features and statistical comparison, help to mine important information that cannot be obtained from other servers. The sophisticated analysis tools of YGA can identify distinct biological features between two gene sets, which help biologists to form new hypotheses about the underlying biological mechanisms responsible for the observed difference between these two gene sets. YGA can be accessed from the following web pages: http://cosbi.ee.ncku.edu.tw/yga/ and http://yga.ee.ncku.edu.tw/.
Collapse
Affiliation(s)
- Darby Tien-Hao Chang
- Department of Electrical Engineering, National Cheng Kung University, Tainan 70101, Taiwan
| | | | | | | |
Collapse
|
21
|
Eukaryotic genomes may exhibit up to 10 generic classes of gene promoters. BMC Genomics 2012; 13:512. [PMID: 23020586 PMCID: PMC3549790 DOI: 10.1186/1471-2164-13-512] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2012] [Accepted: 09/13/2012] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The main function of gene promoters appears to be the integration of different gene products in their biological pathways in order to maintain homeostasis. Generally, promoters have been classified in two major classes, namely TATA and CpG. Nevertheless, many genes using the same combinatorial formation of transcription factors have different gene expression patterns. Accordingly, we tried to ask ourselves some fundamental questions: Why certain genes have an overall predisposition for higher gene expression levels than others? What causes such a predisposition? Is there a structural relationship of these sequences in different tissues? Is there a strong phylogenetic relationship between promoters of closely related species? RESULTS In order to gain valuable insights into different promoter regions, we obtained a series of image-based patterns which allowed us to identify 10 generic classes of promoters. A comprehensive analysis was undertaken for promoter sequences from Arabidopsis thaliana, Drosophila melanogaster, Homo sapiens and Oryza sativa, and a more extensive analysis of tissue-specific promoters in humans. We observed a clear preference for these species to use certain classes of promoters for specific biological processes. Moreover, in humans, we found that different tissues use distinct classes of promoters, reflecting an emerging promoter network. Depending on the tissue type, comparisons made between these classes of promoters reveal a complementarity between their patterns whereas some other classes of promoters have been observed to occur in competition. Furthermore, we also noticed the existence of some transitional states between these classes of promoters that may explain certain evolutionary mechanisms, which suggest a possible predisposition for specific levels of gene expression and perhaps for a different number of factors responsible for triggering gene expression. Our conclusions are based on comprehensive data from three different databases and a new computer model whose core is using Kappa index of coincidence. CONCLUSIONS To fully understand the connections between gene promoters and gene expression, we analyzed thousands of promoter sequences using our Kappa Index of Coincidence method and a specialized Optical Character Recognition (OCR) neural network. Under our criteria, 10 classes of promoters were detected. In addition, the existence of "transitional" promoters suggests that there is an evolutionary weighted continuum between classes, depending perhaps upon changes in their gene products.
Collapse
|
22
|
Babbitt GA, Schulze KV. Codons support the maintenance of intrinsic DNA polymer flexibility over evolutionary timescales. Genome Biol Evol 2012; 4:954-65. [PMID: 22936074 PMCID: PMC3468960 DOI: 10.1093/gbe/evs073] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/21/2012] [Indexed: 01/02/2023] Open
Abstract
Despite our long familiarity with how the genetic code specifies the amino acid sequence, we still know little about why it is organized in the way that it is. Contrary to the view that the organization of the genetic code is a "frozen accident" of evolution, recent studies have demonstrated that it is highly nonrandom, with implications for both codon assignment and usage. We hypothesize that this inherent nonrandomness may facilitate the coexistence of both sequence and structural information in DNA. Here, we take advantage of a simple metric of intrinsic DNA flexibility to analyze mutational effects on the four phosphate linkages present in any given codon. Application of a simple evolutionary neutral model of substitution to random sequences, translated with alternative genetic codes, reveals that the standard code is highly optimized to favor synonymous substitutions that maximize DNA polymer flexibility, potentially counteracting neutral evolutionary drift toward stiffer DNA caused by spontaneous deamination. Comparison to existing mutational patterns in yeast also demonstrates evidence of strong selective constraint on DNA flexibility, especially at so-called "silent" sites. We also report a fundamental relationship between DNA flexibility, codon usage bias, and several important evolutionary descriptors of comparative genomics (e.g., base composition, transition/transversion ratio, and nonsynonymous vs. synonymous substitution rate). Recent advances in structural genomics have emphasized the role of the DNA polymer's flexibility in both gene function and whole genome folding, thereby implicating possible reasons for codons to facilitate the multiplexing of both genetic and structural information within the same molecular context.
Collapse
Affiliation(s)
- G A Babbitt
- TH Gosnell School of Life Sciences, Rochester Institute of Technology, Rochester, NY, USA.
| | | |
Collapse
|
23
|
Hughes AL, Jin Y, Rando OJ, Struhl K. A functional evolutionary approach to identify determinants of nucleosome positioning: a unifying model for establishing the genome-wide pattern. Mol Cell 2012; 48:5-15. [PMID: 22885008 DOI: 10.1016/j.molcel.2012.07.003] [Citation(s) in RCA: 97] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2012] [Revised: 06/11/2012] [Accepted: 07/06/2012] [Indexed: 11/18/2022]
Abstract
Although the genomic pattern of nucleosome positioning is broadly conserved, quantitative aspects vary over evolutionary timescales. We identify the cis and trans determinants of nucleosome positioning using a functional evolutionary approach involving S. cerevisiae strains containing large genomic regions from other yeast species. In a foreign species, nucleosome depletion at promoters is maintained over poly(dA:dT) tracts, whereas internucleosome spacing and all other aspects of nucleosome positioning tested are not. Interestingly, the locations of the +1 nucleosome and RNA start sites shift in concert. Strikingly, in a foreign species, nucleosome-depleted regions occur fortuitously in coding regions, and they often act as promoters that are associated with a positioned nucleosome array linked to the length of the transcription unit. We suggest a three-step model in which nucleosome remodelers, general transcription factors, and the transcriptional elongation machinery are primarily involved in generating the nucleosome positioning pattern in vivo.
Collapse
Affiliation(s)
- Amanda L Hughes
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School,Worcester, MA 01605, USA
| | | | | | | |
Collapse
|
24
|
Bajić D, Poyatos JF. Balancing noise and plasticity in eukaryotic gene expression. BMC Genomics 2012; 13:343. [PMID: 22839658 PMCID: PMC3539894 DOI: 10.1186/1471-2164-13-343] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2012] [Accepted: 06/30/2012] [Indexed: 01/12/2023] Open
Abstract
BACKGROUND Coupling the control of expression stochasticity (noise) to the ability of expression change (plasticity) can alter gene function and influence adaptation. A number of factors, such as transcription re-initiation, strong chromatin regulation or genome neighboring organization, underlie this coupling. However, these factors do not necessarily combine in equivalent ways and strengths in all genes. Can we identify then alternative architectures that modulate in distinct ways the linkage of noise and plasticity? RESULTS Here we first show that strong chromatin regulation, commonly viewed as a source of coupling, can lead to plasticity without noise. The nature of this regulation is relevant too, with plastic but noiseless genes being subjected to general activators whereas plastic and noisy genes experience more specific repression. Contrarily, in genes exhibiting poor transcriptional control, it is translational efficiency what separates noise from plasticity, a pattern related to transcript length. This additionally implies that genome neighboring organization -as modifier- appears only effective in highly plastic genes. In this class, we confirm bidirectional promoters (bipromoters) as a configuration capable to reduce coupling by abating noise but also reveal an important trade-off, since bipromoters also decrease plasticity. This presents ultimately a paradox between intergenic distances and modulation, with short intergenic distances both associated and disassociated to noise at different plasticity levels. CONCLUSIONS Balancing the coupling among different types of expression variability appears as a potential shaping force of genome regulation and organization. This is reflected in the use of different control strategies at genes with different sets of functional constraints.
Collapse
Affiliation(s)
- Djordje Bajić
- Logic of Genomic Systems Laboratory, Spanish National Biotechnology Centre, Consejo Superior de Investigaciones Científicas-CSIC, Madrid, Spain.
| | | |
Collapse
|
25
|
Meysman P, Marchal K, Engelen K. DNA structural properties in the classification of genomic transcription regulation elements. Bioinform Biol Insights 2012; 6:155-68. [PMID: 22837642 PMCID: PMC3399529 DOI: 10.4137/bbi.s9426] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
It has been long known that DNA molecules encode information at various levels. The most basic level comprises the base sequence itself and is primarily important for the encoding of proteins and direct base recognition by DNA-binding proteins. A more elusive level consists of the local structural properties of the DNA molecule wherein the DNA sequence only plays an indirect supportive role. These properties are nevertheless an important factor in a large number of biomolecular processes and can be considered as informative signals for the presence of a variety of genomic features. Several recent studies have unequivocally shown the benefit of relying on such DNA properties for modeling and predicting genomic features as diverse as transcription start sites, transcription factor binding sites, or nucleosome occupancy. This review is meant to provide an overview of the key aspects of these DNA conformational and physicochemical properties. To illustrate their potential added value compared to relying solely on the nucleotide sequence in genomics studies, we discuss their application in research on transcription regulation mechanisms as representative cases.
Collapse
Affiliation(s)
- Pieter Meysman
- Department of Molecular and Microbial Systems, KULeuven, Kasteelpark Arenberg 20, 3001 Leuven, Belgium
| | | | | |
Collapse
|
26
|
Abstract
Understanding the mechanisms by which chromatin structure controls eukaryotic transcription has been an intense area of investigation for the past 25 years. Many of the key discoveries that created the foundation for this field came from studies of Saccharomyces cerevisiae, including the discovery of the role of chromatin in transcriptional silencing, as well as the discovery of chromatin-remodeling factors and histone modification activities. Since that time, studies in yeast have continued to contribute in leading ways. This review article summarizes the large body of yeast studies in this field.
Collapse
|
27
|
Machné R, Murray DB. The yin and yang of yeast transcription: elements of a global feedback system between metabolism and chromatin. PLoS One 2012; 7:e37906. [PMID: 22685547 PMCID: PMC3369881 DOI: 10.1371/journal.pone.0037906] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2012] [Accepted: 04/30/2012] [Indexed: 11/19/2022] Open
Abstract
When grown in continuous culture, budding yeast cells tend to synchronize their respiratory activity to form a stable oscillation that percolates throughout cellular physiology and involves the majority of the protein-coding transcriptome. Oscillations in batch culture and at single cell level support the idea that these dynamics constitute a general growth principle. The precise molecular mechanisms and biological functions of the oscillation remain elusive. Fourier analysis of transcriptome time series datasets from two different oscillation periods (0.7 h and 5 h) reveals seven distinct co-expression clusters common to both systems (34% of all yeast ORF), which consolidate into two superclusters when correlated with a compilation of 1,327 unrelated transcriptome datasets. These superclusters encode for cell growth and anabolism during the phase of high, and mitochondrial growth, catabolism and stress response during the phase of low oxygen uptake. The promoters of each cluster are characterized by different nucleotide contents, promoter nucleosome configurations, and dependence on ATP-dependent nucleosome remodeling complexes. We show that the ATP:ADP ratio oscillates, compatible with alternating metabolic activity of the two superclusters and differential feedback on their transcription via activating (RSC) and repressive (Isw2) types of promoter structure remodeling. We propose a novel feedback mechanism, where the energetic state of the cell, reflected in the ATP:ADP ratio, gates the transcription of large, but functionally coherent groups of genes via differential effects of ATP-dependent nucleosome remodeling machineries. Besides providing a mechanistic hypothesis for the delayed negative feedback that results in the oscillatory phenotype, this mechanism may underpin the continuous adaptation of growth to environmental conditions.
Collapse
Affiliation(s)
- Rainer Machné
- Institute for Theoretical Chemistry, University of Vienna, Vienna, Austria.
| | | |
Collapse
|
28
|
Yuan GC. Linking genome to epigenome. WILEY INTERDISCIPLINARY REVIEWS-SYSTEMS BIOLOGY AND MEDICINE 2012; 4:297-309. [PMID: 22344857 DOI: 10.1002/wsbm.1165] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Recent epigenomic studies have identified significant differences between developmental stages and cell types. While the importance of epigenetic regulation has been increasingly recognized, it remains unclear how the global epigenetic patterns are established and maintained. Here I review a number of recent studies with the emphasis on the role of the genomic sequence in shaping the epigenetic landscape. These studies strongly suggest that the sequence information is important not just for controlling target specificity but for orchestrating the diversity of epigenetic patterns among different cell types. The epigenome is maintained by the complex network of a large number of interactions. Integrative approaches are needed to gain insights into these networks.
Collapse
Affiliation(s)
- Guo-Cheng Yuan
- Department of Biostatistics, Harvard School of Public Health, Boston, MA, USA.
| |
Collapse
|
29
|
Chang DTH, Wu CY, Fan CY. A study on promoter characteristics of head-to-head genes in Saccharomyces cerevisiae. BMC Genomics 2012; 13 Suppl 1:S11. [PMID: 22369481 PMCID: PMC3303733 DOI: 10.1186/1471-2164-13-s1-s11] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Background Head-to-head (h2h) genes are prone to have association in expression and in functionality and have been shown conserved in evolution. Currently there are many studies on such h2h gene pairs. We found that the previous studies extremely focused on human genome. Furthermore, they only focused on analyses that require only gene or protein sequences but not conducted a systematic investigation on other promoter features such as the binding evidence of specific transcription factors (TFs). This is mainly because of the incomplete resources of higher organisms, though they are relatively of interest, than model organisms such as Saccharomyces cerevisiae. The authors of this study recently integrated nine promoter features of 6603 genes of S. cerevisiae from six databases and five papers. These resources are suitable to conduct a comprehensive analysis of h2h genes in S. cerevisiae. Results This study analyzed various promoter features, including transcription boundaries (TSS, 5'UTR and 3'UTR), TATA box, TF binding evidence, TF regulation evidence, DNA bendability and nucleosome occupancy. The expression profiles and gene ontology (GO) annotations were used to measure if two genes are associated. Based on these promoter features, we found that i) the frequency of h2h genes was close to the expectation, namely they were not relatively frequent in genome; ii) the distance between the TSSs of most h2h genes fell into the range of 0-600 bps and was more centralized in 0-200 bps of the highly associated ones; iii) the number of TFs that regulate both h2h genes influenced the co-expression and co-function of the genes, while the number of TFs that bind both h2h genes influenced only the co-expression of the genes; iv) the association of two h2h genes was influenced by the existence of specific TFs such as STP2; v) the association of h2h genes whose bidirectional promoters have no TATA box was slightly higher than those who have TATA boxes; vi) the association of two h2h genes was not influenced by the DNA bendability and nucleosome occupancy. Conclusions This study analyzed h2h genes with various promoter features that have not been used in analyzing h2h genes. The results can be applied to other genomes to confirm if the observations of this study are limited to S. cerevisiae or universal in most organisms.
Collapse
Affiliation(s)
- Darby Tien-Hao Chang
- Department of Electrical Engineering, National Cheng Kung University, Tainan 70101, Taiwan.
| | | | | |
Collapse
|
30
|
Evolution of nucleosome occupancy: conservation of global properties and divergence of gene-specific patterns. Mol Cell Biol 2011; 31:4348-55. [PMID: 21896781 DOI: 10.1128/mcb.05276-11] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
To examine the role of nucleosome occupancy in the evolution of gene expression, we measured the genome-wide nucleosome profiles of four yeast species, three belonging to the Saccharomyces sensu stricto lineage and the more distantly related Candida glabrata. Nucleosomes and associated promoter elements at C. glabrata genes are typically shifted upstream by ∼20 bp, compared to their orthologs from sensu stricto species. Nonetheless, all species display the same global organization features first described for Saccharomyces cerevisiae: a stereotypical nucleosome organization along genes and a division of promoters into those that contain or lack a pronounced nucleosome-depleted region (NDR), with the latter displaying a more dynamic pattern of gene expression. Despite this global similarity, however, nucleosome occupancy at specific genes diverged extensively between sensu stricto and C. glabrata orthologs (∼50 million years). Orthologs with dynamic expression patterns tend to maintain their lack of NDR, but apart from that, sensu stricto and C. glabrata orthologs are nearly as similar in nucleosome occupancy patterns as nonorthologous genes. This extensive divergence in nucleosome occupancy contrasts with a conserved pattern of gene expression. Thus, while some evolutionary changes in nucleosome occupancy contribute to gene expression divergence, nucleosome occupancy often diverges extensively with apparently little impact on gene expression.
Collapse
|
31
|
Abstract
The DNA of eukaryotic cells is spooled around large histone protein complexes, forming nucleosomes that make up the basis for a high-order packaging structure called chromatin. Compared to naked DNA, nucleosomal DNA is less accessible to regulatory proteins and regulatory processes. The exact positions of nucleosomes therefore influence several cellular processes, including gene expression, chromosome segregation, recombination, replication, and DNA repair. Here, we review recent technological advances enabling the genome-wide mapping of nucleosome positions in the model eukaryote Saccharomyces cerevisiae. We discuss the various parameters that determine nucleosome positioning in vivo, including cis factors like AT content, variable tandem repeats, and poly(dA:dT) tracts that function as chromatin barriers and trans factors such as chromatin remodeling complexes, transcription factors, histone-modifying enzymes, and RNA polymerases. In the last section, we review the biological role of chromatin in gene transcription, the evolution of gene regulation, and epigenetic phenomena.
Collapse
Affiliation(s)
- An Jansen
- VIB Laboratory for Systems Biology, Bio-Incubator, Gaston Geenslaan 1, B-3001 Leuven, Belgium, and Laboratory for Genetics and Genomics, Centre of Microbial and Plant Genetics (CMPG), K. U. Leuven, Kasteelpark Arenberg 22, B-3001 Leuven, Belgium
| | - Kevin J. Verstrepen
- VIB Laboratory for Systems Biology, Bio-Incubator, Gaston Geenslaan 1, B-3001 Leuven, Belgium, and Laboratory for Genetics and Genomics, Centre of Microbial and Plant Genetics (CMPG), K. U. Leuven, Kasteelpark Arenberg 22, B-3001 Leuven, Belgium
| |
Collapse
|
32
|
Zou Y, Huang W, Gu Z, Gu X. Predominant Gain of Promoter TATA Box after Gene Duplication Associated with Stress Responses. Mol Biol Evol 2011; 28:2893-904. [DOI: 10.1093/molbev/msr116] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
|
33
|
Meera A, Rangarajan L, Bhat S. Computational approach towards promoter sequence comparison via TF mapping using a new distance measure. Interdiscip Sci 2011; 3:43-49. [PMID: 21369887 DOI: 10.1007/s12539-011-0057-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2009] [Revised: 10/20/2009] [Accepted: 10/23/2009] [Indexed: 05/30/2023]
Abstract
We propose a method for identifying transcription factor binding sites (TFBS) in the given promoter sequence and mapping the transcription factors (TFs). The proposed algorithm searches the +1 transcription start site (TSS) for eukaryotic and prokaryotic sequences individually. The algorithm was tested with sequences from both eukaryotes and prokaryotes for at least 9 experimentally verified and validated functional TFs in promoter sequences. The order and type of TF binding to the promoter of genes encoding central metabolic pathway (CMP) enzyme was tabulated. A new similarity measure was devised for scoring the similarity between a pair of promoter sequences based on the number and order of motifs. Further, these were grouped in clusters considering the scores between them. The distance between each of the clusters in individual pathway was calculated and a phylogenetic tree was developed. This method is further applied to other pathways such as lipid and amino acid biosynthesis to retrieve and compare experimentally verified and conserved TFBS.
Collapse
Affiliation(s)
- A Meera
- B.M.S College of Engineering, Bull Temple Road, Bangalore, 560019, India
| | | | | |
Collapse
|
34
|
Chang DTH, Huang CY, Wu CY, Wu WS. YPA: an integrated repository of promoter features in Saccharomyces cerevisiae. Nucleic Acids Res 2010; 39:D647-52. [PMID: 21045055 PMCID: PMC3013683 DOI: 10.1093/nar/gkq1086] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/04/2022] Open
Abstract
This study presents the Yeast Promoter Atlas (YPA, http://ypa.ee.ncku.edu.tw/ or http://ypa.csbb.ntu.edu.tw/) database, which aims to collect comprehensive promoter features in Saccharomyces cerevisiae. YPA integrates nine kinds of promoter features including promoter sequences, genes’ transcription boundaries—transcription start sites (TSSs), five prime untranslated regions (5′-UTRs) and three prime untranslated regions (3′UTRs), TATA boxes, transcription factor binding sites (TFBSs), nucleosome occupancy, DNA bendability, transcription factor (TF) binding, TF knockout expression and TF–TF physical interaction. YPA is designed to present data in a unified manner as many important observations are revealed only when these promoter features are considered altogether. For example, DNA rigidity can prevent nucleosome packaging, thereby making TFBSs in the rigid DNA regions more accessible to TFs. Integrating nucleosome occupancy, DNA bendability, TF binding, TF knockout expression and TFBS data helps to identify which TFBS is actually functional. In YPA, various promoter features can be accessed in a centralized and organized platform. Researchers can easily view if the TFBSs in an interested promoter are occupied by nucleosomes or located in a rigid DNA segment and know if the expression of the downstream gene responds to the knockout of the corresponding TFs. Compared to other established yeast promoter databases, YPA collects not only TFBSs but also many other promoter features to help biologists study transcriptional regulation.
Collapse
Affiliation(s)
- Darby Tien-Hao Chang
- Department of Electrical Engineering, National Cheng Kung University, Tainan 70101, Taiwan
| | | | | | | |
Collapse
|
35
|
Lin Z, Wu WS, Liang H, Woo Y, Li WH. The spatial distribution of cis regulatory elements in yeast promoters and its implications for transcriptional regulation. BMC Genomics 2010; 11:581. [PMID: 20958978 PMCID: PMC3091728 DOI: 10.1186/1471-2164-11-581] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2010] [Accepted: 10/19/2010] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND How the transcription factor binding sites (TFBSs) are distributed in the promoter region have implications for gene regulation. Previous studies used the translation start codon as the reference point to infer the TFBS distribution. However, it is biologically more relevant to use the transcription start site (TSS) as the reference point. In this study, we reexamined the spatial distribution of TFBSs, investigated various promoter features that may affect the distribution, and studied the effect of TFBS distribution on transcriptional regulation. RESULTS We found a sharp peak for the distribution of TFBSs at ~115 bp upstream of the TSS, but no clear peak when the translation start codon was used as the reference point. Our analysis of sequence variation data among 63 yeast strains revealed very low deletion polymorphisms in the region between the distribution peak and the TSS, suggesting that the distances between TFBSs and the TSS have been selectively constrained in evolution. As in previous studies, we found that the nucleosome occupancy and the presence/absence of TATA-box in the promoter region affect the TFBS distribution pattern. In addition, we found that there exists a correlation between the 5'UTR length and the TFBS distribution pattern and we showed that the TFBS distribution pattern affects gene transcription level and plasticity. CONCLUSIONS The spatial distribution of TFBSs obtained using the TSS as the reference point shows a much sharper peak than does the distribution obtained using the translation start codon as the reference point. The TFBS distribution pattern is affected by nucleosome occupancy and presence of TATA-box and it affects the transcription level and transcription plasticity of the gene.
Collapse
Affiliation(s)
- Zhenguo Lin
- Department of Ecology and Evolution, University of Chicago, 1101 East 57th Street, Chicago, IL 60637, USA
| | | | | | | | | |
Collapse
|
36
|
Functional dissection of IME1 transcription using quantitative promoter-reporter screening. Genetics 2010; 186:829-41. [PMID: 20739709 DOI: 10.1534/genetics.110.122200] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Transcriptional regulation is a key mechanism that controls the fate and response of cells to diverse signals. Therefore, the identification of the DNA-binding proteins, which mediate these signals, is a crucial step in elucidating how cell fate is regulated. In this report, we applied both bioinformatics and functional genomic approaches to scrutinize the unusually large promoter of the IME1 gene in budding yeast. Using a recently described fluorescent protein-based reporter screen, reporter-synthetic genetic array (R-SGA), we assessed the effect of viable deletion mutants on transcription of various IME1 promoter-reporter genes. We discovered potential transcription factors, many of which have no perfect consensus site within the IME1 promoter. Moreover, most of the cis-regulatory sequences with perfect homology to known transcription factor (TF) consensus were found to be nonfunctional in the R-SGA analysis. In addition, our results suggest that lack of conservation may not discriminate against a TF regulatory role at a specific promoter. We demonstrate that Sum1 and Sok2, which regulate IME1, bind to nonperfect consensuses within nonconserved regions in the sensu stricto Saccharomyces strains. Our analysis supports the view that although comparative analysis can provide a useful guide, functional assays are required for accurate identification of TF-binding site interactions in complex promoters.
Collapse
|
37
|
Tsankov AM, Thompson DA, Socha A, Regev A, Rando OJ. The role of nucleosome positioning in the evolution of gene regulation. PLoS Biol 2010; 8:e1000414. [PMID: 20625544 PMCID: PMC2897762 DOI: 10.1371/journal.pbio.1000414] [Citation(s) in RCA: 173] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2010] [Accepted: 05/27/2010] [Indexed: 11/18/2022] Open
Abstract
Chromatin organization plays a major role in gene regulation and can affect the function and evolution of new transcriptional programs. However, it can be difficult to decipher the basis of changes in chromatin organization and their functional effect on gene expression. Here, we present a large-scale comparative genomic analysis of the relationship between chromatin organization and gene expression, by measuring mRNA abundance and nucleosome positions genome-wide in 12 Hemiascomycota yeast species. We found substantial conservation of global and functional chromatin organization in all species, including prominent nucleosome-free regions (NFRs) at gene promoters, and distinct chromatin architecture in growth and stress genes. Chromatin organization has also substantially diverged in both global quantitative features, such as spacing between adjacent nucleosomes, and in functional groups of genes. Expression levels, intrinsic anti-nucleosomal sequences, and trans-acting chromatin modifiers all play important, complementary, and evolvable roles in determining NFRs. We identify five mechanisms that couple chromatin organization to evolution of gene regulation and have contributed to the evolution of respiro-fermentation and other key systems, including (1) compensatory evolution of alternative modifiers associated with conserved chromatin organization, (2) a gradual transition from constitutive to trans-regulated NFRs, (3) a loss of intrinsic anti-nucleosomal sequences accompanying changes in chromatin organization and gene expression, (4) re-positioning of motifs from NFRs to nucleosome-occluded regions, and (5) the expanded use of NFRs by paralogous activator-repressor pairs. Our study sheds light on the molecular basis of chromatin organization, and on the role of chromatin organization in the evolution of gene regulation.
Collapse
Affiliation(s)
- Alexander M. Tsankov
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts, United States of America
- Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
| | - Dawn Anne Thompson
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts, United States of America
| | - Amanda Socha
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts, United States of America
| | - Aviv Regev
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts, United States of America
- Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
- Howard Hughes Medical Institute, Cambridge, Massachusetts, United States of America
| | - Oliver J. Rando
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, Massachusetts, United States of America
| |
Collapse
|
38
|
Choi JK. Contrasting chromatin organization of CpG islands and exons in the human genome. Genome Biol 2010; 11:R70. [PMID: 20602769 PMCID: PMC2926781 DOI: 10.1186/gb-2010-11-7-r70] [Citation(s) in RCA: 87] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2010] [Revised: 03/28/2010] [Accepted: 07/05/2010] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND CpG islands and nucleosome-free regions are both found in promoters. However, their association has never been studied. On the other hand, DNA methylation is absent in promoters but is enriched in gene bodies. Intragenic nucleosomes and their modifications have been recently associated with RNA splicing. Because the function of intragenic DNA methylation remains unclear, I explored the possibility of its involvement in splicing regulation. RESULTS Here I show that CpG islands were associated not only with methylation-free promoters but also with nucleosome-free promoters. Nucleosome-free regions were observed only in promoters containing a CpG island. However, the DNA sequences of CpG islands predicted the opposite pattern, implying a limitation of sequence programs for the determination of nucleosome occupancy. In contrast to the methylation-and nucleosome-free states of CpG-island promoters, exons were densely methylated at CpGs and packaged into nucleosomes. Exon-enrichment of DNA methylation was specifically found in spliced exons and in exons with weak splice sites. The enrichment patterns were less pronounced in initial exons and in non-coding exons, potentially reflecting a lower need for their splicing. I also found that nucleosomes, DNA methylation, and H3K36me3 marked the exons of transcripts with low, medium, and high gene expression levels, respectively. CONCLUSIONS Human promoters containing a CpG island tend to remain nucleosome-free as well as methylation-free. In contrast, exons demonstrate a high degree of methylation and nucleosome occupancy. Exonic DNA methylation seems to function together with exonic nucleosomes and H3K36me3 for the proper splicing of transcripts with different expression levels.
Collapse
Affiliation(s)
- Jung Kyoon Choi
- Department of Biology and Brain Engineering, KAIST, 335 Gwahak-ro, Daejeon 305-701, Republic of Korea.
| |
Collapse
|
39
|
Dai Z, Dai X, Xiang Q, Feng J. Nucleosomal context of binding sites influences transcription factor binding affinity and gene regulation. GENOMICS PROTEOMICS & BIOINFORMATICS 2010; 7:155-62. [PMID: 20172488 PMCID: PMC5054407 DOI: 10.1016/s1672-0229(08)60045-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Transcription factor (TF) binding to its DNA target site plays an essential role in gene regulation. The location, orientation and spacing of transcription factor binding sites (TFBSs) also affect regulatory function of the TF. However, how nucleosomal context of TFBSs influences TF binding and subsequent gene regulation remains to be elucidated. Using genome-wide nucleosome positioning and TF binding data in budding yeast, we found that binding affinities of TFs to DNA tend to decrease with increasing nucleosome occupancy of the associated binding sites. We further demonstrated that nucleosomal context of binding sites is correlated with gene regulation of the corresponding TF. Nucleosome-depleted TFBSs are linked to high gene activity and low expression noise, whereas nucleosome-covered TFBSs are associated with low gene activity and high expression noise. Moreover, nucleosome-covered TFBSs tend to disrupt coexpression of the corresponding TF target genes. We conclude that nucleosomal context of binding sites influences TF binding affinity, subsequently affecting the regulation of TFs on their target genes. This emphasizes the need to include nucleosomal context of TFBSs in modeling gene regulation.
Collapse
Affiliation(s)
- Zhiming Dai
- Electronic Department, Sun Yat-Sen University, Guangzhou 510006, China
| | | | | | | |
Collapse
|
40
|
New insights into two distinct nucleosome distributions: comparison of cross-platform positioning datasets in the yeast genome. BMC Genomics 2010; 11:33. [PMID: 20078849 PMCID: PMC2824721 DOI: 10.1186/1471-2164-11-33] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2009] [Accepted: 01/15/2010] [Indexed: 11/30/2022] Open
Abstract
Background Recently, a number of high-resolution genome-wide maps of nucleosome locations in S. cerevisiae have been derived experimentally. However, nucleosome positions are determined in vivo by the combined effects of numerous factors. Consequently, nucleosomes are not simple static units, which may explain the discrepancies in reported nucleosome positions as measured by different experiments. In order to more accurately depict the genome-wide nucleosome distribution, we integrated multiple nucleosomal positioning datasets using a multi-angle analysis strategy. Results To evaluate the contribution of chromatin structure to transcription, we used the vast amount of available nucleosome analyzed data. Analysis of this data allowed for the comprehensive identification of the connections between promoter nucleosome positioning patterns and various transcription-dependent properties. Further, we characterised the function of nucleosome destabilisation in the context of transcription regulation. Our results indicate that genes with similar nucleosome occupancy patterns share general transcription attributes. We identified the local regulatory correlation (LRC) regions for two distinct types of nucleosomes and we assessed their regulatory properties. We also estimated the nucleosome reproducibility and measurement accuracy for high-confidence transcripts. We found that by maintaining a distance of ~13 bp between the upstream border of the +1 nucleosome and the transcription start sites (TSSs), the stable +1 nucleosome may form a barrier against the accessibility of the TSS and shape an optimum chromatin conformation for gene regulation. An in-depth analysis of nucleosome positioning in normally growing and heat shock cells suggested that the extent and patterns of nucleosome sliding are associated with gene activation. Conclusions Our results, which combine different types of data, suggest that cross-platform information, including discrepancy and consistency, reflects the mechanisms of nucleosome packaging in vivo more faithfully than individual studies. Furthermore, nucleosomes can be divided into two classes according to their stable and dynamic characteristics. We found that two different nucleosome-positioning characteristics may significantly impact transcription programs. Besides, some positioned-nucleosomes are involved in the transition from stable state to dynamic state in response to abrupt environmental changes.
Collapse
|
41
|
Molecular cloning, characterization and expression of PmRsr1, a Ras-related gene from yeast form of Penicillium marneffei. Mol Biol Rep 2010; 37:3533-40. [DOI: 10.1007/s11033-009-9947-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2009] [Accepted: 12/29/2009] [Indexed: 10/20/2022]
|
42
|
Turner BM. Epigenetic responses to environmental change and their evolutionary implications. Philos Trans R Soc Lond B Biol Sci 2010; 364:3403-18. [PMID: 19833651 DOI: 10.1098/rstb.2009.0125] [Citation(s) in RCA: 174] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Chromatin is a complex of DNA, RNA, histones and non-histone proteins and provides the platform on which the transcriptional machinery operates in eukaryotes. The structure and configuration of chromatin are manipulated by families of enzymes, some catalysing the dynamic addition and removal of chemical ligands to selected protein amino acids and some directly altering or displacing the basic structural units. The activities of many of these enzymes are sensitive to environmental and metabolic agents and can thereby serve as sensors through which environmental agents can alter gene expression. Such changes can, in turn, precipitate either local or cell-wide changes as the initial effect spreads through multiple interactive networks. This review discusses the increasingly well-understood mechanisms through which these enzymes alter chromatin function. In some cases at least, it seems that the effects on gene expression may persist even after the removal of the inducing agent, and can be passed on, through mitosis, to subsequent cell generations, constituting a heritable, epigenetic change. If such changes occur in germ cells or their precursors, then they may be passed on to subsequent generations. Mechanisms are now known to exist through which an epigenetic change might give rise to a localized change in DNA sequence exerting the same functional effect, thereby converting an epigenetic to a genetic change. If the induced genetic change has phenotypic effects on which selection can act, then this hypothetical chain of events constitutes a potential route through which the environment might directly influence evolution.
Collapse
Affiliation(s)
- Bryan M Turner
- Institute of Biomedical Research, University of Birmingham Medical School, Birmingham B15 2TT, UK.
| |
Collapse
|
43
|
Zeng J, Cao XQ, Zhao H, Yan H. Finding human promoter groups based on DNA physical properties. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2009; 80:041917. [PMID: 19905352 DOI: 10.1103/physreve.80.041917] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2009] [Revised: 08/24/2009] [Indexed: 05/28/2023]
Abstract
DNA rigidity is an important physical property originating from the DNA three-dimensional structure. Although the general DNA rigidity patterns in human promoters have been investigated, their distinct roles in transcription are largely unknown. In this paper, we discover four highly distinct human promoter groups based on similarity of their rigidity profiles. First, we find that all promoter groups conserve relatively rigid DNAs at the canonical TATA box [a consensus TATA(A/T)A(A/T) sequence] position, which are important physical signals in binding transcription factors. Second, we find that the genes activated by each group of promoters share significant biological functions based on their gene ontology annotations. Finally, we find that these human promoter groups correlate with the tissue-specific gene expression.
Collapse
Affiliation(s)
- Jia Zeng
- Department of Computer Science, Hong Kong Baptist University, Kowloon Tong, Hong Kong.
| | | | | | | |
Collapse
|
44
|
Choi JK, Bae JB, Lyu J, Kim TY, Kim YJ. Nucleosome deposition and DNA methylation at coding region boundaries. Genome Biol 2009; 10:R89. [PMID: 19723310 PMCID: PMC2768978 DOI: 10.1186/gb-2009-10-9-r89] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2009] [Revised: 08/10/2009] [Accepted: 09/01/2009] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Nucleosome deposition downstream of transcription initiation and DNA methylation in the gene body suggest that control of transcription elongation is a key aspect of epigenetic regulation. RESULTS Here we report a genome-wide observation of distinct peaks of nucleosomes and methylation at both ends of a protein coding unit. Elongating polymerases tend to pause near both coding ends immediately upstream of the epigenetic peaks, causing a significant reduction in elongation efficiency. Conserved features in underlying protein coding sequences seem to dictate their evolutionary conservation across multiple species. The nucleosomal and methylation marks are commonly associated with high sequence-encoded DNA-bending propensity but differentially with CpG density. As the gene grows longer, the epigenetic codes seem to be shifted from variable inner sequences toward boundary regions, rendering the peaks more prominent in higher organisms. CONCLUSIONS Recent studies suggest that epigenetic inhibition of transcription elongation facilitates the inclusion of constitutive exons during RNA splicing. The epigenetic marks we identified here seem to secure the first and last coding exons from exon skipping as they are indispensable for accurate translation.
Collapse
Affiliation(s)
- Jung Kyoon Choi
- Department of Biochemistry, College of Life Science and Technology, Yonsei University, 134 Sinchon-dong, Seodaemun-gu, Seoul, Korea
| | | | | | | | | |
Collapse
|
45
|
Abstract
This paper discovers consensus physical signals around eukaryotic splice sites, transcription start sites, and replication origin start and end sites on a genome-wide scale based on their DNA flexibility profiles calculated by three different flexibility models. These salient physical signals are localized highly rigid and flexible DNAs, which may play important roles in protein-DNA recognition by the sliding search mechanism. The found physical signals lead us to a detailed hypothetical view of the search process in which a DNA-binding protein first finds a genomic region close to the target site from an arbitrary starting location by three-dimensional (3D) hopping and intersegment transfer mechanisms for long distances, and subsequently uses the one-dimensional (1D) sliding mechanism facilitated by the localized highly rigid DNAs to accurately locate the target flexible binding site within 30 bp (base pair) short distances. Guided by these physical signals, DNA-binding proteins rapidly search the entire genome to recognize a specific target site from the 3D to 1D pathway. Our findings also show that current promoter prediction programs (PPPs) based on DNA physical properties may suffer from lots of false positives because other functional sites such as splice sites and replication origins have similar physical signals as promoters do.
Collapse
|
46
|
A M, Rangarajan L, Bhat S. Computational approach towards finding evolutionary distance and gene order using promoter sequences of central metabolic pathway. Interdiscip Sci 2009; 1:128-32. [PMID: 20640826 DOI: 10.1007/s12539-009-0017-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2008] [Revised: 10/26/2008] [Accepted: 11/10/2008] [Indexed: 11/26/2022]
Abstract
The comparative analysis of motifs of promoter sequences of the genes encoding enzymes of metabolic pathways such as glycolysis and kreb cycle in different genomes can give insights into the understanding of evolutionary and organizational relationships among both the species as well as enzymes. The comparison of resulting analysis with those of the evolutionary distances drawn considering coding regions of the genes allows one to measure the evolution of complete processes. In the present study we have collected promoter sequences of the glycolysis and kreb cycle genes encoding the respective enzymes from the standard EMBL database and extracted ten Transcription factors (TFs) using the TFsearch tool. This information was put together to develop a database CMPP database both offline and online (http://cmpp.sbbiotech.com). The matrix was developed by calculating the distances based on the presence or absence of motifs (TFs). The phylogenetic tree was obtained by using the NJ method by calculating the distances both within and between the enzymes of glycolysis and kreb cycle individually. The present study could also be extended to pathways such as carbohydrate and lipid metabolic networks.
Collapse
Affiliation(s)
- Meera A
- B.M.S College of Engineering, Bull temple road, Bangalore, 560 019, India
| | | | | |
Collapse
|
47
|
Abstract
Sequence-dependent DNA flexibility is an important structural property originating from the DNA 3D structure. In this paper, we investigate the DNA flexibility of the budding yeast (S. Cerevisiae) replication origins on a genome-wide scale using flexibility parameters from two different models, the trinucleotide and the tetranucleotide models. Based on analyzing average flexibility profiles of 270 replication origins, we find that yeast replication origins are significantly rigid compared with their surrounding genomic regions. To further understand the highly distinctive property of replication origins, we compare the flexibility patterns between yeast replication origins and promoters, and find that they both contain significantly rigid DNAs. Our results suggest that DNA flexibility is an important factor that helps proteins recognize and bind the target sites in order to initiate DNA replication. Inspired by the role of the rigid region in promoters, we speculate that the rigid replication origins may facilitate binding of proteins, including the origin recognition complex (ORC), Cdc6, Cdt1 and the MCM2-7 complex.
Collapse
Affiliation(s)
- Xiao-Qin Cao
- School of Creative Media, City University of Hong Kong, Tat Chee Avenue 83, Hong Kong
| | | | | |
Collapse
|
48
|
Woodacre A, Mason RP, Jeeves RE, Cashmore AM. Copper-dependent transcriptional regulation by Candida albicans Mac1p. MICROBIOLOGY-SGM 2008; 154:1502-1512. [PMID: 18451059 DOI: 10.1099/mic.0.2007/013441-0] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
We have previously shown that copper uptake and regulation in the opportunistic pathogen Candida albicans has some similarities to those in Saccharomyces cerevisiae, including the activation of the copper transporter gene CaCTR1 under low-copper conditions by the transcription factor CaMac1p. However, in this study, further analysis has shown that the actual mechanism of regulation by CaMac1p is different from that of its S. cerevisiae homologue. We demonstrate for the first time, to our knowledge, that the CaMAC1 gene is transcriptionally autoregulated in a copper-dependent manner, in contrast to ScMAC1, which is constitutively transcribed. We also demonstrate that the presence of one copper response element in the promoters of CaCTR1, CaMAC1 and the ferric/cupric reductase gene CaFRE7 is sufficient for normal levels of copper-responsive transcription. In contrast, two promoter elements are essential for normal levels of copper-dependent transcriptional activation by ScMac1p. CaMac1p is also involved in the regulation of the iron-responsive transcriptional repressor gene SFU1 and the alternative oxidase gene AOX2. This work describes a key feature of the copper uptake system in C. albicans that distinguishes it from similar processes in the model yeast S. cerevisiae. The importance of copper uptake in the environment of the human host and the implications for the disease process are discussed.
Collapse
Affiliation(s)
| | - Robert P Mason
- Department of Genetics, University of Leicester, Leicester LE1 7RH, UK
| | - Rose E Jeeves
- Department of Genetics, University of Leicester, Leicester LE1 7RH, UK
| | | |
Collapse
|
49
|
Babbitt GA, Kim Y. Inferring natural selection on fine-scale chromatin organization in yeast. Mol Biol Evol 2008; 25:1714-27. [PMID: 18515262 DOI: 10.1093/molbev/msn127] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Despite its potential role in the evolution of complex phenotypes, the detection of negative (purifying) and positive selection on noncoding regulatory sequence has been elusive because of the inherent difficulty in predicting the functional consequences of mutations on noncoding sequence. Because the functioning of regulatory sequence depends upon both chromatin configuration and cis-regulatory factor binding, we investigate the idea that the functional conservation of regulatory regions should be associated with the conservation of sequence-dependent bending properties of DNA that determine its affinity for the nucleosome. Recent advances in the computational prediction of sequence-dependent affinity to nucleosomes provide an opportunity to distinguish between neutral and nonneutral evolution of fine-scale chromatin organization. Here, a statistical test is presented for detecting evolutionary conservation and/or adaptive evolution of nucleosome affinity from interspecies comparisons of DNA sequences. Local nucleosome affinities of homologous sequences were calculated using 2 recently published methods. A randomization test was applied to sites of mutation to evaluate the similarity of DNA-nucleosome affinity between several closely related species of Saccharomyces yeast. For most of the genes we analyzed, the conservation of local nucleosome affinity was detected at a few distinct locations in the upstream noncoding region. Our results also demonstrate that different patterns of chromatin evolution have shaped DNA-nucleosome interaction at the core promoters of TATA-containing and TATA-less genes and that elevated purifying selection has maintained low affinity for nucleosome in the core promoters of the latter group. Across the entire yeast genome, DNA-nucleosome interaction was also discovered to be significantly more conserved in TATA-less genes compared with TATA-containing genes.
Collapse
Affiliation(s)
- G A Babbitt
- Center for Evolutionary Functional Genomics, The Biodesign Institute, Arizona State University, USA.
| | | |
Collapse
|
50
|
Hermsen R, ten Wolde PR, Teichmann S. Chance and necessity in chromosomal gene distributions. Trends Genet 2008; 24:216-9. [PMID: 18378035 DOI: 10.1016/j.tig.2008.02.004] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2007] [Revised: 02/15/2008] [Accepted: 02/19/2008] [Indexed: 11/30/2022]
Abstract
By analyzing the spacing of genes on chromosomes, we find that transcriptional and RNA-processing regulatory sequences outside coding regions leave footprints on the distribution of intergenic distances. Using analogies between genes on chromosomes and one-dimensional gases, we constructed a statistical null model. We used this to estimate typical upstream and downstream regulatory sequence sizes in various species. Deviations from this model reveal bi-directional transcriptional regulatory regions in Saccharomyces cerevisiae and bi-directional terminators in Escherichia coli.
Collapse
Affiliation(s)
- Rutger Hermsen
- FOM Institute for Atomic and Molecular Physics, 1098 SJ, Amsterdam, The Netherlands.
| | | | | |
Collapse
|