1
|
Quarleri J, Delpino MV. The interplay of aging, adipose tissue, and COVID-19: a potent alliance with implications for health. GeroScience 2024; 46:2915-2932. [PMID: 38191833 PMCID: PMC11009220 DOI: 10.1007/s11357-023-01058-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Accepted: 12/27/2023] [Indexed: 01/10/2024] Open
Abstract
Obesity has emerged as a significant public health challenge. With the ongoing increase in life expectancy, the prevalence of obesity is steadily growing, particularly among older age demographics. The extension of life expectancy frequently results in additional years of vulnerability to chronic health issues associated with obesity in the elderly.The concept of SARS-CoV-2 directly infecting adipose tissue stems from the fact that both adipocytes and stromal vascular fraction cells express ACE2, the primary receptor facilitating SARS-CoV-2 entry. It is noteworthy that adipose tissue demonstrates ACE2 expression levels similar to those found in the lungs within the same individual. Additionally, ACE2 expression in the adipose tissue of obese individuals surpasses that in non-obese counterparts. Viral attachment to ACE2 has the potential to disturb the equilibrium of renin-angiotensin system homeostasis, leading to an exacerbated inflammatory response.Consequently, adipose tissue has been investigated as a potential site for active SARS-CoV-2 infection, suggesting its plausible role in virus persistence and contribution to both acute and long-term consequences associated with COVID-19.This review is dedicated to presenting current evidence concerning the presence of SARS-CoV-2 in the adipose tissue of elderly individuals infected with the virus. Both obesity and aging are circumstances that contribute to severe health challenges, heightening the risk of disease and mortality. We will particularly focus on examining the mechanisms implicated in the long-term consequences, with the intention of providing insights into potential strategies for mitigating the aftermath of the disease.
Collapse
Affiliation(s)
- Jorge Quarleri
- Instituto de Investigaciones Biomédicas en Retrovirus y Sida (INBIRS), Universidad de Buenos Aires, CONICET, Paraguay 2155, Piso 11, C1121ABG, Ciudad Autónoma de Buenos Aires, Argentina.
| | - M Victoria Delpino
- Instituto de Investigaciones Biomédicas en Retrovirus y Sida (INBIRS), Universidad de Buenos Aires, CONICET, Paraguay 2155, Piso 11, C1121ABG, Ciudad Autónoma de Buenos Aires, Argentina.
| |
Collapse
|
2
|
López CAM, Freiberger RN, Sviercz FA, Quarleri J, Delpino MV. HIV-Infected Hepatic Stellate Cells or HCV-Infected Hepatocytes Are Unable to Promote Latency Reversal among HIV-Infected Mononuclear Cells. Pathogens 2024; 13:134. [PMID: 38392872 PMCID: PMC10893349 DOI: 10.3390/pathogens13020134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 01/23/2024] [Accepted: 01/30/2024] [Indexed: 02/25/2024] Open
Abstract
Due to a common mode of transmission through infected human blood, hepatitis C virus (HCV) and human immunodeficiency virus (HIV) co-infection is relatively prevalent. In alignment with this, HCV co-infection is associated with an increased size of the HIV reservoir in highly active antiretroviral therapy (HAART)-treated individuals. Hence, it is crucial to comprehend the physiological mechanisms governing the latency and reactivation of HIV in reservoirs. Consequently, our study delves into the interplay between HCV/HIV co-infection in liver cells and its impact on the modulation of HIV latency. We utilized the latently infected monocytic cell line (U1) and the latently infected T-cell line (J-Lat) and found that mediators produced by the infection of hepatic stellate cells and hepatocytes with HIV and HCV, respectively, were incapable of inducing latency reversal under the studied conditions. This may favor the maintenance of the HIV reservoir size among latently infected mononuclear cells in the liver. Further investigations are essential to elucidate the role of the interaction between liver cells in regulating HIV latency and/or reactivation, providing a physiologically relevant model for comprehending reservoir microenvironments in vivo.
Collapse
Affiliation(s)
| | | | | | - Jorge Quarleri
- Instituto de Investigaciones Biomédicas en Retrovirus y Sida (INBIRS), Facultad de Medicina, Consejo de Investigaciones Científicas y Técnicas (CONICET), Universidad de Buenos Aires, Buenos Aires 1121, Argentina; (C.A.M.L.); (R.N.F.)
| | - María Victoria Delpino
- Instituto de Investigaciones Biomédicas en Retrovirus y Sida (INBIRS), Facultad de Medicina, Consejo de Investigaciones Científicas y Técnicas (CONICET), Universidad de Buenos Aires, Buenos Aires 1121, Argentina; (C.A.M.L.); (R.N.F.)
| |
Collapse
|
3
|
Abstract
Acquired immunodeficiency syndrome (AIDS), caused by the human immunodeficiency virus (HIV), has become a heavy burden of disease and an important public health problem in the world. Although current antiretroviral therapy (ART) is effective at suppressing the virus in the blood, HIV still remains in two different types of reservoirs-the latently infected cells (represented by CD4+ T cells) and the tissues containing those cells, which may block access to ART, HIV-neutralizing antibodies and latency-reversing agents. The latter is the focus of our review, as blood viral load drops below detectable levels after ART, a deeper and more systematic understanding of the HIV tissue reservoirs is imperative. In this review, we take the lymphoid system (including lymph nodes, gut-associated lymphoid tissue, spleen and bone marrow), nervous system, respiratory system, reproductive system (divided into male and female), urinary system as the order, focusing on the particularity and importance of each tissue in HIV infection, the infection target cell types of each tissue, the specific infection situation of each tissue quantified by HIV DNA or HIV RNA and the evidence of compartmentalization and pharmacokinetics. In summary, we found that the present state of HIV in different tissues has both similarities and differences. In the future, the therapeutic principle we need to follow is to respect the discrepancy on the basis of grasping the commonality. The measures taken to completely eliminate the virus in the whole body cannot be generalized. It is necessary to formulate personalized treatment strategies according to the different characteristics of the HIV in the various tissues, so as to realize the prospect of curing AIDS as soon as possible.
Collapse
Affiliation(s)
- Kangpeng Li
- Department of Orthopedics, Beijing Ditan Hospital, Capital Medical University, Beijing, China
| | - Bo Liu
- Department of Orthopedics, Beijing Ditan Hospital, Capital Medical University, Beijing, China
| | - Rui Ma
- Department of Orthopedics, Beijing Ditan Hospital, Capital Medical University, Beijing, China
| | - Qiang Zhang
- Department of Orthopedics, Beijing Ditan Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
4
|
Abstract
Early in the HIV epidemic, lipodystrophy, characterized by subcutaneous fat loss (lipoatrophy), with or without central fat accumulation (lipohypertrophy), was recognized as a frequent condition among people living with HIV (PLWH) receiving combination antiretroviral therapy. The subsequent identification of thymidine analogue nucleoside reverse transcriptase inhibitors as the cause of lipoatrophy led to the development of newer antiretroviral agents; however, studies have demonstrated continued abnormalities in fat and/or lipid storage in PLWH treated with newer drugs (including integrase inhibitor-based regimens), with fat gain due to restoration to health in antiretroviral therapy-naive PLWH, which is compounded by the rising rates of obesity. The mechanisms of fat alterations in PLWH are complex, multifactorial and not fully understood, although they are known to result in part from the direct effects of HIV proteins and antiretroviral agents on adipocyte health, genetic factors, increased microbial translocation, changes in the adaptive immune milieu after infection, increased tissue inflammation and accelerated fibrosis. Management includes classical lifestyle alterations with a role for pharmacological therapies and surgery in some patients. Continued fat alterations in PLWH will have an important effect on lifespan, healthspan and quality of life as patients age worldwide, highlighting the need to investigate the critical uncertainties regarding pathophysiology, risk factors and management.
Collapse
|
5
|
Adipose Tissue is Enriched for Activated and Late-Differentiated CD8+ T Cells and Shows Distinct CD8+ Receptor Usage, Compared With Blood in HIV-Infected Persons. J Acquir Immune Defic Syndr 2018; 77:e14-e21. [PMID: 29040163 DOI: 10.1097/qai.0000000000001573] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
BACKGROUND Adverse viral and medication effects on adipose tissue contribute to the development of metabolic disease in HIV-infected persons, but T cells also have a central role modulating local inflammation and adipocyte function. We sought to characterize potentially proinflammatory T-cell populations in adipose tissue among persons on long-term antiretroviral therapy and assess whether adipose tissue CD8 T cells represent an expanded, oligoclonal population. METHODS We recruited 10 HIV-infected, non-diabetic, overweight or obese adults on efavirenz, tenofovir, and emtricitabine for >4 years with consistent viral suppression. We collected fasting blood and subcutaneous abdominal adipose tissue to measure the percentage of CD4 and CD8 T cells expressing activation, exhaustion, late differentiation/senescence, and memory surface markers. We performed T-cell receptor (TCR) sequencing on sorted CD8 cells. We compared the proportion of each T-cell subset and the TCR repertoire diversity, in blood versus adipose tissue. RESULTS Adipose tissue had a higher percentage of CD3CD8 T cells compared with blood (61.0% vs. 51.7%, P < 0.01) and was enriched for both activated CD8HLA-DR T cells (5.5% vs. 0.9%, P < 0.01) and late-differentiated CD8CD57 T cells (37.4% vs. 22.7%, P < 0.01). Adipose tissue CD8 T cells displayed distinct TCRβ V and J gene usage, and the Shannon Entropy index, a measure of overall TCRβ repertoire diversity, was lower compared with blood (4.39 vs. 4.46; P = 0.05). CONCLUSIONS Adipose tissue is enriched for activated and late-differentiated CD8 T cells with distinct TCR usage. These cells may contribute to tissue inflammation and impaired adipocyte fitness in HIV-infected persons.
Collapse
|
6
|
Stimmelmayr R, Rotstein DS, Maboni G, Person BT, Sanchez S. Morbillivirus-associated lipid pneumonia in Arctic foxes. J Vet Diagn Invest 2018; 30:933-936. [PMID: 30205787 DOI: 10.1177/1040638718797382] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
We describe lipid pneumonia in 5 of 24 Arctic foxes ( Vulpes lagopus) in association with morbillivirus infection, and lymphoid depletion in 3 of these 5 foxes. Canine distemper virus (CDV) immunohistochemistry yielded positive staining in lung, lymph nodes, spleen, adipose tissue, and renal pelvic urothelial cells in 5 cases. Liver and bone marrow samples collected from these cases tested positive for morbillivirus by reverse-transcription PCR assay. Strains belonged to the CDV Arctic lineage based on sequencing of the hemagglutinin gene followed by phylogenetic analysis. Phylogenetic analysis of the phosphoprotein gene showed that the identified CDV strains were not closely related to any previously documented strains responsible for outbreaks in different animals in other parts of the world.
Collapse
Affiliation(s)
- Raphaela Stimmelmayr
- Department of Wildlife Management, North Slope Borough, Utqiagvik, AK (Stimmelmayr; Person).,Institute of Arctic Biology, University of Alaska-Fairbanks, Fairbanks, AK (Stimmelmayr).,Marine Mammal Pathology Services, Olney, MD (Rotstein).,Athens Veterinary Diagnostic Laboratory (Maboni, Sanchez), Department of Infectious Diseases, College of Veterinary Medicine (Sanchez), The University of Georgia, Athens, GA
| | - David S Rotstein
- Department of Wildlife Management, North Slope Borough, Utqiagvik, AK (Stimmelmayr; Person).,Institute of Arctic Biology, University of Alaska-Fairbanks, Fairbanks, AK (Stimmelmayr).,Marine Mammal Pathology Services, Olney, MD (Rotstein).,Athens Veterinary Diagnostic Laboratory (Maboni, Sanchez), Department of Infectious Diseases, College of Veterinary Medicine (Sanchez), The University of Georgia, Athens, GA
| | - Grazieli Maboni
- Department of Wildlife Management, North Slope Borough, Utqiagvik, AK (Stimmelmayr; Person).,Institute of Arctic Biology, University of Alaska-Fairbanks, Fairbanks, AK (Stimmelmayr).,Marine Mammal Pathology Services, Olney, MD (Rotstein).,Athens Veterinary Diagnostic Laboratory (Maboni, Sanchez), Department of Infectious Diseases, College of Veterinary Medicine (Sanchez), The University of Georgia, Athens, GA
| | - Brian T Person
- Department of Wildlife Management, North Slope Borough, Utqiagvik, AK (Stimmelmayr; Person).,Institute of Arctic Biology, University of Alaska-Fairbanks, Fairbanks, AK (Stimmelmayr).,Marine Mammal Pathology Services, Olney, MD (Rotstein).,Athens Veterinary Diagnostic Laboratory (Maboni, Sanchez), Department of Infectious Diseases, College of Veterinary Medicine (Sanchez), The University of Georgia, Athens, GA
| | - Susan Sanchez
- Department of Wildlife Management, North Slope Borough, Utqiagvik, AK (Stimmelmayr; Person).,Institute of Arctic Biology, University of Alaska-Fairbanks, Fairbanks, AK (Stimmelmayr).,Marine Mammal Pathology Services, Olney, MD (Rotstein).,Athens Veterinary Diagnostic Laboratory (Maboni, Sanchez), Department of Infectious Diseases, College of Veterinary Medicine (Sanchez), The University of Georgia, Athens, GA
| |
Collapse
|
7
|
Merino KM, Allers C, Didier ES, Kuroda MJ. Role of Monocyte/Macrophages during HIV/SIV Infection in Adult and Pediatric Acquired Immune Deficiency Syndrome. Front Immunol 2017; 8:1693. [PMID: 29259605 PMCID: PMC5723290 DOI: 10.3389/fimmu.2017.01693] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2017] [Accepted: 11/16/2017] [Indexed: 12/17/2022] Open
Abstract
Monocytes/macrophages are a diverse group of cells that act as first responders in innate immunity and then as mediators for adaptive immunity to help clear infections. In performing these functions, however, the macrophage inflammatory responses can also contribute to pathogenesis. Various monocyte and tissue macrophage subsets have been associated with inflammatory disorders and tissue pathogeneses such as occur during HIV infection. Non-human primate research of simian immunodeficiency virus (SIV) has been invaluable in better understanding the pathogenesis of HIV infection. The question of HIV/SIV-infected macrophages serving as a viral reservoir has become significant for achieving a cure. In the rhesus macaque model, SIV-infected macrophages have been shown to promote pathogenesis in several tissues resulting in cardiovascular, metabolic, and neurological diseases. Results from human studies illustrated that alveolar macrophages could be an important HIV reservoir and humanized myeloid-only mice supported productive HIV infection and viral persistence in macrophages during ART treatment. Depletion of CD4+ T cells is considered the primary cause for terminal progression, but it was reported that increasing monocyte turnover was a significantly better predictor in SIV-infected adult macaques. Notably, pediatric cases of HIV/SIV exhibit faster and more severe disease progression than adults, yet neonates have fewer target T cells and generally lack the hallmark CD4+ T cell depletion typical of adult infections. Current data show that the baseline blood monocyte turnover rate was significantly higher in neonatal macaques compared to adults and this remained high with disease progression. In this review, we discuss recent data exploring the contribution of monocytes and macrophages to HIV/SIV infection and progression. Furthermore, we highlight the need to further investigate their role in pediatric cases of infection.
Collapse
Affiliation(s)
- Kristen M. Merino
- Division of Immunology, Tulane National Primate Research Center, Covington LA, United States
| | - Carolina Allers
- Division of Immunology, Tulane National Primate Research Center, Covington LA, United States
| | - Elizabeth S. Didier
- Division of Microbiology, Tulane National Primate Research Center, Covington LA, United States
| | - Marcelo J. Kuroda
- Division of Immunology, Tulane National Primate Research Center, Covington LA, United States
| |
Collapse
|
8
|
Abstract
HIV infection and antiretroviral therapy (ART) treatment exert diverse effects on adipocytes and stromal-vascular fraction cells, leading to changes in adipose tissue quantity, distribution, and energy storage. A HIV-associated lipodystrophic condition was recognized early in the epidemic, characterized by clinically apparent changes in subcutaneous, visceral, and dorsocervical adipose depots. Underlying these changes is altered adipose tissue morphology and expression of genes central to adipocyte maturation, regulation, metabolism, and cytokine signaling. HIV viral proteins persist in circulation and locally within adipose tissue despite suppression of plasma viremia on ART, and exposure to these proteins impairs preadipocyte maturation and reduces adipocyte expression of peroxisome proliferator-activated receptor gamma (PPAR-γ) and other genes involved in cell regulation. Several early nucleoside reverse transcriptase inhibitor and protease inhibitor antiretroviral drugs demonstrated substantial adipocyte toxicity, including reduced mitochondrial DNA content and respiratory chain enzymes, reduced PPAR-γ and other regulatory gene expression, and increased proinflammatory cytokine production. Newer-generation agents, such as integrase inhibitors, appear to have fewer adverse effects. HIV infection also alters the balance of CD4+ and CD8+ T cells in adipose tissue, with effects on macrophage activation and local inflammation, while the presence of latently infected CD4+ T cells in adipose tissue may constitute a protected viral reservoir. This review provides a synthesis of the literature on how HIV virus, ART treatment, and host characteristics interact to affect adipose tissue distribution, immunology, and contribution to metabolic health, and adipocyte maturation, cellular regulation, and energy storage. © 2017 American Physiological Society. Compr Physiol 7:1339-1357, 2017.
Collapse
Affiliation(s)
- John R Koethe
- Division of Infectious Diseases, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
| |
Collapse
|
9
|
Schwartz C, Bouchat S, Marban C, Gautier V, Van Lint C, Rohr O, Le Douce V. On the way to find a cure: Purging latent HIV-1 reservoirs. Biochem Pharmacol 2017; 146:10-22. [PMID: 28687465 DOI: 10.1016/j.bcp.2017.07.001] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2017] [Accepted: 07/03/2017] [Indexed: 12/29/2022]
Abstract
Introduction of cART in 1996 has drastically increased the life expectancy of people living with HIV-1. However, this treatment has not allowed cure as cessation of cART is associated with a rapid viral rebound. The main barrier to the eradication of the virus is related to the persistence of latent HIV reservoirs. Evidence is now accumulating that purging the HIV-1 reservoir might lead to a cure or a remission. The most studied strategy is the so called "shock and kill" therapy. This strategy is based on reactivation of dormant viruses from the latently-infected reservoirs (the shock) followed by the eradication of the reservoirs (the kill). This review focuses mainly on the recent advances made in the "shock and kill" therapy. We believe that a cure or a remission will come from combinatorial approaches i.e. combination of drugs to reactivate the dormant virus from all the reservoirs including the one located in sanctuaries, and combination of strategies boosting the immune system. Alternative strategies based on cell and gene therapy or based in inducing deep latency, which are evoked in this review reinforce the idea that at least a remission is attainable.
Collapse
Affiliation(s)
- Christian Schwartz
- University of Strasbourg, EA7292, DHPI, Institute of Parasitology and Tropical Pathology, Strasbourg, France; University of Strasbourg, IUT Louis Pasteur, Schiltigheim, France.
| | - Sophie Bouchat
- Université Libre de Bruxelles (ULB), Service of Molecular Virology, Institute for Molecular Biology and Medicine (IBMM), 12 rue des Profs Jeener et Brachet, 6041 Gosselies, Belgium
| | - Céline Marban
- University of Strasbourg, Inserm UMR 1121 Faculté de Chirurgie Dentaire Pavillon Leriche 1, place de l'Hôpital Strasbourg, France
| | - Virginie Gautier
- UCD, Centre for Research in Infectious Diseases (CRID), School of Medicine University College Dublin, Belfield, Dublin 4, Ireland
| | - Carine Van Lint
- Université Libre de Bruxelles (ULB), Service of Molecular Virology, Institute for Molecular Biology and Medicine (IBMM), 12 rue des Profs Jeener et Brachet, 6041 Gosselies, Belgium
| | - Olivier Rohr
- University of Strasbourg, EA7292, DHPI, Institute of Parasitology and Tropical Pathology, Strasbourg, France; University of Strasbourg, IUT Louis Pasteur, Schiltigheim, France
| | - Valentin Le Douce
- UCD, Centre for Research in Infectious Diseases (CRID), School of Medicine University College Dublin, Belfield, Dublin 4, Ireland
| |
Collapse
|