1
|
Orren DK, Machwe A. Response to Replication Stress and Maintenance of Genome Stability by WRN, the Werner Syndrome Protein. Int J Mol Sci 2024; 25:8300. [PMID: 39125869 PMCID: PMC11311767 DOI: 10.3390/ijms25158300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 07/16/2024] [Accepted: 07/25/2024] [Indexed: 08/12/2024] Open
Abstract
Werner syndrome (WS) is an autosomal recessive disease caused by loss of function of WRN. WS is a segmental progeroid disease and shows early onset or increased frequency of many characteristics of normal aging. WRN possesses helicase, annealing, strand exchange, and exonuclease activities and acts on a variety of DNA substrates, even complex replication and recombination intermediates. Here, we review the genetics, biochemistry, and probably physiological functions of the WRN protein. Although its precise role is unclear, evidence suggests WRN plays a role in pathways that respond to replication stress and maintain genome stability particularly in telomeric regions.
Collapse
Affiliation(s)
- David K. Orren
- Department of Toxicology and Cancer Biology, University of Kentucky College of Medicine, Lexington, KY 40536, USA;
- Markey Cancer Center, University of Kentucky, Lexington, KY 40506, USA
| | - Amrita Machwe
- Department of Toxicology and Cancer Biology, University of Kentucky College of Medicine, Lexington, KY 40536, USA;
- Markey Cancer Center, University of Kentucky, Lexington, KY 40506, USA
| |
Collapse
|
2
|
Horan TS, Ascenção CFR, Mellor C, Wang M, Smolka MB, Cohen PE. The DNA helicase FANCJ (BRIP1) functions in double strand break repair processing, but not crossover formation during prophase I of meiosis in male mice. PLoS Genet 2024; 20:e1011175. [PMID: 38377115 PMCID: PMC10906868 DOI: 10.1371/journal.pgen.1011175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 03/01/2024] [Accepted: 02/07/2024] [Indexed: 02/22/2024] Open
Abstract
Meiotic recombination between homologous chromosomes is initiated by the formation of hundreds of programmed double-strand breaks (DSBs). Approximately 10% of these DSBs result in crossovers (COs), sites of physical DNA exchange between homologs that are critical to correct chromosome segregation. Virtually all COs are formed by coordinated efforts of the MSH4/MSH5 and MLH1/MLH3 heterodimers, the latter representing the defining marks of CO sites. The regulation of CO number and position is poorly understood, but undoubtedly requires the coordinated action of multiple repair pathways. In a previous report, we found gene-trap disruption of the DNA helicase, FANCJ (BRIP1/BACH1), elicited elevated numbers of MLH1 foci and chiasmata. In somatic cells, FANCJ interacts with numerous DNA repair proteins including MLH1, and we hypothesized that FANCJ functions with MLH1 to regulate the major CO pathway. To further elucidate the meiotic function of FANCJ, we produced three new Fancj mutant mouse lines via CRISPR/Cas9 gene editing: a full-gene deletion, truncation of the N-terminal Helicase domain, and a C-terminal dual-tagged allele. We also generated an antibody against the C-terminus of the mouse FANCJ protein. Surprisingly, none of our Fancj mutants show any change in either MLH1 focus counts during pachynema or total CO number at diakinesis of prophase I. We find evidence that FANCJ and MLH1 do not interact in meiosis; further, FANCJ does not co-localize with MSH4, MLH1, or MLH3 in meiosis. Instead, FANCJ co-localizes with BRCA1 and TOPBP1, forming discrete foci along the chromosome cores beginning in early meiotic prophase I and densely localized to unsynapsed chromosome axes in late zygonema and to the XY chromosomes in early pachynema. Fancj mutants also exhibit a subtle persistence of DSBs in pachynema. Collectively, these data indicate a role for FANCJ in early DSB repair, but they rule out a role for FANCJ in MLH1-mediated CO events.
Collapse
Affiliation(s)
- Tegan S. Horan
- Department of Biomedical Sciences, Cornell University, Ithaca, New York, United States of America
- Cornell Reproductive Sciences Center, Cornell University, Ithaca, New York, United States of America
| | - Carolline F. R. Ascenção
- Cornell Reproductive Sciences Center, Cornell University, Ithaca, New York, United States of America
- Weill Institute for Cell and Molecular Biology, Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York, United States of America
| | - Christopher Mellor
- Division of Nutritional Sciences, Cornell University, Ithaca, New York, United States of America
| | - Meng Wang
- Division of Nutritional Sciences, Cornell University, Ithaca, New York, United States of America
| | - Marcus B. Smolka
- Cornell Reproductive Sciences Center, Cornell University, Ithaca, New York, United States of America
- Weill Institute for Cell and Molecular Biology, Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York, United States of America
| | - Paula E. Cohen
- Department of Biomedical Sciences, Cornell University, Ithaca, New York, United States of America
- Cornell Reproductive Sciences Center, Cornell University, Ithaca, New York, United States of America
| |
Collapse
|
3
|
Horan TS, Ascenção CFR, Mellor CA, Wang M, Smolka MB, Cohen PE. The DNA helicase FANCJ (BRIP1) functions in Double Strand Break repair processing, but not crossover formation during Prophase I of meiosis in male mice. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.10.06.561296. [PMID: 37873301 PMCID: PMC10592954 DOI: 10.1101/2023.10.06.561296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2023]
Abstract
During meiotic prophase I, recombination between homologous parental chromosomes is initiated by the formation of hundreds of programmed double-strand breaks (DSBs), each of which must be repaired with absolute fidelity to ensure genome stability of the germline. One outcome of these DSB events is the formation of Crossovers (COs), the sites of physical DNA exchange between homologs that are critical to ensure the correct segregation of parental chromosomes. However, COs account for only a small (~10%) proportion of all DSB repair events; the remaining 90% are repaired as non-crossovers (NCOs), most by synthesis dependent strand annealing. Virtually all COs are formed by coordinated efforts of the MSH4/MSH5 and MLH1/MLH3 heterodimers. The number and positioning of COs is exquisitely controlled via mechanisms that remain poorly understood, but which undoubtedly require the coordinated action of multiple repair pathways downstream of the initiating DSB. In a previous report we found evidence suggesting that the DNA helicase and Fanconi Anemia repair protein, FANCJ (BRIP1/BACH1), functions to regulate meiotic recombination in mouse. A gene-trap disruption of Fancj showed an elevated number of MLH1 foci and COs. FANCJ is known to interact with numerous DNA repair proteins in somatic cell repair contexts, including MLH1, BLM, BRCA1, and TOPBP1, and we hypothesized that FANCJ regulates CO formation through a direct interaction with MLH1 to suppress the major CO pathway. To further elucidate the function of FANCJ in meiosis, we produced three new Fancj mutant mouse lines via CRISPR/Cas9 gene editing: a full-gene deletion, a mutant line lacking the MLH1 interaction site and the N-terminal region of the Helicase domain, and a C-terminal 6xHIS-HA dual-tagged allele of Fancj. We also generated an antibody against the C-terminus of the mouse FANCJ protein. Surprisingly, while Fanconi-like phenotypes are observed within the somatic cell lineages of the full deletion Fancj line, none of the Fancj mutants show any change in either MLH1 focus counts during pachynema or total CO number at diakinesis of prophase I of meiosis. We find evidence that FANCJ and MLH1 do not interact in meiosis; further, FANCJ does not co-localize with MSH4, MLH1, or MLH3 during late prophase I. Instead, FANCJ forms discrete foci along the chromosome cores beginning in early meiotic prophase I, occasionally co-localizing with MSH4, and then becomes densely localized on unsynapsed chromosome axes in late zygonema and to the XY chromosomes in early pachynema. Strikingly, this localization strongly overlaps with BRCA1 and TOPBP1. Fancj mutants also exhibit a subtle persistence of DSBs in pachynema. Collectively, these data suggest a role for FANCJ in early DSB repair events, and possibly in the formation of NCOs, but they rule out a role for FANCJ in MLH1-mediated CO events. Thus, the role of FANCJ in meiotic cells involves different pathways and different interactors to those described in somatic cell lineages.
Collapse
Affiliation(s)
- Tegan S Horan
- Department of Biomedical Sciences, Cornell University, Ithaca, NY 14853
- Cornell Reproductive Sciences Center, Cornell University, Ithaca, NY 14853
| | - Carolline F R Ascenção
- Cornell Reproductive Sciences Center, Cornell University, Ithaca, NY 14853
- Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, NY 14853
| | | | - Meng Wang
- Division of Nutritional Sciences, Cornell University, Ithaca, NY 14853
| | - Marcus B Smolka
- Cornell Reproductive Sciences Center, Cornell University, Ithaca, NY 14853
- Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, NY 14853
| | - Paula E Cohen
- Department of Biomedical Sciences, Cornell University, Ithaca, NY 14853
- Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, NY 14853
| |
Collapse
|
4
|
Ovejero S, Viziteu E, Dutrieux L, Devin J, Lin YL, Alaterre E, Jourdan M, Basbous J, Requirand G, Robert N, de Boussac H, Seckinger A, Hose D, Vincent L, Herbaux C, Constantinou A, Pasero P, Moreaux J. The BLM helicase is a new therapeutic target in multiple myeloma involved in replication stress survival and drug resistance. Front Immunol 2022; 13:983181. [PMID: 36569948 PMCID: PMC9780552 DOI: 10.3389/fimmu.2022.983181] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Accepted: 11/24/2022] [Indexed: 12/13/2022] Open
Abstract
Multiple myeloma (MM) is a hematologic cancer characterized by accumulation of malignant plasma cells in the bone marrow. To date, no definitive cure exists for MM and resistance to current treatments is one of the major challenges of this disease. The DNA helicase BLM, whose depletion or mutation causes the cancer-prone Bloom's syndrome (BS), is a central factor of DNA damage repair by homologous recombination (HR) and genomic stability maintenance. Using independent cohorts of MM patients, we identified that high expression of BLM is associated with a poor outcome with a significant enrichment in replication stress signature. We provide evidence that chemical inhibition of BLM by the small molecule ML216 in HMCLs (human myeloma cell lines) leads to cell cycle arrest and increases apoptosis, likely by accumulation of DNA damage. BLM inhibition synergizes with the alkylating agent melphalan to efficiently inhibit growth and promote cell death in HMCLs. Moreover, ML216 treatment re-sensitizes melphalan-resistant cell lines to this conventional therapeutic agent. Altogether, these data suggest that inhibition of BLM in combination with DNA damaging agents could be of therapeutic interest in the treatment of MM, especially in those patients with high BLM expression and/or resistance to melphalan.
Collapse
Affiliation(s)
- Sara Ovejero
- Department of Biological Hematology, CHU Montpellier, Montpellier, France,Institute of Human Genetics, UMR 9002 CNRS-UM, Montpellier, France
| | - Elena Viziteu
- Department of Biological Hematology, CHU Montpellier, Montpellier, France,Institute of Human Genetics, UMR 9002 CNRS-UM, Montpellier, France
| | - Laure Dutrieux
- Department of Biological Hematology, CHU Montpellier, Montpellier, France,Institute of Human Genetics, UMR 9002 CNRS-UM, Montpellier, France
| | - Julie Devin
- Department of Biological Hematology, CHU Montpellier, Montpellier, France,Institute of Human Genetics, UMR 9002 CNRS-UM, Montpellier, France
| | - Yea-Lih Lin
- Institute of Human Genetics, UMR 9002 CNRS-UM, Montpellier, France
| | - Elina Alaterre
- Department of Biological Hematology, CHU Montpellier, Montpellier, France,Institute of Human Genetics, UMR 9002 CNRS-UM, Montpellier, France
| | - Michel Jourdan
- Department of Biological Hematology, CHU Montpellier, Montpellier, France,Institute of Human Genetics, UMR 9002 CNRS-UM, Montpellier, France
| | - Jihane Basbous
- Institute of Human Genetics, UMR 9002 CNRS-UM, Montpellier, France
| | - Guilhem Requirand
- Department of Biological Hematology, CHU Montpellier, Montpellier, France
| | - Nicolas Robert
- Department of Biological Hematology, CHU Montpellier, Montpellier, France
| | | | | | - Dirk Hose
- Department of Hematology and Immunology, Vrije Universiteit Brussel (VUB), Brussels, Belgium
| | - Laure Vincent
- Department of Hematology and Immunology, Vrije Universiteit Brussel (VUB), Brussels, Belgium
| | - Charles Herbaux
- Institute of Human Genetics, UMR 9002 CNRS-UM, Montpellier, France,Department of Hematology and Immunology, Vrije Universiteit Brussel (VUB), Brussels, Belgium
| | | | - Philippe Pasero
- Institute of Human Genetics, UMR 9002 CNRS-UM, Montpellier, France
| | - Jérôme Moreaux
- Department of Biological Hematology, CHU Montpellier, Montpellier, France,Institute of Human Genetics, UMR 9002 CNRS-UM, Montpellier, France,Department of Clinical Hematology, CHU Montpellier, Montpellier, France,*Correspondence: Jérôme Moreaux,
| |
Collapse
|
5
|
Shu H, Zhang R, Xiao K, Yang J, Sun X. G-Quadruplex-Binding Proteins: Promising Targets for Drug Design. Biomolecules 2022; 12:biom12050648. [PMID: 35625576 PMCID: PMC9138358 DOI: 10.3390/biom12050648] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 04/26/2022] [Accepted: 04/27/2022] [Indexed: 12/31/2022] Open
Abstract
G-quadruplexes (G4s) are non-canonical secondary nucleic acid structures. Sequences with the potential to form G4s are abundant in regulatory regions of the genome including telomeres, promoters and 5′ non-coding regions, indicating they fulfill important genome regulatory functions. Generally, G4s perform various biological functions by interacting with proteins. In recent years, an increasing number of G-quadruplex-binding proteins have been identified with biochemical experiments. G4-binding proteins are involved in vital cellular processes such as telomere maintenance, DNA replication, gene transcription, mRNA processing. Therefore, G4-binding proteins are also associated with various human diseases. An intensive study of G4-protein interactions provides an attractive approach for potential therapeutics and these proteins can be considered as drug targets for novel medical treatment. In this review, we present biological functions and structural properties of G4-binding proteins, and discuss how to exploit G4-protein interactions to develop new therapeutic targets.
Collapse
|
6
|
Kelm JM, Samarbakhsh A, Pillai A, VanderVere-Carozza PS, Aruri H, Pandey DS, Pawelczak KS, Turchi JJ, Gavande NS. Recent Advances in the Development of Non-PIKKs Targeting Small Molecule Inhibitors of DNA Double-Strand Break Repair. Front Oncol 2022; 12:850883. [PMID: 35463312 PMCID: PMC9020266 DOI: 10.3389/fonc.2022.850883] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2022] [Accepted: 02/22/2022] [Indexed: 01/09/2023] Open
Abstract
The vast majority of cancer patients receive DNA-damaging drugs or ionizing radiation (IR) during their course of treatment, yet the efficacy of these therapies is tempered by DNA repair and DNA damage response (DDR) pathways. Aberrations in DNA repair and the DDR are observed in many cancer subtypes and can promote de novo carcinogenesis, genomic instability, and ensuing resistance to current cancer therapy. Additionally, stalled or collapsed DNA replication forks present a unique challenge to the double-strand DNA break (DSB) repair system. Of the various inducible DNA lesions, DSBs are the most lethal and thus desirable in the setting of cancer treatment. In mammalian cells, DSBs are typically repaired by the error prone non-homologous end joining pathway (NHEJ) or the high-fidelity homology directed repair (HDR) pathway. Targeting DSB repair pathways using small molecular inhibitors offers a promising mechanism to synergize DNA-damaging drugs and IR while selective inhibition of the NHEJ pathway can induce synthetic lethality in HDR-deficient cancer subtypes. Selective inhibitors of the NHEJ pathway and alternative DSB-repair pathways may also see future use in precision genome editing to direct repair of resulting DSBs created by the HDR pathway. In this review, we highlight the recent advances in the development of inhibitors of the non-phosphatidylinositol 3-kinase-related kinases (non-PIKKs) members of the NHEJ, HDR and minor backup SSA and alt-NHEJ DSB-repair pathways. The inhibitors described within this review target the non-PIKKs mediators of DSB repair including Ku70/80, Artemis, DNA Ligase IV, XRCC4, MRN complex, RPA, RAD51, RAD52, ERCC1-XPF, helicases, and DNA polymerase θ. While the DDR PIKKs remain intensely pursued as therapeutic targets, small molecule inhibition of non-PIKKs represents an emerging opportunity in drug discovery that offers considerable potential to impact cancer treatment.
Collapse
Affiliation(s)
- Jeremy M. Kelm
- Department of Pharmaceutical Sciences, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, Detroit, MI, United States
| | - Amirreza Samarbakhsh
- Department of Pharmaceutical Sciences, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, Detroit, MI, United States
| | - Athira Pillai
- Department of Pharmaceutical Sciences, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, Detroit, MI, United States
| | | | - Hariprasad Aruri
- Department of Pharmaceutical Sciences, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, Detroit, MI, United States
| | - Deepti S. Pandey
- Department of Pharmaceutical Sciences, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, Detroit, MI, United States
| | | | - John J. Turchi
- Department of Medicine, Indiana University School of Medicine, Indianapolis, IN, United States,NERx Biosciences, Indianapolis, IN, United States,Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN, United States
| | - Navnath S. Gavande
- Department of Pharmaceutical Sciences, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, Detroit, MI, United States,Molecular Therapeutics Program, Barbara Ann Karmanos Cancer Institute, Wayne State University School of Medicine, Detroit, MI, United States,*Correspondence: Navnath S. Gavande, ; orcid.org/0000-0002-2413-0235
| |
Collapse
|
7
|
A Genome-Wide Association Study for Hypertensive Kidney Disease in Korean Men. Genes (Basel) 2021; 12:genes12050751. [PMID: 34067580 PMCID: PMC8155956 DOI: 10.3390/genes12050751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 05/10/2021] [Accepted: 05/14/2021] [Indexed: 11/26/2022] Open
Abstract
Hypertension is one of the major risk factors for chronic kidney disease (CKD), and the coexistence of hypertension and CKD increases morbidity and mortality. Although many genetic factors have been identified separately for hypertension and kidney disease, studies specifically focused on hypertensive kidney disease (HKD) have been rare. Therefore, this study aimed to identify loci or genes associated with HKD. A genome-wide association study (GWAS) was conducted using two Korean cohorts, the Health Examinee (HEXA) and Korean Association REsource (KARE). Consequently, 19 single nucleotide polymorphisms (SNPs) were found to be significantly associated with HKD in the discovery and replication phases (p < 5 × 10−8, p < 0.05, respectively). We further analyzed HKD-related traits such as the estimated glomerular filtration rate (eGFR), creatinine, blood urea nitrogen (BUN), systolic blood pressure (SBP) and diastolic blood pressure (DBP) at the 14q21.2 locus, which showed a strong linkage disequilibrium (LD). Expression quantitative trait loci (eQTL) analysis was also performed to determine whether HKD-related SNPs affect gene expression changes in glomerular and arterial tissues. The results suggested that the FANCM gene may affect the development of HKD through an integrated analysis of eQTL and GWAS and was the most significantly associated candidate gene. Taken together, this study indicated that the FANCM gene is involved in the pathogenesis of HKD. Additionally, our results will be useful in prioritizing other genes for further experiments.
Collapse
|
8
|
Calvo JA, Fritchman B, Hernandez D, Persky NS, Johannessen CM, Piccioni F, Kelch BA, Cantor SB. Comprehensive Mutational Analysis of the BRCA1-Associated DNA Helicase and Tumor-Suppressor FANCJ/BACH1/BRIP1. Mol Cancer Res 2021; 19:1015-1025. [PMID: 33619228 DOI: 10.1158/1541-7786.mcr-20-0828] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Revised: 01/27/2021] [Accepted: 02/18/2021] [Indexed: 12/15/2022]
Abstract
FANCJ (BRIP1/BACH1) is a hereditary breast and ovarian cancer (HBOC) gene encoding a DNA helicase. Similar to HBOC genes, BRCA1 and BRCA2, FANCJ is critical for processing DNA inter-strand crosslinks (ICL) induced by chemotherapeutics, such as cisplatin. Consequently, cells deficient in FANCJ or its catalytic activity are sensitive to ICL-inducing agents. Unfortunately, the majority of FANCJ clinical mutations remain uncharacterized, limiting therapeutic opportunities to effectively use cisplatin to treat tumors with mutated FANCJ. Here, we sought to perform a comprehensive screen to identify FANCJ loss-of-function (LOF) mutations. We developed a FANCJ lentivirus mutation library representing approximately 450 patient-derived FANCJ nonsense and missense mutations to introduce FANCJ mutants into FANCJ knockout (K/O) HeLa cells. We performed a high-throughput screen to identify FANCJ LOF mutants that, as compared with wild-type FANCJ, fail to robustly restore resistance to ICL-inducing agents, cisplatin or mitomycin C (MMC). On the basis of the failure to confer resistance to either cisplatin or MMC, we identified 26 missense and 25 nonsense LOF mutations. Nonsense mutations elucidated a relationship between location of truncation and ICL sensitivity, as the majority of nonsense mutations before amino acid 860 confer ICL sensitivity. Further validation of a subset of LOF mutations confirmed the ability of the screen to identify FANCJ mutations unable to confer ICL resistance. Finally, mapping the location of LOF mutations to a new homology model provides additional functional information. IMPLICATIONS: We identify 51 FANCJ LOF mutations, providing important classification of FANCJ mutations that will afford additional therapeutic strategies for affected patients.
Collapse
Affiliation(s)
- Jennifer A Calvo
- Department of Molecular Cell and Cancer Biology, University of Massachusetts Medical School, Worcester, Massachusetts
| | - Briana Fritchman
- The Broad Institute of MIT and Harvard, Cambridge, Massachusetts
| | | | - Nicole S Persky
- The Broad Institute of MIT and Harvard, Cambridge, Massachusetts
| | | | | | - Brian A Kelch
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, Massachusetts
| | - Sharon B Cantor
- Department of Molecular Cell and Cancer Biology, University of Massachusetts Medical School, Worcester, Massachusetts.
| |
Collapse
|
9
|
Das T, Pal S, Ganguly A. Human RecQ helicases in transcription-associated stress management: bridging the gap between DNA and RNA metabolism. Biol Chem 2021; 402:617-636. [PMID: 33567180 DOI: 10.1515/hsz-2020-0324] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Accepted: 01/24/2021] [Indexed: 12/13/2022]
Abstract
RecQ helicases are a highly conserved class of DNA helicases that play crucial role in almost all DNA metabolic processes including replication, repair and recombination. They are able to unwind a wide variety of complex intermediate DNA structures that may result from cellular DNA transactions and hence assist in maintaining genome integrity. Interestingly, a huge number of recent reports suggest that many of the RecQ family helicases are directly or indirectly involved in regulating transcription and gene expression. On one hand, they can remove complex structures like R-loops, G-quadruplexes or RNA:DNA hybrids formed at the intersection of transcription and replication. On the other hand, emerging evidence suggests that they can also regulate transcription by directly interacting with RNA polymerase or recruiting other protein factors that may regulate transcription. This review summarizes the up to date knowledge on the involvement of three human RecQ family proteins BLM, WRN and RECQL5 in transcription regulation and management of transcription associated stress.
Collapse
Affiliation(s)
- Tulika Das
- Department of Biotechnology, Indian Institute of Technology Kharagpur, Kharagpur721302, India
| | - Surasree Pal
- Department of Biotechnology, Indian Institute of Technology Kharagpur, Kharagpur721302, India
| | - Agneyo Ganguly
- Department of Biotechnology, Indian Institute of Technology Kharagpur, Kharagpur721302, India
| |
Collapse
|
10
|
Prevalence and clinical implications of germline predisposition gene mutations in patients with acute myeloid leukemia. Sci Rep 2020; 10:14297. [PMID: 32868804 PMCID: PMC7459095 DOI: 10.1038/s41598-020-71386-z] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Accepted: 08/14/2020] [Indexed: 12/21/2022] Open
Abstract
Acute myeloid leukemia (AML) is one of the most common types of leukemia. With the recent advances in sequencing technology and the growing body of knowledge on the genetics of AML, there is increasing concern about cancer predisposing germline mutations as well as somatic mutations. As familial cases sharing germline mutations are constantly reported, germline predisposition gene mutations in patients with AML are gaining attention. We performed genomic sequencing of Korean patients diagnosed with AML to identify the prevalence and characteristics of germline predisposition mutations. Among 180 patients, germline predisposition mutations were identified in 13 patients (13/180, 7.2%, eight adults and five children). Germline mutations of BLM, BRCA1, BRCA2, CTC1, DDX41, ERCC4, ERCC6, FANCI, FANCM, PALB2, and SBDS were identified. Most of the mutations are in genes involved in DNA repair and genomic stability maintenance. Patients harboring germline mutations tended to have earlier onset of AML (p = 0.005), however, the presence of germline mutations did not showed significant association with other clinical characteristics or treatment outcome. Since each mutation was rare, further study with a larger number of cases would be needed to establish the effect of the mutations.
Collapse
|
11
|
Rickman KA, Noonan RJ, Lach FP, Sridhar S, Wang AT, Abhyankar A, Huang A, Kelly M, Auerbach AD, Smogorzewska A. Distinct roles of BRCA2 in replication fork protection in response to hydroxyurea and DNA interstrand cross-links. Genes Dev 2020; 34:832-846. [PMID: 32354836 PMCID: PMC7263144 DOI: 10.1101/gad.336446.120] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2020] [Accepted: 04/01/2020] [Indexed: 02/07/2023]
Abstract
DNA interstrand cross-links (ICLs) are a form of DNA damage that requires the interplay of a number of repair proteins including those of the Fanconi anemia (FA) and the homologous recombination (HR) pathways. Pathogenic variants in the essential gene BRCA2/FANCD1, when monoallelic, predispose to breast and ovarian cancer, and when biallelic, result in a severe subtype of Fanconi anemia. BRCA2 function in the FA pathway is attributed to its role as a mediator of the RAD51 recombinase in HR repair of programmed DNA double-strand breaks (DSB). BRCA2 and RAD51 functions are also required to protect stalled replication forks from nucleolytic degradation during response to hydroxyurea (HU). While RAD51 has been shown to be necessary in the early steps of ICL repair to prevent aberrant nuclease resection, the role of BRCA2 in this process has not been described. Here, based on the analysis of BRCA2 DNA-binding domain (DBD) mutants (c.8488-1G>A and c.8524C>T) discovered in FA patients presenting with atypical FA-like phenotypes, we establish that BRCA2 is necessary for the protection of DNA at ICLs. Cells carrying BRCA2 DBD mutations are sensitive to ICL-inducing agents but resistant to HU treatment consistent with relatively high HR repair in these cells. BRCA2 function at an ICL protects against DNA2-WRN nuclease-helicase complex and not the MRE11 nuclease that is implicated in the resection of HU-induced stalled replication forks. Our results also indicate that unlike the processing at HU-induced stalled forks, the function of the SNF2 translocases (SMARCAL1, ZRANB3, or HLTF), implicated in fork reversal, are not an integral component of the ICL repair, pointing to a different mechanism of fork protection at different DNA lesions.
Collapse
Affiliation(s)
- Kimberly A Rickman
- Laboratory of Genome Maintenance, The Rockefeller University, New York, New York 10065, USA
| | - Raymond J Noonan
- Laboratory of Genome Maintenance, The Rockefeller University, New York, New York 10065, USA
| | - Francis P Lach
- Laboratory of Genome Maintenance, The Rockefeller University, New York, New York 10065, USA
| | - Sunandini Sridhar
- Laboratory of Genome Maintenance, The Rockefeller University, New York, New York 10065, USA
| | - Anderson T Wang
- Laboratory of Genome Maintenance, The Rockefeller University, New York, New York 10065, USA
| | | | - Athena Huang
- Laboratory of Genome Maintenance, The Rockefeller University, New York, New York 10065, USA
| | - Michael Kelly
- Tufts Medical Center, Boston, Massachusetts 02111, USA
| | - Arleen D Auerbach
- Human Genetics and Hematology, The Rockefeller University, New York, New York 10065, USA
| | - Agata Smogorzewska
- Laboratory of Genome Maintenance, The Rockefeller University, New York, New York 10065, USA
| |
Collapse
|
12
|
Inherited Variants in BLM and the Risk and Clinical Characteristics of Breast Cancer. Cancers (Basel) 2019; 11:cancers11101548. [PMID: 31614901 PMCID: PMC6826355 DOI: 10.3390/cancers11101548] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Revised: 10/02/2019] [Accepted: 10/10/2019] [Indexed: 01/24/2023] Open
Abstract
Bloom Syndrome is a rare recessive disease which includes a susceptibility to various cancers. It is caused by homozygous mutations of the BLM gene. To investigate whether heterozygous carriers of a BLM mutation are predisposed to breast cancer, we sequenced BLM in 617 patients from Polish families with a strong family history of breast cancer. We detected a founder mutation (c.1642C>T, p.Gln548Ter) in 3 of the 617 breast cancer patients (0.49%) who were sequenced. Then, we genotyped 14,804 unselected breast cancer cases and 4698 cancer-free women for the founder mutation. It was identified in 82 of 14,804 (0.55%) unselected cases and in 26 of 4698 (0.55%) controls (OR = 1.0; 95%CI 0.6–1.6). Clinical characteristics of breast cancers in the BLM mutation carriers and non-carriers were similar. Loss of the wild-type BLM allele was not detected in cancers from the BLM mutation carriers. No cancer type was more common in the relatives of mutation carriers compared to relatives of non-carriers. The BLM founder mutation p.Gln548Ter, which in a homozygous state is a cause of Bloom syndrome, does not appear to predispose to breast cancer in a heterozygous state. The finding casts doubt on the designation of BLM as an autosomal dominant breast cancer susceptibility gene.
Collapse
|
13
|
Griffin WC, Trakselis MA. The MCM8/9 complex: A recent recruit to the roster of helicases involved in genome maintenance. DNA Repair (Amst) 2019; 76:1-10. [PMID: 30743181 DOI: 10.1016/j.dnarep.2019.02.003] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2018] [Accepted: 02/03/2019] [Indexed: 12/11/2022]
Abstract
There are several DNA helicases involved in seemingly overlapping aspects of homologous and homoeologous recombination. Mutations of many of these helicases are directly implicated in genetic diseases including cancer, rapid aging, and infertility. MCM8/9 are recent additions to the catalog of helicases involved in recombination, and so far, the evidence is sparse, making assignment of function difficult. Mutations in MCM8/9 correlate principally with primary ovarian failure/insufficiency (POF/POI) and infertility indicating a meiotic defect. However, they also act when replication forks collapse/break shuttling products into mitotic recombination and several mutations are found in various somatic cancers. This review puts MCM8/9 in context with other replication and recombination helicases to narrow down its genomic maintenance role. We discuss the known structure/function relationship, the mutational spectrum, and dissect the available cellular and organismal data to better define its role in recombination.
Collapse
Affiliation(s)
- Wezley C Griffin
- Department of Chemistry and Biochemistry, Baylor University, Waco, Texas, 76798, USA
| | - Michael A Trakselis
- Department of Chemistry and Biochemistry, Baylor University, Waco, Texas, 76798, USA.
| |
Collapse
|
14
|
Abstract
Timely recruitment of DNA damage response proteins to sites of genomic structural lesions is very important for signaling mechanisms to activate appropriate cell cycle checkpoints but also repair the altered DNA sequence to suppress mutagenesis. The eukaryotic cell is characterized by a complex cadre of players and pathways to ensure genomic stability in the face of replication stress or outright genomic insult by endogenous metabolites or environmental agents. Among the key performers are molecular motor DNA unwinding enzymes known as helicases that sense genomic perturbations and separate structured DNA strands so that replacement of a damaged base or sugar-phosphate backbone lesion can occur efficiently. Mutations in the BLM gene encoding the DNA helicase BLM leads to a rare chromosomal instability disorder known as Bloom's syndrome. In a recent paper by the Sengupta lab, BLM's role in the correction of double-strand breaks (DSB), a particularly dangerous form of DNA damage, was investigated. Adding to the complexity, BLM appears to be a key ringmaster of DSB repair as it acts both positively and negatively to regulate correction pathways of high or low fidelity. The FANCJ DNA helicase, mutated in another chromosomal instability disorder known as Fanconi Anemia, is an important player that likely coordinates with BLM in the balancing act. Further studies to dissect the roles of DNA helicases like FANCJ and BLM in DSB repair are warranted.
Collapse
Affiliation(s)
- Srijita Dhar
- a Laboratory of Molecular Gerontology, National Institute on Aging, National Institutes of Health , NIH Biomedical Research Center , Baltimore , MD , USA
| | - Robert M Brosh
- a Laboratory of Molecular Gerontology, National Institute on Aging, National Institutes of Health , NIH Biomedical Research Center , Baltimore , MD , USA
| |
Collapse
|
15
|
Nepal M, Che R, Zhang J, Ma C, Fei P. Fanconi Anemia Signaling and Cancer. Trends Cancer 2017; 3:840-856. [PMID: 29198440 DOI: 10.1016/j.trecan.2017.10.005] [Citation(s) in RCA: 76] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2017] [Revised: 10/16/2017] [Accepted: 10/19/2017] [Indexed: 12/19/2022]
Abstract
The extremely high cancer incidence associated with patients suffering from a rare human genetic disease, Fanconi anemia (FA), demonstrates the importance of FA genes. Over the course of human tumor development, FA genes perform critical tumor-suppression roles. In doing so, FA provides researchers with a unique genetic model system to study cancer etiology. Here, we review how aberrant function of the 22 FA genes and their signaling network contributes to malignancy. From this perspective, we will also discuss how the knowledge discovered from FA research serves basic and translational cancer research.
Collapse
Affiliation(s)
- Manoj Nepal
- University of Hawaii Cancer Center, Honolulu, HI, USA; Graduate Program of Molecular Biosciences and Bioengineering, University of Hawaii, Honolulu, HI, USA; Equal contribution
| | - Raymond Che
- University of Hawaii Cancer Center, Honolulu, HI, USA; Graduate Program of Molecular Biosciences and Bioengineering, University of Hawaii, Honolulu, HI, USA; Equal contribution
| | - Jun Zhang
- Department of Laboratory Medicine and Pathology, Mayo Clinic Foundation, USA
| | - Chi Ma
- University of Hawaii Cancer Center, Honolulu, HI, USA
| | - Peiwen Fei
- University of Hawaii Cancer Center, Honolulu, HI, USA; Graduate Program of Molecular Biosciences and Bioengineering, University of Hawaii, Honolulu, HI, USA.
| |
Collapse
|
16
|
Wilson DM, Rieckher M, Williams AB, Schumacher B. Systematic analysis of DNA crosslink repair pathways during development and aging in Caenorhabditis elegans. Nucleic Acids Res 2017; 45:9467-9480. [PMID: 28934497 PMCID: PMC5766164 DOI: 10.1093/nar/gkx660] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2017] [Accepted: 07/18/2017] [Indexed: 01/12/2023] Open
Abstract
DNA interstrand crosslinks (ICLs) are generated by endogenous sources and chemotherapeutics, and pose a threat to genome stability and cell survival. Using Caenorhabditis elegans mutants, we identify DNA repair factors that protect against the genotoxicity of ICLs generated by trioxsalen/ultraviolet A (TMP/UVA) during development and aging. Mutations in nucleotide excision repair (NER) components (e.g. XPA-1 and XPF-1) imparted extreme sensitivity to TMP/UVA relative to wild-type animals, manifested as developmental arrest, defects in adult tissue morphology and functionality, and shortened lifespan. Compensatory roles for global-genome (XPC-1) and transcription-coupled (CSB-1) NER in ICL sensing were exposed. The analysis also revealed contributions of homologous recombination (BRC-1/BRCA1), the MUS-81, EXO-1, SLX-1 and FAN-1 nucleases, and the DOG-1 (FANCJ) helicase in ICL resolution, influenced by the replicative-status of the cell/tissue. No obvious or critical role in ICL repair was seen for non-homologous end-joining (cku-80) or base excision repair (nth-1, exo-3), the Fanconi-related proteins BRC-2 (BRCA2/FANCD1) and FCD-2 (FANCD2), the WRN-1 or HIM-6 (BLM) helicases, or the GEN-1 or MRT-1 (SNM1) nucleases. Our efforts uncover replication-dependent and -independent ICL repair networks, and establish nematodes as a model for investigating the repair and consequences of DNA crosslinks in metazoan development and in adult post-mitotic and proliferative germ cells.
Collapse
Affiliation(s)
- David M Wilson
- Laboratory of Molecular Gerontology, National Institute on Aging, Intramural Research Program, National Institutes of Health, Baltimore, MD 21224, USA
| | - Matthias Rieckher
- Institute for Genome Stability in Aging and Disease, Medical Faculty, Cologne Excellence Cluster for Cellular Stress Responses in Aging-Associated Diseases (CECAD), Center for Molecular Medicine Cologne (CMMC) and Systems Biology of Ageing Cologne (Sybacol), University of Cologne, Joseph-Stelzmann-Strasse 26, 50931 Cologne, Germany
| | - Ashley B Williams
- Institute for Genome Stability in Aging and Disease, Medical Faculty, Cologne Excellence Cluster for Cellular Stress Responses in Aging-Associated Diseases (CECAD), Center for Molecular Medicine Cologne (CMMC) and Systems Biology of Ageing Cologne (Sybacol), University of Cologne, Joseph-Stelzmann-Strasse 26, 50931 Cologne, Germany
| | - Björn Schumacher
- Institute for Genome Stability in Aging and Disease, Medical Faculty, Cologne Excellence Cluster for Cellular Stress Responses in Aging-Associated Diseases (CECAD), Center for Molecular Medicine Cologne (CMMC) and Systems Biology of Ageing Cologne (Sybacol), University of Cologne, Joseph-Stelzmann-Strasse 26, 50931 Cologne, Germany
| |
Collapse
|
17
|
Chang EYC, Novoa CA, Aristizabal MJ, Coulombe Y, Segovia R, Chaturvedi R, Shen Y, Keong C, Tam AS, Jones SJM, Masson JY, Kobor MS, Stirling PC. RECQ-like helicases Sgs1 and BLM regulate R-loop-associated genome instability. J Cell Biol 2017; 216:3991-4005. [PMID: 29042409 PMCID: PMC5716281 DOI: 10.1083/jcb.201703168] [Citation(s) in RCA: 84] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2017] [Revised: 08/16/2017] [Accepted: 09/18/2017] [Indexed: 01/01/2023] Open
Abstract
Sgs1, the orthologue of human Bloom's syndrome helicase BLM, is a yeast DNA helicase functioning in DNA replication and repair. We show that SGS1 loss increases R-loop accumulation and sensitizes cells to transcription-replication collisions. Yeast lacking SGS1 accumulate R-loops and γ-H2A at sites of Sgs1 binding, replication pausing regions, and long genes. The mutation signature of sgs1Δ reveals copy number changes flanked by repetitive regions with high R-loop-forming potential. Analysis of BLM in Bloom's syndrome fibroblasts or by depletion of BLM from human cancer cells confirms a role for Sgs1/BLM in suppressing R-loop-associated genome instability across species. In support of a potential direct effect, BLM is found physically proximal to DNA:RNA hybrids in human cells, and can efficiently unwind R-loops in vitro. Together, our data describe a conserved role for Sgs1/BLM in R-loop suppression and support an increasingly broad view of DNA repair and replication fork stabilizing proteins as modulators of R-loop-mediated genome instability.
Collapse
Affiliation(s)
| | - Carolina A Novoa
- Terry Fox Laboratory, British Columbia Cancer Agency, Vancouver, Canada
| | | | - Yan Coulombe
- Genome Stability Laboratory, Centre Hospitalier Universitaire de Québec Research Center, Québec City, Canada.,Department of Molecular Biology, Medical Biochemistry and Pathology, Laval University Cancer Research Center, Québec City, Canada
| | - Romulo Segovia
- Terry Fox Laboratory, British Columbia Cancer Agency, Vancouver, Canada
| | - Richa Chaturvedi
- Genome Stability Laboratory, Centre Hospitalier Universitaire de Québec Research Center, Québec City, Canada.,Department of Molecular Biology, Medical Biochemistry and Pathology, Laval University Cancer Research Center, Québec City, Canada
| | - Yaoqing Shen
- Michael Smith Genome Sciences Centre, Vancouver, Canada
| | - Christelle Keong
- Terry Fox Laboratory, British Columbia Cancer Agency, Vancouver, Canada
| | - Annie S Tam
- Terry Fox Laboratory, British Columbia Cancer Agency, Vancouver, Canada.,Department of Medical Genetics, University of British Columbia, Vancouver, Canada
| | - Steven J M Jones
- Michael Smith Genome Sciences Centre, Vancouver, Canada.,Department of Medical Genetics, University of British Columbia, Vancouver, Canada
| | - Jean-Yves Masson
- Genome Stability Laboratory, Centre Hospitalier Universitaire de Québec Research Center, Québec City, Canada.,Department of Molecular Biology, Medical Biochemistry and Pathology, Laval University Cancer Research Center, Québec City, Canada
| | - Michael S Kobor
- Centre for Molecular Medicine and Therapeutics, Vancouver, Canada.,Department of Medical Genetics, University of British Columbia, Vancouver, Canada
| | - Peter C Stirling
- Terry Fox Laboratory, British Columbia Cancer Agency, Vancouver, Canada .,Department of Medical Genetics, University of British Columbia, Vancouver, Canada
| |
Collapse
|
18
|
G-quadruplex unwinding helicases and their function in vivo. Biochem Soc Trans 2017; 45:1173-1182. [DOI: 10.1042/bst20170097] [Citation(s) in RCA: 105] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2017] [Revised: 07/31/2017] [Accepted: 08/10/2017] [Indexed: 12/21/2022]
Abstract
The concept that G-quadruplex (G4) structures can form within DNA or RNA in vitro has been long known and extensively discussed. In recent years, accumulating evidences imply that G-quadruplex structures form in vivo. Initially, inefficient regulation of G-quadruplex structures was mainly associated with genome instability. However, due to the location of G-quadruplex motifs and their evolutionary conservation, different cellular functions of these structures have been postulated (e.g. in telomere maintenance, DNA replication, transcription, and translation). Regardless of their function, efficient and controlled formation and unwinding are very important, because ‘mis’-regulated G-quadruplex structures are detrimental for a given process, causing genome instability and diseases. Several helicases have been shown to target and regulate specific G-quadruplex structures. This mini-review focuses on the biological consequences of G4 disruption by different helicases in vivo.
Collapse
|
19
|
Bloom's syndrome: Why not premature aging?: A comparison of the BLM and WRN helicases. Ageing Res Rev 2017; 33:36-51. [PMID: 27238185 DOI: 10.1016/j.arr.2016.05.010] [Citation(s) in RCA: 61] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2016] [Revised: 05/17/2016] [Accepted: 05/19/2016] [Indexed: 01/19/2023]
Abstract
Genomic instability is a hallmark of cancer and aging. Premature aging (progeroid) syndromes are often caused by mutations in genes whose function is to ensure genomic integrity. The RecQ family of DNA helicases is highly conserved and plays crucial roles as genome caretakers. In humans, mutations in three RecQ genes - BLM, WRN, and RECQL4 - give rise to Bloom's syndrome (BS), Werner syndrome (WS), and Rothmund-Thomson syndrome (RTS), respectively. WS is a prototypic premature aging disorder; however, the clinical features present in BS and RTS do not indicate accelerated aging. The BLM helicase has pivotal functions at the crossroads of DNA replication, recombination, and repair. BS cells exhibit a characteristic form of genomic instability that includes excessive homologous recombination. The excessive homologous recombination drives the development in BS of the many types of cancers that affect persons in the normal population. Replication delay and slower cell turnover rates have been proposed to explain many features of BS, such as short stature. More recently, aberrant transcriptional regulation of growth and survival genes has been proposed as a hypothesis to explain features of BS.
Collapse
|
20
|
Lopez-Martinez D, Liang CC, Cohn MA. Cellular response to DNA interstrand crosslinks: the Fanconi anemia pathway. Cell Mol Life Sci 2016; 73:3097-114. [PMID: 27094386 PMCID: PMC4951507 DOI: 10.1007/s00018-016-2218-x] [Citation(s) in RCA: 96] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2015] [Revised: 04/04/2016] [Accepted: 04/05/2016] [Indexed: 12/22/2022]
Abstract
Interstrand crosslinks (ICLs) are a highly toxic form of DNA damage. ICLs can interfere with vital biological processes requiring separation of the two DNA strands, such as replication and transcription. If ICLs are left unrepaired, it can lead to mutations, chromosome breakage and mitotic catastrophe. The Fanconi anemia (FA) pathway can repair this type of DNA lesion, ensuring genomic stability. In this review, we will provide an overview of the cellular response to ICLs. First, we will discuss the origin of ICLs, comparing various endogenous and exogenous sources. Second, we will describe FA proteins as well as FA-related proteins involved in ICL repair, and the post-translational modifications that regulate these proteins. Finally, we will review the process of how ICLs are repaired by both replication-dependent and replication-independent mechanisms.
Collapse
Affiliation(s)
- David Lopez-Martinez
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford, OX1 3QU, UK
| | - Chih-Chao Liang
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford, OX1 3QU, UK
| | - Martin A Cohn
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford, OX1 3QU, UK.
| |
Collapse
|
21
|
Mcilhatton MA, Boivin GP, Groden J. Manipulation of DNA Repair Proficiency in Mouse Models of Colorectal Cancer. BIOMED RESEARCH INTERNATIONAL 2016; 2016:1414383. [PMID: 27413734 PMCID: PMC4931062 DOI: 10.1155/2016/1414383] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/18/2016] [Accepted: 05/09/2016] [Indexed: 12/20/2022]
Abstract
Technical and biological innovations have enabled the development of more sophisticated and focused murine models that increasingly recapitulate the complex pathologies of human diseases, in particular cancer. Mouse models provide excellent in vivo systems for deciphering the intricacies of cancer biology within the context of precise experimental settings. They present biologically relevant, adaptable platforms that are amenable to continual improvement and refinement. We discuss how recent advances in our understanding of tumorigenesis and the underlying deficiencies of DNA repair mechanisms that drive it have been informed by using genetically engineered mice to create defined, well-characterized models of human colorectal cancer. In particular, we focus on how mechanisms of DNA repair can be manipulated precisely to create in vivo models whereby the underlying processes of tumorigenesis are accelerated or attenuated, dependent on the composite alleles carried by the mouse model. Such models have evolved to the stage where they now reflect the initiation and progression of sporadic cancers. The review is focused on mouse models of colorectal cancer and how insights from these models have been instrumental in shaping our understanding of the processes and potential therapies for this disease.
Collapse
Affiliation(s)
- Michael A. Mcilhatton
- Department of Cancer Biology and Genetics, The Ohio State University, 460 West 12th Avenue, Columbus, OH 43210, USA
| | - Gregory P. Boivin
- Department of Pathology, Boonshoft School of Medicine, Wright State University, Health Sciences Building 053, 3640 Colonel Glenn Highway, Dayton, OH 45435, USA
| | - Joanna Groden
- Department of Cancer Biology and Genetics, The Ohio State University, 460 West 12th Avenue, Columbus, OH 43210, USA
| |
Collapse
|
22
|
Cantor SB, Nayak S. FANCJ at the FORK. Mutat Res 2016; 788:7-11. [PMID: 26926912 DOI: 10.1016/j.mrfmmm.2016.02.003] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2015] [Revised: 01/28/2016] [Accepted: 02/10/2016] [Indexed: 12/19/2022]
Affiliation(s)
- Sharon B Cantor
- Department of Molecular, Cell, and Cancer Biology, University of Massachusetts Medical School, UMASS Memorial Cancer Center, Worcester, Massachusetts 01605, USA.
| | - Sumeet Nayak
- Department of Molecular, Cell, and Cancer Biology, University of Massachusetts Medical School, UMASS Memorial Cancer Center, Worcester, Massachusetts 01605, USA
| |
Collapse
|
23
|
Mendoza O, Bourdoncle A, Boulé JB, Brosh RM, Mergny JL. G-quadruplexes and helicases. Nucleic Acids Res 2016; 44:1989-2006. [PMID: 26883636 PMCID: PMC4797304 DOI: 10.1093/nar/gkw079] [Citation(s) in RCA: 330] [Impact Index Per Article: 36.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2015] [Accepted: 02/01/2016] [Indexed: 12/16/2022] Open
Abstract
Guanine-rich DNA strands can fold in vitro into non-canonical DNA structures called G-quadruplexes. These structures may be very stable under physiological conditions. Evidence suggests that G-quadruplex structures may act as ‘knots’ within genomic DNA, and it has been hypothesized that proteins may have evolved to remove these structures. The first indication of how G-quadruplex structures could be unfolded enzymatically came in the late 1990s with reports that some well-known duplex DNA helicases resolved these structures in vitro. Since then, the number of studies reporting G-quadruplex DNA unfolding by helicase enzymes has rapidly increased. The present review aims to present a general overview of the helicase/G-quadruplex field.
Collapse
Affiliation(s)
- Oscar Mendoza
- University of Bordeaux, ARNA Laboratory F-33000 Bordeaux, France INSERM U1212,CNRS UMR 5320, IECB, F-33600 Pessac, France
| | - Anne Bourdoncle
- University of Bordeaux, ARNA Laboratory F-33000 Bordeaux, France INSERM U1212,CNRS UMR 5320, IECB, F-33600 Pessac, France
| | - Jean-Baptiste Boulé
- CNRS UMR 7196, INSERM U1154, MNHN, F-75005 Paris, France Sorbonne Universités, F-75005 Paris, France
| | - Robert M Brosh
- Laboratory of Molecular Gerontology, National Institute on Aging, NIH, Baltimore, MD 21224, USA
| | - Jean-Louis Mergny
- University of Bordeaux, ARNA Laboratory F-33000 Bordeaux, France INSERM U1212,CNRS UMR 5320, IECB, F-33600 Pessac, France
| |
Collapse
|
24
|
Viziteu E, Kassambara A, Pasero P, Klein B, Moreaux J. RECQ helicases are deregulated in hematological malignancies in association with a prognostic value. Biomark Res 2016; 4:3. [PMID: 26877874 PMCID: PMC4752763 DOI: 10.1186/s40364-016-0057-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2015] [Accepted: 02/08/2016] [Indexed: 01/15/2023] Open
Abstract
BACKGROUND RECQ helicase family members act as guardians of the genome to assure proper DNA metabolism in response to genotoxic stress. Hematological malignancies are characterized by genomic instability that is possibly related to underlying defects in DNA repair of genomic stability maintenance. METHODS We have investigated the expression of RECQ helicases in different hematological malignancies and in their normal counterparts using publicly available gene expression data. Furthermore, we explored whether RECQ helicases expression could be associated with tumor progression and prognosis. RESULTS Expression of at least one RECQ helicase family member was found significantly deregulated in all hematological malignancies investigated when compared to their normal counterparts. In addition, RECQ helicase expression was associated with a prognostic value in acute myeloid leukemia, chronic lymphocytic leukemia, lymphoma and multiple myeloma. CONCLUSION RECQ helicase expression is deregulated in hematological malignancies compared to their normal counterparts in association with a prognostic value. Deregulation of RECQ helicases appears to play a role in tumorigenesis and represent potent therapeutic targets for synthetic lethal approaches in hematological malignancies.
Collapse
Affiliation(s)
- Elena Viziteu
- />Institute of Human Genetics, CNRS-UPR1142, Montpellier, F-34396 France
| | - Alboukadel Kassambara
- />Laboratory for Monitoring Innovative Therapies, Department of Biological Hematology, Hôpital Saint-Eloi - CHRU de Montpellier, 80, av. Augustin Fliche, 34295 Montpellier, Cedex 5 France
- />Institute of Human Genetics, CNRS-UPR1142, Montpellier, F-34396 France
| | - Philippe Pasero
- />Institute of Human Genetics, CNRS-UPR1142, Montpellier, F-34396 France
| | - Bernard Klein
- />Laboratory for Monitoring Innovative Therapies, Department of Biological Hematology, Hôpital Saint-Eloi - CHRU de Montpellier, 80, av. Augustin Fliche, 34295 Montpellier, Cedex 5 France
- />Institute of Human Genetics, CNRS-UPR1142, Montpellier, F-34396 France
- />University of Montpellier 1, UFR de Médecine, Montpellier, France
| | - Jerome Moreaux
- />Laboratory for Monitoring Innovative Therapies, Department of Biological Hematology, Hôpital Saint-Eloi - CHRU de Montpellier, 80, av. Augustin Fliche, 34295 Montpellier, Cedex 5 France
- />Institute of Human Genetics, CNRS-UPR1142, Montpellier, F-34396 France
- />University of Montpellier 1, UFR de Médecine, Montpellier, France
| |
Collapse
|
25
|
Bret C, Viziteu E, Kassambara A, Moreaux J. Identifying high-risk adult AML patients: epigenetic and genetic risk factors and their implications for therapy. Expert Rev Hematol 2016; 9:351-60. [PMID: 26761438 DOI: 10.1586/17474086.2016.1141673] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Acute myeloid leukemia (AML) is a heterogeneous disease at molecular level, in response to therapy and prognosis. The molecular landscape of AML is evolving with new technologies revealing complex panorama of genetic abnormalities where genomic instability and aberrations of epigenetic regulators play a key role in pathogenesis. The characterization of AML diversity has led to development of new personalized therapeutic strategies to improve outcome of the patients.
Collapse
Affiliation(s)
- Caroline Bret
- a Department of Biological Hematology , CHU Montpellier , Montpellier , France.,b Institute of Human Genetics, CNRS-UPR1142 , Montpellier F-34396 , France.,c University of Montpellier 1, UFR de Médecine , Montpellier , France
| | - Elena Viziteu
- b Institute of Human Genetics, CNRS-UPR1142 , Montpellier F-34396 , France
| | - Alboukadel Kassambara
- a Department of Biological Hematology , CHU Montpellier , Montpellier , France.,b Institute of Human Genetics, CNRS-UPR1142 , Montpellier F-34396 , France
| | - Jerome Moreaux
- a Department of Biological Hematology , CHU Montpellier , Montpellier , France.,b Institute of Human Genetics, CNRS-UPR1142 , Montpellier F-34396 , France.,c University of Montpellier 1, UFR de Médecine , Montpellier , France
| |
Collapse
|
26
|
Sun X, Brieño-Enríquez MA, Cornelius A, Modzelewski AJ, Maley TT, Campbell-Peterson KM, Holloway JK, Cohen PE. FancJ (Brip1) loss-of-function allele results in spermatogonial cell depletion during embryogenesis and altered processing of crossover sites during meiotic prophase I in mice. Chromosoma 2015; 125:237-52. [PMID: 26490168 DOI: 10.1007/s00412-015-0549-2] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2015] [Revised: 10/05/2015] [Accepted: 10/07/2015] [Indexed: 01/08/2023]
Abstract
Fancj, the gene associated with Fanconi anemia (FA) Complementation Group J, encodes a DNA helicase involved in homologous recombination repair and the cellular response to replication stress. FANCJ functions in part through its interaction with key DNA repair proteins, including MutL homolog-1 (MLH1), Breast Cancer Associated gene-1 (BRCA1), and Bloom syndrome helicase (BLM). All three of these proteins are involved in a variety of events that ensure genome stability, including the events of DNA double strand break (DSB) repair during prophase I of meiosis. Meiotic DSBs are repaired through homologous recombination resulting in non-crossovers (NCO) or crossovers (CO). The frequency and placement of COs are stringently regulated to ensure that each chromosome receives at least one CO event, and that longer chromosomes receive at least one additional CO, thus facilitating the accurate segregation of homologous chromosomes at the first meiotic division. In the present study, we investigated the role of Fancj during prophase I using a gene trap mutant allele. Fancj (GT/GT) mutants are fertile, but their testes are very much smaller than wild-type littermates, predominantly as a result of impeded spermatogonial proliferation and mildly increased apoptosis during testis development in the fetus. This defect in spermatogonial proliferation is consistent with mutations in other FA genes. During prophase I, early events of synapsis and DSB induction/repair appear mostly normal in Fancj (GT/GT) males, and the FANCJ-interacting protein BRCA1 assembles normally on meiotic chromosome cores. However, MLH1 focus frequency is increased in Fancj (GT/GT) males, indicative of increased DSB repair via CO, and is concomitant with increased chiasmata at diakinesis. This increase in COs in the absence of FANCJ is associated with increased localization of BLM helicase protein, indicating that BLM may facilitate the increased rate of crossing over in Fancj (GT/GT) males. Taken together, these results demonstrate a critical role for FANCJ in spermatogenesis at two stages: firstly in the proliferative activity that gives rise to the full complement of testicular spermatogonia and secondly in the establishment of appropriate CO numbers during prophase I.
Collapse
Affiliation(s)
- Xianfei Sun
- Department of Biomedical Sciences and Center for Reproductive Genomics, Cornell University, Tower Road, Ithaca, NY, 14853, USA
| | - Miguel A Brieño-Enríquez
- Department of Biomedical Sciences and Center for Reproductive Genomics, Cornell University, Tower Road, Ithaca, NY, 14853, USA
| | - Alyssa Cornelius
- Department of Biomedical Sciences and Center for Reproductive Genomics, Cornell University, Tower Road, Ithaca, NY, 14853, USA
| | - Andrew J Modzelewski
- Department of Molecular and Cellular Biology, University of California, Berkeley, Berkeley, CA, USA
| | - Tyler T Maley
- Department of Biomedical Sciences and Center for Reproductive Genomics, Cornell University, Tower Road, Ithaca, NY, 14853, USA
| | - Kadeine M Campbell-Peterson
- Department of Biomedical Sciences and Center for Reproductive Genomics, Cornell University, Tower Road, Ithaca, NY, 14853, USA
| | - J Kim Holloway
- Department of Biomedical Sciences and Center for Reproductive Genomics, Cornell University, Tower Road, Ithaca, NY, 14853, USA
| | - Paula E Cohen
- Department of Biomedical Sciences and Center for Reproductive Genomics, Cornell University, Tower Road, Ithaca, NY, 14853, USA.
| |
Collapse
|
27
|
Clark DW, Tripathi K, Dorsman JC, Palle K. FANCJ protein is important for the stability of FANCD2/FANCI proteins and protects them from proteasome and caspase-3 dependent degradation. Oncotarget 2015; 6:28816-32. [PMID: 26336824 PMCID: PMC4745694 DOI: 10.18632/oncotarget.5006] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2015] [Accepted: 08/11/2015] [Indexed: 01/31/2023] Open
Abstract
Fanconi anemia (FA) is a rare genome instability syndrome with progressive bone marrow failure and cancer susceptibility. FANCJ is one of 17 genes mutated in FA-patients, comprises a DNA helicase that is vital for properly maintaining genomic stability and is known to function in the FA-BRCA DNA repair pathway. While exact role(s) of FANCJ in this repair process is yet to be determined, it is known to interact with primary effector FANCD2. However, FANCJ is not required for FANCD2 activation but is important for its ability to fully respond to DNA damage. In this report, we determined that transient depletion of FANCJ adversely affects stability of FANCD2 and its co-regulator FANCI in multiple cell lines. Loss of FANCJ does not significantly alter cell cycle progression or FANCD2 transcription. However, in the absence of FANCJ, the majority of FANCD2 is degraded by both the proteasome and Caspase-3 dependent mechanism. FANCJ is capable of complexing with and stabilizing FANCD2 even in the absence of a functional helicase domain. Furthermore, our data demonstrate that FANCJ is important for FANCD2 stability and proper activation of DNA damage responses to replication blocks induced by hydroxyurea.
Collapse
Affiliation(s)
- David W. Clark
- Department of Oncologic Sciences, Mitchell Cancer Institute, University of South Alabama, Mobile, Alabama, USA
| | - Kaushlendra Tripathi
- Department of Oncologic Sciences, Mitchell Cancer Institute, University of South Alabama, Mobile, Alabama, USA
| | - Josephine C. Dorsman
- Department of Clinical Genetics, Section Oncogenetics, VU University Medical Center, Amsterdam, The Netherlands
| | - Komaraiah Palle
- Department of Oncologic Sciences, Mitchell Cancer Institute, University of South Alabama, Mobile, Alabama, USA
| |
Collapse
|
28
|
Khan I, Sommers JA, Brosh RM. Close encounters for the first time: Helicase interactions with DNA damage. DNA Repair (Amst) 2015; 33:43-59. [PMID: 26160335 DOI: 10.1016/j.dnarep.2015.06.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2015] [Accepted: 06/05/2015] [Indexed: 01/17/2023]
Abstract
DNA helicases are molecular motors that harness the energy of nucleoside triphosphate hydrolysis to unwinding structured DNA molecules that must be resolved during cellular replication, DNA repair, recombination, and transcription. In vivo, DNA helicases are expected to encounter a wide spectrum of covalent DNA modifications to the sugar phosphate backbone or the nitrogenous bases; these modifications can be induced by endogenous biochemical processes or exposure to environmental agents. The frequency of lesion abundance can vary depending on the lesion type. Certain adducts such as oxidative base modifications can be quite numerous, and their effects can be helix-distorting or subtle perturbations to DNA structure. Helicase encounters with specific DNA lesions and more novel forms of DNA damage will be discussed. We will also review the battery of assays that have been used to characterize helicase-catalyzed unwinding of damaged DNA substrates. Characterization of the effects of specific DNA adducts on unwinding by various DNA repair and replication helicases has proven to be insightful for understanding mechanistic and biological aspects of helicase function in cellular DNA metabolism.
Collapse
Affiliation(s)
- Irfan Khan
- Laboratory of Molecular Gerontology, National Institute on Aging, NIH Biomedical Research Center, 251 Bayview Blvd, Baltimore, MD 21224, USA
| | - Joshua A Sommers
- Laboratory of Molecular Gerontology, National Institute on Aging, NIH Biomedical Research Center, 251 Bayview Blvd, Baltimore, MD 21224, USA
| | - Robert M Brosh
- Laboratory of Molecular Gerontology, National Institute on Aging, NIH Biomedical Research Center, 251 Bayview Blvd, Baltimore, MD 21224, USA.
| |
Collapse
|
29
|
Xu Y, Wu X, Her C. hMSH5 Facilitates the Repair of Camptothecin-induced Double-strand Breaks through an Interaction with FANCJ. J Biol Chem 2015; 290:18545-58. [PMID: 26055704 DOI: 10.1074/jbc.m115.642884] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2015] [Indexed: 12/18/2022] Open
Abstract
Replication stress from stalled or collapsed replication forks is a major challenge to genomic integrity. The anticancer agent camptothecin (CPT) is a DNA topoisomerase I inhibitor that causes fork collapse and double-strand breaks amid DNA replication. Here we report that hMSH5 promotes cell survival in response to CPT-induced DNA damage. Cells deficient in hMSH5 show elevated CPT-induced γ-H2AX and RPA2 foci with concomitant reduction of Rad51 foci, indicative of impaired homologous recombination. In addition, CPT-treated hMSH5-deficient cells exhibit aberrant activation of Chk1 and Chk2 kinases and therefore abnormal cell cycle progression. Furthermore, the hMSH5-FANCJ chromatin recruitment underlies the effects of hMSH5 on homologous recombination and Chk1 activation. Intriguingly, FANCJ depletion desensitizes hMSH5-deficient cells to CPT-elicited cell killing. Collectively, our data point to the existence of a functional interplay between hMSH5 and FANCJ in double-strand break repair induced by replication stress.
Collapse
Affiliation(s)
- Yang Xu
- From the School of Molecular Biosciences, College of Veterinary Medicine, Washington State University, Pullman, Washington 99164-7520
| | - Xiling Wu
- From the School of Molecular Biosciences, College of Veterinary Medicine, Washington State University, Pullman, Washington 99164-7520
| | - Chengtao Her
- From the School of Molecular Biosciences, College of Veterinary Medicine, Washington State University, Pullman, Washington 99164-7520
| |
Collapse
|
30
|
Sommers JA, Suhasini AN, Brosh RM. Protein degradation pathways regulate the functions of helicases in the DNA damage response and maintenance of genomic stability. Biomolecules 2015; 5:590-616. [PMID: 25906194 PMCID: PMC4496686 DOI: 10.3390/biom5020590] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2015] [Revised: 04/09/2015] [Accepted: 04/13/2015] [Indexed: 12/18/2022] Open
Abstract
Degradation of helicases or helicase-like proteins, often mediated by ubiquitin-proteasomal pathways, plays important regulatory roles in cellular mechanisms that respond to DNA damage or replication stress. The Bloom’s syndrome helicase (BLM) provides an example of how helicase degradation pathways, regulated by post-translational modifications and protein interactions with components of the Fanconi Anemia (FA) interstrand cross-link (ICL) repair pathway, influence cell cycle checkpoints, DNA repair, and replication restart. The FANCM DNA translocase can be targeted by checkpoint kinases that exert dramatic effects on FANCM stability and chromosomal integrity. Other work provides evidence that degradation of the F-box DNA helicase (FBH1) helps to balance translesion synthesis (TLS) and homologous recombination (HR) repair at blocked replication forks. Degradation of the helicase-like transcription factor (HLTF), a DNA translocase and ubiquitylating enzyme, influences the choice of post replication repair (PRR) pathway. Stability of the Werner syndrome helicase-nuclease (WRN) involved in the replication stress response is regulated by its acetylation. Turning to transcription, stability of the Cockayne Syndrome Group B DNA translocase (CSB) implicated in transcription-coupled repair (TCR) is regulated by a CSA ubiquitin ligase complex enabling recovery of RNA synthesis. Collectively, these studies demonstrate that helicases can be targeted for degradation to maintain genome homeostasis.
Collapse
Affiliation(s)
- Joshua A Sommers
- Laboratory of Molecular Gerontology, National Institute on Aging, National Institutes of Health, NIH Biomedical Research Center, 251 Bayview Blvd, Baltimore, MD 21224, USA.
| | - Avvaru N Suhasini
- Department of Medicine, Division of Hematology & Medical Oncology, The University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA.
| | - Robert M Brosh
- Laboratory of Molecular Gerontology, National Institute on Aging, National Institutes of Health, NIH Biomedical Research Center, 251 Bayview Blvd, Baltimore, MD 21224, USA.
| |
Collapse
|
31
|
Owen N, Hejna J, Rennie S, Mitchell A, Newell AH, Ziaie N, Moses RE, Olson SB. Bloom syndrome radials are predominantly non-homologous and are suppressed by phosphorylated BLM. Cytogenet Genome Res 2015; 144:255-263. [PMID: 25766002 DOI: 10.1159/000375247] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/22/2014] [Indexed: 01/01/2023] Open
Abstract
Biallelic mutations in BLM cause Bloom syndrome (BS), a genome instability disorder characterized by growth retardation, sun sensitivity and a predisposition to cancer. As evidence of decreased genome stability, BS cells demonstrate not only elevated levels of spontaneous sister chromatid exchanges (SCEs), but also exhibit chromosomal radial formation. The molecular nature and mechanism of radial formation is not known, but radials have been thought to be DNA recombination intermediates between homologs that failed to resolve. However, we find that radials in BS cells occur over 95% between non-homologous chromosomes, and occur non-randomly throughout the genome. BLM must be phosphorylated at T99 and T122 for certain cell cycle checkpoints, but it is not known whether these modifications are necessary to suppress radial formation. We find that exogenous BLM constructs preventing phosphorylation at T99 and T122 are not able to suppress radial formation in BS cells, but are able to inhibit SCE formation. These findings indicate that BLM functions in 2 distinct pathways requiring different modifications. In one pathway, for which the phosphorylation marks appear dispensable, BLM functions to suppress SCE formation. In a second pathway, T99 and T122 phosphorylations are essential for suppression of chromosomal radial formation, both those formed spontaneously and those formed following interstrand crosslink damage.
Collapse
Affiliation(s)
- Nichole Owen
- Department of Molecular and Medical Genetics Oregon Health & Science University, 3181 SW Sam Jackson Park, Portland, OR 97239
| | - James Hejna
- Graduate School of Biostudies, Kyoto University, Sakyo-ku, Kyoto 606-8501 Japan
| | - Scott Rennie
- Department of Molecular and Medical Genetics Oregon Health & Science University, 3181 SW Sam Jackson Park, Portland, OR 97239
| | - Asia Mitchell
- Department of Molecular and Medical Genetics Oregon Health & Science University, 3181 SW Sam Jackson Park, Portland, OR 97239
| | - Amy Hanlon Newell
- Department of Molecular and Medical Genetics Oregon Health & Science University, 3181 SW Sam Jackson Park, Portland, OR 97239
| | - Navid Ziaie
- Department of Molecular and Medical Genetics Oregon Health & Science University, 3181 SW Sam Jackson Park, Portland, OR 97239
| | - Robb E Moses
- Department of Molecular and Cellular Biology, Baylor College of Medicine Houston, TX 77030
| | - Susan B Olson
- Department of Molecular and Medical Genetics Oregon Health & Science University, 3181 SW Sam Jackson Park, Portland, OR 97239
| |
Collapse
|
32
|
Brosh RM, Cantor SB. Molecular and cellular functions of the FANCJ DNA helicase defective in cancer and in Fanconi anemia. Front Genet 2014; 5:372. [PMID: 25374583 PMCID: PMC4204437 DOI: 10.3389/fgene.2014.00372] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2014] [Accepted: 10/05/2014] [Indexed: 01/11/2023] Open
Abstract
The FANCJ DNA helicase is mutated in hereditary breast and ovarian cancer as well as the progressive bone marrow failure disorder Fanconi anemia (FA). FANCJ is linked to cancer suppression and DNA double strand break repair through its direct interaction with the hereditary breast cancer associated gene product, BRCA1. FANCJ also operates in the FA pathway of interstrand cross-link repair and contributes to homologous recombination. FANCJ collaborates with a number of DNA metabolizing proteins implicated in DNA damage detection and repair, and plays an important role in cell cycle checkpoint control. In addition to its role in the classical FA pathway, FANCJ is believed to have other functions that are centered on alleviating replication stress. FANCJ resolves G-quadruplex (G4) DNA structures that are known to affect cellular replication and transcription, and potentially play a role in the preservation and functionality of chromosomal structures such as telomeres. Recent studies suggest that FANCJ helps to maintain chromatin structure and preserve epigenetic stability by facilitating smooth progression of the replication fork when it encounters DNA damage or an alternate DNA structure such as a G4. Ongoing studies suggest a prominent but still not well-understood role of FANCJ in transcriptional regulation, chromosomal structure and function, and DNA damage repair to maintain genomic stability. This review will synthesize our current understanding of the molecular and cellular functions of FANCJ that are critical for chromosomal integrity.
Collapse
Affiliation(s)
- Robert M Brosh
- Laboratory of Molecular Gerontology, National Institute on Aging, National Institutes of Health Baltimore, MD, USA
| | - Sharon B Cantor
- Department of Cancer Biology, University of Massachusetts Medical School - UMASS Memorial Cancer Center Worcester, MA, USA
| |
Collapse
|
33
|
Mostowska A, Hozyasz KK, Wójcicki P, Galas-Filipowicz D, Lasota A, Dunin-Wilczyńska I, Lianeri M, Jagodziński PP. Genetic variants in BRIP1 (BACH1) contribute to risk of nonsyndromic cleft lip with or without cleft palate. ACTA ACUST UNITED AC 2014; 100:670-8. [PMID: 25045080 DOI: 10.1002/bdra.23275] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2014] [Revised: 04/12/2014] [Accepted: 06/02/2014] [Indexed: 12/11/2022]
Abstract
BACKGROUND The etiology of nonsyndromic cleft lip with or without cleft palate (NSCL/P) is very complex and still not well elucidated. Given the critical role of DNA damage repair in the embryonic development, we decided to test the hypothesis that polymorphisms of selected DNA repair genes might contribute to the risk of NSCL/P in the Polish population. METHODS Analysis of 36 polymorphisms in 12 DNA damage repair genes (ATM, BLM, BRCA1, BRIP1, E2F1, MLH1, MRE11A, MSH2, MSH6, NBN, RAD50, and RAD51) was conducted using TaqMan assays in a group of 263 NSCL/P patients and matched control group (n = 526). RESULTS Statistical analysis of genotyping results revealed that nucleotide variants in the BRIP1 (BACH1) gene were associated with the risk of NSCL/P. Under assumption of a dominant model, the calculated odds ratios (ORs) for BRIP1 rs8075370 and rs9897121 were 1.689 (95% confidence interval [CI], 1.249-2.282; p = 0.0006) and 1.621 (95% CI, 1.200-2.191; p = 0.0016), respectively. These results were statistically significant even after applying multiple testing correction. Additional evidence for a causative role of BRIP1 in NSCL/P etiology was provided by haplotype analysis. Borderline association with a decreased risk of this anomaly was also observed for BLM rs401549 (ORrecessive = 0.406; 95% CI, 0.223-1.739; p = 0.002) and E2F1 rs2071054 (ORdominant = 0.632; 95% CI, 0.469-0.852; p = 0.003). CONCLUSION Our study suggests that polymorphic variants of DNA damage repair genes play a role in the susceptibility to NSCL/P. BRIP1 might be novel candidate gene for this common developmental anomaly.
Collapse
Affiliation(s)
- Adrianna Mostowska
- Department of Biochemistry and Molecular Biology, Poznan University of Medical Sciences, Poznan, Poland
| | | | | | | | | | | | | | | |
Collapse
|
34
|
Sehgal M, Singh TR. DR-GAS: A database of functional genetic variants and their phosphorylation states in human DNA repair systems. DNA Repair (Amst) 2014; 16:97-103. [DOI: 10.1016/j.dnarep.2014.01.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2013] [Revised: 12/13/2013] [Accepted: 01/22/2014] [Indexed: 10/25/2022]
|
35
|
Genome instability at common fragile sites: searching for the cause of their instability. BIOMED RESEARCH INTERNATIONAL 2013; 2013:730714. [PMID: 24083238 PMCID: PMC3780545 DOI: 10.1155/2013/730714] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/27/2013] [Accepted: 08/07/2013] [Indexed: 12/24/2022]
Abstract
Common fragile sites (CFS) are heritable nonrandomly distributed loci on human chromosomes that exhibit an increased frequency of chromosomal breakage under conditions of replication stress. They are considered the preferential targets for high genomic instability from the earliest stages of human cancer development, and increased chromosome instability at these loci has been observed following replication stress in a subset of human genetic diseases. Despite their biological and medical relevance, the molecular basis of CFS fragility in vivo has not been fully elucidated. At present, different models have been proposed to explain how instability at CFS arises and multiple factors seem to contribute to their instability. However, all these models involve DNA replication and suggest that replication fork stalling along CFS during DNA synthesis is a very frequent event. Consistent with this, the maintenance of CFS stability relies on the ATR-dependent checkpoint, together with a number of proteins promoting the recovery of stalled replication forks. In this review, we discuss mainly the possible causes that threaten the integrity of CFS in the light of new findings, paying particular attention to the role of the S-phase checkpoint.
Collapse
|
36
|
Rosenthal AS, Dexheimer TS, Gileadi O, Nguyen GH, Chu WK, Hickson ID, Jadhav A, Simeonov A, Maloney DJ. Synthesis and SAR studies of 5-(pyridin-4-yl)-1,3,4-thiadiazol-2-amine derivatives as potent inhibitors of Bloom helicase. Bioorg Med Chem Lett 2013; 23:5660-6. [PMID: 24012121 DOI: 10.1016/j.bmcl.2013.08.025] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2013] [Revised: 07/26/2013] [Accepted: 08/05/2013] [Indexed: 11/15/2022]
Abstract
Human cells utilize a variety of complex DNA repair mechanisms in order to combat constant mutagenic and cytotoxic threats from both exogenous and endogenous sources. The RecQ family of DNA helicases, which includes Bloom helicase (BLM), plays an important function in DNA repair by unwinding complementary strands of duplex DNA as well as atypical DNA structures such as Holliday junctions. Mutations of the BLM gene can result in Bloom syndrome, an autosomal recessive disorder associated with cancer predisposition. BLM-deficient cells exhibit increased sensitivity to DNA damaging agents indicating that a selective BLM inhibitor could be useful in potentiating the anticancer activity of these agents. In this work, we describe the medicinal chemistry optimization of the hit molecule following a quantitative high-throughput screen of >355,000 compounds. These efforts lead to the identification of ML216 and related analogs, which possess potent BLM inhibition and exhibit selectivity over related helicases. Moreover, these compounds demonstrated cellular activity by inducing sister chromatid exchanges, a hallmark of Bloom syndrome.
Collapse
Affiliation(s)
- Andrew S Rosenthal
- National Center for Advancing Translational Sciences, National Institutes of Health, 9800 Medical Center Drive, Rockville, MD, 20892
| | - Thomas S Dexheimer
- National Center for Advancing Translational Sciences, National Institutes of Health, 9800 Medical Center Drive, Rockville, MD, 20892
| | - Opher Gileadi
- The Structural Genomics Consortium, University of Oxford, Oxford OX3 7DQ, UK
| | - Giang H Nguyen
- Department of Medical Oncology, Weatherall Institute of Molecular Medicine, John Radcliffe Hospital, University of Oxford, Oxford OX3 9DS, UK.,Laboratory of Human Carcinogenesis, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD
| | - Wai Kit Chu
- Department of Cellular and Molecular Medicine, Nordea Center for Healthy Aging, University of Copenhagen, '2200 Copenhagen N, Denmark
| | - Ian D Hickson
- Department of Medical Oncology, Weatherall Institute of Molecular Medicine, John Radcliffe Hospital, University of Oxford, Oxford OX3 9DS, UK.,Department of Cellular and Molecular Medicine, Nordea Center for Healthy Aging, University of Copenhagen, '2200 Copenhagen N, Denmark
| | - Ajit Jadhav
- National Center for Advancing Translational Sciences, National Institutes of Health, 9800 Medical Center Drive, Rockville, MD, 20892
| | - Anton Simeonov
- National Center for Advancing Translational Sciences, National Institutes of Health, 9800 Medical Center Drive, Rockville, MD, 20892
| | - David J Maloney
- National Center for Advancing Translational Sciences, National Institutes of Health, 9800 Medical Center Drive, Rockville, MD, 20892
| |
Collapse
|
37
|
Massively parallel sequencing, aCGH, and RNA-Seq technologies provide a comprehensive molecular diagnosis of Fanconi anemia. Blood 2013; 121:e138-48. [PMID: 23613520 DOI: 10.1182/blood-2012-12-474585] [Citation(s) in RCA: 68] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Current methods for detecting mutations in Fanconi anemia (FA)-suspected patients are inefficient and often miss mutations. We have applied recent advances in DNA sequencing and genomic capture to the diagnosis of FA. Specifically, we used custom molecular inversion probes or TruSeq-enrichment oligos to capture and sequence FA and related genes, including introns, from 27 samples from the International Fanconi Anemia Registry at The Rockefeller University. DNA sequencing was complemented with custom array comparative genomic hybridization (aCGH) and RNA sequencing (RNA-seq) analysis. aCGH identified deletions/duplications in 4 different FA genes. RNA-seq analysis revealed lack of allele specific expression associated with a deletion and splicing defects caused by missense, synonymous, and deep-in-intron variants. The combination of TruSeq-targeted capture, aCGH, and RNA-seq enabled us to identify the complementation group and biallelic germline mutations in all 27 families: FANCA (7), FANCB (3), FANCC (3), FANCD1 (1), FANCD2 (3), FANCF (2), FANCG (2), FANCI (1), FANCJ (2), and FANCL (3). FANCC mutations are often the cause of FA in patients of Ashkenazi Jewish (AJ) ancestry, and we identified 2 novel FANCC mutations in 2 patients of AJ ancestry. We describe here a strategy for efficient molecular diagnosis of FA.
Collapse
|
38
|
Schwab RA, Nieminuszczy J, Shin-ya K, Niedzwiedz W. FANCJ couples replication past natural fork barriers with maintenance of chromatin structure. J Cell Biol 2013; 201:33-48. [PMID: 23530069 PMCID: PMC3613694 DOI: 10.1083/jcb.201208009] [Citation(s) in RCA: 83] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2012] [Accepted: 02/26/2013] [Indexed: 11/22/2022] Open
Abstract
Defective DNA repair causes Fanconi anemia (FA), a rare childhood cancer-predisposing syndrome. At least 15 genes are known to be mutated in FA; however, their role in DNA repair remains unclear. Here, we show that the FANCJ helicase promotes DNA replication in trans by counteracting fork stalling on replication barriers, such as G4 quadruplex structures. Accordingly, stabilization of G4 quadruplexes in ΔFANCJ cells restricts fork movements, uncouples leading- and lagging-strand synthesis and generates small single-stranded DNA gaps behind the fork. Unexpectedly, we also discovered that FANCJ suppresses heterochromatin spreading by coupling fork movement through replication barriers with maintenance of chromatin structure. We propose that FANCJ plays an essential role in counteracting chromatin compaction associated with unscheduled replication fork stalling and restart, and suppresses tumorigenesis, at least partially, in this replication-specific manner.
Collapse
Affiliation(s)
- Rebekka A. Schwab
- The Weatherall Institute of Molecular Medicine, Oxford University, Oxford OX3 9DS, England, UK
| | - Jadwiga Nieminuszczy
- The Weatherall Institute of Molecular Medicine, Oxford University, Oxford OX3 9DS, England, UK
- Institute of Biochemistry and Biophysics, PAS, 02-106 Warsaw, Poland
| | - Kazuo Shin-ya
- Biomedicinal Information Research Center, National Institute of Advanced Industrial Science and Technology, Koto-ku, Tokyo 135-0064, Japan
| | - Wojciech Niedzwiedz
- The Weatherall Institute of Molecular Medicine, Oxford University, Oxford OX3 9DS, England, UK
| |
Collapse
|
39
|
Ashton NW, Bolderson E, Cubeddu L, O'Byrne KJ, Richard DJ. Human single-stranded DNA binding proteins are essential for maintaining genomic stability. BMC Mol Biol 2013; 14:9. [PMID: 23548139 PMCID: PMC3626794 DOI: 10.1186/1471-2199-14-9] [Citation(s) in RCA: 77] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2013] [Accepted: 03/20/2013] [Indexed: 12/25/2022] Open
Abstract
The double-stranded conformation of cellular DNA is a central aspect of DNA stabilisation and protection. The helix preserves the genetic code against chemical and enzymatic degradation, metabolic activation, and formation of secondary structures. However, there are various instances where single-stranded DNA is exposed, such as during replication or transcription, in the synthesis of chromosome ends, and following DNA damage. In these instances, single-stranded DNA binding proteins are essential for the sequestration and processing of single-stranded DNA. In order to bind single-stranded DNA, these proteins utilise a characteristic and evolutionary conserved single-stranded DNA-binding domain, the oligonucleotide/oligosaccharide-binding (OB)-fold. In the current review we discuss a subset of these proteins involved in the direct maintenance of genomic stability, an important cellular process in the conservation of cellular viability and prevention of malignant transformation. We discuss the central roles of single-stranded DNA binding proteins from the OB-fold domain family in DNA replication, the restart of stalled replication forks, DNA damage repair, cell cycle-checkpoint activation, and telomere maintenance.
Collapse
Affiliation(s)
- Nicholas W Ashton
- Genome Stability Laboratory, Cancer and Ageing Research Program, Institute of Health and Biomedical Innovation, Translational Research Institute, Queensland University of Technology, Woolloongabba, Queensland, 4102, Australia
| | | | | | | | | |
Collapse
|
40
|
Manthei KA, Keck JL. The BLM dissolvasome in DNA replication and repair. Cell Mol Life Sci 2013; 70:4067-84. [PMID: 23543275 DOI: 10.1007/s00018-013-1325-1] [Citation(s) in RCA: 88] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2013] [Revised: 02/21/2013] [Accepted: 03/14/2013] [Indexed: 02/07/2023]
Abstract
RecQ DNA helicases are critical for proper maintenance of genomic stability, and mutations in multiple human RecQ genes are linked with genetic disorders characterized by a predisposition to cancer. RecQ proteins are conserved from prokaryotes to humans and in all cases form higher-order complexes with other proteins to efficiently execute their cellular functions. The focus of this review is a conserved complex that is formed between RecQ helicases and type-I topoisomerases. In humans, this complex is referred to as the BLM dissolvasome or BTR complex, and is comprised of the RecQ helicase BLM, topoisomerase IIIα, and the RMI proteins. The BLM dissolvasome functions to resolve linked DNA intermediates without exchange of genetic material, which is critical in somatic cells. We will review the history of this complex and highlight its roles in DNA replication, recombination, and repair. Additionally, we will review recently established interactions between BLM dissolvasome and a second set of genome maintenance factors (the Fanconi anemia proteins) that appear to allow coordinated genome maintenance efforts between the two systems.
Collapse
Affiliation(s)
- Kelly A Manthei
- Department of Biomolecular Chemistry, University of Wisconsin School of Medicine and Public Health, Madison, WI, 53706, USA
| | | |
Collapse
|
41
|
DNA helicases associated with genetic instability, cancer, and aging. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2013; 767:123-44. [PMID: 23161009 DOI: 10.1007/978-1-4614-5037-5_6] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
DNA helicases have essential roles in the maintenance of genomic -stability. They have achieved even greater prominence with the discovery that mutations in human helicase genes are responsible for a variety of genetic disorders and are associated with tumorigenesis. A number of missense mutations in human helicase genes are linked to chromosomal instability diseases characterized by age-related disease or associated with cancer, providing incentive for the characterization of molecular defects underlying aberrant cellular phenotypes. In this chapter, we discuss some examples of clinically relevant missense mutations in various human DNA helicases, particularly those of the Iron-Sulfur cluster and RecQ families. Clinically relevant mutations in the XPD helicase can lead to Xeroderma pigmentosum, Cockayne's syndrome, Trichothiodystrophy, or COFS syndrome. FANCJ mutations are associated with Fanconi anemia or breast cancer. Mutations of the Fe-S helicase ChlR1 (DDX11) are linked to Warsaw Breakage syndrome. Mutations in the RecQ helicases BLM and WRN are linked to the cancer-prone disorder Bloom's syndrome and premature aging condition Werner syndrome, respectively. RECQL4 mutations can lead to Rothmund-Thomson syndrome, Baller-Gerold syndrome, or RAPADILINO. Mutations in the Twinkle mitochondrial helicase are responsible for several neuromuscular degenerative disorders. We will discuss some insights gained from biochemical and genetic studies of helicase variants, and highlight some hot areas of helicase research based on recent developments.
Collapse
|
42
|
Prokofyeva D, Bogdanova N, Dubrowinskaja N, Bermisheva M, Takhirova Z, Antonenkova N, Turmanov N, Datsyuk I, Gantsev S, Christiansen H, Park-Simon TW, Hillemanns P, Khusnutdinova E, Dörk T. Nonsense mutation p.Q548X in BLM, the gene mutated in Bloom's syndrome, is associated with breast cancer in Slavic populations. Breast Cancer Res Treat 2012; 137:533-9. [PMID: 23225144 DOI: 10.1007/s10549-012-2357-1] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2012] [Accepted: 11/22/2012] [Indexed: 11/24/2022]
Abstract
Bloom's syndrome is a rare autosomal recessive chromosomal instability disorder with a high incidence of various types of neoplasia, including breast cancer. Whether monoallelic BLM mutations predispose to breast cancer has been a long-standing question. A nonsense mutation, p.Q548X, has recently been associated with an increased risk for breast cancer in a Russian case-control study. In the present work, we have investigated the prevalence of this Slavic BLM founder mutation in a total of 3,188 breast cancer cases and 2,458 controls from Bashkortostan, Belarus, Ukraine, and Kazakhstan. The p.Q548X allele was most frequent in Russian patients (0.8 %) but was also prevalent in Byelorussian and Ukrainian patients (0.5 and 0.6 %, respectively), whereas it was absent in Altaic or other non-European subpopulations. In a combined analysis of our four case-control series, the p.Q548X mutation was significantly associated with breast cancer (Mantel-Haenszel OR 5.1, 95 % CI 1.2; 21.9, p = 0.03). A meta-analysis with the previous study from the St. Petersburg area corroborates the association (OR 5.7, 95 % CI 2.0; 15.9, p = 3.7 × 10(-4)). A meta-analysis for all published truncating mutations further supports the association of BLM with breast cancer, with an estimated two- to five-fold increase in risk (OR 3.3, 95 %CI 1.9; 5.6, p = 1.9 × 10(-5)). Altogether, these data indicate that BLM is not only a gene for Bloom's syndrome but also might represent a breast cancer susceptibility gene.
Collapse
Affiliation(s)
- Darya Prokofyeva
- Institute of Biochemistry and Genetics, Ufa Science Center, Ufa, Russia
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Mouse Lymphoblastic Leukemias Induced by Aberrant Prdm14 Expression Demonstrate Widespread Copy Number Alterations Also Found in Human ALL. Cancers (Basel) 2012; 4:1050-1066. [PMID: 23487523 PMCID: PMC3593237 DOI: 10.3390/cancers4041050] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
Aberrant expression and activation of oncogenes in somatic cells has been associated with cancer initiation. Required for reacquisition of pluripotency in the developing germ cell, PRDM14 initiates lymphoblastic leukemia when misexpressed in murine bone marrow. Activation of pluripotency in somatic cells can lead to aneuploidy and copy number alterations during iPS cell generation, and we hypothesized that PRDM14-induced lymphoblastic leukemias would demonstrate significant chromosomal damage. High-resolution oligo array comparative genomic hybridization demonstrated infrequent aneuploidy but frequent amplification and deletion, with amplifications occurring in a 5:1 ratio with deletions. Many deletions (i.e., Cdkn2a, Ebf1, Pax5, Ikzf1) involved B-cell development genes and tumor suppressor genes, recapitulating deletions occurring in human leukemia. Pathways opposing senescence were frequently deactivated via Cdkn2a deletion or Tbx2 amplification, with corollary gene expression. Additionally, gene expression studies of abnormal pre-leukemic B-precursors showed downregulation of genes involved in chromosomal stability (i.e., Xrcc6) and failure to upregulate DNA repair pathways. We propose a model of leukemogenesis, triggered by pluripotency genes like Prdm14, which involves ongoing DNA damage and failure to activate non-homologous end-joining secondary to aberrant gene expression.
Collapse
|