1
|
Nair RR, Meikle V, Dubey S, Pavlenok M, Niederweis M. Master control of protein secretion by Mycobacterium tuberculosis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.03.13.643117. [PMID: 40161812 PMCID: PMC11952535 DOI: 10.1101/2025.03.13.643117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/02/2025]
Abstract
Tuberculosis is the leading cause of death from a single infectious disease. Mycobacterium tuberculosis secretes proteins using five ESX systems with distinctive functions essential for its growth and virulence. Here we show that a non-canonical supercomplex of the EsxU-EsxT proteins, encoded in the esx-4 locus, with the orphan EsxE-EsxF proteins, encoded in the cpnT operon, is required for toxin secretion by M. tuberculosis . Surprisingly, the outer membrane localization of all Esx proteins and their secretion into the cytosol of infected macrophages also depend on the EsxEF-EsxUT supercomplex and ESX-4. These results not only demonstrate that the Esx proteins have dual functions as the long-sought outer membrane components of ESX systems and as secreted effector proteins, but also reveal a novel master control mechanism of protein secretion in M. tuberculosis . The mutual dependency of EsxEF and EsxUT on each other synchronizes ESX effector protein secretion, enabling M. tuberculosis to block phagosomal maturation and to permeabilize the phagosomal membrane only when it is capable of killing host cells by toxin secretion. The requirement of the ESX-4 system for general protein secretion is a critical vulnerability which could be targeted by drugs and/or vaccines to simultaneously block many virulence factors of M. tuberculosis .
Collapse
|
2
|
Beaud Benyahia B, Taib N, Beloin C, Gribaldo S. Terrabacteria: redefining bacterial envelope diversity, biogenesis and evolution. Nat Rev Microbiol 2025; 23:41-56. [PMID: 39198708 DOI: 10.1038/s41579-024-01088-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/12/2024] [Indexed: 09/01/2024]
Abstract
The bacterial envelope is one of the oldest and most essential cellular components and has been traditionally divided into Gram-positive (monoderm) and Gram-negative (diderm). Recent landmark studies have challenged a major paradigm in microbiology by inferring that the last bacterial common ancestor had a diderm envelope and that the outer membrane (OM) was lost repeatedly in evolution to give rise to monoderms. Intriguingly, OM losses appear to have occurred exclusively in the Terrabacteria, one of the two major clades of bacteria. In this Review, we present current knowledge about the Terrabacteria. We describe their diversity and phylogeny and then highlight the vast phenotypic diversity of the Terrabacteria cell envelopes, which display large deviations from the textbook examples of diderms and monoderms, challenging the classical Gram-positive-Gram-negative divide. We highlight the striking differences in the systems involved in OM biogenesis in Terrabacteria with respect to the classical diderm experimental models and how they provide novel insights into the diversity and biogenesis of the bacterial cell envelope. We also discuss the potential evolutionary steps that might have led to the multiple losses of the OM and speculate on how the very first OM might have emerged before the last bacterial common ancestor.
Collapse
Affiliation(s)
- Basile Beaud Benyahia
- Evolutionary Biology of the Microbial Cell Laboratory, Institut Pasteur, Université Paris Cité, Paris, France
| | - Najwa Taib
- Evolutionary Biology of the Microbial Cell Laboratory, Institut Pasteur, Université Paris Cité, Paris, France
- Bioinformatics and Biostatistics Hub, Institut Pasteur, Université Paris Cité, Paris, France
| | - Christophe Beloin
- Genetics of Biofilms Laboratory, Institut Pasteur, Université Paris Cité, Paris, France
| | - Simonetta Gribaldo
- Evolutionary Biology of the Microbial Cell Laboratory, Institut Pasteur, Université Paris Cité, Paris, France.
| |
Collapse
|
3
|
Megawati D, Armitige LY, Tazi L. Differential Host Gene Expression in Response to Infection by Different Mycobacterium tuberculosis Strains-A Pilot Study. Microorganisms 2024; 12:2146. [PMID: 39597535 PMCID: PMC11596623 DOI: 10.3390/microorganisms12112146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Revised: 10/21/2024] [Accepted: 10/23/2024] [Indexed: 11/29/2024] Open
Abstract
Tuberculosis (TB) represents a global public health threat and is a leading cause of morbidity and mortality worldwide. Effective control of TB is complicated with the emergence of multidrug resistance. Yet, there is a fundamental gap in understanding the complex and dynamic interactions between different Mycobacterium tuberculosis strains and the host. In this pilot study, we investigated the host immune response to different M. tuberculosis strains, including drug-sensitive avirulent or virulent, and rifampin-resistant or isoniazid-resistant virulent strains in human THP-1 cells. We identified major differences in the gene expression profiles in response to infection with these strains. The expression of IDO1 and IL-1β in the infected cells was stronger in all virulent M. tuberculosis strains. The most striking result was the overexpression of many interferon-stimulated genes (ISGs) in cells infected with the isoniazid-resistant strain, compared to the rifampin-resistant and the drug-sensitive strains. Our data indicate that infection with the isoniazid-resistant M. tuberculosis strain preferentially resulted in cGAS-STING/STAT1 activation, which induced a characteristic host immune response. These findings reveal complex gene signatures and a dynamic variation in the immune response to infection by different M. tuberculosis strains.
Collapse
Affiliation(s)
- Dewi Megawati
- Department of Medical Microbiology and Immunology, School of Medicine, University of California, Davis, CA 95616, USA;
- Department of Microbiology and Parasitology, Faculty of Medicine and Health Sciences, Warmadewa University, Denpasar 80239, Bali, Indonesia
| | | | - Loubna Tazi
- Department of Medical Microbiology and Immunology, School of Medicine, University of California, Davis, CA 95616, USA;
| |
Collapse
|
4
|
Chen X, Zhang B, Jiang X, Liu Z, Zheng Y. Improving the bioconversion of phytosterols to 9α-hydroxy-4-androstene-3,17-dione by disruption of acyltransferase SucT and TmaT associated with the mycobacterial cell wall synthesis. World J Microbiol Biotechnol 2024; 40:350. [PMID: 39404941 DOI: 10.1007/s11274-024-04165-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Accepted: 10/09/2024] [Indexed: 10/25/2024]
Abstract
The bioconversion of low value-added phytosterols into high value-added 9α-hydroxy-4-androstene-3,17-dione (9-OHAD) in Mycolicibacterium neoaurum is a representative step in the steroid pharmaceutical industry. However, the complex mycobacterial cell walls with extremely low permeability and flowability greatly decrease the overall conversion efficiency. Herein, we preliminarily identified two key acyltransferases encoded by Mn_TmaT and Mn_SucT required for the proper synthesis of cell wall in mycobacteria and achieved a significant increase in cell permeability by disrupting them without affecting the cell wall structural stability. At length, the destruction of Mn_TmaT and Mn_SucT alone increased the conversion rate of 9-OHAD from 45.3% (6.67 ± 0.39 g/L) to 62.4% (9.19 ± 0.58 g/L) and 67.9% (10.02 ± 0.62 g/L) while the continuous destruction of Mn_TmaT and Mn_SucT did not further improve the conversion efficiency of 9-OHAD. Notably, it was investigated that the continuous destruction of Mn_TmaT and Mn_SucT led to alterations in both the covalent and non-covalent binding layers of the cell wall, resulting in excessive changes in cell morphology and structure, which ultimately decreased 9-OHAD production. Therefore, this study deciphered a pivotal biosynthetic path of cell wall and provided an efficient and feasible construction strategy of 9-OHAD synthesis in mycobacteria.
Collapse
Affiliation(s)
- Xinxin Chen
- National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, Hangzhou, 310014, People's Republic of China
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310014, People's Republic of China
| | - Bo Zhang
- National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, Hangzhou, 310014, People's Republic of China
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310014, People's Republic of China
| | - Xiaohan Jiang
- National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, Hangzhou, 310014, People's Republic of China
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310014, People's Republic of China
| | - Zhiqiang Liu
- National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, Hangzhou, 310014, People's Republic of China.
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310014, People's Republic of China.
| | - Yuguo Zheng
- National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, Hangzhou, 310014, People's Republic of China
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310014, People's Republic of China
| |
Collapse
|
5
|
Banerjee A, Sharma A, Kamble P, Garg P. Prediction of Mycobacterium tuberculosis cell wall permeability using machine learning methods. Mol Divers 2024; 28:2317-2329. [PMID: 39133353 DOI: 10.1007/s11030-024-10952-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Accepted: 07/26/2024] [Indexed: 08/13/2024]
Abstract
Tuberculosis (TB) caused by the bacteria Mycobacterium tuberculosis (M. tb), continues to pose a significant worldwide health threat. The advent of drug-resistant strains of the disease highlights the critical need for novel treatments. The unique cell wall of M. tb provides an extra layer of protection for the bacteria and hence only compounds that can penetrate this barrier can reach their targets within the bacterial cell wall. The creation of a reliable machine learning (ML) model to predict the mycobacterial cell wall permeability of small molecules is presented in this work and four ML algorithms, including Random Forest, Support Vector Machines (SVM), k-nearest Neighbour (k-NN) and Logistic Regression were trained on a dataset of 5368 compounds. RDKit and Mordred toolkits were used to calculate features. To determine the most effective model, various performance metrics were used such as accuracy, precision, recall, F1 score, and area under the receiver operating characteristic curve. The best-performing model was further refined with hyperparameter tuning and tenfold cross-validation. The SVM model with filtering outperformed the other machine learning models and demonstrated 80.26% and 81.13% accuracy on the test and validation datasets, respectively. The study also provided insights into the molecular descriptors that play the most important role in predicting the ability of a molecule to pass the M. tb cell wall, which could guide future compound design. The model is available at https://github.com/PGlab-NIPER/MTB_Permeability .
Collapse
Affiliation(s)
- Aritra Banerjee
- Department of Pharmacoinformatics, National Institute of Pharmaceutical Education and Research, S. A. S. Nagar, Punjab, 160 062, India
| | - Anju Sharma
- Department of Pharmacoinformatics, National Institute of Pharmaceutical Education and Research, S. A. S. Nagar, Punjab, 160 062, India
| | - Pradnya Kamble
- Department of Pharmacoinformatics, National Institute of Pharmaceutical Education and Research, S. A. S. Nagar, Punjab, 160 062, India
| | - Prabha Garg
- Department of Pharmacoinformatics, National Institute of Pharmaceutical Education and Research, S. A. S. Nagar, Punjab, 160 062, India.
| |
Collapse
|
6
|
Fong-Coronado PA, Ramirez V, Quintero-Hernández V, Balleza D. A Critical Review of Short Antimicrobial Peptides from Scorpion Venoms, Their Physicochemical Attributes, and Potential for the Development of New Drugs. J Membr Biol 2024; 257:165-205. [PMID: 38990274 PMCID: PMC11289363 DOI: 10.1007/s00232-024-00315-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Accepted: 06/08/2024] [Indexed: 07/12/2024]
Abstract
Scorpion venoms have proven to be excellent sources of antimicrobial agents. However, although many of them have been functionally characterized, they remain underutilized as pharmacological agents, despite their evident therapeutic potential. In this review, we discuss the physicochemical properties of short scorpion venom antimicrobial peptides (ssAMPs). Being generally short (13-25 aa) and amidated, their proven antimicrobial activity is generally explained by parameters such as their net charge, the hydrophobic moment, or the degree of helicity. However, for a complete understanding of their biological activities, also considering the properties of the target membranes is of great relevance. Here, with an extensive analysis of the physicochemical, structural, and thermodynamic parameters associated with these biomolecules, we propose a theoretical framework for the rational design of new antimicrobial drugs. Through a comparison of these physicochemical properties with the bioactivity of ssAMPs in pathogenic bacteria such as Staphylococcus aureus or Acinetobacter baumannii, it is evident that in addition to the net charge, the hydrophobic moment, electrostatic energy, or intrinsic flexibility are determining parameters to understand their performance. Although the correlation between these parameters is very complex, the consensus of our analysis suggests that there is a delicate balance between them and that modifying one affects the rest. Understanding the contribution of lipid composition to their bioactivities is also underestimated, which suggests that for each peptide, there is a physiological context to consider for the rational design of new drugs.
Collapse
Affiliation(s)
- Pedro Alejandro Fong-Coronado
- Ecology and Survival of Microorganisms Group (ESMG), Laboratorio de Ecología Molecular Microbiana (LEMM), Centro de Investigaciones en Ciencias Microbiológicas (CICM), Instituto de Ciencias (IC), Benemérita Universidad Autónoma de Puebla (BUAP), Puebla, México
| | - Verónica Ramirez
- Facultad de Ciencias Químicas, Benemérita Universidad Autónoma de Puebla (FCQ-BUAP), Ciudad Universitaria, Puebla, México
| | | | - Daniel Balleza
- Laboratorio de Microbiología, Unidad de Investigación y Desarrollo en Alimentos, Instituto Tecnológico de Veracruz, Tecnológico Nacional de México, Veracruz, México.
| |
Collapse
|
7
|
Dwivedi M, Jose S, Gupta M, Devi SS, Raj R, Kumar D. Copper transporter protein (MctB) as a therapeutic target to elicit antimycobacterial activity against tuberculosis. J Biomol Struct Dyn 2024; 42:5334-5348. [PMID: 37340670 DOI: 10.1080/07391102.2023.2226728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Accepted: 06/10/2023] [Indexed: 06/22/2023]
Abstract
Tuberculosis (TB) is a prehistoric infection and major etiologic agent of TB, Mycobacterium tuberculosis, which is considered to have advanced from an early progenitor species found in Eastern Africa. By the 1800s, there were approximately 800 to 1000 fatality case reports per 100,000 people in Europe and North America. This research suggests an In-silico study to identify potential inhibitory compounds for the target Mycobacterial copper transport protein (Mctb). ADME-based virtual screening, molecular docking, and molecular dynamics simulations were conducted to find promising compounds to modulate the function of the target protein. Four chemical compounds, namely Anti-MCT1, Anti-MCT2, Anti-MCT3 and Anti-MCT4 out of 1500 small molecules from the Diverse-lib of MTiOpenScreen were observed to completely satisfy Lipinski rule of five and Veber's rule. Further, significantly steady interactions with the MctB target protein were observed. Docking experiments have presented 9 compounds with less than -9.0 kcal/mol free binding energies and further MD simulation eventually gave 4 compounds having potential interactions and affinity with target protein and favorable binding energy ranging from -9.2 to -9.3 kcal/mol. We may propose these compounds as an effective candidate to reduce the growth of M. tuberculosis and may also assist present a novel therapeutic approach for Tuberculosis. In vivo and In vitro validation would be needed to proceed further in this direction.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Manish Dwivedi
- Amity Institute of Biotechnology, Amity University Uttar Pradesh, Lucknow, India
| | - Sandra Jose
- Technology and Advanced Studies, Vels Institute of Science, Chennai, India
| | - Megha Gupta
- Vel Tech Rangarajan Dr Sagunthala R&D Institute of Science and Technology, Chennai, India
| | - Sreevidya S Devi
- Mar Athanasios College for Advanced Studies, Thiruvalla, Kerala, India
| | - Ritu Raj
- Centre of Biomedical Research (CBMR), SGPGIMS Campus, Lucknow, Uttar Pradesh, India
| | - Dinesh Kumar
- Centre of Biomedical Research (CBMR), SGPGIMS Campus, Lucknow, Uttar Pradesh, India
| |
Collapse
|
8
|
Agrawal G, Borody TJ, Aitken JM. Mapping Crohn's Disease Pathogenesis with Mycobacterium paratuberculosis: A Hijacking by a Stealth Pathogen. Dig Dis Sci 2024; 69:2289-2303. [PMID: 38896362 DOI: 10.1007/s10620-024-08508-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Accepted: 05/21/2024] [Indexed: 06/21/2024]
Abstract
Mycobacterium avium ssp. paratuberculosis (MAP) has been implicated in the development of Crohn's disease (CD) for over a century. Similarities have been noted between the (histo)pathological presentation of MAP in ruminants, termed Johne's disease (JD), and appearances in humans with CD. Analyses of disease presentation and pathology suggest a multi-step process occurs that consists of MAP infection, dysbiosis of the gut microbiome, and dietary influences. Each step has a role in the disease development and requires a better understanding to implementing combination therapies, such as antibiotics, vaccination, faecal microbiota transplants (FMT) and dietary plans. To optimise responses, each must be tailored directly to the activity of MAP, otherwise therapies are open to interpretation without microbiological evidence that the organism is present and has been influenced. Microscopy and histopathology enables studies of the mycobacterium in situ and how the associated disease processes manifest in the patient e.g., granulomas, fissuring, etc. The challenge for researchers has been to prove the relationship between MAP and CD with available laboratory tests and methodologies, such as polymerase chain reaction (PCR), MAP-associated DNA sequences and bacteriological culture investigations. These have, so far, been inconclusive in revealing the relationship of MAP in patients with CD. Improved and accurate methods of detection will add to evidence for an infectious aetiology of CD. Specifically, if the bacterial pathogen can be isolated, identified and cultivated, then causal relationships to disease can be confirmed, especially if it is present in human gut tissue. This review discusses how MAP may cause the inflammation seen in CD by relating its known pathogenesis in cattle, and from examples of other mycobacterial infections in humans, and how this would impact upon the difficulties with diagnostic tests for the organism.
Collapse
Affiliation(s)
- Gaurav Agrawal
- Division of Diabetes & Nutritional Sciences, King's College London, Franklin-Wilkins Building, London, SE1 9NH, UK.
- , Sydney, Australia.
| | | | | |
Collapse
|
9
|
Banahene N, Peters-Clarke TM, Biegas KJ, Shishkova E, Hart EM, McKitterick AC, Kambitsis NH, Johnson UG, Bernhardt TG, Coon JJ, Swarts BM. Chemical Proteomics Strategies for Analyzing Protein Lipidation Reveal the Bacterial O-Mycoloylome. J Am Chem Soc 2024; 146:12138-12154. [PMID: 38635392 PMCID: PMC11066868 DOI: 10.1021/jacs.4c02278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 04/04/2024] [Accepted: 04/05/2024] [Indexed: 04/20/2024]
Abstract
Protein lipidation dynamically controls protein localization and function within cellular membranes. A unique form of protein O-fatty acylation in Corynebacterium, termed protein O-mycoloylation, involves the attachment of mycolic acids─unusually large and hydrophobic fatty acids─to serine residues of proteins in these organisms' outer mycomembrane. However, as with other forms of protein lipidation, the scope and functional consequences of protein O-mycoloylation are challenging to investigate due to the inherent difficulties of enriching and analyzing lipidated peptides. To facilitate the analysis of protein lipidation and enable the comprehensive profiling and site mapping of protein O-mycoloylation, we developed a chemical proteomics strategy integrating metabolic labeling, click chemistry, cleavable linkers, and a novel liquid chromatography-tandem mass spectrometry (LC-MS/MS) method employing LC separation and complementary fragmentation methods tailored to the analysis of lipophilic, MS-labile O-acylated peptides. Using these tools in the model organism Corynebacterium glutamicum, we identified approximately 30 candidate O-mycoloylated proteins, including porins, mycoloyltransferases, secreted hydrolases, and other proteins with cell envelope-related functions─consistent with a role for O-mycoloylation in targeting proteins to the mycomembrane. Site mapping revealed that many of the proteins contained multiple spatially proximal modification sites, which occurred predominantly at serine residues surrounded by conformationally flexible peptide motifs. Overall, this study (i) discloses the putative protein O-mycoloylome for the first time, (ii) yields new insights into the undercharacterized proteome of the mycomembrane, which is a hallmark of important pathogens (e.g., Corynebacterium diphtheriae, Mycobacterium tuberculosis), and (iii) provides generally applicable chemical strategies for the proteomic analysis of protein lipidation.
Collapse
Affiliation(s)
- Nicholas Banahene
- Department
of Chemistry and Biochemistry, Central Michigan
University, Mount
Pleasant, Michigan 48859, United States
- Biochemistry,
Cell, and Molecular Biology Graduate Programs, Central Michigan University, Mount
Pleasant, Michigan 48859, United States
| | - Trenton M. Peters-Clarke
- Department
of Chemistry, University of Wisconsin, Madison, Wisconsin 53562, United States
- Department
of Biomolecular Chemistry, University of
Wisconsin, Madison, Wisconsin 53562, United States
- National
Center for Quantitative Biology of Complex Systems, University of Wisconsin, Madison, Wisconsin 53562, United States
| | - Kyle J. Biegas
- Department
of Chemistry and Biochemistry, Central Michigan
University, Mount
Pleasant, Michigan 48859, United States
- Biochemistry,
Cell, and Molecular Biology Graduate Programs, Central Michigan University, Mount
Pleasant, Michigan 48859, United States
| | - Evgenia Shishkova
- Department
of Biomolecular Chemistry, University of
Wisconsin, Madison, Wisconsin 53562, United States
- National
Center for Quantitative Biology of Complex Systems, University of Wisconsin, Madison, Wisconsin 53562, United States
| | - Elizabeth M. Hart
- Department
of Microbiology, Harvard Medical School, Boston, Massachusetts 02115 United States
- Howard
Hughes Medical Institute, Chevy
Chase, Maryland 20815, United States
| | - Amelia C. McKitterick
- Department
of Microbiology, Harvard Medical School, Boston, Massachusetts 02115 United States
- Howard
Hughes Medical Institute, Chevy
Chase, Maryland 20815, United States
| | - Nikolas H. Kambitsis
- Department
of Chemistry and Biochemistry, Central Michigan
University, Mount
Pleasant, Michigan 48859, United States
| | - Ulysses G. Johnson
- Department
of Chemistry and Biochemistry, Central Michigan
University, Mount
Pleasant, Michigan 48859, United States
- Biochemistry,
Cell, and Molecular Biology Graduate Programs, Central Michigan University, Mount
Pleasant, Michigan 48859, United States
| | - Thomas G. Bernhardt
- Department
of Microbiology, Harvard Medical School, Boston, Massachusetts 02115 United States
- Howard
Hughes Medical Institute, Chevy
Chase, Maryland 20815, United States
| | - Joshua J. Coon
- Department
of Chemistry, University of Wisconsin, Madison, Wisconsin 53562, United States
- Department
of Biomolecular Chemistry, University of
Wisconsin, Madison, Wisconsin 53562, United States
- National
Center for Quantitative Biology of Complex Systems, University of Wisconsin, Madison, Wisconsin 53562, United States
- Morgridge
Institute for Research, Madison, Wisconsin 53562, United States
| | - Benjamin M. Swarts
- Department
of Chemistry and Biochemistry, Central Michigan
University, Mount
Pleasant, Michigan 48859, United States
- Biochemistry,
Cell, and Molecular Biology Graduate Programs, Central Michigan University, Mount
Pleasant, Michigan 48859, United States
| |
Collapse
|
10
|
Condos AM, Wangaryattawanich P, Rath TJ. Bacterial, Viral, and Prion Infectious Diseases of the Brain. Magn Reson Imaging Clin N Am 2024; 32:289-311. [PMID: 38555142 DOI: 10.1016/j.mric.2023.11.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/02/2024]
Abstract
Diagnosis of brain infections is based on a combination of clinical features, laboratory markers, and imaging findings. Imaging characterizes the extent and severity of the disease, aids in guiding diagnostic and therapeutic procedures, monitors response to treatment, and demonstrates complications. This review highlights the characteristic imaging manifestations of bacterial and viral infections in the brain.
Collapse
Affiliation(s)
- Amy M Condos
- Department of Radiology, University of Washington School of Medicine, Seattle, WA, USA.
| | - Pattana Wangaryattawanich
- Department of Radiology, University of Washington School of Medicine, 1959 Northeast Pacific Street, Seattle, WA 98195-7115, USA
| | - Tanya J Rath
- Neuroradiology Section, Department of Radiology, Mayo Clinic Arizona, 5777 East Mayo Boulevard, Phoenix, AZ 85054, USA
| |
Collapse
|
11
|
He P, Zhao B, He W, Song Z, Pei S, Liu D, Xia H, Wang S, Ou X, Zheng Y, Zhou Y, Song Y, Wang Y, Cao X, Xing R, Zhao Y. Impact of MSMEG5257 Deletion on Mycolicibacterium smegmatis Growth. Microorganisms 2024; 12:770. [PMID: 38674714 PMCID: PMC11052289 DOI: 10.3390/microorganisms12040770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Revised: 04/07/2024] [Accepted: 04/09/2024] [Indexed: 04/28/2024] Open
Abstract
Mycobacterial membrane proteins play a pivotal role in the bacterial invasion of host cells; however, the precise mechanisms underlying certain membrane proteins remain elusive. Mycolicibacterium smegmatis (Ms) msmeg5257 is a hemolysin III family protein that is homologous to Mycobacterium tuberculosis (Mtb) Rv1085c, but it has an unclear function in growth. To address this issue, we utilized the CRISPR/Cas9 gene editor to construct Δmsmeg5257 strains and combined RNA transcription and LC-MS/MS protein profiling to determine the functional role of msmeg5257 in Ms growth. The correlative analysis showed that the deletion of msmeg5257 inhibits ABC transporters in the cytomembrane and inhibits the biosynthesis of amino acids in the cell wall. Corresponding to these results, we confirmed that MSMEG5257 localizes in the cytomembrane via subcellular fractionation and also plays a role in facilitating the transport of iron ions in environments with low iron levels. Our data provide insights that msmeg5257 plays a role in maintaining Ms metabolic homeostasis, and the deletion of msmeg5257 significantly impacts the growth rate of Ms. Furthermore, msmeg5257, a promising drug target, offers a direction for the development of novel therapeutic strategies against mycobacterial diseases.
Collapse
Affiliation(s)
- Ping He
- Chinese Center for Disease Control and Prevention, Changping District, Beijing 102206, China; (P.H.); (B.Z.); (W.H.); (Z.S.); (D.L.); (H.X.); (S.W.); (X.O.); (Y.Z.); (Y.Z.); (Y.S.); (Y.W.); (X.C.); (R.X.)
| | - Bing Zhao
- Chinese Center for Disease Control and Prevention, Changping District, Beijing 102206, China; (P.H.); (B.Z.); (W.H.); (Z.S.); (D.L.); (H.X.); (S.W.); (X.O.); (Y.Z.); (Y.Z.); (Y.S.); (Y.W.); (X.C.); (R.X.)
| | - Wencong He
- Chinese Center for Disease Control and Prevention, Changping District, Beijing 102206, China; (P.H.); (B.Z.); (W.H.); (Z.S.); (D.L.); (H.X.); (S.W.); (X.O.); (Y.Z.); (Y.Z.); (Y.S.); (Y.W.); (X.C.); (R.X.)
| | - Zexuan Song
- Chinese Center for Disease Control and Prevention, Changping District, Beijing 102206, China; (P.H.); (B.Z.); (W.H.); (Z.S.); (D.L.); (H.X.); (S.W.); (X.O.); (Y.Z.); (Y.Z.); (Y.S.); (Y.W.); (X.C.); (R.X.)
| | - Shaojun Pei
- School of Public Health, Peking University, Haidian District, Beijing 100871, China;
| | - Dongxin Liu
- Chinese Center for Disease Control and Prevention, Changping District, Beijing 102206, China; (P.H.); (B.Z.); (W.H.); (Z.S.); (D.L.); (H.X.); (S.W.); (X.O.); (Y.Z.); (Y.Z.); (Y.S.); (Y.W.); (X.C.); (R.X.)
| | - Hui Xia
- Chinese Center for Disease Control and Prevention, Changping District, Beijing 102206, China; (P.H.); (B.Z.); (W.H.); (Z.S.); (D.L.); (H.X.); (S.W.); (X.O.); (Y.Z.); (Y.Z.); (Y.S.); (Y.W.); (X.C.); (R.X.)
| | - Shengfen Wang
- Chinese Center for Disease Control and Prevention, Changping District, Beijing 102206, China; (P.H.); (B.Z.); (W.H.); (Z.S.); (D.L.); (H.X.); (S.W.); (X.O.); (Y.Z.); (Y.Z.); (Y.S.); (Y.W.); (X.C.); (R.X.)
| | - Xichao Ou
- Chinese Center for Disease Control and Prevention, Changping District, Beijing 102206, China; (P.H.); (B.Z.); (W.H.); (Z.S.); (D.L.); (H.X.); (S.W.); (X.O.); (Y.Z.); (Y.Z.); (Y.S.); (Y.W.); (X.C.); (R.X.)
| | - Yang Zheng
- Chinese Center for Disease Control and Prevention, Changping District, Beijing 102206, China; (P.H.); (B.Z.); (W.H.); (Z.S.); (D.L.); (H.X.); (S.W.); (X.O.); (Y.Z.); (Y.Z.); (Y.S.); (Y.W.); (X.C.); (R.X.)
| | - Yang Zhou
- Chinese Center for Disease Control and Prevention, Changping District, Beijing 102206, China; (P.H.); (B.Z.); (W.H.); (Z.S.); (D.L.); (H.X.); (S.W.); (X.O.); (Y.Z.); (Y.Z.); (Y.S.); (Y.W.); (X.C.); (R.X.)
| | - Yuanyuan Song
- Chinese Center for Disease Control and Prevention, Changping District, Beijing 102206, China; (P.H.); (B.Z.); (W.H.); (Z.S.); (D.L.); (H.X.); (S.W.); (X.O.); (Y.Z.); (Y.Z.); (Y.S.); (Y.W.); (X.C.); (R.X.)
| | - Yiting Wang
- Chinese Center for Disease Control and Prevention, Changping District, Beijing 102206, China; (P.H.); (B.Z.); (W.H.); (Z.S.); (D.L.); (H.X.); (S.W.); (X.O.); (Y.Z.); (Y.Z.); (Y.S.); (Y.W.); (X.C.); (R.X.)
| | - Xiaolong Cao
- Chinese Center for Disease Control and Prevention, Changping District, Beijing 102206, China; (P.H.); (B.Z.); (W.H.); (Z.S.); (D.L.); (H.X.); (S.W.); (X.O.); (Y.Z.); (Y.Z.); (Y.S.); (Y.W.); (X.C.); (R.X.)
| | - Ruida Xing
- Chinese Center for Disease Control and Prevention, Changping District, Beijing 102206, China; (P.H.); (B.Z.); (W.H.); (Z.S.); (D.L.); (H.X.); (S.W.); (X.O.); (Y.Z.); (Y.Z.); (Y.S.); (Y.W.); (X.C.); (R.X.)
| | - Yanlin Zhao
- Chinese Center for Disease Control and Prevention, Changping District, Beijing 102206, China; (P.H.); (B.Z.); (W.H.); (Z.S.); (D.L.); (H.X.); (S.W.); (X.O.); (Y.Z.); (Y.Z.); (Y.S.); (Y.W.); (X.C.); (R.X.)
| |
Collapse
|
12
|
Chen TY, Chen J, Ruszczycky MW, Hilovsky D, Hostetler T, Liu X, Zhou J, Chang WC. Variation in biosynthesis and metal-binding properties of isonitrile-containing peptides produced by Mycobacteria versus Streptomyces. ACS Catal 2024; 14:4975-4983. [PMID: 38895101 PMCID: PMC11185824 DOI: 10.1021/acscatal.4c00645] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/21/2024]
Abstract
A number of bacteria are known to produce isonitrile-containing peptides (INPs) that facilitate metal transport and are important for cell survival; however, considerable structural variation is observed among INPs depending on the producing organism. While non-heme iron 2-oxoglutarate dependent isonitrilases catalyze isonitrile formation, how the natural variation in INP structure is controlled and its implications for INP bioactivity remain open questions. Herein, total chemical synthesis is utilized with X-Ray crystallographic analysis of mycobacterial isonitrilases to provide a structural model of substrate specificity that explains the longer alkyl chains observed in mycobacterial versus Streptomyces INPs. Moreover, proton NMR titration experiments demonstrate that INPs regardless of alkyl chain length are specific for binding copper instead of zinc. These results suggest that isonitrilases may act as gatekeepers in modulating the observed biological distribution of INP structures and this distribution may be primarily related to differing metal transport requirements among the producing strains.
Collapse
Affiliation(s)
- Tzu-Yu Chen
- Department of Chemistry, North Carolina State University, Raleigh, NC 27695, United States
| | - Jinfeng Chen
- State Key Laboratory of Bio-organic and Natural Products Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 200032, China
| | - Mark W Ruszczycky
- Division of Chemical Biology and Medicinal Chemistry, College of Pharmacy, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Dalton Hilovsky
- Department of Molecular and Structural Biochemistry, North Carolina State University, Raleigh, NC 27695, United States
| | - Tyler Hostetler
- Department of Chemistry, North Carolina State University, Raleigh, NC 27695, United States
| | - Xiaojing Liu
- Department of Molecular and Structural Biochemistry, North Carolina State University, Raleigh, NC 27695, United States
| | - Jiahai Zhou
- Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Wei-Chen Chang
- Department of Chemistry, North Carolina State University, Raleigh, NC 27695, United States
| |
Collapse
|
13
|
Alanazi NH, Hanif A. Prevalence of co-infection of human immunodeficiency virus in diagnosed tuberculosis cases: Meta-analysis. Int J Health Sci (Qassim) 2024; 18:56-61. [PMID: 38455603 PMCID: PMC10915912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/09/2024] Open
Abstract
Objective The objective of the study was to find pooled prevalence and risk factors of co-infection of human immunodeficiency virus (HIV) in diagnosed tuberculosis (TB) cases. Methods Search engines including PubMed and Google Scholar were used to find literature using search terms such as "co-infection," "HIV," "Acquired Immunodeficiency Syndrome," TB and "Prevalence" among others. All original studies conducted on the prevalence of HIV co-infection among diagnosed TB patients that were freely available in full length had a clear methodology and relevant results were included in the study. Result From 1021 initial studies, a total of 18 studies were selected for analysis. A total of 18 studies were included with a total sample size of 44943. The minimum prevalence of HIV-TB was reported in a study from Pakistan as 0.29% and the maximum prevalence of HIV-TB was found in Nigeria, that is, 44.20%. The pooled prevalence of HIV/TB co-infection was 16.291% (95%; 9.57-24.38) using the random effect method. As per Begg's test, there was no publication bias. As I2 is 99.74% so, there is high heterogeneity among studies; hence, random effect model is preferred. Conclusion The study concludes that the pooled prevalence of HIV/TB co-infection was found to be 16.291% (95%; 9.57-24.38). The risk of mortality will be substantially raised by the co-existence of HIV-TB co-infection, so early screening and emphasizing the urgent need for integrated health-care interventions can cope with the situation.
Collapse
Affiliation(s)
- Naif H. Alanazi
- College of Health Science, Saudi Electronic University, Riyadh, Saudi Arabia
| | - Asif Hanif
- University Institute of Public Health and Director Research Section, Faculty of Allied Health Sciences, The University of Lahore, Lahore, Pakistan
| |
Collapse
|
14
|
Pavlenok M, Nair RR, Hendrickson RC, Niederweis M. The C-terminus is essential for the stability of the mycobacterial channel protein MspA. Protein Sci 2024; 33:e4912. [PMID: 38358254 PMCID: PMC10868439 DOI: 10.1002/pro.4912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 12/15/2023] [Accepted: 01/10/2024] [Indexed: 02/16/2024]
Abstract
Outer membrane proteins perform essential functions in uptake and secretion processes in bacteria. MspA is an octameric channel protein in the outer membrane of Mycobacterium smegmatis and is structurally distinct from any other known outer membrane protein. MspA is the founding member of a family with more than 3000 homologs and is one of the most widely used proteins in nanotechnological applications due to its advantageous pore structure and extraordinary stability. While a conserved C-terminal signal sequence is essential for folding and protein assembly in the outer membrane of Gram-negative bacteria, the molecular determinants of these processes are unknown for MspA. In this study, we show that mutation and deletion of methionine 183 in the highly conserved C-terminus of MspA and mutation of the conserved tryptophan 40 lead to a complete loss of protein in heat extracts of M. smegmatis. Swapping these residues partially restores the heat stability of MspA indicating that methionine 183 and tryptophan 40 form a conserved sulfur-π electron interaction, which stabilizes the MspA monomer. Flow cytometry showed that all MspA mutants are surface-accessible demonstrating that oligomerization and membrane integration in M. smegmatis are not affected. Thus, the conserved C-terminus of MspA is essential for its thermal stability, but it is not required for protein assembly in its native membrane, indicating that this process is mediated by a mechanism distinct from that in Gram-negative bacteria. These findings will benefit the rational design of MspA-like pores to tailor their properties in current and future applications.
Collapse
Affiliation(s)
- Mikhail Pavlenok
- Department of MicrobiologyUniversity of Alabama at BirminghamBirminghamAlabamaUSA
| | | | | | - Michael Niederweis
- Department of MicrobiologyUniversity of Alabama at BirminghamBirminghamAlabamaUSA
| |
Collapse
|
15
|
Meikle V, Zhang L, Niederweis M. Intricate link between siderophore secretion and drug efflux in Mycobacterium tuberculosis. Antimicrob Agents Chemother 2023; 67:e0162922. [PMID: 37676015 PMCID: PMC10583673 DOI: 10.1128/aac.01629-22] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Accepted: 06/30/2023] [Indexed: 09/08/2023] Open
Abstract
Drug-resistant Mycobacterium tuberculosis is a worldwide health-care problem rendering current tuberculosis (TB) drugs ineffective. Drug efflux is an important mechanism in bacterial drug resistance. The MmpL4 and MmpL5 transporters form functionally redundant complexes with their associated MmpS4 and MmpS5 proteins and constitute the inner membrane components of an essential siderophore secretion system of M. tuberculosis. Inactivating siderophore secretion is toxic for M. tuberculosis due to self-poisoning at low-iron conditions and leads to a strong virulence defect in mice. In this study, we show that M. tuberculosis mutants lacking components of the MmpS4-MmpL4 and MmpS5-MmpL5 systems are more susceptible to bedaquiline, clofazimine, and rifabutin, important drugs for treatment of drug-resistant TB. While genetic deletion experiments revealed similar functions of the MmpL4 and MmpL5 transporters in siderophore and drug secretion, complementation experiments indicated that the MmpS4-MmpL4 proteins alone are not sufficient to restore drug efflux in an M. tuberculosis mutant lacking both operons, in contrast to MmpS5-MmpL5. Importantly, an M. tuberculosis mutant lacking the recently discovered periplasmic Rv0455c protein, which is also essential for siderophore secretion, is more susceptible to the same drugs. These results reveal a promising target for the development of dual-function TB drugs, which might poison M. tuberculosis by blocking siderophore secretion and synergize with other drugs by impairing drug efflux.
Collapse
Affiliation(s)
- Virginia Meikle
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Lei Zhang
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Michael Niederweis
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, Alabama, USA
| |
Collapse
|
16
|
Bloom BR. A half-century of research on tuberculosis: Successes and challenges. J Exp Med 2023; 220:e20230859. [PMID: 37552470 PMCID: PMC10407785 DOI: 10.1084/jem.20230859] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 07/20/2023] [Accepted: 07/21/2023] [Indexed: 08/09/2023] Open
Abstract
Great progress has been made over the past half-century, but TB remains a formidable global health problem, particularly in low- and middle-income countries. Understanding the mechanisms of pathogenesis and necessary and sufficient conditions for protection are critical. The need for inexpensive and sensitive point-of-care diagnostic tests for earlier detection of infection and disease, shorter and less-toxic drug regimens for drug-sensitive and -resistant TB, and a more effective vaccine than BCG is immense. New and better tools, greater support for international research, collaborations, and training will be required to dramatically reduce the burden of this devastating disease which still kills 1.6 million people annually.
Collapse
Affiliation(s)
- Barry R. Bloom
- Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| |
Collapse
|
17
|
Hurst-Hess K, Walz A, Yang Y, McGuirk H, Gonzalez-Juarrero M, Hatfull GF, Ghosh P, Ojha AK. Intrapulmonary Treatment with Mycobacteriophage LysB Rapidly Reduces Mycobacterium abscessus Burden. Antimicrob Agents Chemother 2023; 67:e0016223. [PMID: 37154689 PMCID: PMC10269076 DOI: 10.1128/aac.00162-23] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Accepted: 04/17/2023] [Indexed: 05/10/2023] Open
Abstract
Intrinsic and acquired antibiotic resistance in Mycobacterium abscessus presents challenges in infection control, and new therapeutic strategies are needed. Bacteriophage therapy shows promise, but variabilities in M. abscessus phage susceptibility limits its broader utility. We show here that a mycobacteriophage-encoded lysin B (LysB) efficiently and rapidly kills both smooth- and rough-colony morphotype M. abscessus strains and reduces the pulmonary bacterial load in mice. LysB aerosolization presents a plausible treatment for pulmonary M. abscessus infections.
Collapse
Affiliation(s)
- Kelley Hurst-Hess
- Division of Genetics, Wadsworth Center, New York State Department of Health, Albany, New York, USA
| | - Amanda Walz
- Department of Microbiology, Immunology, and Pathology, Colorado State University, Fort Collins, Colorado, USA
| | - Yong Yang
- Division of Genetics, Wadsworth Center, New York State Department of Health, Albany, New York, USA
- Department of Infectious Diseases and Microbiology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Helen McGuirk
- Department of Infectious Diseases and Microbiology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Mercedes Gonzalez-Juarrero
- Department of Microbiology, Immunology, and Pathology, Colorado State University, Fort Collins, Colorado, USA
| | - Graham F. Hatfull
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Pallavi Ghosh
- Division of Genetics, Wadsworth Center, New York State Department of Health, Albany, New York, USA
- Department of Biomedical Sciences, University at Albany, Albany, New York, USA
| | - Anil K. Ojha
- Division of Genetics, Wadsworth Center, New York State Department of Health, Albany, New York, USA
- Department of Biomedical Sciences, University at Albany, Albany, New York, USA
| |
Collapse
|
18
|
Thakur M, Muniyappa K. Macrophage activation highlight an important role for NER proteins in the survival, latency and multiplication of Mycobacterium tuberculosis. Tuberculosis (Edinb) 2023; 138:102284. [PMID: 36459831 DOI: 10.1016/j.tube.2022.102284] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 11/14/2022] [Accepted: 11/20/2022] [Indexed: 11/27/2022]
Abstract
Nucleotide excision repair (NER) is one of the most extensively studied DNA repair processes in both prokaryotes and eukaryotes. The NER pathway is a highly conserved, ATP-dependent multi-step process involving several proteins/enzymes that function in a concerted manner to recognize and excise a wide spectrum of helix-distorting DNA lesions and bulky adducts by nuclease cleavage on either side of the damaged bases. As such, the NER pathway of Mycobacterium tuberculosis (Mtb) is essential for its survival within the hostile environment of macrophages and disease progression. This review focuses on present published knowledge about the crucial roles of Mtb NER proteins in the survival and multiplication of the pathogen within the macrophages and as potential targets for drug discovery.
Collapse
Affiliation(s)
- Manoj Thakur
- Department of Biochemistry, Indian Institute of Science, Bangalore, 560012, India.
| | - K Muniyappa
- Department of Biochemistry, Indian Institute of Science, Bangalore, 560012, India
| |
Collapse
|
19
|
Bokare B, Mehta K. Otolaryngological Manifestations of Tuberculosis: A Clinical Study. Indian J Otolaryngol Head Neck Surg 2022; 74:5217-5224. [PMID: 36742832 PMCID: PMC9895555 DOI: 10.1007/s12070-020-01789-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Accepted: 01/04/2020] [Indexed: 02/07/2023] Open
Abstract
The aim of this study was to increase awareness of the different presentations of head and neck tuberculosis (TB) and to discuss its diagnostic difficulties. A prospective study of patients who presented to us, at a tertiary referral hospital, primarily with TB of head and neck was done from September 2014 to August 2016. Patients were categarised into proper category of Anti Tuberculous Treatment (ATT) and were treated according to ATT regimen. All patients were followed up at 2 months and 6 months after starting ATT. A total of 170 patients presented with primary head and neck TB during the study period. Most of these (96%) had cervical lymphadenopathy, 5 patients had laryngeal TB, and there was 1 patient each of TB of middle ear. 102 were males, and 68 were females. 25.8% of cases had associated pulmonary TB. (1) Diagnosing TB requires a high index of suspicion. (2) Tuberculosis of the cervical lymph nodes is the commonest presentation followed by laryngeal TB. (3) Fine needle aspiration cytology (FNAC) is a reliable and easy way to diagnose TB. However, newer diagnostic tests will increase the yield of positive cases and should be used whenever required. (4) In the larynx, the vocal cords were the commonest site affected and laryngeal TB need not be associated with lung TB or positive sputum always. (5) Patients who have TB of head and neck must be investigated to exclude pulmonary or systemic TB.
Collapse
Affiliation(s)
- Bhagyashree Bokare
- Department of ENT Government Medical College, Government Medical College Nagpur-Maharashtra, Nagpur, Maharashtra India
| | - Kaustubh Mehta
- Jupiter Hospital, Eastern Express Highway, Service Road, Next to Viviana Mall, Thane, Maharashtra 400601 India
| |
Collapse
|
20
|
Gupta A, Malwe AS, Srivastava GN, Thoudam P, Hibare K, Sharma VK. MP4: a machine learning based classification tool for prediction and functional annotation of pathogenic proteins from metagenomic and genomic datasets. BMC Bioinformatics 2022; 23:507. [PMID: 36443666 PMCID: PMC9703692 DOI: 10.1186/s12859-022-05061-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2021] [Accepted: 11/16/2022] [Indexed: 11/29/2022] Open
Abstract
Bacteria can exceptionally evolve and develop pathogenic features making it crucial to determine novel pathogenic proteins for specific therapeutic interventions. Therefore, we have developed a machine-learning tool that predicts and functionally classifies pathogenic proteins into their respective pathogenic classes. Through construction of pathogenic proteins database and optimization of ML algorithms, Support Vector Machine was selected for the model construction. The developed SVM classifier yielded an accuracy of 81.72% on the blind-dataset and classified the proteins into three classes: Non-pathogenic proteins (Class-1), Antibiotic Resistance Proteins and Toxins (Class-2), and Secretory System Associated and capsular proteins (Class-3). The classifier provided an accuracy of 79% on real dataset-1, and 72% on real dataset-2. Based on the probability of prediction, users can estimate the pathogenicity and annotation of proteins under scrutiny. Tool will provide accurate prediction of pathogenic proteins in genomic and metagenomic datasets providing leads for experimental validations. Tool is available at: http://metagenomics.iiserb.ac.in/mp4 .
Collapse
Affiliation(s)
- Ankit Gupta
- grid.462376.20000 0004 1763 8131MetaBioSys Group, Department of Biological Sciences, Indian Institute of Science Education and Research, Bhopal, Madhya Pradesh India
| | - Aditya S. Malwe
- grid.462376.20000 0004 1763 8131MetaBioSys Group, Department of Biological Sciences, Indian Institute of Science Education and Research, Bhopal, Madhya Pradesh India
| | - Gopal N. Srivastava
- grid.462376.20000 0004 1763 8131MetaBioSys Group, Department of Biological Sciences, Indian Institute of Science Education and Research, Bhopal, Madhya Pradesh India
| | - Parikshit Thoudam
- grid.462376.20000 0004 1763 8131MetaBioSys Group, Department of Biological Sciences, Indian Institute of Science Education and Research, Bhopal, Madhya Pradesh India
| | - Keshav Hibare
- grid.462376.20000 0004 1763 8131MetaBioSys Group, Department of Biological Sciences, Indian Institute of Science Education and Research, Bhopal, Madhya Pradesh India
| | - Vineet K. Sharma
- grid.462376.20000 0004 1763 8131MetaBioSys Group, Department of Biological Sciences, Indian Institute of Science Education and Research, Bhopal, Madhya Pradesh India
| |
Collapse
|
21
|
Bisht D, Singh R, Sharma D, Sharma D, Gautam S, Gupta MK. Unraveling Major Proteins of Mycobacterium tuberculosis Envelope. CURR PROTEOMICS 2022; 19:372-379. [DOI: 10.2174/1570164619666220908141130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2022] [Revised: 06/30/2022] [Accepted: 08/04/2022] [Indexed: 11/22/2022]
Abstract
Abstract:
Although treatable, resistant form of tuberculosis (TB) has posed a major impediment to the
effective TB control programme. As the Mycobacterium tuberculosis cell envelope is closely associated
with its virulence and resistance, it is very important to understand the cell envelope for better
treatment of causative pathogens. Cell membrane plays a crucial role in imparting various cell functions.
Proteins being the functional moiety, it is impossible to characterize the functional properties
based on genetic analysis alone. Proteomic based research has indicated mycobacterial envelope as a
good source of antigens/proteins. Envelope/membrane and associated proteins have an anticipated role
in biological processes, which could be of vital importance to the microbe, and hence could qualify as
drug targets. This review provides an overview of the prominent and biologically important cell envelope
and highlights the different functions offered by the proteins associated with it. Selective targeting
of the mycobacterial envelope offers an untapped opportunity to address the problems associated
with the current drug regimen and also will lead to the development of more potent and safer drugs
against all forms of tuberculous infections.
Collapse
Affiliation(s)
- Deepa Bisht
- Department of Biochemistry, ICMR-National JALMA Institute for Leprosy and Other Mycobacterial Diseases, Tajganj,
Agra (UP)-282001, India
| | - Rananjay Singh
- Department of Biochemistry, ICMR-National JALMA Institute for Leprosy and Other Mycobacterial Diseases, Tajganj,
Agra (UP)-282001, India
| | - Devesh Sharma
- Department of Biochemistry, ICMR-National JALMA Institute for Leprosy and Other Mycobacterial Diseases, Tajganj,
Agra (UP)-282001, India
| | - Divakar Sharma
- Department of Microbiology, Maulana Azad Medical College, Bahadur Shah Zafar Marg,
New Delhi-110002, India
| | - Sakshi Gautam
- Department of Biochemistry, ICMR-National JALMA Institute for Leprosy and Other Mycobacterial Diseases, Tajganj,
Agra (UP)-282001, India
| | | |
Collapse
|
22
|
Ott L, Möller J, Burkovski A. Interactions between the Re-Emerging Pathogen Corynebacterium diphtheriae and Host Cells. Int J Mol Sci 2022; 23:3298. [PMID: 35328715 PMCID: PMC8952647 DOI: 10.3390/ijms23063298] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 03/16/2022] [Accepted: 03/17/2022] [Indexed: 02/07/2023] Open
Abstract
Corynebacterium diphtheriae, the etiological agent of diphtheria, is a re-emerging pathogen, responsible for several thousand deaths per year. In addition to diphtheria, systemic infections, often by non-toxigenic strains, are increasingly observed. This indicates that besides the well-studied and highly potent diphtheria toxin, various other virulence factors may influence the progression of the infection. This review focuses on the known components of C. diphtheriae responsible for adhesion, invasion, inflammation, and cell death, as well as on the cellular signaling pathways activated upon infection.
Collapse
Affiliation(s)
- Lisa Ott
- Department of Biology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Staudtstr. 5, 91058 Erlangen, Germany
| | - Jens Möller
- Microbiology Division, Friedrich-Alexander-Universität Erlangen-Nürnberg, Staudtstr. 5, 91058 Erlangen, Germany
| | - Andreas Burkovski
- Microbiology Division, Friedrich-Alexander-Universität Erlangen-Nürnberg, Staudtstr. 5, 91058 Erlangen, Germany
| |
Collapse
|
23
|
Banahene N, Kavunja HW, Swarts BM. Chemical Reporters for Bacterial Glycans: Development and Applications. Chem Rev 2022; 122:3336-3413. [PMID: 34905344 PMCID: PMC8958928 DOI: 10.1021/acs.chemrev.1c00729] [Citation(s) in RCA: 50] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Bacteria possess an extraordinary repertoire of cell envelope glycans that have critical physiological functions. Pathogenic bacteria have glycans that are essential for growth and virulence but are absent from humans, making them high-priority targets for antibiotic, vaccine, and diagnostic development. The advent of metabolic labeling with bioorthogonal chemical reporters and small-molecule fluorescent reporters has enabled the investigation and targeting of specific bacterial glycans in their native environments. These tools have opened the door to imaging glycan dynamics, assaying and inhibiting glycan biosynthesis, profiling glycoproteins and glycan-binding proteins, and targeting pathogens with diagnostic and therapeutic payload. These capabilities have been wielded in diverse commensal and pathogenic Gram-positive, Gram-negative, and mycobacterial species─including within live host organisms. Here, we review the development and applications of chemical reporters for bacterial glycans, including peptidoglycan, lipopolysaccharide, glycoproteins, teichoic acids, and capsular polysaccharides, as well as mycobacterial glycans, including trehalose glycolipids and arabinan-containing glycoconjugates. We cover in detail how bacteria-targeting chemical reporters are designed, synthesized, and evaluated, how they operate from a mechanistic standpoint, and how this information informs their judicious and innovative application. We also provide a perspective on the current state and future directions of the field, underscoring the need for interdisciplinary teams to create novel tools and extend existing tools to support fundamental and translational research on bacterial glycans.
Collapse
Affiliation(s)
- Nicholas Banahene
- Department of Chemistry and Biochemistry, Central Michigan University, Mount Pleasant, MI, United States
- Biochemistry, Cell, and Molecular Biology Program, Central Michigan University, Mount Pleasant, MI, United States
| | - Herbert W. Kavunja
- Department of Chemistry and Biochemistry, Central Michigan University, Mount Pleasant, MI, United States
- Biochemistry, Cell, and Molecular Biology Program, Central Michigan University, Mount Pleasant, MI, United States
| | | |
Collapse
|
24
|
Tan YZ, Mancia F. Structure and Function of Mycobacterial Arabinofuranosyltransferases. Subcell Biochem 2022; 99:379-391. [PMID: 36151383 DOI: 10.1007/978-3-031-00793-4_12] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
The mycobacteria genus is responsible for numerous infectious diseases that have afflicted the human race since antiquity-tuberculosis and leprosy in particular. An important contributor to their evolutionary success is their unique cell envelope, which constitutes a quasi-impermeable barrier, protecting the microorganism from external threats, antibiotics included. The arabinofuranosyltransferases are a family of enzymes, unique to the Actinobacteria family that mycobacteria genus belongs to, that are critical to building of this cell envelope. In this chapter, we will analyze available structures of members of the mycobacterial arabinofuranosyltransferase, clarify their function, as well as explore the common themes present amongst this family of enzymes, as revealed by recent research.
Collapse
Affiliation(s)
- Yong Zi Tan
- Department of Biological Sciences, National University of Singapore, Singapore, Singapore.
- Disease Intervention Technology Laboratory (DITL), Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A*STAR), Singapore, Singapore.
| | - Filippo Mancia
- Department of Physiology and Cellular Biophysics, Columbia University, NY, USA
| |
Collapse
|
25
|
Spatiotemporal localization of proteins in mycobacteria. Cell Rep 2021; 37:110154. [PMID: 34965429 PMCID: PMC8861988 DOI: 10.1016/j.celrep.2021.110154] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Revised: 08/16/2021] [Accepted: 12/01/2021] [Indexed: 01/10/2023] Open
Abstract
Although prokaryotic organisms lack traditional organelles, they must still organize cellular structures in space and time, challenges that different species solve differently. To systematically define the subcellular architecture of mycobacteria, we perform high-throughput imaging of a library of fluorescently tagged proteins expressed in Mycobacterium smegmatis and develop a customized computational pipeline, MOMIA and GEMATRIA, to analyze these data. Our results establish a spatial organization network of over 700 conserved mycobacterial proteins and reveal a coherent localization pattern for many proteins of known function, including those in translation, energy metabolism, cell growth and division, as well as proteins of unknown function. Furthermore, our pipeline exploits morphologic proxies to enable a pseudo-temporal approximation of protein localization and identifies previously uncharacterized cell-cycle-dependent dynamics of essential mycobacterial proteins. Collectively, these data provide a systems perspective on the subcellular organization of mycobacteria and provide tools for the analysis of bacteria with non-standard growth characteristics. Zhu et al. develop a two-stage image analysis pipeline, MOMIA and GEMATRIA, that efficiently models the spatial and temporal dynamics of over 700 conserved proteins in M. smegmatis. Through the analysis they report spatial constraints of mycobacterial ribosomes and membrane complexes and reconstruct temporal dynamics from still image data.
Collapse
|
26
|
Pajuelo D, Tak U, Zhang L, Danilchanka O, Tischler AD, Niederweis M. Toxin secretion and trafficking by Mycobacterium tuberculosis. Nat Commun 2021; 12:6592. [PMID: 34782620 PMCID: PMC8593097 DOI: 10.1038/s41467-021-26925-1] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Accepted: 10/27/2021] [Indexed: 12/30/2022] Open
Abstract
The tuberculosis necrotizing toxin (TNT) is the major cytotoxicity factor of Mycobacterium tuberculosis (Mtb) in macrophages. TNT is the C-terminal domain of the outer membrane protein CpnT and gains access to the cytosol to kill macrophages infected with Mtb. However, molecular mechanisms of TNT secretion and trafficking are largely unknown. A comprehensive analysis of the five type VII secretion systems of Mtb revealed that the ESX-4 system is required for export of CpnT and surface accessibility of TNT. Furthermore, the ESX-2 and ESX-4 systems are required for permeabilization of the phagosomal membrane in addition to the ESX-1 system. Thus, these three ESX systems need to act in concert to enable trafficking of TNT into the cytosol of Mtb-infected macrophages. These discoveries establish new molecular roles for the two previously uncharacterized type VII secretion systems ESX-2 and ESX-4 and reveal an intricate link between toxin secretion and phagosomal permeabilization by Mtb. The tuberculosis necrotizing toxin (TNT) is the major cytotoxicity factor of M. tuberculosis (Mtb). Mtb possesses five type VII secretion systems (ESX). Pajuelo et al. show that the ESX-4 system is required for TNT secretion and that ESX-2 and ESX-4 systems work in concert with ESX-1 to permeabilize the phagosomal membrane and enable trafficking of TNT into the cytoplasm of macrophages infected with Mtb.
Collapse
Affiliation(s)
- David Pajuelo
- Department of Microbiology, University of Alabama at Birmingham, 609 Bevill Biomedical Research Building, 845 19th Street South, Birmingham, AL, 35294, USA
| | - Uday Tak
- Department of Microbiology, University of Alabama at Birmingham, 609 Bevill Biomedical Research Building, 845 19th Street South, Birmingham, AL, 35294, USA.,University of Colorado Boulder, Jennie Smoly Caruthers Biotechnology Building B255, 3415 Colorado Avenue, Boulder, CO, 80303, USA
| | - Lei Zhang
- Department of Microbiology, University of Alabama at Birmingham, 609 Bevill Biomedical Research Building, 845 19th Street South, Birmingham, AL, 35294, USA
| | - Olga Danilchanka
- Department of Microbiology, University of Alabama at Birmingham, 609 Bevill Biomedical Research Building, 845 19th Street South, Birmingham, AL, 35294, USA.,Merck & Co., Inc., Cambridge, MA, 02141, USA
| | - Anna D Tischler
- Department of Microbiology and Immunology, University of Minnesota Twin Cities, Minneapolis, MN, 55455, USA
| | - Michael Niederweis
- Department of Microbiology, University of Alabama at Birmingham, 609 Bevill Biomedical Research Building, 845 19th Street South, Birmingham, AL, 35294, USA.
| |
Collapse
|
27
|
Biegas KJ, Swarts BM. Chemical probes for tagging mycobacterial lipids. Curr Opin Chem Biol 2021; 65:57-65. [PMID: 34216933 DOI: 10.1016/j.cbpa.2021.05.009] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Accepted: 05/20/2021] [Indexed: 12/13/2022]
Abstract
Mycobacteria, which cause tuberculosis and related diseases, possess a diverse set of complex envelope lipids that provide remarkable tolerance to antibiotics and are major virulence factors that drive pathogenesis. Recently, metabolic labeling and bio-orthogonal chemistry have been harnessed to develop chemical probes for tagging specific lipids in live mycobacteria, enabling a range of new basic and translational research avenues. A toolbox of probes has been developed for labeling mycolic acids and their derivatives, including trehalose-, arabinogalactan-, and protein-linked mycolates, as well as newer probes for labeling phthiocerol dimycocerosates (PDIMs) and potentially other envelope lipids. These lipid-centric tools have yielded fresh insights into mycobacterial growth and host interactions, provided new avenues for drug target discovery and characterization, and inspired innovative diagnostic and therapeutic strategies.
Collapse
Affiliation(s)
- Kyle J Biegas
- Department of Chemistry and Biochemistry, Central Michigan University, Mount Pleasant, MI, USA
| | - Benjamin M Swarts
- Department of Chemistry and Biochemistry, Central Michigan University, Mount Pleasant, MI, USA.
| |
Collapse
|
28
|
Jackson M, Stevens CM, Zhang L, Zgurskaya HI, Niederweis M. Transporters Involved in the Biogenesis and Functionalization of the Mycobacterial Cell Envelope. Chem Rev 2021; 121:5124-5157. [PMID: 33170669 PMCID: PMC8107195 DOI: 10.1021/acs.chemrev.0c00869] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The biology of mycobacteria is dominated by a complex cell envelope of unique composition and structure and of exceptionally low permeability. This cell envelope is the basis of many of the pathogenic features of mycobacteria and the site of susceptibility and resistance to many antibiotics and host defense mechanisms. This review is focused on the transporters that assemble and functionalize this complex structure. It highlights both the progress and the limits of our understanding of how (lipo)polysaccharides, (glyco)lipids, and other bacterial secretion products are translocated across the different layers of the cell envelope to their final extra-cytoplasmic location. It further describes some of the unique strategies evolved by mycobacteria to import nutrients and other products through this highly impermeable barrier.
Collapse
Affiliation(s)
- Mary Jackson
- Mycobacteria Research Laboratories, Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO 80523-1682, USA
| | - Casey M. Stevens
- University of Oklahoma, Department of Chemistry and Biochemistry, 101 Stephenson Parkway, Norman, OK 73019, USA
| | - Lei Zhang
- Department of Microbiology, University of Alabama at Birmingham, 845 19th Street South, Birmingham, AL 35294, USA
| | - Helen I. Zgurskaya
- University of Oklahoma, Department of Chemistry and Biochemistry, 101 Stephenson Parkway, Norman, OK 73019, USA
| | - Michael Niederweis
- Department of Microbiology, University of Alabama at Birmingham, 845 19th Street South, Birmingham, AL 35294, USA
| |
Collapse
|
29
|
Mirzaei R, Babakhani S, Ajorloo P, Ahmadi RH, Hosseini-Fard SR, Keyvani H, Ahmadyousefi Y, Teimoori A, Zamani F, Karampoor S, Yousefimashouf R. The emerging role of exosomal miRNAs as a diagnostic and therapeutic biomarker in Mycobacterium tuberculosis infection. Mol Med 2021; 27:34. [PMID: 33794771 PMCID: PMC8017856 DOI: 10.1186/s10020-021-00296-1] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Accepted: 03/24/2021] [Indexed: 12/14/2022] Open
Abstract
Tuberculosis (TB), caused by Mycobacterium tuberculosis (Mtb), has been the world's driving fatal bacterial contagious disease globally. It continues a public health emergency, and around one-third of the global community has been affected by latent TB infection (LTBI). This is mostly due to the difficulty in diagnosing and treating patients with TB and LTBI. Exosomes are nanovesicles (40-100 nm) released from different cell types, containing proteins, lipids, mRNA, and miRNA, and they allow the transfer of one's cargo to other cells. The functional and diagnostic potential of exosomal miRNAs has been demonstrated in bacterial infections, including TB. Besides, it has been recognized that cells infected by intracellular pathogens such as Mtb can be secreting an exosome, which is implicated in the infection's fate. Exosomes, therefore, open a unique viewpoint on the investigative process of TB pathogenicity. This study explores the possible function of exosomal miRNAs as a diagnostic biomarker. Moreover, we include the latest data on the pathogenic and therapeutic role of exosomal miRNAs in TB.
Collapse
Affiliation(s)
- Rasoul Mirzaei
- Department of Microbiology, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran.
- Venom and Biotherapeutics Molecules Lab, Medical Biotechnology Department, Biotechnology Research Center, Pasteur Institute of Iran, Tehran, Iran.
| | - Sajad Babakhani
- Department of Microbiology, North Tehran Branch, Islamic Azad University, Tehran, Iran
| | - Parisa Ajorloo
- Department of Biology, Sciences and Research Branch, Islamic Azad University, Tehran, Iran
| | - Razieh Heidari Ahmadi
- Department of Genetics, Faculty of Advanced Sciences and Technology, Tehran Medical Sciences Islamic Azad University, Tehran, Iran
| | - Seyed Reza Hosseini-Fard
- Department of Biochemistry, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Hossein Keyvani
- Gastrointestinal and Liver Diseases Research Center, Iran University of Medical Sciences, Tehran, Iran
- Department of Virology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Yaghoub Ahmadyousefi
- Department of Medical Biotechnology, School of Advanced Medical Sciences and Technologies, Hamadan University of Medical Sciences, Hamadan, Iran
- Research Center for Molecular Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Ali Teimoori
- Department of Virology, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Farhad Zamani
- Gastrointestinal and Liver Diseases Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Sajad Karampoor
- Gastrointestinal and Liver Diseases Research Center, Iran University of Medical Sciences, Tehran, Iran.
- Department of Virology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran.
| | - Rasoul Yousefimashouf
- Department of Microbiology, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran.
- Research Center for Molecular Medicine, Hamadan University of Medical Sciences, Hamadan, Iran.
| |
Collapse
|
30
|
Ehtram A, Shariq M, Ali S, Quadir N, Sheikh JA, Ahmad F, Sharma T, Ehtesham NZ, Hasnain SE. Teleological cooption of Mycobacterium tuberculosis PE/PPE proteins as porins: Role in molecular immigration and emigration. Int J Med Microbiol 2021; 311:151495. [PMID: 33730677 DOI: 10.1016/j.ijmm.2021.151495] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Revised: 02/01/2021] [Accepted: 03/05/2021] [Indexed: 01/09/2023] Open
Abstract
Permeation through bacterial cells for exchange or uptake of biomolecules and ions invariably depend upon the existence of pore-forming proteins (porins) in their outer membrane. Mycobacterium tuberculosis (M. tb) harbours one of the most rigid cell envelopes across bacterial genera and is devoid of the classical porins for solute transport across the cell membrane. Though canonical porins are incompatible with the evolution of permeability barrier, porin like activity has been reported from membrane preparations of pathogenic mycobacteria. This suggests a sophisticated transport mechanism that has been elusive until now, along with the protein family responsible for it. Recent evidence suggests that these slow-growing mycobacteria have co-opted some of PE/PPE family proteins as molecular transport channels, in place of porins, to facilitate uptake of nutrients required to thrive in the restrictive host environment. These reports advocate that PE/PPE proteins, due to their structural ability, have a potential role in importing small molecules to the cell's interior. This mechanism unveils how a successful pathogen overcomes its restrictive membrane's transport limitations for selective uptake of nutrients. If extrapolated to have a role in drug transport, these channels could help understand the emergence of drug resistance. Further, as these proteins are associated with the export of virulence factors, they can be exploited as novel drug targets. There remains, however, an interesting question that as the PE/PPE proteins can allow the 'import' of molecules from outside the cell, is the reverse transport also possible across the M. tb membrane. In this review, we have discussed recent evidence supporting PE/PPE's role as a specific transport channel for selective uptake of small molecule nutrients and, as possible molecular export machinery of M. tb. This newly discovered role as transmembrane channels demands further research on this enigmatic family of proteins to comprehend the pathomechanism of this very smart pathogen.
Collapse
Affiliation(s)
- Aquib Ehtram
- Kusuma School of Biological Sciences, Indian Institute of Technology Delhi, New Delhi, India
| | - Mohd Shariq
- ICMR-National Institute of Pathology, Ansari Nagar West, New Delhi, India
| | - Sabeeha Ali
- Kusuma School of Biological Sciences, Indian Institute of Technology Delhi, New Delhi, India
| | - Neha Quadir
- ICMR-National Institute of Pathology, Ansari Nagar West, New Delhi, India; Jamia Hamdard- Institute of Molecular Medicine, Jamia Hamdard, Hamdard Nagar, New Delhi, India
| | - Javaid A Sheikh
- Department of Biotechnology, School of Chemical and Life Sciences, Jamia Hamdard, Hamdard Nagar, New Delhi, 110062, India
| | - Faraz Ahmad
- ICMR-National Institute of Pathology, Ansari Nagar West, New Delhi, India
| | - Tarina Sharma
- Kusuma School of Biological Sciences, Indian Institute of Technology Delhi, New Delhi, India; ICMR-National Institute of Pathology, Ansari Nagar West, New Delhi, India
| | - Nasreen Z Ehtesham
- ICMR-National Institute of Pathology, Ansari Nagar West, New Delhi, India.
| | - Seyed E Hasnain
- Department of Biochemical Engineering and Biotechnology, Indian Institute of Technology Delhi, New Delhi, India; Dr Reddy's Institute of Life Sciences, University of Hyderabad Campus, Hyderabad, India.
| |
Collapse
|
31
|
De Novo Cobalamin Biosynthesis, Transport, and Assimilation and Cobalamin-Mediated Regulation of Methionine Biosynthesis in Mycobacterium smegmatis. J Bacteriol 2021; 203:JB.00620-20. [PMID: 33468593 PMCID: PMC8088520 DOI: 10.1128/jb.00620-20] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2020] [Accepted: 01/08/2021] [Indexed: 02/07/2023] Open
Abstract
Alterations in cobalamin-dependent metabolism have marked the evolution of Mycobacterium tuberculosis into a human pathogen. However, the role(s) of cobalamin in mycobacterial physiology remain poorly understood. Cobalamin is an essential cofactor in all domains of life, yet its biosynthesis is restricted to some bacteria and archaea. Mycobacterium smegmatis, an environmental saprophyte frequently used as surrogate for the obligate human pathogen M. tuberculosis, carries approximately 30 genes predicted to be involved in de novo cobalamin biosynthesis. M. smegmatis also encodes multiple cobalamin-dependent enzymes, including MetH, a methionine synthase that catalyzes the final reaction in methionine biosynthesis. In addition to metH, M. smegmatis possesses a cobalamin-independent methionine synthase, metE, suggesting that enzyme use—MetH versus MetE—is regulated by cobalamin availability. Consistent with this notion, we previously described a cobalamin-sensing riboswitch controlling metE expression in M. tuberculosis. Here, we apply a targeted mass spectrometry-based approach to confirm de novo cobalamin biosynthesis in M. smegmatis during aerobic growth in vitro. We also demonstrate that M. smegmatis can transport and assimilate exogenous cyanocobalamin (CNCbl; also known as vitamin B12) and its precursor, dicyanocobinamide ([CN]2Cbi). However, the uptake of CNCbl and (CN)2Cbi in this organism is restricted and seems dependent on the conditional essentiality of the cobalamin-dependent methionine synthase. Using gene and protein expression analyses combined with single-cell growth kinetics and live-cell time-lapse microscopy, we show that transcription and translation of metE are strongly attenuated by endogenous cobalamin. These results support the inference that metH essentiality in M. smegmatis results from riboswitch-mediated repression of MetE expression. Moreover, differences observed in cobalamin-dependent metabolism between M. smegmatis and M. tuberculosis provide some insight into the selective pressures which might have shaped mycobacterial metabolism for pathogenicity. IMPORTANCE Alterations in cobalamin-dependent metabolism have marked the evolution of Mycobacterium tuberculosis into a human pathogen. However, the role(s) of cobalamin in mycobacterial physiology remains poorly understood. Using the nonpathogenic saprophyte M. smegmatis, we investigated the production of cobalamin, transport and assimilation of cobalamin precursors, and the role of cobalamin in regulating methionine biosynthesis. We confirm constitutive de novo cobalamin biosynthesis in M. smegmatis, in contrast with M. tuberculosis, which appears to lack de novo cobalamin biosynthetic capacity. We also show that uptake of cyanocobalamin (vitamin B12) and its precursors is restricted in M. smegmatis, apparently depending on the cofactor requirements of the cobalamin-dependent methionine synthase. These observations establish M. smegmatis as an informative foil to elucidate key metabolic adaptations enabling mycobacterial pathogenicity.
Collapse
|
32
|
Allué-Guardia A, García JI, Torrelles JB. Evolution of Drug-Resistant Mycobacterium tuberculosis Strains and Their Adaptation to the Human Lung Environment. Front Microbiol 2021; 12:612675. [PMID: 33613483 PMCID: PMC7889510 DOI: 10.3389/fmicb.2021.612675] [Citation(s) in RCA: 111] [Impact Index Per Article: 27.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Accepted: 01/15/2021] [Indexed: 12/12/2022] Open
Abstract
In the last two decades, multi (MDR), extensively (XDR), extremely (XXDR) and total (TDR) drug-resistant Mycobacterium tuberculosis (M.tb) strains have emerged as a threat to public health worldwide, stressing the need to develop new tuberculosis (TB) prevention and treatment strategies. It is estimated that in the next 35 years, drug-resistant TB will kill around 75 million people and cost the global economy $16.7 trillion. Indeed, the COVID-19 pandemic alone may contribute with the development of 6.3 million new TB cases due to lack of resources and enforced confinement in TB endemic areas. Evolution of drug-resistant M.tb depends on numerous factors, such as bacterial fitness, strain's genetic background and its capacity to adapt to the surrounding environment, as well as host-specific and environmental factors. Whole-genome transcriptomics and genome-wide association studies in recent years have shed some insights into the complexity of M.tb drug resistance and have provided a better understanding of its underlying molecular mechanisms. In this review, we will discuss M.tb phenotypic and genotypic changes driving resistance, including changes in cell envelope components, as well as recently described intrinsic and extrinsic factors promoting resistance emergence and transmission. We will further explore how drug-resistant M.tb adapts differently than drug-susceptible strains to the lung environment at the cellular level, modulating M.tb-host interactions and disease outcome, and novel next generation sequencing (NGS) strategies to study drug-resistant TB.
Collapse
Affiliation(s)
- Anna Allué-Guardia
- Population Health Program, Tuberculosis Group, Texas Biomedical Research Institute, San Antonio, TX, United States
| | | | - Jordi B. Torrelles
- Population Health Program, Tuberculosis Group, Texas Biomedical Research Institute, San Antonio, TX, United States
| |
Collapse
|
33
|
Pore-forming Esx proteins mediate toxin secretion by Mycobacterium tuberculosis. Nat Commun 2021; 12:394. [PMID: 33452244 PMCID: PMC7810871 DOI: 10.1038/s41467-020-20533-1] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Accepted: 11/25/2020] [Indexed: 01/29/2023] Open
Abstract
Mycobacterium tuberculosis secretes the tuberculosis necrotizing toxin (TNT) to kill host cells. Here, we show that the WXG100 proteins EsxE and EsxF are essential for TNT secretion. EsxE and EsxF form a water-soluble heterodimer (EsxEF) that assembles into oligomers and long filaments, binds to membranes, and forms stable membrane-spanning channels. Electron microscopy of EsxEF reveals mainly pentameric structures with a central pore. Mutations of both WXG motifs and of a GXW motif do not affect dimerization, but abolish pore formation, membrane deformation and TNT secretion. The WXG/GXW mutants are locked in conformations with altered thermostability and solvent exposure, indicating that the WXG/GXW motifs are molecular switches controlling membrane interaction and pore formation. EsxF is accessible on the bacterial cell surface, suggesting that EsxEF form an outer membrane channel for toxin export. Thus, our study reveals a protein secretion mechanism in bacteria that relies on pore formation by small WXG proteins.
Collapse
|
34
|
Barbero AM, Trotta A, Genoula M, Pino REHD, Estermann MA, Celano J, Fuentes F, García VE, Balboa L, Barrionuevo P, Pasquinelli V. SLAMF1 signaling induces Mycobacterium tuberculosis uptake leading to endolysosomal maturation in human macrophages. J Leukoc Biol 2020; 109:257-273. [PMID: 32991756 DOI: 10.1002/jlb.4ma0820-655rr] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2020] [Revised: 08/19/2020] [Accepted: 09/02/2020] [Indexed: 01/18/2023] Open
Abstract
Tuberculosis dates back to ancient times but it is not a problem of the past. Each year, millions of people die from tuberculosis. After inhalation of infectious droplet nuclei, Mycobacterium tuberculosis reaches the lungs where it can manipulate the immune system and survive within host macrophages, establishing a persistent infection. The signaling lymphocytic activation molecule family member 1 (SLAMF1) is a self-ligand receptor that can internalize gram-negative bacteria and regulate macrophages' phagosomal functions. In tuberculosis, SLAMF1 promotes Th1-protective responses. In this work, we studied the role of SLAMF1 on macrophages' functions during M. tuberculosis infection. Our results showed that both M. tuberculosis and IFN-γ stimulation induce SLAMF1 expression in macrophages from healthy donor and Tohoku Hospital Pediatrcs-1 cells. Costimulation through SLAMF1 with an agonistic antibody resulted in an enhanced internalization of M. tuberculosis by macrophages. Interestingly, we found that SLAMF1 interacts with M. tuberculosis and colocalizes with the bacteria and with early and late endosomes/lysosomes markers (EEA1 and LAMP2), suggesting that SLAMF1 recognize M. tuberculosis and participate in the endolysosomal maturation process. Notably, increased levels of SLAMF1 were detected in CD14 cells from pleural effusions of tuberculosis patients, indicating that SLAMF1 might have an active function at the site of infection. Taken together, our results provide evidence that SLAMF1 improves the uptake of M. tuberculosis by human monocyte-derived macrophages.
Collapse
Affiliation(s)
- Angela María Barbero
- Center for Basic and Applied Research (CIBA), National University of the Northwest of the Province of Buenos Aires (UNNOBA), B6000DNE, Buenos Aires, Argentina.,Center for Research and Transfers of the Northwest of the Province of Buenos Aires (CIT NOBA), UNNOBA-National University of San Antonio de Areco (UNSAdA) - National Scientific and Technical Research Council (CONICET), Buenos Aires, Argentina
| | - Aldana Trotta
- Institute of Experimental Medicine (CONICET-National Academy of Medicine), C1425ASU, Buenos Aires, Argentina
| | - Melanie Genoula
- Institute of Experimental Medicine (CONICET-National Academy of Medicine), C1425ASU, Buenos Aires, Argentina
| | - Rodrigo Emanuel Hernández Del Pino
- Center for Basic and Applied Research (CIBA), National University of the Northwest of the Province of Buenos Aires (UNNOBA), B6000DNE, Buenos Aires, Argentina.,Center for Research and Transfers of the Northwest of the Province of Buenos Aires (CIT NOBA), UNNOBA-National University of San Antonio de Areco (UNSAdA) - National Scientific and Technical Research Council (CONICET), Buenos Aires, Argentina
| | - Martín Andrés Estermann
- Center for Basic and Applied Research (CIBA), National University of the Northwest of the Province of Buenos Aires (UNNOBA), B6000DNE, Buenos Aires, Argentina.,Department of Anatomy and Developmental Biology, Monash Biomedicine Discovery Institute, Monash University, Victoria, Clayton, Australia
| | - Josefina Celano
- Center for Basic and Applied Research (CIBA), National University of the Northwest of the Province of Buenos Aires (UNNOBA), B6000DNE, Buenos Aires, Argentina
| | - Federico Fuentes
- Institute of Experimental Medicine (CONICET-National Academy of Medicine), C1425ASU, Buenos Aires, Argentina
| | - Verónica Edith García
- CONICET-University of Buenos Aires, Institute of Biological Chemistry of Exact and Natural Sciences (IQUIBICEN), C1428EHA, Buenos Aires, Argentina.,University of Buenos Aires, School of Sciences, Department of Biological Chemistry, C1428EHA, Buenos Aires, Argentina
| | - Luciana Balboa
- Institute of Experimental Medicine (CONICET-National Academy of Medicine), C1425ASU, Buenos Aires, Argentina
| | - Paula Barrionuevo
- Institute of Experimental Medicine (CONICET-National Academy of Medicine), C1425ASU, Buenos Aires, Argentina
| | - Virginia Pasquinelli
- Center for Basic and Applied Research (CIBA), National University of the Northwest of the Province of Buenos Aires (UNNOBA), B6000DNE, Buenos Aires, Argentina.,Center for Research and Transfers of the Northwest of the Province of Buenos Aires (CIT NOBA), UNNOBA-National University of San Antonio de Areco (UNSAdA) - National Scientific and Technical Research Council (CONICET), Buenos Aires, Argentina
| |
Collapse
|
35
|
Andrei A, Öztürk Y, Khalfaoui-Hassani B, Rauch J, Marckmann D, Trasnea PI, Daldal F, Koch HG. Cu Homeostasis in Bacteria: The Ins and Outs. MEMBRANES 2020; 10:E242. [PMID: 32962054 PMCID: PMC7558416 DOI: 10.3390/membranes10090242] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/22/2020] [Revised: 09/11/2020] [Accepted: 09/15/2020] [Indexed: 12/16/2022]
Abstract
Copper (Cu) is an essential trace element for all living organisms and used as cofactor in key enzymes of important biological processes, such as aerobic respiration or superoxide dismutation. However, due to its toxicity, cells have developed elaborate mechanisms for Cu homeostasis, which balance Cu supply for cuproprotein biogenesis with the need to remove excess Cu. This review summarizes our current knowledge on bacterial Cu homeostasis with a focus on Gram-negative bacteria and describes the multiple strategies that bacteria use for uptake, storage and export of Cu. We furthermore describe general mechanistic principles that aid the bacterial response to toxic Cu concentrations and illustrate dedicated Cu relay systems that facilitate Cu delivery for cuproenzyme biogenesis. Progress in understanding how bacteria avoid Cu poisoning while maintaining a certain Cu quota for cell proliferation is of particular importance for microbial pathogens because Cu is utilized by the host immune system for attenuating pathogen survival in host cells.
Collapse
Affiliation(s)
- Andreea Andrei
- Institut für Biochemie und Molekularbiologie, ZBMZ, Medizinische Fakultät, Albert-Ludwigs Universität Freiburg; Stefan Meier Str. 17, 79104 Freiburg, Germany; (A.A.); (Y.O.); (J.R.); (D.M.)
- Fakultät für Biologie, Albert-Ludwigs Universität Freiburg; Schänzlestrasse 1, 79104 Freiburg, Germany
| | - Yavuz Öztürk
- Institut für Biochemie und Molekularbiologie, ZBMZ, Medizinische Fakultät, Albert-Ludwigs Universität Freiburg; Stefan Meier Str. 17, 79104 Freiburg, Germany; (A.A.); (Y.O.); (J.R.); (D.M.)
| | | | - Juna Rauch
- Institut für Biochemie und Molekularbiologie, ZBMZ, Medizinische Fakultät, Albert-Ludwigs Universität Freiburg; Stefan Meier Str. 17, 79104 Freiburg, Germany; (A.A.); (Y.O.); (J.R.); (D.M.)
| | - Dorian Marckmann
- Institut für Biochemie und Molekularbiologie, ZBMZ, Medizinische Fakultät, Albert-Ludwigs Universität Freiburg; Stefan Meier Str. 17, 79104 Freiburg, Germany; (A.A.); (Y.O.); (J.R.); (D.M.)
| | | | - Fevzi Daldal
- Department of Biology, University of Pennsylvania, Philadelphia, PA 19104, USA;
| | - Hans-Georg Koch
- Institut für Biochemie und Molekularbiologie, ZBMZ, Medizinische Fakultät, Albert-Ludwigs Universität Freiburg; Stefan Meier Str. 17, 79104 Freiburg, Germany; (A.A.); (Y.O.); (J.R.); (D.M.)
| |
Collapse
|
36
|
Features of the biochemistry of Mycobacterium smegmatis, as a possible model for Mycobacterium tuberculosis. J Infect Public Health 2020; 13:1255-1264. [PMID: 32674978 DOI: 10.1016/j.jiph.2020.06.023] [Citation(s) in RCA: 65] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Revised: 05/28/2020] [Accepted: 06/17/2020] [Indexed: 12/13/2022] Open
Abstract
An alternate host for mycobacteria is Mycobacterium smegmatis which is used frequently. It is a directly budding eco-friendly organism not emulated as human infection. It is mainly useful for the investigation of various microorganisms in the sort of Mycobacteria in cell culture laboratories. Some Mycobacterium species groups that is normal, unsafe ailments, likely to Mycobacterium leprae, Mycobacterium tuberculosis and Mycobacterium bovis. At present, various laboratories are clean and culture this type of species to make an opinion that fascinating route of harmful Mycobacteria. This publication provides aggregate data on cell shape, genome studies, ecology, pathology and utilization of M. smegmatis.
Collapse
|
37
|
Kwofie SK, Adobor C, Quansah E, Bentil J, Ampadu M, Miller WA, Wilson MD. Molecular docking and dynamics simulations studies of OmpATb identifies four potential novel natural product-derived anti-Mycobacterium tuberculosis compounds. Comput Biol Med 2020; 122:103811. [PMID: 32479349 DOI: 10.1016/j.compbiomed.2020.103811] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Revised: 05/03/2020] [Accepted: 05/03/2020] [Indexed: 11/18/2022]
Abstract
The outer membrane protein A (OmpATb) of Mycobacterium tuberculosis is a virulence factor that neutralizes the host pH to impede the uptake of hydrophilic antitubercular drugs. Identifying natural compounds with the potential to inhibit OmpATb could allow circumvention of the porin-like activities of OmpATb. Four potential leads comprising ZINC000003958185, ZINC000000157405, ZINC000000001392 and ZINC000034268676 were obtained by virtual screening of 6394 diverse natural products. Characterization of the binding interactions of the potential leads with OmpATb revealed nine critical residues comprising ARG86, LEU110, LEU113, LEU114, ALA115, PHE142, SER145, VAL146, and PHE151. Molecular dynamics simulations also revealed very stable protein-lead complexes. Most residues contributed lower binding energies to the overall molecular mechanics Poisson-Boltzmann surface area (MM-PBSA) binding free energies of the interactions between the molecules and OmpATb protein. Induced Fit Docking (IFD) of the compounds regenerated poses of the molecular docking using AutoDock Vina. These molecules could be starting templates for designing inhibitors to bypass the pore mediating activities of OmpATb. Based on structural similarity, ZINC000034268676 was suggested as a potential scaffold for designing efflux pump inhibitors of the gate mediating activities of OmpATb and may enhance the uptake of hydrophilic drugs to reduce the duration time of tuberculosis treatment. Furthermore, structurally similar compounds available in the DrugBank database with a similarity threshold of 0.7 have been reported to exhibit antitubercular and anti-mycobacterial activities. These biomolecules can be further characterized experimentally to corroborate their antitubercular activity. Also, the skeletons of the molecules can be adopted as sub-structures for the design of future anti-mycobacterial drugs.
Collapse
Affiliation(s)
- Samuel K Kwofie
- Department of Biomedical Engineering, School of Engineering Sciences, College of Basic & Applied Sciences, University of Ghana, PMB LG 77, Legon, Accra, Ghana; West African Centre for Cell Biology of Infectious Pathogens, Department of Biochemistry, Cell and Molecular Biology, College of Basic and Applied Sciences, University of Ghana, Accra, Ghana; Department of Medicine, Loyola University Medical Center, Maywood, IL, 60153, USA; Department of Physics and Engineering Science, Coastal Carolina University, Conway, SC, 29528, USA.
| | - Courage Adobor
- Department of Biomedical Engineering, School of Engineering Sciences, College of Basic & Applied Sciences, University of Ghana, PMB LG 77, Legon, Accra, Ghana; Department of Parasitology, Noguchi Memorial Institute for Medical Research (NMIMR), College of Health Sciences (CHS), University of Ghana, P.O. Box LG 581, Legon, Accra, Ghana
| | - Erasmus Quansah
- Department of Biomedical Engineering, School of Engineering Sciences, College of Basic & Applied Sciences, University of Ghana, PMB LG 77, Legon, Accra, Ghana
| | - Joana Bentil
- Department of Biomedical Engineering, School of Engineering Sciences, College of Basic & Applied Sciences, University of Ghana, PMB LG 77, Legon, Accra, Ghana
| | - Michael Ampadu
- Department of Biomedical Engineering, School of Engineering Sciences, College of Basic & Applied Sciences, University of Ghana, PMB LG 77, Legon, Accra, Ghana
| | - Whelton A Miller
- Department of Medicine, Loyola University Medical Center, Maywood, IL, 60153, USA; Department of Chemical and Biomolecular Engineering, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, PA, USA
| | - Michael D Wilson
- Department of Parasitology, Noguchi Memorial Institute for Medical Research (NMIMR), College of Health Sciences (CHS), University of Ghana, P.O. Box LG 581, Legon, Accra, Ghana; Department of Medicine, Loyola University Medical Center, Maywood, IL, 60153, USA
| |
Collapse
|
38
|
Kavunja HW, Biegas KJ, Banahene N, Stewart JA, Piligian BF, Groenevelt JM, Sein CE, Morita YS, Niederweis M, Siegrist MS, Swarts BM. Photoactivatable Glycolipid Probes for Identifying Mycolate-Protein Interactions in Live Mycobacteria. J Am Chem Soc 2020; 142:7725-7731. [PMID: 32293873 PMCID: PMC7949286 DOI: 10.1021/jacs.0c01065] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Mycobacteria have a distinctive glycolipid-rich outer membrane, the mycomembrane, which is a critical target for tuberculosis drug development. However, proteins that associate with the mycomembrane, or that are involved in its metabolism and host interactions, are not well-characterized. To facilitate the study of mycomembrane-related proteins, we developed photoactivatable trehalose monomycolate analogues that metabolically incorporate into the mycomembrane in live mycobacteria, enabling in vivo photo-cross-linking and click-chemistry-mediated analysis of mycolate-interacting proteins. When deployed in Mycobacterium smegmatis with quantitative proteomics, this strategy enriched over 100 proteins, including the mycomembrane porin (MspA), several proteins with known mycomembrane synthesis or remodeling functions (CmrA, MmpL3, Ag85, Tdmh), and numerous candidate mycolate-interacting proteins. Our approach is highly versatile, as it (i) enlists click chemistry for flexible protein functionalization; (ii) in principle can be applied to any mycobacterial species to identify endogenous bacterial proteins or host proteins that interact with mycolates; and (iii) can potentially be expanded to investigate protein interactions with other mycobacterial lipids. This tool is expected to help elucidate fundamental physiological and pathological processes related to the mycomembrane and may reveal novel diagnostic and therapeutic targets.
Collapse
Affiliation(s)
- Herbert W Kavunja
- Department of Chemistry and Biochemistry, Central Michigan University, Mount Pleasant, Michigan 48859, United States
| | - Kyle J Biegas
- Department of Chemistry and Biochemistry, Central Michigan University, Mount Pleasant, Michigan 48859, United States
| | - Nicholas Banahene
- Department of Chemistry and Biochemistry, Central Michigan University, Mount Pleasant, Michigan 48859, United States
| | - Jessica A Stewart
- Department of Chemistry and Biochemistry, Central Michigan University, Mount Pleasant, Michigan 48859, United States
| | - Brent F Piligian
- Department of Chemistry and Biochemistry, Central Michigan University, Mount Pleasant, Michigan 48859, United States
| | - Jessica M Groenevelt
- Department of Chemistry and Biochemistry, Central Michigan University, Mount Pleasant, Michigan 48859, United States
| | - Caralyn E Sein
- Department of Microbiology, University of Massachusetts, Amherst, Massachusetts 01003, United States
| | - Yasu S Morita
- Department of Microbiology, University of Massachusetts, Amherst, Massachusetts 01003, United States
- Molecular and Cellular Biology Graduate Program, University of Massachusetts, Amherst, Massachusetts 01003, United States
| | - Michael Niederweis
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, Alabama 35294, United States
| | - M Sloan Siegrist
- Department of Microbiology, University of Massachusetts, Amherst, Massachusetts 01003, United States
- Molecular and Cellular Biology Graduate Program, University of Massachusetts, Amherst, Massachusetts 01003, United States
| | - Benjamin M Swarts
- Department of Chemistry and Biochemistry, Central Michigan University, Mount Pleasant, Michigan 48859, United States
| |
Collapse
|
39
|
Tucci P, Portela M, Chetto CR, González-Sapienza G, Marín M. Integrative proteomic and glycoproteomic profiling of Mycobacterium tuberculosis culture filtrate. PLoS One 2020; 15:e0221837. [PMID: 32126063 PMCID: PMC7053730 DOI: 10.1371/journal.pone.0221837] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2019] [Accepted: 02/10/2020] [Indexed: 12/20/2022] Open
Abstract
Despite being the subject of intensive research, tuberculosis, caused by Mycobacterium tuberculosis, remains at present the leading cause of death from an infectious agent. Secreted and cell wall proteins interact with the host and play important roles in pathogenicity. These proteins are explored as candidate diagnostic markers, potential drug targets or vaccine antigens, and more recently special attention is being given to the role of their post-translational modifications. With the purpose of contributing to the proteomic and glycoproteomic characterization of this important pathogen, we performed a shotgun analysis of culture filtrate proteins of M. tuberculosis based on a liquid nano-HPLC tandem mass spectrometry and a label-free spectral counting normalization approach for protein quantification. We identified 1314 M. tuberculosis proteins in culture filtrate and found that the most abundant proteins belong to the extracellular region or cell wall compartment, and that the functional categories with higher protein abundance factor were virulence, detoxification and adaptation, and cell wall and cell processes. We could identify a group of proteins consistently detected in previous studies, most of which were highly abundant proteins. In culture filtrate, 140 proteins were predicted to contain one of the three types of bacterial N-terminal signal peptides. Besides, various proteins belonging to the ESX secretion systems, and to the PE and PPE families, secreted by the type VII secretion system using nonclassical secretion signals, were also identified. O-glycosylation was identified in 46 proteins, many of them lipoproteins and cell wall associated proteins. Finally, we provide proteomic evidence for 33 novel O-glycosylated proteins, aiding to the glycoproteomic characterization of relevant antigenic membrane and exported proteins. These findings are expected to collaborate with the research on pathogen derived biomarkers, virulence factors and vaccine candidates, and to provide clues to the understanding of the pathogenesis and survival strategies adopted by M. tuberculosis.
Collapse
Affiliation(s)
- Paula Tucci
- Sección Bioquímica, Facultad de Ciencias, Universidad de la República, Montevideo, Uruguay
| | - Madelón Portela
- Unidad de Bioquímica y Proteómica Analíticas, Institut Pasteur de Montevideo, Montevideo, Uruguay
- Facultad de Ciencias, Universidad de la República, Montevideo, Uruguay
| | - Carlos Rivas Chetto
- Departamento de Laboratorio, Comisión Honoraria para la Lucha Antituberculosa y Enfermedades Prevalentes, Centro de Referencia Nacional para Micobacterias, Ministerio de Salud Pública, Montevideo, Uruguay
| | - Gualberto González-Sapienza
- Cátedra de Inmunología, DEPBIO, Facultad de Química, Universidad de la Republica Uruguay, Montevideo, Uruguay
| | - Mónica Marín
- Sección Bioquímica, Facultad de Ciencias, Universidad de la República, Montevideo, Uruguay
| |
Collapse
|
40
|
Umar F, Hatta M, Husain D, Natzir R, Dwiyanti R, Junita A, Primaguna M. The effect of anti-tuberculosis drugs therapy on mRNA efflux pump gene expression of Rv1250 in Mycobacterium tuberculosis collected from tuberculosis patients. New Microbes New Infect 2019; 32:100609. [PMID: 33014381 PMCID: PMC7525134 DOI: 10.1016/j.nmni.2019.100609] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Revised: 09/14/2019] [Accepted: 09/29/2019] [Indexed: 01/27/2023] Open
Abstract
Efflux pumps are transmembrane proteins that vigorously participate in extruding a wide range of substrates, including drugs, outside the bacterial cell. We aimed to investigate the mRNA expression level of the Rv1250 efflux pump gene in Mycobacterium tuberculosis isolated from individuals with tuberculosis who received drug therapy, at the 1st, 3rd and 5th months, and newly diagnosed patients with tuberculosis who will receive drug therapy (0 month). The study was a multiple cross-sectional longitudinal design-50 different M. tuberculosis isolates and a reference strain H37Rv were subcultured in LJ medium and confirmed by multiplex PCR for identification of M. tuberculosis and collected for RNA extraction. Total bacterial mRNA was analysed using real-time quantitative PCR to evaluate mRNA quantification gene expression. There were differences in the level of Rv1250 mRNA expression between sensitive (n = 11) and resistant (n = 40) groups of 5.961 ± 0.414 and 10.192 ± 1.978, respectively (fold changes; p < 0.05). There were significant differences of expression level among M. tuberculosis-resistant groups (p < 0.05) specifically 7.573 ± 0.424 for 0-month drug therapy (n = 10), 9.438 ± 0.644 for 1st month drug therapy (n = 10), 11.057 ± 0.262 for 3rd month drug therapy (n = 10) and 12.701 ± 0.460 for 5th month drug therapy (n = 10). We assume that the extent of Rv1250 gene expression in M. tuberculosis clinical isolates is a result of the exposure to antimicrobials during treatment, which affect the basic expression of the efflux pump Rv1250 gene.
Collapse
Affiliation(s)
- F. Umar
- Makassar Medical State Laboratory, Indonesian Ministry of Health, Makassar, Indonesia
- Post Graduate Programme of Medical Science, Faculty of Medicine, University of Hasanuddin, Makassar, Indonesia
| | - M. Hatta
- Molecular Biology and Immunology Laboratory, Faculty of Medicine, University of Hasanuddin, Makassar, Indonesia
| | - D.R. Husain
- Department of Biology, Faculty of Science, University of Hasanuddin, Makassar, Indonesia
| | - R. Natzir
- Department of Biochemistry, Faculty of Medicine, University of Hasanuddin, Makassar, Indonesia
| | - R. Dwiyanti
- Department of Microbiology, Faculty of Medicine, Tadulako University, Palu, Indonesia
| | - A.R. Junita
- Post Graduate Programme of Medical Science, Faculty of Medicine, University of Hasanuddin, Makassar, Indonesia
- Molecular Biology and Immunology Laboratory, Faculty of Medicine, University of Hasanuddin, Makassar, Indonesia
| | - M.R. Primaguna
- Department of Internal Medicine, Faculty of Medicine, Hasanuddin University, Makassar, Indonesia
| |
Collapse
|
41
|
Gómez-Tangarife VJ, Gómez-Restrepo AJ, Robledo-Restrepo J, Hernández-Sarmiento JM. [Drug resistance in Mycobacterium tuberculosis: contribution of constituent and acquired mechanisms]. ACTA ACUST UNITED AC 2019; 20:491-497. [PMID: 30843986 DOI: 10.15446/rsap.v20n4.50575] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2015] [Accepted: 02/12/2018] [Indexed: 11/09/2022]
Abstract
Due to the emergence of multi-drug resistant (MDR-MTB) and extensively drug-resistant (XDR-MTB) Mycobacterium tuberculosis (MTB) isolates, the failure rates of standard treatment regimens are high, thus becoming a major public health challenge worldwide. Resistance to anti-tuberculous (anti-TB) drugs is attributed mainly to specific mutations in target genes; however, a proportion of drug-resistant MTB isolates do not have mutations in these genes, which suggests the involvement of other mechanisms, such as the low permeability of the mycobacterial cell wall, enzymatic modification and/or efflux pumps. Clinical drug resistance to anti-TB drugs occurs largely as a result of the selection of resistant mutants caused by poor patient adherence to treatment, inappropriate follow-ups and prescriptions, suboptimal doses of drugs and poor access to health services and treatment. Major advances in molecular biology tools and the availability of the complete genome sequences of MTB have contributed to improve understanding of the mechanisms of resistance to the main anti-TB drugs. Better knowledge of the drug-resistance of MTB will contribute to the identification of new therapeutic targets to design new drugs, develop new diagnostic tests and/or improve methods currently available for the rapid detection of drug-resistant TB. This article presents an updated review of the mechanisms and molecular basis of drug resistance in MTB.
Collapse
Affiliation(s)
- Verónica J Gómez-Tangarife
- VG: Bacterióloga y Laboratorista. Clínico. M. Sc. Ciencias Médicas -Microbiología Corporación para Investigaciones Biológicas. Medellín, Colombia.
| | - Alex J Gómez-Restrepo
- AG: Bibliotecólogo. M. Sc. Bibliotecología y Ciencias de la Información, Medellín, Colombia. Institución: Corporación para Investigaciones Biológicas.
| | - Jaime Robledo-Restrepo
- JR: MD. Ph. D. Ciencias Médicas. - Microbiología, Institución: Universidad Pontificia Bolivariana y Corporación para Investigaciones Biológicas. Medellín, Colombia.
| | - José M Hernández-Sarmiento
- JH: MD. M. Sc.; Ph. D. Ciencias Médicas - Microbiología., Institución: Universidad Pontificia Bolivariana. Medellín, Colombia.
| |
Collapse
|
42
|
van Winden VJC, Houben ENG, Braunstein M. Protein Export into and across the Atypical Diderm Cell Envelope of Mycobacteria. Microbiol Spectr 2019; 7:10.1128/microbiolspec.gpp3-0043-2018. [PMID: 31400094 PMCID: PMC10957183 DOI: 10.1128/microbiolspec.gpp3-0043-2018] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2018] [Indexed: 02/07/2023] Open
Abstract
Mycobacteria, including the infamous pathogen Mycobacterium tuberculosis, are high-GC Gram-positive bacteria with a distinctive cell envelope. Although there is a typical inner membrane, the mycobacterial cell envelope is unusual in having its peptidoglycan layer connected to a polymer of arabinogalactan, which in turn is covalently attached to long-chain mycolic acids that help form a highly impermeable mycobacterial outer membrane. This complex double-membrane, or diderm, cell envelope imparts mycobacteria with unique requirements for protein export into and across the cell envelope for secretion into the extracellular environment. In this article, we review the four protein export pathways known to exist in mycobacteria: two conserved systems that exist in all types of bacteria (the Sec and Tat pathways) and two specialized systems that exist in mycobacteria, corynebacteria, and a subset of low-GC Gram-positive bacteria (the SecA2 and type VII secretion pathways). We describe the progress made over the past 15 years in understanding each of these mycobacterial export pathways, and we highlight the need for research to understand the specific steps of protein export across the mycobacterial outer membrane.
Collapse
Affiliation(s)
- Vincent J C van Winden
- Department of Medical Microbiology and Infection Control, Amsterdam UMC, Vrije Universiteit, Amsterdam, The Netherlands
| | - Edith N G Houben
- Section of Molecular Microbiology, Amsterdam Institute for Molecules, Medicines, and Systems, Vrije Universiteit, Amsterdam, The Netherlands
| | - Miriam Braunstein
- Department of Microbiology and Immunology, University of North Carolina-Chapel Hill, Chapel Hill, NC 27599
| |
Collapse
|
43
|
Daffé M, Marrakchi H. Unraveling the Structure of the Mycobacterial Envelope. Microbiol Spectr 2019; 7:10.1128/microbiolspec.gpp3-0027-2018. [PMID: 31267927 PMCID: PMC10957186 DOI: 10.1128/microbiolspec.gpp3-0027-2018] [Citation(s) in RCA: 77] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2018] [Indexed: 12/28/2022] Open
Abstract
The mycobacterial cell envelope consists of a typical plasma membrane of lipid and protein surrounded by a complex cell wall composed of carbohydrate and lipid. In pathogenic species, such as Mycobacterium tuberculosis, an outermost "capsule" layer surrounds the cell wall. This wall embraces a fundamental, covalently linked "cell-wall skeleton" composed of peptidoglycan, solidly attached to arabinogalactan, whose penta-saccharide termini are esterified by very-long-chain fatty acids (mycolic acids). These fatty acids form the inner leaflet of an outer membrane, called the mycomembrane, whose outer leaflet consists of a great variety of non-covalently linked lipids and glycolipids. The thickness of the mycomembrane, which is similar to that of the plasma membrane, is surprising in view of the length of mycoloyl residues, suggesting dedicated conformations of these fatty acids. Finally, a periplasmic space also exists in mycobacteria, between the plasma membrane and the peptidoglycan. This article provides a comprehensive overview of this biologically important and structurally unique mycobacterial cell compartment.
Collapse
Affiliation(s)
- Mamadou Daffé
- Institut de Pharmacologie et de Biologie Structurale, Université de Toulouse, CNRS, UPS, Department of Tuberculosis and Infection Biology, Toulouse, France
| | - Hedia Marrakchi
- Institut de Pharmacologie et de Biologie Structurale, Université de Toulouse, CNRS, UPS, Department of Tuberculosis and Infection Biology, Toulouse, France
| |
Collapse
|
44
|
Mashabela GT, de Wet TJ, Warner DF. Mycobacterium tuberculosis Metabolism. Microbiol Spectr 2019; 7:10.1128/microbiolspec.gpp3-0067-2019. [PMID: 31350832 PMCID: PMC10957194 DOI: 10.1128/microbiolspec.gpp3-0067-2019] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2019] [Indexed: 02/06/2023] Open
Abstract
Mycobacterium tuberculosis is the cause of tuberculosis (TB), a disease which continues to overwhelm health systems in endemic regions despite the existence of effective combination chemotherapy and the widespread use of a neonatal anti-TB vaccine. For a professional pathogen, M. tuberculosis retains a surprisingly large proportion of the metabolic repertoire found in nonpathogenic mycobacteria with very different lifestyles. Moreover, evidence that additional functions were acquired during the early evolution of the M. tuberculosis complex suggests the organism has adapted (and augmented) the metabolic pathways of its environmental ancestor to persistence and propagation within its obligate human host. A better understanding of M. tuberculosis pathogenicity, however, requires the elucidation of metabolic functions under disease-relevant conditions, a challenge complicated by limited knowledge of the microenvironments occupied and nutrients accessed by bacilli during host infection, as well as the reliance in experimental mycobacteriology on a restricted number of experimental models with variable relevance to clinical disease. Here, we consider M. tuberculosis metabolism within the framework of an intimate host-pathogen coevolution. Focusing on recent advances in our understanding of mycobacterial metabolic function, we highlight unusual adaptations or departures from the better-characterized model intracellular pathogens. We also discuss the impact of these mycobacterial "innovations" on the susceptibility of M. tuberculosis to existing and experimental anti-TB drugs, as well as strategies for targeting metabolic pathways. Finally, we offer some perspectives on the key gaps in the current knowledge of fundamental mycobacterial metabolism and the lessons which might be learned from other systems.
Collapse
Affiliation(s)
- Gabriel T Mashabela
- SAMRC/NHLS/UCT Molecular Mycobacteriology Research Unit, DST/NRF Centre of Excellence for Biomedical TB Research, Department of Pathology and Institute of Infectious Disease and Molecular Medicine, University of Cape Town, South Africa
- Current address: Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, University of Stellenbosch, South Africa
| | - Timothy J de Wet
- SAMRC/NHLS/UCT Molecular Mycobacteriology Research Unit, DST/NRF Centre of Excellence for Biomedical TB Research, Department of Pathology and Institute of Infectious Disease and Molecular Medicine, University of Cape Town, South Africa
- Department of Integrative Biomedical Sciences, University of Cape Town, South Africa
| | - Digby F Warner
- SAMRC/NHLS/UCT Molecular Mycobacteriology Research Unit, DST/NRF Centre of Excellence for Biomedical TB Research, Department of Pathology and Institute of Infectious Disease and Molecular Medicine, University of Cape Town, South Africa
- Wellcome Centre for Infectious Disease Research in Africa, University of Cape Town, South Africa
| |
Collapse
|
45
|
Vermassen A, Leroy S, Talon R, Provot C, Popowska M, Desvaux M. Cell Wall Hydrolases in Bacteria: Insight on the Diversity of Cell Wall Amidases, Glycosidases and Peptidases Toward Peptidoglycan. Front Microbiol 2019; 10:331. [PMID: 30873139 PMCID: PMC6403190 DOI: 10.3389/fmicb.2019.00331] [Citation(s) in RCA: 211] [Impact Index Per Article: 35.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2018] [Accepted: 02/08/2019] [Indexed: 11/13/2022] Open
Abstract
The cell wall (CW) of bacteria is an intricate arrangement of macromolecules, at least constituted of peptidoglycan (PG) but also of (lipo)teichoic acids, various polysaccharides, polyglutamate and/or proteins. During bacterial growth and division, there is a constant balance between CW degradation and biosynthesis. The CW is remodeled by bacterial hydrolases, whose activities are carefully regulated to maintain cell integrity or lead to bacterial death. Each cell wall hydrolase (CWH) has a specific role regarding the PG: (i) cell wall amidase (CWA) cleaves the amide bond between N-acetylmuramic acid and L-alanine residue at the N-terminal of the stem peptide, (ii) cell wall glycosidase (CWG) catalyses the hydrolysis of the glycosidic linkages, whereas (iii) cell wall peptidase (CWP) cleaves amide bonds between amino acids within the PG chain. After an exhaustive overview of all known conserved catalytic domains responsible for CWA, CWG, and CWP activities, this review stresses that the CWHs frequently display a modular architecture combining multiple and/or different catalytic domains, including some lytic transglycosylases as well as CW binding domains. From there, direct physiological and collateral roles of CWHs in bacterial cells are further discussed.
Collapse
Affiliation(s)
- Aurore Vermassen
- Université Clermont Auvergne, INRA, MEDiS, Clermont-Ferrand, France
| | - Sabine Leroy
- Université Clermont Auvergne, INRA, MEDiS, Clermont-Ferrand, France
| | - Régine Talon
- Université Clermont Auvergne, INRA, MEDiS, Clermont-Ferrand, France
| | | | - Magdalena Popowska
- Department of Applied Microbiology, Faculty of Biology, Institute of Microbiology, University of Warsaw, Warsaw, Poland
| | - Mickaël Desvaux
- Université Clermont Auvergne, INRA, MEDiS, Clermont-Ferrand, France
| |
Collapse
|
46
|
Tullius MV, Nava S, Horwitz MA. PPE37 Is Essential for Mycobacterium tuberculosis Heme-Iron Acquisition (HIA), and a Defective PPE37 in Mycobacterium bovis BCG Prevents HIA. Infect Immun 2019; 87:e00540-18. [PMID: 30455201 PMCID: PMC6346139 DOI: 10.1128/iai.00540-18] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2018] [Accepted: 11/08/2018] [Indexed: 12/26/2022] Open
Abstract
Mycobacterium tuberculosis, one of the world's leading causes of death, must acquire nutrients, such as iron, from the host to multiply and cause disease. Iron is an essential metal and M. tuberculosis possesses two different systems to acquire iron from its environment: siderophore-mediated iron acquisition (SMIA) and heme-iron acquisition (HIA), involving uptake and degradation of heme to release ferrous iron. We have discovered that Mycobacterium bovis BCG, the tuberculosis vaccine strain, is severely deficient in HIA, and we exploited this phenotypic difference between BCG and M. tuberculosis to identify genes involved in HIA by complementing BCG's defect with a fosmid library. We identified ppe37, an iron-regulated PPE family gene, as being essential for HIA. BCG complemented with M. tuberculosisppe37 exhibits HIA as efficient as that of M. tuberculosis, achieving robust growth with <0.2 µM hemin. Conversely, deletion of ppe37 from M. tuberculosis results in a strain severely attenuated in HIA, with a phenotype nearly identical to that of BCG, requiring a 200-fold higher concentration of hemin to achieve growth equivalent to that of its parental strain. A nine-amino-acid deletion near the N terminus of BCG PPE37 (amino acids 31 to 39 of the M. tuberculosis PPE37 protein) underlies BCG's profound defect in HIA. Significant genetic variability exists in ppe37 genes across different M. tuberculosis strains, with more than 60% of sequences from completely sequenced M. tuberculosis genomes having mutations that result in altered PPE37 proteins; furthermore, these altered PPE37 proteins are nonfunctional in HIA. Our findings should allow delineation of the relative roles of HIA and SMIA in M. tuberculosis pathogenesis.
Collapse
Affiliation(s)
- Michael V Tullius
- Division of Infectious Diseases, Department of Medicine, Center for Health Sciences, School of Medicine, University of California-Los Angeles, Los Angeles, California, USA
| | - Susana Nava
- Division of Infectious Diseases, Department of Medicine, Center for Health Sciences, School of Medicine, University of California-Los Angeles, Los Angeles, California, USA
| | - Marcus A Horwitz
- Division of Infectious Diseases, Department of Medicine, Center for Health Sciences, School of Medicine, University of California-Los Angeles, Los Angeles, California, USA
| |
Collapse
|
47
|
Bekale RB, Du Plessis SM, Hsu NJ, Sharma JR, Sampson SL, Jacobs M, Meyer M, Morse GD, Dube A. Mycobacterium Tuberculosis and Interactions with the Host Immune System: Opportunities for Nanoparticle Based Immunotherapeutics and Vaccines. Pharm Res 2018; 36:8. [PMID: 30411187 PMCID: PMC6362825 DOI: 10.1007/s11095-018-2528-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2018] [Accepted: 10/17/2018] [Indexed: 02/06/2023]
Abstract
Tuberculosis (TB) caused by Mycobacterium tuberculosis remains a deadly infectious disease. The thin pipeline of new drugs for TB, the ineffectiveness in adults of the only vaccine available, i.e. the Bacillus Calmette-Guerin vaccine, and increasing global antimicrobial resistance, has reinvigorated interest in immunotherapies. Nanoparticles (NPs) potentiate the effect of immune modulating compounds (IMC), enabling cell targeting, improved transfection of antigens, enhanced compound stability and provide opportunities for synergistic action, via delivery of multiple IMCs. In this review we describe work performed in the application of NPs towards achieving immune modulation for TB treatment and vaccination. Firstly, we present a comprehensive review of M. tuberculosis and how the bacterium modulates the host immune system. We find that current work suggest great promise of NP based immunotherapeutics as novel treatments and vaccination systems. There is need to intensify research efforts in this field, and rationally design novel NP immunotherapeutics based on current knowledge of the mycobacteriology and immune escape mechanisms employed by M. tuberculosis.
Collapse
Affiliation(s)
- Raymonde B Bekale
- Discipline of Pharmaceutics, School of Pharmacy, University of the Western Cape, Cape Town, South Africa
| | - Su-Mari Du Plessis
- NRF-DST Centre of Excellence for Biomedical Tuberculosis Research, South African Medical Research Council Centre for Tuberculosis Research, Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
| | - Nai-Jen Hsu
- Division of Immunology, Department of Pathology, Institute of Infectious Disease and Molecular Medicine, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| | - Jyoti R Sharma
- National Health Laboratory Service, Johannesburg, South Africa
| | - Samantha L Sampson
- NRF-DST Centre of Excellence for Biomedical Tuberculosis Research, South African Medical Research Council Centre for Tuberculosis Research, Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
| | - Muazzam Jacobs
- Division of Immunology, Department of Pathology, Institute of Infectious Disease and Molecular Medicine, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
- National Health Laboratory Service, Johannesburg, South Africa
- Immunology of Infectious Disease Research Unit, South African Medical Research Council, Cape Town, South Africa
| | - Mervin Meyer
- DST/Mintek Nanotechnology Innovation Centre (NIC), Biolabels Unit, Department of Biotechnology, University of the Western Cape (UWC), Cape Town, South Africa
| | - Gene D Morse
- AIDS Clinical Trials Group Pharmacology Specialty Laboratory, New York State Center of Excellence in Bioinformatics and Life Sciences, School of Pharmacy and Pharmaceutical Sciences, University at Buffalo, Buffalo, New York, USA
| | - Admire Dube
- Discipline of Pharmaceutics, School of Pharmacy, University of the Western Cape, Cape Town, South Africa.
| |
Collapse
|
48
|
Cornejo-Granados F, Hurtado-Ramírez JM, Hernández-Pando R, Ochoa-Leyva A. Secret-AAR: a web server to assess the antigenic density of proteins and homology search against bacterial and parasite secretome proteins. Genomics 2018; 111:1514-1516. [PMID: 30316740 DOI: 10.1016/j.ygeno.2018.10.007] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2018] [Revised: 10/10/2018] [Accepted: 10/10/2018] [Indexed: 12/13/2022]
Abstract
The secretome refers to all the Excreted/Secreted (ES) proteins of a cell, and these are involved in critical biological processes, such as cell-cell communication, and host immune responses. Recently, we introduced the Abundance of Antigenic Aegions (AAR) value to assess the protein antigenic density and to evaluate the antigenic potential of secretomes. Here, to facilitate the AAR calculation, we implemented it as a user-friendly webserver. We extended the webserver capabilities implementing a sequence-based tool for searching homologous proteins across secretomes, including experimental and predicted secretomes of Mycobacterium tuberculosis and Taenia solium. Additionally, twelve secretomes of helminths, five of Mycobacterium and two of Gram-negative bacteria are also available. Our webserver is a useful tool for researchers working on immunoinformatics and reverse vaccinology, aiming at discovering candidate proteins for new vaccines or diagnostic tests, and it can be used to prioritize the experimental analysis of proteins for druggability assays. The Secret-AAR web server is available at http://microbiomics.ibt.unam.mx/tools/aar/.
Collapse
Affiliation(s)
- Fernanda Cornejo-Granados
- Departamento de Microbiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Avenida Universidad 2001, Colonia Chamilpa, Cuernavaca, Morelos 62210, Mexico
| | - Juan Manuel Hurtado-Ramírez
- Departamento de Microbiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Avenida Universidad 2001, Colonia Chamilpa, Cuernavaca, Morelos 62210, Mexico
| | - Rogelio Hernández-Pando
- Experimental Pathology Section, National Institute of Medical Sciences and Nutrition "Salvador Zubirán", Mexico City 14000, Mexico
| | - Adrián Ochoa-Leyva
- Departamento de Microbiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Avenida Universidad 2001, Colonia Chamilpa, Cuernavaca, Morelos 62210, Mexico.
| |
Collapse
|
49
|
Raghavendra T, Patil S, Mukherjee R. Peptidoglycan in Mycobacteria: chemistry, biology and intervention. Glycoconj J 2018; 35:421-432. [DOI: 10.1007/s10719-018-9842-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2018] [Revised: 08/20/2018] [Accepted: 09/05/2018] [Indexed: 01/07/2023]
|
50
|
Tanner L, Denti P, Wiesner L, Warner DF. Drug permeation and metabolism in Mycobacterium tuberculosis: Prioritising local exposure as essential criterion in new TB drug development. IUBMB Life 2018; 70:926-937. [PMID: 29934964 PMCID: PMC6129860 DOI: 10.1002/iub.1866] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2018] [Revised: 04/11/2018] [Accepted: 04/11/2018] [Indexed: 12/22/2022]
Abstract
Anti-tuberculosis (TB) drugs possess diverse abilities to penetrate the different host tissues and cell types in which infecting Mycobacterium tuberculosis bacilli are located during active disease. This is important since there is increasing evidence that the respective "lesion-penetrating" properties of the front-line TB drugs appear to correlate well with their specific activity in standard combination therapy. In turn, these observations suggest that rational efforts to discover novel treatment-shortening drugs and drug combinations should incorporate knowledge about the comparative abilities of both existing and experimental anti-TB agents to access bacilli in defined physiological states at different sites of infection, as well as avoid elimination by efflux or inactivation by host or bacterial metabolism. However, while there is a fundamental requirement to understand the mode of action and pharmacological properties of any current or experimental anti-TB agent within the context of the obligate human host, this is complex and, until recently, has been severely limited by the available methodologies and models. Here, we discuss advances in analytical models and technologies which have enabled investigations of drug metabolism and pharmacokinetics (DMPK) for new TB drug development. In particular, we consider the potential to shift the focus of traditional pharmacokinetic-pharmacodynamic analyses away from plasma to a more specific "site of action" drug exposure as an essential criterion for drug development and the design of dosing strategies. Moreover, in summarising approaches to determine DMPK data for the "unit of infection" comprising host macrophage and intracellular bacillus, we evaluate the potential benefits of including these analyses at an early stage in the preclinical drug development algorithm. © 2018 IUBMB Life, 70(9):926-937, 2018.
Collapse
Affiliation(s)
- Lloyd Tanner
- SAMRC/NHLS/UCT Molecular Mycobacteriology Research Unit, Department of Pathology and Institute of Infectious Disease & Molecular Medicine, Faculty of Health Sciences, University of Cape Town, Observatory, South Africa
- Division of Clinical Pharmacology, Department of Medicine, Faculty of Health Sciences, University of Cape Town, Observatory, South Africa
| | - Paolo Denti
- SAMRC/NHLS/UCT Molecular Mycobacteriology Research Unit, Department of Pathology and Institute of Infectious Disease & Molecular Medicine, Faculty of Health Sciences, University of Cape Town, Observatory, South Africa
| | - Lubbe Wiesner
- SAMRC/NHLS/UCT Molecular Mycobacteriology Research Unit, Department of Pathology and Institute of Infectious Disease & Molecular Medicine, Faculty of Health Sciences, University of Cape Town, Observatory, South Africa
| | - Digby F. Warner
- Division of Clinical Pharmacology, Department of Medicine, Faculty of Health Sciences, University of Cape Town, Observatory, South Africa
| |
Collapse
|