1
|
Forterre P. The Last Universal Common Ancestor of Ribosome-Encoding Organisms: Portrait of LUCA. J Mol Evol 2024; 92:550-583. [PMID: 39158619 DOI: 10.1007/s00239-024-10186-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Accepted: 06/25/2024] [Indexed: 08/20/2024]
Abstract
The existence of LUCA in the distant past is the logical consequence of the binary mechanism of cell division. The biosphere in which LUCA and contemporaries were living was the product of a long cellular evolution from the origin of life to the second age of the RNA world. A parsimonious scenario suggests that the molecular fabric of LUCA was much simpler than those of modern organisms, explaining why the evolutionary tempo was faster at the time of LUCA than it was during the diversification of the three domains. Although LUCA was possibly equipped with a RNA genome and most likely lacked an ATP synthase, it was already able to perform basic metabolic functions and to produce efficient proteins. However, the proteome of LUCA and its inferred metabolism remains to be correctly explored by in-depth phylogenomic analyses and updated datasets. LUCA was probably a mesophile or a moderate thermophile since phylogenetic analyses indicate that it lacked reverse gyrase, an enzyme systematically present in all hyperthermophiles. The debate about the position of Eukarya in the tree of life, either sister group to Archaea or descendants of Archaea, has important implications to draw the portrait of LUCA. In the second alternative, one can a priori exclude the presence of specific eukaryotic features in LUCA. In contrast, if Archaea and Eukarya are sister group, some eukaryotic features, such as the spliceosome, might have been present in LUCA and later lost in Archaea and Bacteria. The nature of the LUCA virome is another matter of debate. I suggest here that DNA viruses only originated during the diversification of the three domains from an RNA-based LUCA to explain the odd distribution pattern of DNA viruses in the tree of life.
Collapse
|
2
|
Ślesak I, Ślesak H. From cyanobacteria and cyanophages to chloroplasts: the fate of the genomes of oxyphototrophs and the genes encoding photosystem II proteins. THE NEW PHYTOLOGIST 2024; 242:1055-1067. [PMID: 38439684 DOI: 10.1111/nph.19633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Accepted: 02/02/2024] [Indexed: 03/06/2024]
Abstract
Chloroplasts are the result of endosymbiosis of cyanobacterial organisms with proto-eukaryotes. The psbA, psbD and psbO genes are present in all oxyphototrophs and encode the D1/D2 proteins of photosystem II (PSII) and PsbO, respectively. PsbO is a peripheral protein that stabilizes the O2-evolving complex in PSII. Of these genes, psbA and psbD remained in the chloroplastic genome, while psbO was transferred to the nucleus. The genomes of selected cyanobacteria, chloroplasts and cyanophages carrying psbA and psbD, respectively, were analysed. The highest density of genes and coding sequences (CDSs) was estimated for the genomes of cyanophages, cyanobacteria and chloroplasts. The synonymous mutation rate (rS) of psbA and psbD in chloroplasts remained almost unchanged and is lower than that of psbO. The results indicate that the decreasing genome size in chloroplasts is more similar to the genome reduction observed in contemporary endosymbiotic organisms than in streamlined genomes of free-living cyanobacteria. The rS of atpA, which encodes the α-subunit of ATP synthase in chloroplasts, suggests that psbA and psbD, and to a lesser extent psbO, are ancient and conservative and arose early in the evolution of oxygenic photosynthesis. The role of cyanophages in the evolution of oxyphototrophs and chloroplastic genomes is discussed.
Collapse
Affiliation(s)
- Ireneusz Ślesak
- The Franciszek Górski Institute of Plant Physiology, Polish Academy of Sciences, Niezapominajek 21, 30-239, Kraków, Poland
| | - Halina Ślesak
- Institute of Botany, Faculty of Biology, Jagiellonian University, Gronostajowa 3, 30-387, Kraków, Poland
| |
Collapse
|
3
|
Gospodaryov DV, Ballard JWO, Camus MF, DeSalle R, Garvin MR, Richter U. Editorial: Energy-producing organelles and the nucleus: a phenomenal genomic friendship. Front Genet 2023; 14:1230032. [PMID: 37424728 PMCID: PMC10328751 DOI: 10.3389/fgene.2023.1230032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2023] [Accepted: 06/15/2023] [Indexed: 07/11/2023] Open
Affiliation(s)
- Dmytro V. Gospodaryov
- Department of Biochemistry and Biotechnology, Vasyl Stefanyk Precarpathian National University, Ivano-Frankivsk, Ukraine
| | - J. William O. Ballard
- School of Biosciences, University of Melbourne, Parkville, VIC, Australia
- Department of Environment and Genetics, School of Agriculture, Biomedicine and Environment, La Trobe University, Melbourne, VIC, Australia
| | - M. Florencia Camus
- Department of Genetics, Evolution and Environment, University College London, London, United Kingdom
| | - Rob DeSalle
- Institute for Comparative Genomics, American Museum of Natural History, New York, NY, United States
- Division of Invertebrate Zoology, American Museum of Natural History, New York, NY, United States
| | - Michael R. Garvin
- Computational Predictive Biology, Oak Ridge National Laboratory, Oak Ridge, TN, United States
| | - Uwe Richter
- Wellcome Centre for Mitochondrial Research, Faculty of Medical Sciences, Newcastle University, Newcastle Upon Tyne, United Kingdom
- Organismal and Evolutionary Biology Research Programme, Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki, Finland
| |
Collapse
|
4
|
Czernecki D, Nourisson A, Legrand P, Delarue M. Reclassification of family A DNA polymerases reveals novel functional subfamilies and distinctive structural features. Nucleic Acids Res 2023; 51:4488-4507. [PMID: 37070157 PMCID: PMC10201439 DOI: 10.1093/nar/gkad242] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 03/07/2023] [Accepted: 03/24/2023] [Indexed: 04/19/2023] Open
Abstract
Family A DNA polymerases (PolAs) form an important and well-studied class of extant polymerases participating in DNA replication and repair. Nonetheless, despite the characterization of multiple subfamilies in independent, dedicated works, their comprehensive classification thus far is missing. We therefore re-examine all presently available PolA sequences, converting their pairwise similarities into positions in Euclidean space, separating them into 19 major clusters. While 11 of them correspond to known subfamilies, eight had not been characterized before. For every group, we compile their general characteristics, examine their phylogenetic relationships and perform conservation analysis in the essential sequence motifs. While most subfamilies are linked to a particular domain of life (including phages), one subfamily appears in Bacteria, Archaea and Eukaryota. We also show that two new bacterial subfamilies contain functional enzymes. We use AlphaFold2 to generate high-confidence prediction models for all clusters lacking an experimentally determined structure. We identify new, conserved features involving structural alterations, ordered insertions and an apparent structural incorporation of a uracil-DNA glycosylase (UDG) domain. Finally, genetic and structural analyses of a subset of T7-like phages indicate a splitting of the 3'-5' exo and pol domains into two separate genes, observed in PolAs for the first time.
Collapse
Affiliation(s)
- Dariusz Czernecki
- Institut Pasteur, Université Paris Cité, CNRS UMR 3528, Unit of Architecture and Dynamics of Biological Macromolecules, 75015 Paris, France
- Sorbonne Université, Collège Doctoral, ED 515, 75005 Paris, France
| | - Antonin Nourisson
- Institut Pasteur, Université Paris Cité, CNRS UMR 3528, Unit of Architecture and Dynamics of Biological Macromolecules, 75015 Paris, France
- Sorbonne Université, Collège Doctoral, ED 515, 75005 Paris, France
| | - Pierre Legrand
- Institut Pasteur, Université Paris Cité, CNRS UMR 3528, Unit of Architecture and Dynamics of Biological Macromolecules, 75015 Paris, France
- Synchrotron SOLEIL, L’Orme des Merisiers, 91190 Saint-Aubin, France
| | - Marc Delarue
- Institut Pasteur, Université Paris Cité, CNRS UMR 3528, Unit of Architecture and Dynamics of Biological Macromolecules, 75015 Paris, France
| |
Collapse
|
5
|
Abstract
Viruses are the most abundant biological entities on Earth, and yet, they have not received enough consideration in astrobiology. Viruses are also extraordinarily diverse, which is evident in the types of relationships they establish with their host, their strategies to store and replicate their genetic information and the enormous diversity of genes they contain. A viral population, especially if it corresponds to a virus with an RNA genome, can contain an array of sequence variants that greatly exceeds what is present in most cell populations. The fact that viruses always need cellular resources to multiply means that they establish very close interactions with cells. Although in the short term these relationships may appear to be negative for life, it is evident that they can be beneficial in the long term. Viruses are one of the most powerful selective pressures that exist, accelerating the evolution of defense mechanisms in the cellular world. They can also exchange genetic material with the host during the infection process, providing organisms with capacities that favor the colonization of new ecological niches or confer an advantage over competitors, just to cite a few examples. In addition, viruses have a relevant participation in the biogeochemical cycles of our planet, contributing to the recycling of the matter necessary for the maintenance of life. Therefore, although viruses have traditionally been excluded from the tree of life, the structure of this tree is largely the result of the interactions that have been established throughout the intertwined history of the cellular and the viral worlds. We do not know how other possible biospheres outside our planet could be, but it is clear that viruses play an essential role in the terrestrial one. Therefore, they must be taken into account both to improve our understanding of life that we know, and to understand other possible lives that might exist in the cosmos.
Collapse
Affiliation(s)
- Ignacio de la Higuera
- Department of Biology, Center for Life in Extreme Environments, Portland State University, Portland, OR, United States
| | - Ester Lázaro
- Centro de Astrobiología (CAB), CSIC-INTA, Torrejón de Ardoz, Spain
| |
Collapse
|
6
|
Abstract
Viruses are obligate intracellular parasites. Despite their dependence on host cells, viruses are evolutionarily autonomous, with their own genomes and evolutionary trajectories locked in arms races with the hosts. Here, we discuss a simple functional logic to explain virus macroevolution that appears to define the course of virus evolution. A small core of virus hallmark genes that are responsible for genome replication apparently descended from primordial replicators, whereas most virus genes, starting with those encoding capsid proteins, were subsequently acquired from hosts. The oldest of these acquisitions antedate the last universal cellular ancestor (LUCA). Host gene capture followed two major routes: convergent recruitment of genes with functions that directly benefit virus reproduction and exaptation when host proteins are repurposed for unique virus functions. These forms of host protein recruitment by viruses result in different levels of similarity between virus and host homologs, with the exapted ones often changing beyond easy recognition.
Collapse
Affiliation(s)
- Eugene V Koonin
- National Center for Biotechnology Information, National Library of Medicine, Bethesda, MD 20894, USA.
| | - Valerian V Dolja
- National Center for Biotechnology Information, National Library of Medicine, Bethesda, MD 20894, USA; Department of Botany and Plant Pathology, Oregon State University, Corvallis, OR 97331, USA
| | - Mart Krupovic
- Institut Pasteur, Université Paris Cité, CNRS UMR6047, Archaeal Virology Unit, F-75015 Paris, France.
| |
Collapse
|
7
|
Spang A, Mahendrarajah TA, Offre P, Stairs CW. Evolving Perspective on the Origin and Diversification of Cellular Life and the Virosphere. Genome Biol Evol 2022; 14:evac034. [PMID: 35218347 PMCID: PMC9169541 DOI: 10.1093/gbe/evac034] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/18/2022] [Indexed: 11/14/2022] Open
Abstract
The tree of life (TOL) is a powerful framework to depict the evolutionary history of cellular organisms through time, from our microbial origins to the diversification of multicellular eukaryotes that shape the visible biosphere today. During the past decades, our perception of the TOL has fundamentally changed, in part, due to profound methodological advances, which allowed a more objective approach to studying organismal and viral diversity and led to the discovery of major new branches in the TOL as well as viral lineages. Phylogenetic and comparative genomics analyses of these data have, among others, revolutionized our understanding of the deep roots and diversity of microbial life, the origin of the eukaryotic cell, eukaryotic diversity, as well as the origin, and diversification of viruses. In this review, we provide an overview of some of the recent discoveries on the evolutionary history of cellular organisms and their viruses and discuss a variety of complementary techniques that we consider crucial for making further progress in our understanding of the TOL and its interconnection with the virosphere.
Collapse
Affiliation(s)
- Anja Spang
- Department of Marine Microbiology and Biogeochemistry, NIOZ, Royal Netherlands Institute for Sea Research, Utrecht University, Den Burg, The Netherlands
- Department of Cell and Molecular Biology, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Tara A Mahendrarajah
- Department of Marine Microbiology and Biogeochemistry, NIOZ, Royal Netherlands Institute for Sea Research, Utrecht University, Den Burg, The Netherlands
| | - Pierre Offre
- Department of Marine Microbiology and Biogeochemistry, NIOZ, Royal Netherlands Institute for Sea Research, Utrecht University, Den Burg, The Netherlands
| | - Courtney W Stairs
- Department of Biology, Microbiology research group, Lund University, Lund, Sweden
| |
Collapse
|
8
|
Benler S, Koonin EV. Recruitment of Mobile Genetic Elements for Diverse Cellular Functions in Prokaryotes. Front Mol Biosci 2022; 9:821197. [PMID: 35402511 PMCID: PMC8987985 DOI: 10.3389/fmolb.2022.821197] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Accepted: 02/08/2022] [Indexed: 12/15/2022] Open
Abstract
Prokaryotic genomes are replete with mobile genetic elements (MGE) that span a continuum of replication autonomy. On numerous occasions during microbial evolution, diverse MGE lose their autonomy altogether but, rather than being quickly purged from the host genome, assume a new function that benefits the host, rendering the immobilized MGE subject to purifying selection, and resulting in its vertical inheritance. This mini-review highlights the diversity of the repurposed (exapted) MGE as well as the plethora of cellular functions that they perform. The principal contribution of the exaptation of MGE and their components is to the prokaryotic functional systems involved in biological conflicts, and in particular, defense against viruses and other MGE. This evolutionary entanglement between MGE and defense systems appears to stem both from mechanistic similarities and from similar evolutionary predicaments whereby both MGEs and defense systems tend to incur fitness costs to the hosts and thereby evolve mechanisms for survival including horizontal mobility, causing host addiction, and exaptation for functions beneficial to the host. The examples discussed demonstrate that the identity of an MGE, overall mobility and relationship with the host cell (mutualistic, symbiotic, commensal, or parasitic) are all factors that affect exaptation.
Collapse
Affiliation(s)
| | - Eugene V. Koonin
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD, United States
| |
Collapse
|
9
|
Varassas SP, Kouvelis VN. Mitochondrial Transcription of Entomopathogenic Fungi Reveals Evolutionary Aspects of Mitogenomes. Front Microbiol 2022; 13:821638. [PMID: 35387072 PMCID: PMC8979003 DOI: 10.3389/fmicb.2022.821638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Accepted: 02/22/2022] [Indexed: 11/13/2022] Open
Abstract
Entomopathogenic fungi and more specifically genera Beauveria and Metarhizium have been exploited for the biological control of pests. Genome analyses are important to understand better their mode of action and thus, improve their efficacy against their hosts. Until now, the sequences of their mitochondrial genomes were studied, but not at the level of transcription. Except of yeasts and Neurospora crassa, whose mt gene transcription is well described, in all other Ascomycota, i.e., Pezizomycotina, related information is extremely scarce. In this work, mt transcription and key enzymes of this function were studied. RT-PCR experiments and Northern hybridizations reveal the transcriptional map of the mt genomes of B. bassiana and M. brunneum species. The mt genes are transcribed in six main transcripts and undergo post-transcriptional modifications to create single gene transcripts. Promoters were determined in both mt genomes with a comparative in silico analysis, including all known information from other fungal mt genomes. The promoter consensus sequence is 5'-ATAGTTATTAT-3' which is in accordance with the definition of the polycistronic transcripts determined with the experiments described above. Moreover, 5'-RACE experiments in the case of premature polycistronic transcript nad1-nad4-atp8-atp6 revealed the 5' end of the RNA transcript immediately after the in silico determined promoter, as also found in other fungal species. Since several conserved elements were retrieved from these analyses compared to the already known data from yeasts and N. crassa, the phylogenetic analyses of mt RNA polymerase (Rpo41) and its transcriptional factor (Mtf1) were performed in order to define their evolution. As expected, it was found that fungal Rpo41 originate from the respective polymerase of T7/T3 phages, while the ancestor of Mtf1 is of alpha-proteobacterial origin. Therefore, this study presents insights about the fidelity of the mt single-subunit phage-like RNA polymerase during transcription, since the correct identification of mt promoters from Rpo41 requires an ortholog to bacterial sigma factor, i.e., Mtf1. Thus, a previously proposed hypothesis of a phage infected alpha-proteobacterium as the endosymbiotic progenitor of mitochondrion is confirmed in this study and further upgraded by the co-evolution of the bacterial (Mtf1) and viral (Rpo41) originated components in one functional unit.
Collapse
Affiliation(s)
| | - Vassili N. Kouvelis
- Department of Genetics and Biotechnology, Faculty of Biology, National and Kapodistrian University of Athens, Athens, Greece
| |
Collapse
|
10
|
Abstract
Expression of transgenes from the plastid genome offers a number of attractions to biotechnologists, with the potential to attain very high protein accumulation levels arguably being the most attractive one. High-level transgene expression is of particular importance in resistance engineering (e.g., for expression of insecticidal proteins) and molecular farming (e.g., for expression of pharmaceutical proteins and industrial enzymes). Over the past decades, the production of many commercially valuable proteins in chloroplast-transgenic (transplastomic) plants has been attempted, including pharmaceutical proteins (e.g., subunit vaccines and protein antibiotics) and industrial enzymes. Although in some cases, spectacularly high foreign protein accumulation levels have been obtained, expression levels were disappointingly poor in other cases. In this review, I summarize our current knowledge about the factors influencing the efficiency of plastid transgene expression, and highlight possible optimization strategies to alleviate problems with poor expression levels. I also discuss available techniques for inducible expression of chloroplast transgenes.
Collapse
|
11
|
Koonin EV, Krupovic M, Ishino S, Ishino Y. The replication machinery of LUCA: common origin of DNA replication and transcription. BMC Biol 2020; 18:61. [PMID: 32517760 PMCID: PMC7281927 DOI: 10.1186/s12915-020-00800-9] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Origin of DNA replication is an enigma because the replicative DNA polymerases (DNAPs) are not homologous among the three domains of life, Bacteria, Archaea, and Eukarya. The homology between the archaeal replicative DNAP (PolD) and the large subunits of the universal RNA polymerase (RNAP) responsible for transcription suggests a parsimonious evolutionary scenario. Under this model, RNAPs and replicative DNAPs evolved from a common ancestor that functioned as an RNA-dependent RNA polymerase in the RNA-protein world that predated the advent of DNA replication. The replicative DNAP of the Last Universal Cellular Ancestor (LUCA) would be the ancestor of the archaeal PolD.
Collapse
Affiliation(s)
- Eugene V Koonin
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD, 20892, USA.
| | - Mart Krupovic
- Archaeal Virology Unit, Institut Pasteur, 75015, Paris, France
| | - Sonoko Ishino
- Department of Bioscience and Biotechnology, Graduate School of Bioresource and Bioenvironmental Sciences, Kyushu University, Fukuoka, 819-0395, Japan
| | - Yoshizumi Ishino
- Department of Bioscience and Biotechnology, Graduate School of Bioresource and Bioenvironmental Sciences, Kyushu University, Fukuoka, 819-0395, Japan
| |
Collapse
|
12
|
Abstract
Viruses are ubiquitous parasites of cellular life and the most abundant biological entities on Earth. It is widely accepted that viruses are polyphyletic, but a consensus scenario for their ultimate origin is still lacking. Traditionally, three scenarios for the origin of viruses have been considered: descent from primordial, precellular genetic elements, reductive evolution from cellular ancestors and escape of genes from cellular hosts, achieving partial replicative autonomy and becoming parasitic genetic elements. These classical scenarios give different timelines for the origin(s) of viruses and do not explain the provenance of the two key functional modules that are responsible, respectively, for viral genome replication and virion morphogenesis. Here, we outline a 'chimeric' scenario under which different types of primordial, selfish replicons gave rise to viruses by recruiting host proteins for virion formation. We also propose that new groups of viruses have repeatedly emerged at all stages of the evolution of life, often through the displacement of ancestral structural and genome replication genes.
Collapse
|
13
|
Matkarimov BT, Saparbaev MK. DNA Repair and Mutagenesis in Vertebrate Mitochondria: Evidence for Asymmetric DNA Strand Inheritance. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1241:77-100. [DOI: 10.1007/978-3-030-41283-8_6] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
14
|
Van Etten JL, Agarkova IV, Dunigan DD. Chloroviruses. Viruses 2019; 12:E20. [PMID: 31878033 PMCID: PMC7019647 DOI: 10.3390/v12010020] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Revised: 12/13/2019] [Accepted: 12/15/2019] [Indexed: 12/20/2022] Open
Abstract
Chloroviruses are large dsDNA, plaque-forming viruses that infect certain chlorella-like green algae; the algae are normally mutualistic endosymbionts of protists and metazoans and are often referred to as zoochlorellae. The viruses are ubiquitous in inland aqueous environments throughout the world and occasionally single types reach titers of thousands of plaque-forming units per ml of native water. The viruses are icosahedral in shape with a spike structure located at one of the vertices. They contain an internal membrane that is required for infectivity. The viral genomes are 290 to 370 kb in size, which encode up to 16 tRNAs and 330 to ~415 proteins, including many not previously seen in viruses. Examples include genes encoding DNA restriction and modification enzymes, hyaluronan and chitin biosynthetic enzymes, polyamine biosynthetic enzymes, ion channel and transport proteins, and enzymes involved in the glycan synthesis of the virus major capsid glycoproteins. The proteins encoded by many of these viruses are often the smallest or among the smallest proteins of their class. Consequently, some of the viral proteins are the subject of intensive biochemical and structural investigation.
Collapse
Affiliation(s)
- James L. Van Etten
- Department of Plant Pathology, Nebraska Center for Virology, University of Nebraska-Lincoln, Lincoln, NE 68583-0900, USA; (I.V.A.); (D.D.D.)
| | | | | |
Collapse
|
15
|
Kariithi HM, Boucias DG, Murungi EK, Meki IK, Demirbaş-Uzel G, van Oers MM, Vreysen MJB, Abd-Alla AMM, Vlak JM. Coevolution of hytrosaviruses and host immune responses. BMC Microbiol 2018; 18:183. [PMID: 30470186 PMCID: PMC6251100 DOI: 10.1186/s12866-018-1296-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
BACKGROUND Hytrosaviruses (SGHVs; Hytrosaviridae family) are double-stranded DNA (dsDNA) viruses that cause salivary gland hypertrophy (SGH) syndrome in flies. Two structurally and functionally distinct SGHVs are recognized; Glossina pallidipes SGHV (GpSGHV) and Musca domestica SGHV (MdSGHV), that infect the hematophagous tsetse fly and the filth-feeding housefly, respectively. Genome sizes and gene contents of GpSGHV (~ 190 kb; 160-174 genes) and MdSGHV (~ 124 kb; 108 genes) may reflect an evolution with the SGHV-hosts resulting in differences in pathobiology. Whereas GpSGHV can switch from asymptomatic to symptomatic infections in response to certain unknown cues, MdSGHV solely infects symptomatically. Overt SGH characterizes the symptomatic infections of SGHVs, but whereas MdSGHV induces both nuclear and cellular hypertrophy (enlarged non-replicative cells), GpSGHV induces cellular hyperplasia (enlarged replicative cells). Compared to GpSGHV's specificity to Glossina species, MdSGHV infects other sympatric muscids. The MdSGHV-induced total shutdown of oogenesis inhibits its vertical transmission, while the GpSGHV's asymptomatic and symptomatic infections promote vertical and horizontal transmission, respectively. This paper reviews the coevolution of the SGHVs and their hosts (housefly and tsetse fly) based on phylogenetic relatedness of immune gene orthologs/paralogs and compares this with other virus-insect models. RESULTS Whereas MdSGHV is not vertically transmitted, GpSGHV is both vertically and horizontally transmitted, and the balance between the two transmission modes may significantly influence the pathogenesis of tsetse virus. The presence and absence of bacterial symbionts (Wigglesworthia and Sodalis) in tsetse and Wolbachia in the housefly, respectively, potentially contributes to the development of SGH symptoms. Unlike MdSGHV, GpSGHV contains not only host-derived proteins, but also appears to have evolutionarily recruited cellular genes from ancestral host(s) into its genome, which, although may be nonessential for viral replication, potentially contribute to the evasion of host's immune responses. Whereas MdSGHV has evolved strategies to counteract both the housefly's RNAi and apoptotic responses, the housefly has expanded its repertoire of immune effector, modulator and melanization genes compared to the tsetse fly. CONCLUSIONS The ecologies and life-histories of the housefly and tsetse fly may significantly influence coevolution of MdSGHV and GpSGHV with their hosts. Although there are still many unanswered questions regarding the pathogenesis of SGHVs, and the extent to which microbiota influence expression of overt SGH symptoms, SGHVs are attractive 'explorers' to elucidate the immune responses of their hosts, and the transmission modes of other large DNA viruses.
Collapse
Affiliation(s)
- Henry M Kariithi
- Biotechnology Research Institute, Kenya Agricultural and Livestock Research Organization, P.O Box 57811, Kaptagat Rd, Loresho, Nairobi, 00200, Kenya. .,Insect Pest Control Laboratory, Joint FAO/IAEA Division of Nuclear Techniques in Food and Agriculture, Wagrammer Straße 5, A-1400, Vienna, Austria. .,Present Address: US National Poultry Research Centre, Southeast Poultry Research Laboratory, USDA-ARS, 934 College Station Road, Athens, GA, 30605, USA.
| | - Drion G Boucias
- Entomology and Nematology Department, University of Florida, 970 Natural Area Drive, Gainesville, FL, 32611, USA
| | - Edwin K Murungi
- Department of Biochemistry and Molecular Biology, Egerton University, P.O. Box 536, Njoro, 20115, Kenya
| | - Irene K Meki
- Insect Pest Control Laboratory, Joint FAO/IAEA Division of Nuclear Techniques in Food and Agriculture, Wagrammer Straße 5, A-1400, Vienna, Austria.,Laboratory of Virology, Wageningen University and Research, 6708 PB, Wageningen, The Netherlands
| | - Güler Demirbaş-Uzel
- Insect Pest Control Laboratory, Joint FAO/IAEA Division of Nuclear Techniques in Food and Agriculture, Wagrammer Straße 5, A-1400, Vienna, Austria
| | - Monique M van Oers
- Laboratory of Virology, Wageningen University and Research, 6708 PB, Wageningen, The Netherlands
| | - Marc J B Vreysen
- Insect Pest Control Laboratory, Joint FAO/IAEA Division of Nuclear Techniques in Food and Agriculture, Wagrammer Straße 5, A-1400, Vienna, Austria
| | - Adly M M Abd-Alla
- Insect Pest Control Laboratory, Joint FAO/IAEA Division of Nuclear Techniques in Food and Agriculture, Wagrammer Straße 5, A-1400, Vienna, Austria
| | - Just M Vlak
- Laboratory of Virology, Wageningen University and Research, 6708 PB, Wageningen, The Netherlands
| |
Collapse
|
16
|
Bhattacharyya D, Chakraborty S. Chloroplast: the Trojan horse in plant-virus interaction. MOLECULAR PLANT PATHOLOGY 2018; 19:504-518. [PMID: 28056496 PMCID: PMC6638057 DOI: 10.1111/mpp.12533] [Citation(s) in RCA: 97] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2016] [Revised: 12/22/2016] [Accepted: 01/03/2017] [Indexed: 05/14/2023]
Abstract
The chloroplast is one of the most dynamic organelles of a plant cell. It carries out photosynthesis, synthesizes major phytohormones, plays an active part in the defence response and is crucial for interorganelle signalling. Viruses, on the other hand, are extremely strategic in manipulating the internal environment of the host cell. The chloroplast, a prime target for viruses, undergoes enormous structural and functional damage during viral infection. Indeed, large proportions of affected gene products in a virus-infected plant are closely associated with the chloroplast and the process of photosynthesis. Although the chloroplast is deficient in gene silencing machinery, it elicits the effector-triggered immune response against viral pathogens. Virus infection induces the organelle to produce an extensive network of stromules which are involved in both viral propagation and antiviral defence. From studies over the last few decades, the involvement of the chloroplast in the regulation of plant-virus interaction has become increasingly evident. This review presents an exhaustive account of these facts, with their implications for pathogenicity. We have attempted to highlight the intricacies of chloroplast-virus interactions and to explain the existing gaps in our current knowledge, which will enable virologists to utilize chloroplast genome-based antiviral resistance in economically important crops.
Collapse
Affiliation(s)
- Dhriti Bhattacharyya
- Molecular Virology Laboratory, School of Life SciencesJawaharlal Nehru UniversityNew Delhi110 067India
| | - Supriya Chakraborty
- Molecular Virology Laboratory, School of Life SciencesJawaharlal Nehru UniversityNew Delhi110 067India
| |
Collapse
|
17
|
Hameed MW, Juszczak I, Bock R, van Dongen JT. Comparison of mitochondrial gene expression and polysome loading in different tobacco tissues. PLANT METHODS 2017; 13:112. [PMID: 29255478 PMCID: PMC5729415 DOI: 10.1186/s13007-017-0257-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/07/2017] [Accepted: 11/22/2017] [Indexed: 06/07/2023]
Abstract
BACKGROUND To investigate translational regulation of gene expression in plant mitochondria, a mitochondrial polysome isolation protocol was established for tobacco to investigate polysomal mRNA loading as a proxy for translational activity. Furthermore, we developed an oligonucleotide based microarray platform to determine the level of Nicotiana tabacum and Arabidopsis thaliana mitochondrial mRNA. RESULTS Microarray analysis of free and polysomal mRNAs was used to characterize differences in the levels of free transcripts and ribosome-bound mRNAs in various organs of tobacco plants. We have observed higher mitochondrial transcript levels in young leaves, flowers and floral buds as compared to fully expanded leaves and roots. A similar pattern of abundance was observed for ribosome-bound mitochondrial mRNAs in these tissues. However, the accumulation of the mitochondrial protein COX2 was found to be inversely related to that of its ribosome-bound mRNA. CONCLUSIONS Our results indicate that the association of mitochondrial mRNAs to ribosomes is largely determined by the total transcript level of a gene. However, at least for Cox2, we demonstrated that the level of ribosome-bound mRNA is not reflected by the amount of COX2 protein.
Collapse
Affiliation(s)
- Muhammad Waqar Hameed
- Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476 Potsdam-Golm, Germany
- Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi, 75270 Pakistan
| | - Ilona Juszczak
- Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476 Potsdam-Golm, Germany
- Molecular Physiology, University of Bonn, Kirschallee 1, 53115 Bonn, Germany
| | - Ralph Bock
- Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476 Potsdam-Golm, Germany
| | - Joost Thomas van Dongen
- Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476 Potsdam-Golm, Germany
- Institute of Biology I, RWTH Aachen University, Worringerweg 1, 52056 Aachen, Germany
| |
Collapse
|
18
|
Koonin EV. Viruses and mobile elements as drivers of evolutionary transitions. Philos Trans R Soc Lond B Biol Sci 2017; 371:rstb.2015.0442. [PMID: 27431520 PMCID: PMC4958936 DOI: 10.1098/rstb.2015.0442] [Citation(s) in RCA: 88] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/15/2016] [Indexed: 12/22/2022] Open
Abstract
The history of life is punctuated by evolutionary transitions which engender emergence of new levels of biological organization that involves selection acting at increasingly complex ensembles of biological entities. Major evolutionary transitions include the origin of prokaryotic and then eukaryotic cells, multicellular organisms and eusocial animals. All or nearly all cellular life forms are hosts to diverse selfish genetic elements with various levels of autonomy including plasmids, transposons and viruses. I present evidence that, at least up to and including the origin of multicellularity, evolutionary transitions are driven by the coevolution of hosts with these genetic parasites along with sharing of ‘public goods’. Selfish elements drive evolutionary transitions at two distinct levels. First, mathematical modelling of evolutionary processes, such as evolution of primitive replicator populations or unicellular organisms, indicates that only increasing organizational complexity, e.g. emergence of multicellular aggregates, can prevent the collapse of the host–parasite system under the pressure of parasites. Second, comparative genomic analysis reveals numerous cases of recruitment of genes with essential functions in cellular life forms, including those that enable evolutionary transitions. This article is part of the themed issue ‘The major synthetic evolutionary transitions’.
Collapse
Affiliation(s)
- Eugene V Koonin
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD 20894, USA
| |
Collapse
|
19
|
Zhao J, Zhang X, Hong Y, Liu Y. Chloroplast in Plant-Virus Interaction. Front Microbiol 2016; 7:1565. [PMID: 27757106 PMCID: PMC5047884 DOI: 10.3389/fmicb.2016.01565] [Citation(s) in RCA: 133] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2016] [Accepted: 09/20/2016] [Indexed: 11/16/2022] Open
Abstract
In plants, the chloroplast is the organelle that conducts photosynthesis. It has been known that chloroplast is involved in virus infection of plants for approximate 70 years. Recently, the subject of chloroplast-virus interplay is getting more and more attention. In this article we discuss the different aspects of chloroplast-virus interaction into three sections: the effect of virus infection on the structure and function of chloroplast, the role of chloroplast in virus infection cycle, and the function of chloroplast in host defense against viruses. In particular, we focus on the characterization of chloroplast protein-viral protein interactions that underlie the interplay between chloroplast and virus. It can be summarized that chloroplast is a common target of plant viruses for viral pathogenesis or propagation; and conversely, chloroplast and its components also can play active roles in plant defense against viruses. Chloroplast photosynthesis-related genes/proteins (CPRGs/CPRPs) are suggested to play a central role during the complex chloroplast-virus interaction.
Collapse
Affiliation(s)
- Jinping Zhao
- MOE Key Laboratory of Bioinformatics, Center for Plant Biology, Tsinghua-Peking Joint Center for Life Sciences, School of Life Sciences, Tsinghua UniversityBeijing, China
- State Key Laboratory Breeding Base for Sustainable Control of Pest and Disease, Key Laboratory of Biotechnology in Plant Protection, Institute of Virology and Biotechnology, Zhejiang Academy of Agricultural SciencesHangzhou, China
| | - Xian Zhang
- Research Centre for Plant RNA Signaling, School of Life and Environmental Sciences, Hangzhou Normal UniversityHangzhou, China
| | - Yiguo Hong
- Research Centre for Plant RNA Signaling, School of Life and Environmental Sciences, Hangzhou Normal UniversityHangzhou, China
| | - Yule Liu
- MOE Key Laboratory of Bioinformatics, Center for Plant Biology, Tsinghua-Peking Joint Center for Life Sciences, School of Life Sciences, Tsinghua UniversityBeijing, China
| |
Collapse
|
20
|
Suzuki S, Ishida KI, Hirakawa Y. Diurnal Transcriptional Regulation of Endosymbiotically Derived Genes in the Chlorarachniophyte Bigelowiella natans. Genome Biol Evol 2016; 8:2672-82. [PMID: 27503292 PMCID: PMC5635652 DOI: 10.1093/gbe/evw188] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Chlorarachniophyte algae possess complex plastids acquired by the secondary endosymbiosis of a green alga, and the plastids harbor a relict nucleus of the endosymbiont, the so-called nucleomorph. Due to massive gene transfer from the endosymbiont to the host, many proteins involved in plastid and nucleomorph are encoded by the nuclear genome. Genome sequences have provided a blueprint for the fate of endosymbiotically derived genes; however, transcriptional regulation of these genes remains poorly understood. To gain insight into the evolution of endosymbiotic genes, we performed genome-wide transcript profiling along the cell cycle of the chlorarachniophyte Bigelowiella natans, synchronized by light and dark cycles. Our comparative analyses demonstrated that transcript levels of 7,751 nuclear genes (35.7% of 21,706 genes) significantly oscillated along the diurnal/cell cycles, and those included 780 and 147 genes for putative plastid and nucleomorph-targeted proteins, respectively. Clustering analysis of those genes revealed the existence of transcriptional networks related to specific biological processes such as photosynthesis, carbon metabolism, translation, and DNA replication. Interestingly, transcripts of many plastid-targeted proteins in B. natans were induced before dawn, unlike other photosynthetic organisms. In contrast to nuclear genes, 99% nucleomorph genes were found to be constitutively expressed during the cycles. We also found that the nucleomorph DNA replication would be controlled by a nucleus-encoded viral-like DNA polymerase. The results of this study suggest that nucleomorph genes have lost transcriptional regulation along the diurnal cycles, and nuclear genes exert control over the complex plastid including the nucleomorph.
Collapse
Affiliation(s)
- Shigekatsu Suzuki
- Graduate School of Life and Environmental Sciences, University of Tsukuba, Ibaraki, Japan
| | - Ken-Ichiro Ishida
- Faculty of Life and Environmental Sciences, University of Tsukuba, Ibaraki, Japan
| | - Yoshihisa Hirakawa
- Faculty of Life and Environmental Sciences, University of Tsukuba, Ibaraki, Japan
| |
Collapse
|
21
|
Abstract
In plants, the chloroplast is the organelle that conducts photosynthesis. It has been known that chloroplast is involved in virus infection of plants for approximate 70 years. Recently, the subject of chloroplast-virus interplay is getting more and more attention. In this article we discuss the different aspects of chloroplast-virus interaction into three sections: the effect of virus infection on the structure and function of chloroplast, the role of chloroplast in virus infection cycle, and the function of chloroplast in host defense against viruses. In particular, we focus on the characterization of chloroplast protein-viral protein interactions that underlie the interplay between chloroplast and virus. It can be summarized that chloroplast is a common target of plant viruses for viral pathogenesis or propagation; and conversely, chloroplast and its components also can play active roles in plant defense against viruses. Chloroplast photosynthesis-related genes/proteins (CPRGs/CPRPs) are suggested to play a central role during the complex chloroplast-virus interaction.
Collapse
Affiliation(s)
- Jinping Zhao
- MOE Key Laboratory of Bioinformatics, Center for Plant Biology, Tsinghua-Peking Joint Center for Life Sciences, School of Life Sciences, Tsinghua UniversityBeijing, China; State Key Laboratory Breeding Base for Sustainable Control of Pest and Disease, Key Laboratory of Biotechnology in Plant Protection, Institute of Virology and Biotechnology, Zhejiang Academy of Agricultural SciencesHangzhou, China
| | - Xian Zhang
- Research Centre for Plant RNA Signaling, School of Life and Environmental Sciences, Hangzhou Normal University Hangzhou, China
| | - Yiguo Hong
- Research Centre for Plant RNA Signaling, School of Life and Environmental Sciences, Hangzhou Normal University Hangzhou, China
| | - Yule Liu
- MOE Key Laboratory of Bioinformatics, Center for Plant Biology, Tsinghua-Peking Joint Center for Life Sciences, School of Life Sciences, Tsinghua University Beijing, China
| |
Collapse
|
22
|
Nasir A, Caetano-Anollés G. A phylogenomic data-driven exploration of viral origins and evolution. SCIENCE ADVANCES 2015; 1:e1500527. [PMID: 26601271 PMCID: PMC4643759 DOI: 10.1126/sciadv.1500527] [Citation(s) in RCA: 124] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/27/2015] [Accepted: 06/30/2015] [Indexed: 05/05/2023]
Abstract
The origin of viruses remains mysterious because of their diverse and patchy molecular and functional makeup. Although numerous hypotheses have attempted to explain viral origins, none is backed by substantive data. We take full advantage of the wealth of available protein structural and functional data to explore the evolution of the proteomic makeup of thousands of cells and viruses. Despite the extremely reduced nature of viral proteomes, we established an ancient origin of the "viral supergroup" and the existence of widespread episodes of horizontal transfer of genetic information. Viruses harboring different replicon types and infecting distantly related hosts shared many metabolic and informational protein structural domains of ancient origin that were also widespread in cellular proteomes. Phylogenomic analysis uncovered a universal tree of life and revealed that modern viruses reduced from multiple ancient cells that harbored segmented RNA genomes and coexisted with the ancestors of modern cells. The model for the origin and evolution of viruses and cells is backed by strong genomic and structural evidence and can be reconciled with existing models of viral evolution if one considers viruses to have originated from ancient cells and not from modern counterparts.
Collapse
|
23
|
Abstract
Biologists used to draw schematic “universal” trees of life as metaphors illustrating the history of life. It is indeed a priori possible to construct an organismal tree connecting the three major domains of ribosome encoding organisms: Archaea, Bacteria and Eukarya, since they originated by cell division from LUCA. Several universal trees based on ribosomal RNA sequence comparisons proposed at the end of the last century are still widely used, although some of their main features have been challenged by subsequent analyses. Several authors have proposed to replace the traditional universal tree with a ring of life, whereas others have proposed more recently to include viruses as new domains. These proposals are misleading, suggesting that endosymbiosis can modify the shape of a tree or that viruses originated from the last universal common ancestor (LUCA). I propose here an updated version of Woese’s universal tree that includes several rootings for each domain and internal branching within domains that are supported by recent phylogenomic analyses of domain specific proteins. The tree is rooted between Bacteria and Arkarya, a new name proposed for the clade grouping Archaea and Eukarya. A consensus version, in which each of the three domains is unrooted, and a version in which eukaryotes emerged within archaea are also presented. This last scenario assumes the transformation of a modern domain into another, a controversial evolutionary pathway. Viruses are not indicated in these trees but are intrinsically present because they infect the tree from its roots to its leaves. Finally, I present a detailed tree of the domain Archaea, proposing the sub-phylum neo-Euryarchaeota for the monophyletic group of euryarchaeota containing DNA gyrase. These trees, that will be easily updated as new data become available, could be useful to discuss controversial scenarios regarding early life evolution.
Collapse
Affiliation(s)
- Patrick Forterre
- Unité de Biologie Moléculaire du Gène chez les Extrêmophiles, Département de Microbiologie, Institut Pasteur , Paris, France ; Institut de Biologie Intégrative de la cellule, Université Paris-Saclay , Paris, France
| |
Collapse
|
24
|
Koonin EV, Dolja VV, Krupovic M. Origins and evolution of viruses of eukaryotes: The ultimate modularity. Virology 2015; 479-480:2-25. [PMID: 25771806 PMCID: PMC5898234 DOI: 10.1016/j.virol.2015.02.039] [Citation(s) in RCA: 352] [Impact Index Per Article: 35.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2015] [Revised: 02/19/2015] [Accepted: 02/20/2015] [Indexed: 01/04/2023]
Abstract
Viruses and other selfish genetic elements are dominant entities in the biosphere, with respect to both physical abundance and genetic diversity. Various selfish elements parasitize on all cellular life forms. The relative abundances of different classes of viruses are dramatically different between prokaryotes and eukaryotes. In prokaryotes, the great majority of viruses possess double-stranded (ds) DNA genomes, with a substantial minority of single-stranded (ss) DNA viruses and only limited presence of RNA viruses. In contrast, in eukaryotes, RNA viruses account for the majority of the virome diversity although ssDNA and dsDNA viruses are common as well. Phylogenomic analysis yields tangible clues for the origins of major classes of eukaryotic viruses and in particular their likely roots in prokaryotes. Specifically, the ancestral genome of positive-strand RNA viruses of eukaryotes might have been assembled de novo from genes derived from prokaryotic retroelements and bacteria although a primordial origin of this class of viruses cannot be ruled out. Different groups of double-stranded RNA viruses derive either from dsRNA bacteriophages or from positive-strand RNA viruses. The eukaryotic ssDNA viruses apparently evolved via a fusion of genes from prokaryotic rolling circle-replicating plasmids and positive-strand RNA viruses. Different families of eukaryotic dsDNA viruses appear to have originated from specific groups of bacteriophages on at least two independent occasions. Polintons, the largest known eukaryotic transposons, predicted to also form virus particles, most likely, were the evolutionary intermediates between bacterial tectiviruses and several groups of eukaryotic dsDNA viruses including the proposed order "Megavirales" that unites diverse families of large and giant viruses. Strikingly, evolution of all classes of eukaryotic viruses appears to have involved fusion between structural and replicative gene modules derived from different sources along with additional acquisitions of diverse genes.
Collapse
Affiliation(s)
- Eugene V Koonin
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD 20894, USA.
| | - Valerian V Dolja
- Department of Botany and Plant Pathology, Oregon State University, Corvallis, OR 97331, USA.
| | - Mart Krupovic
- Institut Pasteur, Unité Biologie Moléculaire du Gène chez les Extrêmophiles, Department of Microbiology, Paris 75015, France.
| |
Collapse
|
25
|
Abstract
Polintons (also known as Mavericks) are large DNA transposons that are widespread in the genomes of eukaryotes. We have recently shown that Polintons encode virus capsid proteins, which suggests that these transposons might form virions, at least under some conditions. In this Opinion article, we delineate the evolutionary relationships among bacterial tectiviruses, Polintons, adenoviruses, virophages, large and giant DNA viruses of eukaryotes of the proposed order 'Megavirales', and linear mitochondrial and cytoplasmic plasmids. We hypothesize that Polintons were the first group of eukaryotic double-stranded DNA viruses to evolve from bacteriophages and that they gave rise to most large DNA viruses of eukaryotes and various other selfish genetic elements.
Collapse
|
26
|
Kannan S, Rogozin IB, Koonin EV. MitoCOGs: clusters of orthologous genes from mitochondria and implications for the evolution of eukaryotes. BMC Evol Biol 2014; 14:237. [PMID: 25421434 PMCID: PMC4256733 DOI: 10.1186/s12862-014-0237-5] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2014] [Accepted: 11/07/2014] [Indexed: 01/19/2023] Open
Abstract
Background Mitochondria are ubiquitous membranous organelles of eukaryotic cells that evolved from an alpha-proteobacterial endosymbiont and possess a small genome that encompasses from 3 to 106 genes. Accumulation of thousands of mitochondrial genomes from diverse groups of eukaryotes provides an opportunity for a comprehensive reconstruction of the evolution of the mitochondrial gene repertoire. Results Clusters of orthologous mitochondrial protein-coding genes (MitoCOGs) were constructed from all available mitochondrial genomes and complemented with nuclear orthologs of mitochondrial genes. With minimal exceptions, the mitochondrial gene complements of eukaryotes are subsets of the superset of 66 genes found in jakobids. Reconstruction of the evolution of mitochondrial genomes indicates that the mitochondrial gene set of the last common ancestor of the extant eukaryotes was slightly larger than that of jakobids. This superset of mitochondrial genes likely represents an intermediate stage following the loss and transfer to the nucleus of most of the endosymbiont genes early in eukaryote evolution. Subsequent evolution in different lineages involved largely parallel transfer of ancestral endosymbiont genes to the nuclear genome. The intron density in nuclear orthologs of mitochondrial genes typically is nearly the same as in the rest of the genes in the respective genomes. However, in land plants, the intron density in nuclear orthologs of mitochondrial genes is almost 1.5-fold lower than the genomic mean, suggestive of ongoing transfer of functional genes from mitochondria to the nucleus. Conclusions The MitoCOGs are expected to become an important resource for the study of mitochondrial evolution. The nearly complete superset of mitochondrial genes in jakobids likely represents an intermediate stage in the evolution of eukaryotes after the initial, extensive loss and transfer of the endosymbiont genes. In addition, the bacterial multi-subunit RNA polymerase that is encoded in the jakobid mitochondrial genomes was replaced by a single-subunit phage-type RNA polymerase in the rest of the eukaryotes. These results are best compatible with the rooting of the eukaryotic tree between jakobids and the rest of the eukaryotes. The land plants are the only eukaryotic branch in which the gene transfer from the mitochondrial to the nuclear genome appears to be an active, ongoing process. Electronic supplementary material The online version of this article (doi:10.1186/s12862-014-0237-5) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Sivakumar Kannan
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD, 20894, USA.
| | - Igor B Rogozin
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD, 20894, USA.
| | - Eugene V Koonin
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD, 20894, USA.
| |
Collapse
|
27
|
Mönttinen HAM, Ravantti JJ, Stuart DI, Poranen MM. Automated structural comparisons clarify the phylogeny of the right-hand-shaped polymerases. Mol Biol Evol 2014; 31:2741-52. [PMID: 25063440 DOI: 10.1093/molbev/msu219] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Polymerases are essential for life, being responsible for replication, transcription, and the repair of nucleic acid molecules. Those that share a right-hand-shaped fold and catalytic site structurally similar to the DNA polymerase I of Escherichia coli may catalyze RNA- or DNA-dependent RNA polymerization, reverse transcription, or DNA replication in eukarya, archaea, bacteria, and their viruses. We have applied novel computational methods for structure-based clustering and phylogenetic analyses of this functionally diverse polymerase superfamily, which currently comprises six families. We identified a structural core common to all right-handed polymerases, composed of 57 amino acid residues, harboring two positionally and chemically conserved residues, the catalytic aspartates. The structural conservation within each of the six families is considerable, for example, the structural core shared by family Y DNA polymerases covers over 90% of the polymerase domain of the Sulfolobus solfataricus Dpo4. Our phylogenetic analyses propose an early separation of RNA-dependent polymerases that use primers from those that are primer-independent. Furthermore, the exchange of polymerase genes between viruses and their hosts is evident. Because of this horizontal gene transfer, the phylogeny of polymerases does not always reflect the evolutionary history of the corresponding organisms.
Collapse
Affiliation(s)
- Heli A M Mönttinen
- Department of Biosciences, Viikki Biocenter, University of Helsinki, Helsinki, Finland
| | - Janne J Ravantti
- Department of Biosciences, Viikki Biocenter, University of Helsinki, Helsinki, Finland Institute of Biotechnology, Viikki Biocenter, University of Helsinki, Helsinki, Finland
| | - David I Stuart
- Division of Structural Biology and the Oxford Protein Production Facility, The Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, United Kingdom Diamond Light Source Limited, Harwell Science and Innovation Campus, Oxfordshire, United Kingdom
| | - Minna M Poranen
- Department of Biosciences, Viikki Biocenter, University of Helsinki, Helsinki, Finland
| |
Collapse
|
28
|
Filée J. Multiple occurrences of giant virus core genes acquired by eukaryotic genomes: the visible part of the iceberg? Virology 2014; 466-467:53-9. [PMID: 24998348 DOI: 10.1016/j.virol.2014.06.004] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2014] [Revised: 06/03/2014] [Accepted: 06/04/2014] [Indexed: 12/18/2022]
Abstract
Giant Viruses are a widespread group of viruses, characterized by huge genomes composed of a small subset of ancestral, vertically inherited core genes along with a large body of highly variable genes. In this study, I report the acquisition of 23 core ancestral Giant Virus genes by diverse eukaryotic species including various protists, a moss and a cnidarian. The viral genes are inserted in large scaffolds or chromosomes with intron-rich, eukaryotic-like genomic contexts, refuting the possibility of DNA contaminations. Some of these genes are expressed and in the cryptophyte alga Guillardia theta, a possible non-homologous displacement of the eukaryotic DNA primase by a viral D5 helicase/primase is documented. As core Giant Virus genes represent only a tiny fraction of the total genomic repertoire of these viruses, these results suggest that Giant Viruses represent an underestimated source of new genes and functions for their hosts.
Collapse
Affiliation(s)
- Jonathan Filée
- Laboratoire Evolution, Genomes, Spéciation (LEGS), CNRS UPR9034, Université Paris-Sud. Avenue de la Terrasse, 91190 Gif Sur Yvette, France.
| |
Collapse
|
29
|
Gadelle D, Krupovic M, Raymann K, Mayer C, Forterre P. DNA topoisomerase VIII: a novel subfamily of type IIB topoisomerases encoded by free or integrated plasmids in Archaea and Bacteria. Nucleic Acids Res 2014; 42:8578-91. [PMID: 24990376 PMCID: PMC4117785 DOI: 10.1093/nar/gku568] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2014] [Revised: 06/10/2014] [Accepted: 06/11/2014] [Indexed: 11/14/2022] Open
Abstract
Type II DNA topoisomerases are divided into two families, IIA and IIB. Types IIA and IIB enzymes share homologous B subunits encompassing the ATP-binding site, but have non-homologous A subunits catalyzing DNA cleavage. Type IIA topoisomerases are ubiquitous in Bacteria and Eukarya, whereas members of the IIB family are mostly present in Archaea and plants. Here, we report the detection of genes encoding type IIB enzymes in which the A and B subunits are fused into a single polypeptide. These proteins are encoded in several bacterial genomes, two bacterial plasmids and one archaeal plasmid. They form a monophyletic group that is very divergent from archaeal and eukaryotic type IIB enzymes (DNA topoisomerase VI). We propose to classify them into a new subfamily, denoted DNA topoisomerase VIII. Bacterial genes encoding a topoisomerase VIII are present within integrated mobile elements, most likely derived from conjugative plasmids. Purified topoisomerase VIII encoded by the plasmid pPPM1a from Paenibacillus polymyxa M1 had ATP-dependent relaxation and decatenation activities. In contrast, the enzyme encoded by mobile elements integrated into the genome of Ammonifex degensii exhibited DNA cleavage activity producing a full-length linear plasmid and that from Microscilla marina exhibited ATP-independent relaxation activity. Topoisomerases VIII, the smallest known type IIB enzymes, could be new promising models for structural and mechanistic studies.
Collapse
Affiliation(s)
- Danièle Gadelle
- Université Paris-Sud, CNRS UMR8621, Institut de Génétique Microbiologie, 91405 Orsay Cedex, France
| | - Mart Krupovic
- Institut Pasteur, Unité de Biologie moléculaire du gène chez les extrêmophiles, Département de Microbiologie, F-75015 Paris, France
| | - Kasie Raymann
- Institut Pasteur, Unité de Biologie moléculaire du gène chez les extrêmophiles, Département de Microbiologie, F-75015 Paris, France
| | - Claudine Mayer
- Institut Pasteur, Unité de Microbiologie structurale, Département de Biologie structurale et Chimie, F-75015 Paris, France CNRS, UMR3528, F-75015 Paris, France Université Paris Diderot, Sorbonne Paris Cité, Cellule Pasteur, rue du Dr Roux 75015 Paris, France
| | - Patrick Forterre
- Université Paris-Sud, CNRS UMR8621, Institut de Génétique Microbiologie, 91405 Orsay Cedex, France Institut Pasteur, Unité de Biologie moléculaire du gène chez les extrêmophiles, Département de Microbiologie, F-75015 Paris, France
| |
Collapse
|
30
|
Abstract
I pictured myself as a virus…and tried to sense what it would be like. --Jonas Salk. Ecology as a science evolved from natural history, the observational study of the interactions of plants and animals with each other and their environments. As natural history matured, it became increasingly quantitative, experimental, and taxonomically broad. Focus diversified beyond the Eukarya to include the hidden world of microbial life. Microbes, particularly viruses, were shown to exist in unfathomable numbers, affecting every living organism. Slowly viruses came to be viewed in an ecological context rather than as abstract, disease-causing agents. This shift is exemplified by an increasing tendency to refer to viruses as living organisms instead of inert particles. In recent years, researchers have recognized the critical contributions of viruses to fundamental ecological processes such as biogeochemical cycling, competition, community structuring, and horizontal gene transfer. This review describes virus ecology from a virus's perspective. If we are, like Jonas Salk, to imagine ourselves as a virus, what kind of world would we experience?
Collapse
Affiliation(s)
- John J Dennehy
- Biology Department, Queens College and the Graduate Center of the City University of New York, Queens, New York 11367;
| |
Collapse
|
31
|
Abstract
Expression of transgenes from the plastid genome offers a number of attractions to biotechnologists, with the potential to attain very high protein accumulation levels arguably being the most attractive one. High-level transgene expression is of particular importance in resistance engineering (e.g., via expression of insecticidal proteins) and molecular farming. Over the past years, the production of many commercially valuable proteins in chloroplast-transgenic (transplastomic) plants has been attempted, including pharmaceutical proteins (such as subunit vaccines and protein antibiotics) and industrial enzymes. Although, in some cases, spectacularly high foreign protein accumulation levels have been obtained, expression levels were disappointingly poor in other cases. In this review, I summarize our current knowledge about the factors influencing the efficiency of plastid transgene expression and highlight possible optimization strategies to alleviate problems with poor expression levels.
Collapse
|
32
|
Abstract
Viruses have been considered for a long time as by-products of biological evolution. This view is changing now as a result of several recent discoveries. Viral ecologists have shown that viral particles are the most abundant biological entities on our planet, whereas metagenomic analyses have revealed an unexpected abundance and diversity of viral genes in the biosphere. Comparative genomics have highlighted the uniqueness of viral sequences, in contradiction with the traditional view of viruses as pickpockets of cellular genes. On the contrary, cellular genomes, especially eukaryotic ones, turned out to be full of genes derived from viruses or related elements (plasmids, transposons, retroelements and so on). The discovery of unusual viruses infecting archaea has shown that the viral world is much more diverse than previously thought, ruining the traditional dichotomy between bacteriophages and viruses. Finally, the discovery of giant viruses has blurred the traditional image of viruses as small entities. Furthermore, essential clues on virus history have been obtained in the last ten years. In particular, structural analyses of capsid proteins have uncovered deeply rooted homologies between viruses infecting different cellular domains, suggesting that viruses originated before the last universal common ancestor (LUCA). These studies have shown that several lineages of viruses originated independently, i.e., viruses are polyphyletic. From the time of LUCA, viruses have coevolved with their hosts, and viral lineages can be viewed as lianas wrapping around the trunk, branches and leaves of the tree of life. Although viruses are very diverse, with genomes encoding from one to more than one thousand proteins, they can all be simply defined as organisms producing virions. Virions themselves can be defined as infectious particles made of at least one protein associated with the viral nucleic acid, endowed with the capability to protect the viral genome and ensure its delivery to the infected cell. These definitions, which clearly distinguish viruses from plasmids, suggest that infectious RNA molecules that only encode an RNA replicase presently classified among viruses by the ICTV (International Committee for the Taxonomy of Viruses) into families of Endornaviridae and Hypoviridae are in fact RNA plasmids. Since a viral genome should encode for at least one structural protein, these definitions also imply that viruses originated after the emergence of the ribosome in an RNA-protein cellular world. Although virions are the hallmarks of viruses, viruses and virions should not be confused. The infection transforms the ribocell (cell encoding ribosomes and dividing by binary fission) into a virocell (cell producing virions) or ribovirocell (cell that produces virions but can still divide by binary fission). In the ribovirocell, two different organisms, defined by their distinct evolutionary histories, coexist in symbiosis in the same cell. The virocells or ribovirocells are the living forms of the virus, which can be in fine considered to be a living organism. In the virocell, the metabolism is reorganized for the production of virions, while the ability to capture and store free energy is retained, as in other cellular organisms. In the virocell, viral genomes replicate, recombine and evolve, leading to the emergence of new viral proteins and potentially novel functions. Some of these new functions can be later on transferred to the cell, explaining how viruses can play a major (often underestimated) role in the evolution of cellular organisms. The virocell concept thus helps to understand recent hypotheses suggesting that viruses played a critical role in major evolutionary transitions, such as the origin of DNA genomes or else the origin of the eukaryotic nucleus. Finally, it is more and more recognized that viruses are the major source of variation and selection in living organisms (both viruses and cells), the two pillars of darwinism. One can thus conclude that the continuous interaction between viruses and cells, all along the history of life, has been, and still is, a major engine of biological evolution.
Collapse
Affiliation(s)
- Patrick Forterre
- Université Paris-Sud, Institut de Génétique Microbiologie, CNRS UMR 8621, 91405 Orsay Cedex, France - Institut Pasteur, 25 rue du Dr Roux, 75015 Paris, France
| |
Collapse
|
33
|
Forterre P. Why Are There So Many Diverse Replication Machineries? J Mol Biol 2013; 425:4714-26. [DOI: 10.1016/j.jmb.2013.09.032] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2013] [Revised: 09/20/2013] [Accepted: 09/24/2013] [Indexed: 11/29/2022]
|
34
|
Forterre P, Prangishvili D. The major role of viruses in cellular evolution: facts and hypotheses. Curr Opin Virol 2013; 3:558-65. [PMID: 23870799 DOI: 10.1016/j.coviro.2013.06.013] [Citation(s) in RCA: 75] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2013] [Revised: 06/13/2013] [Accepted: 06/22/2013] [Indexed: 01/18/2023]
Abstract
Viral particles are much more abundant than cells and viral genes outnumber cellular ones in the biosphere. Cellular genomes also harbour many integrated viruses whereas cellular genes are rare in viral genomes. The gene flux from virus to cell is thus overwhelming if compared with the opposite event. Novel viral genes continuously arose during replication/recombination of viral genomes in the virocell. These genes can become 'cellular genes' when viral genomes integrate into cellular ones. Together with the arm race between viruses and cells, this explains why viruses have played a major role in shaping cellular gene contents. Several documented cases show that viruses have been involved in the emergence of evolutionary innovations. This gives credit to hypotheses suggesting that viruses have played an important role in the formation of modern cells.
Collapse
Affiliation(s)
- Patrick Forterre
- Institut Pasteur, 25 rue du Docteur Roux, Paris 75015, France; Univ Paris-Sud, CNRS UMR8621, Orsay Cedex 91405, France.
| | | |
Collapse
|
35
|
Allorent G, Courtois F, Chevalier F, Lerbs-Mache S. Plastid gene expression during chloroplast differentiation and dedifferentiation into non-photosynthetic plastids during seed formation. PLANT MOLECULAR BIOLOGY 2013; 82:59-70. [PMID: 23494253 DOI: 10.1007/s11103-013-0037-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2013] [Accepted: 02/28/2013] [Indexed: 05/22/2023]
Abstract
Arabidopsis seed formation is coupled with two plastid differentiation processes. Chloroplast formation starts during embryogenesis and ends with the maturation phase. It is followed by chloroplast dedifferentiation/degeneration that starts at the end of the maturation phase and leads to the presence of small non-photosynthetic plastids in dry seeds. We have analysed mRNA and protein levels of nucleus- and plastid-encoded (NEP and PEP) components of the plastid transcriptional machinery, mRNA and protein levels of some plastid RNA polymerase target genes, changes in plastid transcriptome profiles and mRNA and protein levels of some selected nucleus-encoded plastid-related genes in developing seeds during embryogenesis, maturation and desiccation. As expected, most of the mRNAs and proteins increase in abundance during maturation and decrease during desiccation, when plastids dedifferentiate/degenerate. In contrast, mRNAs and proteins of components of the plastid transcriptional apparatus do not decrease or even still increase during the period of plastid dedifferentiation. Results suggest that proteins of the plastid transcriptional machinery are specifically protected from degradation during the desiccation period and conserved in dry seeds to allow immediate regain of plastid transcriptional activity during stratification/germination. In addition, results reveal accumulation and storage of mRNAs coding for RNA polymerase components and sigma factors in dry seeds. They should provide immediately-to-use templates for translation on cytoplasmic ribosomes in order to enhance RNA polymerase protein levels and to provide regulatory proteins for stored PEP to guaranty efficient plastid genome transcription during germination.
Collapse
Affiliation(s)
- Guillaume Allorent
- Laboratoire de Physiologie Cellulaire Végétale, iRTSV, UMR 5168, CNRS/UJF/CEA/INRA, CEA-Grenoble, 17 rue des Martyrs, 38054 Grenoble cedex, France
| | | | | | | |
Collapse
|
36
|
Schoenfeld TW, Murugapiran SK, Dodsworth JA, Floyd S, Lodes M, Mead DA, Hedlund BP. Lateral gene transfer of family A DNA polymerases between thermophilic viruses, aquificae, and apicomplexa. Mol Biol Evol 2013; 30:1653-64. [PMID: 23608703 DOI: 10.1093/molbev/mst078] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Bioinformatics and functional screens identified a group of Family A-type DNA Polymerase (polA) genes encoded by viruses inhabiting circumneutral and alkaline hot springs in Yellowstone National Park and the US Great Basin. The proteins encoded by these viral polA genes (PolAs) shared no significant sequence similarity with any known viral proteins but were remarkably similar to PolAs encoded by two of three families of the bacterial phylum Aquificae and by several apicoplast-targeted PolA-like proteins found in the eukaryotic phylum Apicomplexa, which includes the obligate parasites Plasmodium, Babesia, and Toxoplasma. The viral gene products share signature elements previously associated only with Aquificae and Apicomplexa PolA-like proteins and were similar to proteins encoded by prophage elements of a variety of otherwise unrelated Bacteria, each of which additionally encoded a prototypical bacterial PolA. Unique among known viral DNA polymerases, the viral PolA proteins of this study share with the Apicomplexa proteins large amino-terminal domains with putative helicase/primase elements but low primary sequence similarity. The genomic context and distribution, phylogeny, and biochemistry of these PolA proteins suggest that thermophilic viruses transferred polA genes to the Apicomplexa, likely through secondary endosymbiosis of a virus-infected proto-apicoplast, and to the common ancestor of two of three Aquificae families, where they displaced the orthologous cellular polA gene. On the basis of biochemical activity, gene structure, and sequence similarity, we speculate that the xenologous viral-type polA genes may have functions associated with diversity-generating recombination in both Bacteria and Apicomplexa.
Collapse
|
37
|
Szczesny RJ, Hejnowicz MS, Steczkiewicz K, Muszewska A, Borowski LS, Ginalski K, Dziembowski A. Identification of a novel human mitochondrial endo-/exonuclease Ddk1/c20orf72 necessary for maintenance of proper 7S DNA levels. Nucleic Acids Res 2013; 41:3144-61. [PMID: 23358826 PMCID: PMC3597694 DOI: 10.1093/nar/gkt029] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Although the human mitochondrial genome has been investigated for several decades, the proteins responsible for its replication and expression, especially nucleolytic enzymes, are poorly described. Here, we characterized a novel putative PD-(D/E)XK nuclease encoded by the human C20orf72 gene named Ddk1 for its predicted catalytic residues. We show that Ddk1 is a mitochondrially localized metal-dependent DNase lacking detectable ribonuclease activity. Ddk1 degrades DNA mainly in a 3'-5' direction with a strong preference for single-stranded DNA. Interestingly, Ddk1 requires free ends for its activity and does not degrade circular substrates. In addition, when a chimeric RNA-DNA substrate is provided, Ddk1 can slide over the RNA fragment and digest DNA endonucleolytically. Although the levels of the mitochondrial DNA are unchanged on RNAi-mediated depletion of Ddk1, the mitochondrial single-stranded DNA molecule (7S DNA) accumulates. On the other hand, overexperssion of Ddk1 decreases the levels of 7S DNA, suggesting an important role of the protein in 7S DNA regulation. We propose a structural model of Ddk1 and discuss its similarity to other PD-(D/E)XK superfamily members.
Collapse
Affiliation(s)
- Roman J Szczesny
- Institute of Genetics and Biotechnology, Faculty of Biology, University of Warsaw, Pawinskiego 5a, 02-106 Warsaw, Poland
| | | | | | | | | | | | | |
Collapse
|
38
|
Huynen MA, Duarte I, Szklarczyk R. Loss, replacement and gain of proteins at the origin of the mitochondria. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2012; 1827:224-31. [PMID: 22902511 DOI: 10.1016/j.bbabio.2012.08.001] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2012] [Revised: 07/19/2012] [Accepted: 08/05/2012] [Indexed: 01/28/2023]
Abstract
We review what has been inferred about the changes at the level of the proteome that accompanied the evolution of the mitochondrion from an alphaproteobacterium. We regard these changes from an alphaproteobacterial perspective: which proteins were lost during mitochondrial evolution? And, of the proteins that were lost, which ones have been replaced by other, non-orthologous proteins with a similar function? Combining literature-supported replacements with quantitative analyses of mitochondrial proteomics data we infer that most of the loss and replacements that separate current day mitochondria in mammals from alphaproteobacteria took place before the radiation of the eukaryotes. Recent analyses show that also the acquisition of new proteins to the large protein complexes of the oxidative phosphorylation and the mitochondrial ribosome occurred mainly before the divergence of the eukaryotes. These results indicate a significant number of pivotal evolutionary events between the acquisition of the endosymbiont and the radiation of the eukaryotes and therewith support an early acquisition of mitochondria in eukaryotic evolution. Technically, advancements in the reconstruction of the evolutionary trajectories of loss, replacement and gain of mitochondrial proteins depend on using profile-based homology detection methods for sequence analysis. We highlight the mitochondrial Holliday junction resolvase endonuclease, for which such methods have detected new "family members" and in which function differentiation is accompanied by the loss of catalytic residues for the original enzymatic function and the gain of a protein domain for the new function. This article is part of a Special Issue entitled: The evolutionary aspects of bioenergetic systems.
Collapse
Affiliation(s)
- Martijn A Huynen
- Centre for Molecular and Biomolecular Informatics, Nijmegen Centre for Molecular Life Sciences, Radboud University Nijmegen Medical Centre, P.O. Box 9101, 6400 HB Nijmegen, The Netherlands.
| | | | | |
Collapse
|
39
|
|
40
|
Chan YW, Mohr R, Millard AD, Holmes AB, Larkum AW, Whitworth AL, Mann NH, Scanlan DJ, Hess WR, Clokie MRJ. Discovery of Cyanophage Genomes Which Contain Mitochondrial DNA Polymerase. Mol Biol Evol 2011; 28:2269-74. [DOI: 10.1093/molbev/msr041] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
41
|
Two new subfamilies of DNA mismatch repair proteins (MutS) specifically abundant in the marine environment. ISME JOURNAL 2011; 5:1143-51. [PMID: 21248859 DOI: 10.1038/ismej.2010.210] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
MutS proteins are ubiquitous in cellular organisms and have important roles in DNA mismatch repair or recombination. In the virus world, the amoeba-infecting Mimivirus, as well as the recently sequenced Cafeteria roenbergensis virus are known to encode a MutS related to the homologs found in octocorals and ɛ-proteobacteria. To explore the presence of MutS proteins in other viral genomes, we performed a genomic survey of four giant viruses ('giruses') (Pyramimonas orientalis virus (PoV), Phaeocystis pouchetii virus (PpV), Chrysochromulina ericina virus (CeV) and Heterocapsa circularisquama DNA virus (HcDNAV)) that infect unicellular marine algae. Our analysis revealed the presence of a close homolog of Mimivirus MutS in all the analyzed giruses. These viral homologs possess a specific domain structure, including a C-terminal HNH-endonuclease domain, defining the new MutS7 subfamily. We confirmed the presence of conserved mismatch recognition residues in all members of the MutS7 subfamily, suggesting their role in DNA mismatch repair rather than DNA recombination. PoV and PpV were found to contain an additional type of MutS, which we propose to call MutS8. The MutS8 proteins in PoV and PpV were found to be closely related to homologs from 'Candidatus Amoebophilus asiaticus', an obligate intracellular amoeba-symbiont belonging to the Bacteroidetes. Furthermore, our analysis revealed that MutS7 and MutS8 are abundant in marine microbial metagenomes and that a vast majority of these environmental sequences are likely of girus origin. Giruses thus seem to represent a major source of the underexplored diversity of the MutS family in the microbial world.
Collapse
|
42
|
A new fusion hypothesis for the origin of Eukarya: better than previous ones, but probably also wrong. Res Microbiol 2011; 162:77-91. [DOI: 10.1016/j.resmic.2010.10.005] [Citation(s) in RCA: 79] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
43
|
A nuclear family A DNA polymerase from Entamoeba histolytica bypasses thymine glycol. PLoS Negl Trop Dis 2010; 4:e786. [PMID: 20706627 PMCID: PMC2919377 DOI: 10.1371/journal.pntd.0000786] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2010] [Accepted: 07/12/2010] [Indexed: 01/26/2023] Open
Abstract
Background Eukaryotic family A DNA polymerases are involved in mitochondrial DNA replication or translesion DNA synthesis. Here, we present evidence that the sole family A DNA polymerase from the parasite protozoan E. histolytica (EhDNApolA) localizes to the nucleus and that its biochemical properties indicate that this DNA polymerase may be involved in translesion DNA synthesis. Methodology and Results EhDNApolA is the sole family A DNA polymerase in E. histolytica. An in silico analysis places family A DNA polymerases from the genus Entamoeba in a separate branch of a family A DNA polymerases phylogenetic tree. Biochemical studies of a purified recombinant EhDNApolA demonstrated that this polymerase is active in primer elongation, is poorly processive, displays moderate strand displacement, and does not contain 3′–5′ exonuclease or editing activity. Importantly, EhDNApolA bypasses thymine glycol lesions with high fidelity, and confocal microscopy demonstrates that this polymerase is translocated into the nucleus. These data suggest a putative role of EhDNApolA in translesion DNA synthesis in E. histolytica. Conclusion This is the first report of the biochemical characterization of a DNA polymerase from E. histolytica. EhDNApolA is a family A DNA polymerase that is grouped into a new subfamily of DNA polymerases with translesion DNA synthesis capabilities similar to DNA polymerases from subfamily ν. Genotoxic agents like ultraviolet radiation, alkylating compounds and reactive oxidative species have the potential to originate DNA lesions that are not bypassed by replicative DNA polymerases. Eukaryotic organisms contain a specialized subset of DNA polymerases capable of translesion DNA synthesis. These DNA polymerases belong to DNA polymerases from families A, B, and Y. In this work, we characterized the sole family A DNA polymerase of the parasitic protozoa E. histolytica, EhDNApolA. The biochemical characterization of recombinant EhDNApolA indicates that this protein is an active DNA polymerase able to primer extension and moderate strand displacement. The ability of EhDNApolA to faithfully incorporate dATP opposite thymine glycol, and its nuclear localization indicates that this polymerase may have a role in translesion DNA synthesis. E. histolytica is exposed to oxidative stress during tissue invasion by phagocytes. Understanding DNA metabolism in E. histolytica is important because this parasite has shaped some metabolic pathways by horizontal gene transfer, infects approximately 50 million people annually, and is the second leading cause of death among protozoan diseases.
Collapse
|
44
|
Abstract
Are viruses alive? Until very recently, answering this question was often negative and viruses were not considered in discussions on the origin and definition of life. This situation is rapidly changing, following several discoveries that have modified our vision of viruses. It has been recognized that viruses have played (and still play) a major innovative role in the evolution of cellular organisms. New definitions of viruses have been proposed and their position in the universal tree of life is actively discussed. Viruses are no more confused with their virions, but can be viewed as complex living entities that transform the infected cell into a novel organism—the virus—producing virions. I suggest here to define life (an historical process) as the mode of existence of ribosome encoding organisms (cells) and capsid encoding organisms (viruses) and their ancestors. I propose to define an organism as an ensemble of integrated organs (molecular or cellular) producing individuals evolving through natural selection. The origin of life on our planet would correspond to the establishment of the first organism corresponding to this definition.
Collapse
Affiliation(s)
- Patrick Forterre
- CNRS UMR 8621 Institut de Génétique et Microbiologie, Univ Paris-Sud, 91405 Orsay Cedex, France.
| |
Collapse
|
45
|
Forterre P, Prangishvili D. The great billion-year war between ribosome- and capsid-encoding organisms (cells and viruses) as the major source of evolutionary novelties. Ann N Y Acad Sci 2009; 1178:65-77. [PMID: 19845628 DOI: 10.1111/j.1749-6632.2009.04993.x] [Citation(s) in RCA: 116] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Our conceptions on the origin, nature, and role of viruses have been shaken recently by several independent lines of research. There are many reasons to believe now that viruses are more ancient than modern cells and have always been more abundant and diverse than their cellular targets. Viruses can be defined as capsid-encoding organisms that transform their "host" cell into a viral factory. If capsid-encoding organisms (viruses) and ribosome-encoding organisms (cells) are the major types of living entities on our planet, it seems logical to conclude that their conflict has been a major engine of biological evolution (in the framework of natural selection). In particular, many novelties first selected in the viral world might have been transferred to cells as a consequence of the continuous flow of viral genes into cellular genomes. We discuss recent observations and hypotheses suggesting that viruses have played a major role at different stages of biological evolution, such as the RNA to DNA transition, the origin of the eukaryotic nucleus, or, alternatively, the origin of unique features in multicellular macrobes.
Collapse
|
46
|
Villarreal LP, Witzany G. Viruses are essential agents within the roots and stem of the tree of life. J Theor Biol 2009; 262:698-710. [PMID: 19833132 DOI: 10.1016/j.jtbi.2009.10.014] [Citation(s) in RCA: 110] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2009] [Revised: 09/28/2009] [Accepted: 10/08/2009] [Indexed: 02/06/2023]
Abstract
In contrast with former definitions of life limited to membrane-bound cellular life forms which feed, grow, metabolise and replicate (i) a role of viruses as genetic symbionts, (ii) along with peripheral phenomena such as cryptobiosis and (iii) the horizontal nature of genetic information acquisition and processing broaden our view of the tree of life. Some researchers insist on the traditional textbook conviction of what is part of the community of life. In a recent review [Moreira, D., Lopez-Garcia, P., 2009. Ten reasons to exclude viruses from the tree of life. Nat. Rev. Microbiol. 7, 306-311.] they assemble four main arguments which should exclude viruses from the tree of life because of their inability to self-sustain and self-replicate, their polyphyly, the cellular origin of their cell-like genes and the volatility of their genomes. In this article we will show that these features are not coherent with current knowledge about viruses but that viral agents play key roles within the roots and stem of the tree of life.
Collapse
Affiliation(s)
- Luis P Villarreal
- Department of Molecular Biology and Biochemistry, University of California, Irvine, CA 92697, USA
| | | |
Collapse
|
47
|
Brüssow H. The not so universal tree of life or the place of viruses in the living world. Philos Trans R Soc Lond B Biol Sci 2009; 364:2263-74. [PMID: 19571246 DOI: 10.1098/rstb.2009.0036] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
Darwin provided a great unifying theory for biology; its visual expression is the universal tree of life. The tree concept is challenged by the occurrence of horizontal gene transfer and-as summarized in this review -- by the omission of viruses. Microbial ecologists have demonstrated that viruses are the most numerous biological entities on earth, outnumbering cells by a factor of 10. Viral genomics have revealed an unexpected size and distinctness of the viral DNA sequence space. Comparative genomics has shown elements of vertical evolution in some groups of viruses. Furthermore, structural biology has demonstrated links between viruses infecting the three domains of life pointing to a very ancient origin of viruses. However, presently viruses do not find a place on the universal tree of life, which is thus only a tree of cellular life. In view of the polythetic nature of current life definitions, viruses cannot be dismissed as non-living material. On earth we have therefore at least two large DNA sequence spaces, one represented by capsid-encoding viruses and another by ribosome-encoding cells. Despite their probable distinct evolutionary origin, both spheres were and are connected by intensive two-way gene transfers.
Collapse
Affiliation(s)
- Harald Brüssow
- Chemin de la Chaumény 13, La Tour de Peilz, Switzerland.
| |
Collapse
|
48
|
Forterre P, Prangishvili D. The origin of viruses. Res Microbiol 2009; 160:466-72. [DOI: 10.1016/j.resmic.2009.07.008] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2009] [Revised: 07/10/2009] [Accepted: 07/15/2009] [Indexed: 10/20/2022]
|
49
|
Abstract
During the past few years one of the most astonishing findings in the field of virology has been the realization that viruses that infect hosts from all three domains of life are often structurally similar. The recent burst of structural information points to a need to create a new way to organize the virosphere that, in addition to the current classification, would reflect relationships between virus families. Using the vertical beta-barrel major capsid proteins and ATPases related to known viral genome-packaging ATPases as examples, we can now re-evaluate the classification of viruses and virus-like genetic elements from a structural standpoint.
Collapse
|
50
|
Filée J, Pouget N, Chandler M. Phylogenetic evidence for extensive lateral acquisition of cellular genes by Nucleocytoplasmic large DNA viruses. BMC Evol Biol 2008; 8:320. [PMID: 19036122 PMCID: PMC2607284 DOI: 10.1186/1471-2148-8-320] [Citation(s) in RCA: 97] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2007] [Accepted: 11/26/2008] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Nucleo-Cytoplasmic Large DNA viruses (NCLDV), a diverse group that infects a wide range of eukaryotic hosts, exhibit a large heterogeneity in genome size (between 100 kb and 1.2 Mb) but have been suggested to form a monophyletic group on the basis of a small subset of approximately 30 conserved genes. NCLDV were proposed to have evolved by simplification from cellular organism although some of the giant NCLDV have clearly grown by gene accretion from a bacterial origin. RESULTS We demonstrate here that many NCLDV lineages appear to have undergone frequent gene exchange in two different ways. Viruses which infect protists directly (Mimivirus) or algae which exist as intracellular protists symbionts (Phycodnaviruses) acquire genes from a bacterial source. Metazoan viruses such as the Poxviruses show a predominant acquisition of host genes. In both cases, the laterally acquired genes show a strong tendency to be positioned at the tip of the genome. Surprisingly, several core genes believed to be ancestral in the family appear to have undergone lateral gene transfers, suggesting that the NCLDV ancestor might have had a smaller genome than previously believed. Moreover, our data show that the larger the genome, the higher is the number of laterally acquired genes. This pattern is incompatible with a genome reduction from a cellular ancestor. CONCLUSION We propose that the NCLDV viruses have evolved by significant growth of a simple DNA virus by gene acquisition from cellular sources.
Collapse
Affiliation(s)
- Jonathan Filée
- Laboratoire de Microbiologie et Génétique Moléculaires, CNRS Campus Toulouse III, 118 Route de Narbonne, F-31062 Toulouse Cedex, France.
| | | | | |
Collapse
|