1
|
Ramesh R, Rekha ND, Gopal S. Pseudomonas aeruginosa biofilm: treatment strategies to combat infection. Arch Microbiol 2025; 207:141. [PMID: 40348909 DOI: 10.1007/s00203-025-04346-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2025] [Revised: 04/25/2025] [Accepted: 04/26/2025] [Indexed: 05/14/2025]
Abstract
Pseudomonas aeruginosa is an opportunistic human pathogenic bacterium that is a common cause of both acute and chronic infections. Multidrug-resistant P. aeruginosa poses a significant challenge to antibiotics and therapeutic approaches due to its pathogenicity, virulence, and biofilm-forming ability mediated by quorum sensing. Understanding the pathogenic mechanisms is essential for developing potential drug targets. In this regard, strategies aimed at combating the targeted inhibition of virulence, quorum sensing pathways, secretion systems, biofilm-associated two-component systems, and signalling system regulators (such as c-di-GMP) associated with biofilm formation are critical. Several new antimicrobial agents have been developed using these strategies, including antimicrobial peptides, bacteriophages, nanoantibiotics, photodynamics, and natural products, which are considered promising therapeutic tools. In this review, we address the concept of biofilms, their regulation, and recent treatment strategies to target P. aeruginosa, a clinically significant pathogen known for biofilm formation.
Collapse
Affiliation(s)
- Rashmi Ramesh
- Department of Studies in Microbiology, University of Mysore, Manasagangotri, Mysuru, Karnataka, India
| | - N D Rekha
- Department of Biotechnology, JSS College of Arts, Commerce and Science (Autonomous), Mysuru, Karnataka, India
| | - Shubha Gopal
- Department of Studies in Microbiology, University of Mysore, Manasagangotri, Mysuru, Karnataka, India.
| |
Collapse
|
2
|
Grace A, Sahu R, Owen DR, Dennis VA. Host-mimicking conditions promote Pseudomonas aeruginosa PA14 virulence gene expression. Front Microbiol 2025; 16:1557664. [PMID: 40351318 PMCID: PMC12062898 DOI: 10.3389/fmicb.2025.1557664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2025] [Accepted: 03/25/2025] [Indexed: 05/14/2025] Open
Abstract
Background Pseudomonas aeruginosa is a ubiquitous, opportunistic bacterium whose highly plastic genome and adaptable phenotype have yielded serious treatment challenges for immunocompromised patients. Antibiotic alternatives, such as anti-virulence therapeutics, have gained interest because they disable bacterial virulence mechanisms, thereby restoring the killing efficacy of host immunity or traditional antibiotics. Identifying successful anti-virulence therapeutics may require a paradigm shift from the decades-old antimicrobial susceptibility testing (AST) in Mueller Hinton broth to media that foster optimal virulence expression. Methods This study evaluates the virulence gene expression and activity of P. aeruginosa PA14 in host-mimicking conditions, represented by Dulbecco's Modified Eagle's Medium (DMEM) without serum, with fetal bovine serum (FBS), or with human serum (HuS) in comparison to standard antimicrobial susceptibility testing conditions, represented by Cation-adjusted Mueller Hinton broth (CAMHB). PA14 twitching motility and pyoverdine production were evaluated under these conditions. Results For the first time, our study reveals that culturing the highly virulent P. aeruginosa PA14 in host-mimicking media enhances the expression of multiple virulence therapeutic targets that are critical to host colonization and infection. RNA sequencing showed that multiple Type III Secretion (T3SS), Type I Secretion (T1SS), pyoverdine biosynthesis, uptake and efflux, and Type IV pili (T4P) initiation genes were promoted when PA14 was transitioned into host-mimicking conditions but remained unchanged when transitioned into standard AST conditions. Moreover, qPCR results disclosed that HuS and FBS delivered differential effects on the expression of membrane-associated virulence genes involved in host colonization. Our macroscopic PA14 twitching motility results aligned more closely with PA14 growth patterns than with virulence gene expression patterns. Our microtiter biofilm assay, however, revealed earlier biofilm formation in DMEM 0 than in AST conditions and both showed inhibited twitching motility in serum conditions. UV-Vis spectra showed that pyoverdine production aligned with our gene expression data, revealing higher pyoverdine production in serum conditions for planktonic PA14. Discussion Overall, our findings support using host-mimicking conditions to improve the expression of candidate targets for anti-virulence therapeutics against P. aeruginosa PA14 in a planktonic state. These recommendations may be broadly applicable for antivirulence therapeutic screening against multiple bacterial species at large.
Collapse
Affiliation(s)
- Amber Grace
- Department of Biological Sciences, Alabama State University, Montgomery, AL, United States
| | - Rajnish Sahu
- Department of Biological Sciences, Alabama State University, Montgomery, AL, United States
| | | | - Vida A. Dennis
- Department of Biological Sciences, Alabama State University, Montgomery, AL, United States
| |
Collapse
|
3
|
Shimozono TM, Vogelaar NJ, O'Hara MT, Yang Z. A Phage-Based Approach to Identify Antivirulence Inhibitors of Bacterial Type IV Pili. Microb Biotechnol 2025; 18:e70081. [PMID: 39822166 PMCID: PMC11739798 DOI: 10.1111/1751-7915.70081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2024] [Revised: 12/18/2024] [Accepted: 12/26/2024] [Indexed: 01/19/2025] Open
Abstract
The increasing threat of antibiotic resistance underscores the urgent need for innovative strategies to combat infectious diseases, including the development of antivirulants. Microbial pathogens rely on their virulence factors to initiate and sustain infections. Antivirulants are small molecules designed to target virulence factors, thereby attenuating the virulence of infectious microbes. The bacterial type IV pilus (T4P), an extracellular protein filament that depends on the T4P machinery (T4PM) for its biogenesis, dynamics and function, is a key virulence factor in many significant bacterial pathogens. While the T4PM presents a promising antivirulence target, the systematic identification of inhibitors for its multiple protein constituents remains a considerable challenge. Here we report a novel high-throughput screening (HTS) approach for discovering T4P inhibitors. It uses Pseudomonas aeruginosa, a high-priority pathogen, in combination with its T4P-targeting phage, φKMV. Screening of a library of 2168 compounds using an optimised protocol led to the identification of tuspetinib, based on its deterrence of the lysis of P. aeruginosa by φKMV. Our findings show that tuspetinib also inhibits two additional T4P-targeting phages, while having no effect on a phage that recognises lipopolysaccharides as its receptor. Additionally, tuspetinib impedes T4P-mediated motility in P. aeruginosa and Acinetobacter species without impacting growth or flagellar motility. This bacterium-phage pairing approach is applicable to a broad range of virulence factors that are required for phage infection, paving ways for the development of advanced chemotherapeutics against antibiotic-resistant infections.
Collapse
Affiliation(s)
| | - Nancy J. Vogelaar
- Virginia Tech Center for Drug DiscoveryVirginia TechBlacksburgVirginiaUSA
| | - Megan T. O'Hara
- Department of Biological SciencesVirginia TechBlacksburgVirginiaUSA
| | - Zhaomin Yang
- Department of Biological SciencesVirginia TechBlacksburgVirginiaUSA
- Virginia Tech Center for Drug DiscoveryVirginia TechBlacksburgVirginiaUSA
- Center for Emerging, Zoonotic, and Arthropod‐Borne PathogensVirginia TechBlacksburgVirginiaUSA
| |
Collapse
|
4
|
Hendrix H, Itterbeek A, Longin H, Delanghe L, Vriens E, Vallino M, Lammens EM, Haque F, Yusuf A, Noben JP, Boon M, Koch MD, van Noort V, Lavigne R. PlzR regulates type IV pili assembly in Pseudomonas aeruginosa via PilZ binding. Nat Commun 2024; 15:8717. [PMID: 39379373 PMCID: PMC11461919 DOI: 10.1038/s41467-024-52732-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Accepted: 09/16/2024] [Indexed: 10/10/2024] Open
Abstract
Type IV pili (T4P) are thin, flexible filaments exposed on the cell surface of gram-negative bacteria and are involved in pathogenesis-related processes, including cell adsorption, biofilm formation, and twitching motility. Bacteriophages often use these filaments as receptors to infect host cells. Here, we describe the identification of a protein that inhibits T4P assembly in Pseudomonas aeruginosa, discovered during a screen for host factors influencing phage infection. We show that expression of PA2560 (renamed PlzR) in P. aeruginosa inhibits adsorption of T4P-dependent phages. PlzR does this by directly binding the T4P chaperone PilZ, which in turn regulates the ATPase PilB and results in disturbed T4P assembly. As the plzR promoter is induced by cyclic di-GMP, PlzR might play a role in coupling T4P function to levels of this second messenger.
Collapse
Affiliation(s)
- Hanne Hendrix
- Laboratory of Gene Technology, Department of Biosystems, KU Leuven, Heverlee, Belgium
| | - Annabel Itterbeek
- Laboratory of Gene Technology, Department of Biosystems, KU Leuven, Heverlee, Belgium
- Laboratory for Host Pathogen Interactions in Livestock, Department of Biosystems, KU Leuven, Heverlee, Belgium
| | - Hannelore Longin
- Laboratory of Gene Technology, Department of Biosystems, KU Leuven, Heverlee, Belgium
- Computational Systems Biology, Department of Microbial and Molecular Systems, KU Leuven, Heverlee, Belgium
| | - Lize Delanghe
- Laboratory of Gene Technology, Department of Biosystems, KU Leuven, Heverlee, Belgium
| | - Eveline Vriens
- Laboratory of Gene Technology, Department of Biosystems, KU Leuven, Heverlee, Belgium
| | - Marta Vallino
- Institute for Sustainable Plant Protection, National Research Council of Italy, IPSP-CNR Headquarter, Turin, Italy
| | - Eveline-Marie Lammens
- Laboratory of Gene Technology, Department of Biosystems, KU Leuven, Heverlee, Belgium
| | - Farhana Haque
- Department of Biology, Texas A&M University, College Station, TX, USA
| | - Ahmed Yusuf
- Department of Biology, Texas A&M University, College Station, TX, USA
| | - Jean-Paul Noben
- Biomedical Research Institute and Transnational University Limburg, School of Life Sciences, Hasselt University, Diepenbeek, Belgium
| | - Maarten Boon
- Laboratory of Gene Technology, Department of Biosystems, KU Leuven, Heverlee, Belgium
| | - Matthias D Koch
- Department of Biology, Texas A&M University, College Station, TX, USA
| | - Vera van Noort
- Computational Systems Biology, Department of Microbial and Molecular Systems, KU Leuven, Heverlee, Belgium
- Institute of Biology Leiden, Leiden University, Leiden, The Netherlands
| | - Rob Lavigne
- Laboratory of Gene Technology, Department of Biosystems, KU Leuven, Heverlee, Belgium.
| |
Collapse
|
5
|
McDonald-Ramos JS, Hicklin IK, Yang Z, Brown AM. Identification of small molecule inhibitors of the Chloracidobacterium thermophilum type IV pilus protein PilB by ensemble virtual screening. Arch Biochem Biophys 2024; 760:110127. [PMID: 39154818 DOI: 10.1016/j.abb.2024.110127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 08/13/2024] [Accepted: 08/15/2024] [Indexed: 08/20/2024]
Abstract
Antivirulence strategy has been explored as an alternative to traditional antibiotic development. The bacterial type IV pilus is a virulence factor involved in host invasion and colonization in many antibiotic resistant pathogens. The PilB ATPase hydrolyzes ATP to drive the assembly of the pilus filament from pilin subunits. We evaluated Chloracidobacterium thermophilum PilB (CtPilB) as a model for structure-based virtual screening by molecular docking and molecular dynamics (MD) simulations. A hexameric structure of CtPilB was generated through homology modeling based on an existing crystal structure of a PilB from Geobacter metallireducens. Four representative structures were obtained from molecular dynamics simulations to examine the conformational plasticity of PilB and improve docking analyses by ensemble docking. Structural analyses after 1 μs of simulation revealed conformational changes in individual PilB subunits are dependent on ligand presence. Further, ensemble virtual screening of a library of 4234 compounds retrieved from the ZINC15 database identified five promising PilB inhibitors. Molecular docking and binding analyses using the four representative structures from MD simulations revealed that top-ranked compounds interact with multiple Walker A residues, one Asp-box residue, and one arginine finger, indicating these are key residues in inhibitor binding within the ATP binding pocket. The use of multiple conformations in molecular screening can provide greater insight into compound flexibility within receptor sites and better inform future drug development for therapeutics targeting the type IV pilus assembly ATPase.
Collapse
Affiliation(s)
| | | | - Zhaomin Yang
- Department of Biological Sciences, USA; Center for Drug Discovery, USA; Center for Emerging, Zoonotic and Arthropod-borne Pathogens, USA.
| | - Anne M Brown
- Department of Biochemistry, USA; Center for Drug Discovery, USA; Center for Emerging, Zoonotic and Arthropod-borne Pathogens, USA; University Libraries, Virginia Tech, Blacksburg, VA, 24061, USA.
| |
Collapse
|
6
|
Bucher MJ, Czyż DM. Phage against the Machine: The SIE-ence of Superinfection Exclusion. Viruses 2024; 16:1348. [PMID: 39339825 PMCID: PMC11436027 DOI: 10.3390/v16091348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 08/10/2024] [Accepted: 08/20/2024] [Indexed: 09/30/2024] Open
Abstract
Prophages can alter their bacterial hosts to prevent other phages from infecting the same cell, a mechanism known as superinfection exclusion (SIE). Such alterations are facilitated by phage interactions with critical bacterial components involved in motility, adhesion, biofilm production, conjugation, antimicrobial resistance, and immune evasion. Therefore, the impact of SIE extends beyond the immediate defense against superinfection, influencing the overall fitness and virulence of the bacteria. Evaluating the interactions between phages and their bacterial targets is critical for leading phage therapy candidates like Pseudomonas aeruginosa, a Gram-negative bacterium responsible for persistent and antibiotic-resistant opportunistic infections. However, comprehensive literature on the mechanisms underlying SIE remains scarce. Here, we provide a compilation of well-characterized and potential mechanisms employed by Pseudomonas phages to establish SIE. We hypothesize that the fitness costs imposed by SIE affect bacterial virulence, highlighting the potential role of this mechanism in the management of bacterial infections.
Collapse
Affiliation(s)
- Michael J Bucher
- Department of Microbiology and Cell Science, University of Florida, Gainesville, FL 32611, USA
| | - Daniel M Czyż
- Department of Microbiology and Cell Science, University of Florida, Gainesville, FL 32611, USA
| |
Collapse
|
7
|
Prüßner T, Meinderink D, Zhu S, Orive AG, Kielar C, Huck M, Steinrück HG, Keller A, Grundmeier G. Molecular Adhesion of a Pilus-Derived Peptide Involved in Pseudomonas aeruginosa Biofilm Formation on Non-Polar ZnO-Surfaces. Chemistry 2024; 30:e202302464. [PMID: 37909474 DOI: 10.1002/chem.202302464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 10/30/2023] [Accepted: 10/30/2023] [Indexed: 11/03/2023]
Abstract
Bacterial colonization and biofilm formation on abiotic surfaces are initiated by the adhesion of peptides and proteins. Understanding the adhesion of such peptides and proteins at a molecular level thus represents an important step toward controlling and suppressing biofilm formation on technological and medical materials. This study investigates the molecular adhesion of a pilus-derived peptide that facilitates biofilm formation of Pseudomonas aeruginosa, a multidrug-resistant opportunistic pathogen frequently encountered in healthcare settings. Single-molecule force spectroscopy (SMFS) was performed on chemically etched ZnO11 2 ‾ 0 ${\left(11\bar{2}0\right)}$ surfaces to gather insights about peptide adsorption force and its kinetics. Metal-free click chemistry for the fabrication of peptide-terminated SMFS cantilevers was performed on amine-terminated gold cantilevers and verified by X-ray photoelectron spectroscopy (XPS) and polarization-modulated infrared reflection absorption spectroscopy (PM-IRRAS). Atomic force microscopy (AFM) and XPS analyses reveal stable topographies and surface chemistries of the substrates that are not affected by SMFS. Rupture events described by the worm-like chain model (WLC) up to 600 pN were detected for the non-polar ZnO surfaces. The dissociation barrier energy at zero force ΔG(0), the transition state distance xb and bound-unbound dissociation rate at zero force koff (0) for the single crystalline substrate indicate that coordination and hydrogen bonds dominate the peptide/surface interaction.
Collapse
Affiliation(s)
- Tim Prüßner
- Technical and Macromolecular Chemistry, Paderborn University, Warburger Str. 100, 33098, Paderborn, Germany
| | - Dennis Meinderink
- Technical and Macromolecular Chemistry, Paderborn University, Warburger Str. 100, 33098, Paderborn, Germany
| | - Siqi Zhu
- Technical and Macromolecular Chemistry, Paderborn University, Warburger Str. 100, 33098, Paderborn, Germany
| | - Alejandro G Orive
- Department of Chemistry, Materials and Nanotechnology Institute, University of La Laguna, Avda. Astrofisico Francisco Sánchez s/n, 38206, San Cristóbal de La Laguna, Spain
| | - Charlotte Kielar
- Insitute of Resource Ecology, Helmholtz-Zentrum Dresden-Rossendorf, Bautzner Landstraße 400, 01328, Dresden, Germany
| | - Marten Huck
- Chemistry Department, Paderborn University, 33098, Paderborn, Germany
| | | | - Adrian Keller
- Technical and Macromolecular Chemistry, Paderborn University, Warburger Str. 100, 33098, Paderborn, Germany
| | - Guido Grundmeier
- Technical and Macromolecular Chemistry, Paderborn University, Warburger Str. 100, 33098, Paderborn, Germany
| |
Collapse
|
8
|
Izadi-Pruneyre N, Karami Y, Nilges M. Structure and Dynamics of Type 4a Pili and Type 2 Secretion System Endopili. Subcell Biochem 2024; 104:549-563. [PMID: 38963500 DOI: 10.1007/978-3-031-58843-3_21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/05/2024]
Abstract
Within the highly diverse type four filament (TFF or T4F) superfamily, the machineries of type IVa pili (T4aP) and the type 2 secretion system (T2SS) in diderm bacteria exhibit a substantial sequence similarity despite divergent functions and distinct appearances: T4aP can extend micrometers beyond the outer membrane, whereas the endopili in the T2SS are restricted to the periplasm. The determination of the structure of individual components and entire filaments is crucial to understand how their structure enables them to serve different functions. However, the dynamics of these filaments poses a challenge for their high-resolution structure determination. This review presents different approaches that have been used to study the structure and dynamics of T4aP and T2SS endopili by means of integrative structural biology, cryo-electron microscopy (cryo-EM), and molecular dynamics simulations. Their conserved features and differences are presented. The non-helical stretch in the long-conserved N-terminal helix which is characteristic of all members of the TFF and the impact of calcium on structure, function, and dynamics of these filaments are discussed in detail.
Collapse
Affiliation(s)
- Nadia Izadi-Pruneyre
- Bacterial Transmembrane Systems Unit, Institut Pasteur, Université Paris Cité, CNRS UMR, Paris, France
| | - Yasaman Karami
- Structural Bioinformatics Unit, Institut Pasteur, Université Paris Cité, CNRS UMR, Paris, France
| | - Michael Nilges
- Structural Bioinformatics Unit, Institut Pasteur, Université Paris Cité, CNRS UMR, Paris, France.
| |
Collapse
|
9
|
Tapia-Rodriguez MR, Cantu-Soto EU, Vazquez-Armenta FJ, Bernal-Mercado AT, Ayala-Zavala JF. Inhibition of Acinetobacter baumannii Biofilm Formation by Terpenes from Oregano ( Lippia graveolens) Essential Oil. Antibiotics (Basel) 2023; 12:1539. [PMID: 37887240 PMCID: PMC10604308 DOI: 10.3390/antibiotics12101539] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 10/11/2023] [Accepted: 10/12/2023] [Indexed: 10/28/2023] Open
Abstract
Acinetobacter baumannii is a nosocomial pathogen known for its ability to form biofilms, leading to persistent infections and antibiotic resistance. The limited effective antibiotics have encouraged the development of innovative strategies such as using essential oils and their constituents. This study evaluated the efficacy of oregano (Lippia graveolens) essential oil (OEO) and its terpene compounds, carvacrol and thymol, in inhibiting A. baumannii biofilms. These treatments showed a minimum inhibitory concentration of 0.6, 0.3, and 2.5 mg/mL and a minimum bactericidal concentration of 1.2, 0.6, and 5 mg/mL, respectively. Sub-inhibitory doses of each treatment and the OEO significantly reduced biofilm biomass and the covered area of A. baumannii biofilms as measured by fluorescence microscopy. Carvacrol at 0.15 mg/mL exhibited the most potent efficacy, achieving a remarkable 95% reduction. Sub-inhibitory concentrations of carvacrol significantly reduced the biofilm formation of A. baumannii in stainless steel surfaces by up to 1.15 log CFU/cm2 compared to untreated bacteria. The OEO and thymol exhibited reductions of 0.6 log CFU/cm2 and 0.4 log CFU/cm2, respectively, without affecting cell viability. Moreover, the terpenes inhibited twitching motility, a crucial step in biofilm establishment, with carvacrol exhibiting the highest inhibition, followed by OEO and thymol. The study provides valuable insights into the potential of terpenes as effective agents against A. baumannii biofilms, offering promising avenues for developing novel strategies to prevent persistent infections and overcome antibiotic resistance.
Collapse
Affiliation(s)
- Melvin Roberto Tapia-Rodriguez
- Departamento de Biotecnología y Ciencias Alimentarias, Instituto Tecnológico de Sonora, 5 de Febrero 818 Sur, Col. Centro, Ciudad Obregón 85000, Mexico;
| | - Ernesto Uriel Cantu-Soto
- Departamento de Biotecnología y Ciencias Alimentarias, Instituto Tecnológico de Sonora, 5 de Febrero 818 Sur, Col. Centro, Ciudad Obregón 85000, Mexico;
| | - Francisco Javier Vazquez-Armenta
- Departamento de Ciencias Químico Biológicas, Universidad de Sonora, México Blvd. Luis Encinas y Rosales S/N, Col. Centro, Hermosillo 83000, Mexico;
| | - Ariadna Thalia Bernal-Mercado
- Departamento de Investigación y Posgrado en Alimentos, Universidad de Sonora, México Blvd. Luis Encinas y Rosales S/N, Col. Centro, Hermosillo 83000, Mexico;
| | - Jesus Fernando Ayala-Zavala
- Centro de Investigación en Alimentación y Desarrollo, A.C. Carretera Gustavo Enrique Astiazarán Rosas 46, Hermosillo 83304, Mexico;
| |
Collapse
|
10
|
Sun H, Sun M, You Y, Xie J, Xu X, Li J. Recent progress of intelligent antibacterial nanoplatforms for treating bacterial infection. CHEMICAL ENGINEERING JOURNAL 2023; 471:144597. [DOI: 10.1016/j.cej.2023.144597] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
|
11
|
Singh PK, Donnenberg MS. High throughput and targeted screens for prepilin peptidase inhibitors do not identify common inhibitors of eukaryotic gamma-secretase. Expert Opin Drug Discov 2023; 18:563-573. [PMID: 37073444 PMCID: PMC11558661 DOI: 10.1080/17460441.2023.2203480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Accepted: 04/12/2023] [Indexed: 04/20/2023]
Abstract
INTRODUCTION Prepilin peptidases (PPP) are essential enzymes for the biogenesis of important virulence factors, such as type IV pili (T4P), type II secretion systems, and other T4P-related systems of bacteria and archaea. PPP inhibitors could be valuable pharmaceuticals, but only a few have been reported. Interestingly, PPP share similarities with presenilin enzymes from the gamma-secretase protease complex, which are linked to Alzheimer's disease. Numerous gamma-secretase inhibitors have been reported, and some have entered clinical trials, but none has been tested against PPP. OBJECTIVE The objective of this study is to develop a high-throughput screening (HTS) method to search for inhibitors of PPP from various chemical libraries and reported gamma-secretase inhibitors. METHOD More than 15,000 diverse compounds, including 13 reported gamma-secretase inhibitors and other reported peptidase inhibitors, were screened to identify potential PPP inhibitors. RESULTS The authors developed a novel screening method and screened 15,869 compounds. However, the screening did not identify a PPP inhibitor. Nevertheless, the study suggests that gamma-secretase is sufficiently different from PPP that specific inhibitors may exist in a larger chemical space. CONCLUSION The authors believe that the HTS method that they describe has numerous advantages and encourage others to consider its application in the search for PPP inhibitors.
Collapse
Affiliation(s)
- Pradip Kumar Singh
- Department of Internal Medicine, Virginia Commonwealth University, Sanger Hall, Richmond, VA, USA
| | - Michael S Donnenberg
- Department of Internal Medicine, Virginia Commonwealth University, Sanger Hall, Richmond, VA, USA
| |
Collapse
|
12
|
Ozcan A, Keskin O, Sariyar Akbulut B, Ozbek P. Piperidine-based natural products targeting Type IV pili antivirulence: A computational approach. J Mol Graph Model 2023; 119:108382. [PMID: 36463631 DOI: 10.1016/j.jmgm.2022.108382] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 11/01/2022] [Accepted: 11/23/2022] [Indexed: 11/28/2022]
Abstract
Type IV (T4) pilus is among the virulence factors with a key role in serious bacterial diseases. Specifically, in Neisseria meningitidis and Pseudomonas aeruginosa, it determines pathogenicity and causes infection. Here, a computational approach has been pursued to find piperidine-based inhibitor molecules against the elongation ATPase of T4 pili in these two selected pathogens. Using the modeled structures of the PilF and PilB ATPases of N. meningitidis and P. aeruginosa, virtual library screening via molecular docking has returned inhibitor molecule candidates. The dynamics of the best three binders have further been investigated in detail via molecular dynamic simulations. Among these, ligands with COCONUT IDs CNP0030078 and CNP0051517 were found to have higher potential in the inhibition of ATPases based on molecular dynamic simulation analysis and biological activity information. The obtained results will guide future efforts in antivirulence drug development against T4 pili of N. meningitidis and P. aeruginosa.
Collapse
Affiliation(s)
- Aslihan Ozcan
- Faculty of Engineering, Department of Bioengineering, Marmara University, Istanbul, Turkey
| | - Ozlem Keskin
- College of Engineering, Chemical and Biological Engineering, Koc University, Istanbul, Turkey
| | - Berna Sariyar Akbulut
- Faculty of Engineering, Department of Bioengineering, Marmara University, Istanbul, Turkey
| | - Pemra Ozbek
- Faculty of Engineering, Department of Bioengineering, Marmara University, Istanbul, Turkey.
| |
Collapse
|
13
|
Pelicic V. Mechanism of assembly of type 4 filaments: everything you always wanted to know (but were afraid to ask). MICROBIOLOGY (READING, ENGLAND) 2023; 169. [PMID: 36947586 DOI: 10.1099/mic.0.001311] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/23/2023]
Abstract
Type 4 filaments (T4F) are a superfamily of filamentous nanomachines - virtually ubiquitous in prokaryotes and functionally versatile - of which type 4 pili (T4P) are the defining member. T4F are polymers of type 4 pilins, assembled by conserved multi-protein machineries. They have long been an important topic for research because they are key virulence factors in numerous bacterial pathogens. Our poor understanding of the molecular mechanisms of T4F assembly is a serious hindrance to the design of anti-T4F therapeutics. This review attempts to shed light on the fundamental mechanistic principles at play in T4F assembly by focusing on similarities rather than differences between several (mostly bacterial) T4F. This holistic approach, complemented by the revolutionary ability of artificial intelligence to predict protein structures, led to an intriguing mechanistic model of T4F assembly.
Collapse
Affiliation(s)
- Vladimir Pelicic
- Laboratoire de Chimie Bactérienne, UMR 7283 CNRS/Aix-Marseille Université, Institut de Microbiologie de la Méditerranée, Marseille, France
| |
Collapse
|
14
|
Discovery of Two Inhibitors of the Type IV Pilus Assembly ATPase PilB as Potential Antivirulence Compounds. Microbiol Spectr 2022; 10:e0387722. [PMID: 36377931 PMCID: PMC9769694 DOI: 10.1128/spectrum.03877-22] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
With the pressing antibiotic resistance pandemic, antivirulence has been increasingly explored as an alternative strategy against bacterial infections. The bacterial type IV pilus (T4P) is a well-documented virulence factor and an attractive target for small molecules for antivirulence purposes. The PilB ATPase is essential for T4P biogenesis because it catalyzes the assembly of monomeric pilins into the polymeric pilus filament. Here, we describe the identification of two PilB inhibitors by a high-throughput screen (HTS) in vitro and their validation as effective inhibitors of T4P assembly in vivo. We used Chloracidobacterium thermophilum PilB as a model enzyme to optimize an ATPase assay for the HTS. From a library of 2,320 compounds, benserazide and levodopa, two approved drugs for Parkinson's disease, were identified and confirmed biochemically to be PilB inhibitors. We demonstrate that both compounds inhibited the T4P-dependent motility of the bacteria Myxoccocus xanthus and Acinetobacter nosocomialis. Additionally, benserazide and levodopa were shown to inhibit A. nosocomialis biofilm formation, a T4P-dependent process. Using M. xanthus as a model, we showed that both compounds inhibited T4P assembly in a dose-dependent manner. These results suggest that these two compounds are effective against the PilB protein in vivo. The potency of benserazide and levodopa as PilB inhibitors both in vitro and in vivo demonstrate potentials of the HTS and its two hits here for the development of anti-T4P chemotherapeutics. IMPORTANCE Many bacterial pathogens use their type IV pilus (T4P) to facilitate and maintain an infection in a human host. Small-molecule inhibitors of the production or assembly of the T4P are promising for the treatment and prevention of infections by these bacteria, especially in our fight against antibiotic-resistant pathogens. Here, we report the development and implementation of a method to identify anti-T4P chemicals from compound libraries by high-throughput screen. This led to the identification and validation of two T4P inhibitors both in the test tubes and in bacteria. The discovery and validation pipeline reported here as well as the confirmation of two anti-T4P inhibitors provide new venues and leads for the development of chemotherapeutics against antibiotic-resistant infections.
Collapse
|
15
|
Yang L, Zhang T, Li L, Zheng C, Tan D, Wu N, Wang M, Zhu T. Characterization of Pseudomonas aeruginosa Bacteriophage L5 Which Requires Type IV Pili for Infection. Front Microbiol 2022; 13:907958. [PMID: 35847060 PMCID: PMC9284122 DOI: 10.3389/fmicb.2022.907958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Accepted: 06/13/2022] [Indexed: 11/23/2022] Open
Abstract
Pseudomonas aeruginosa is a common opportunistic human pathogen. With the emergence of multidrug-resistant (MDR) clinical infection of P. aeruginosa, phage therapy has received renewed attention in treating P. aeruginosa infections. Moreover, a detailed understanding of the host receptor of lytic phage is crucial for selecting proper phages for therapy. Here, we describe the characterization of the P. aeruginosa bacteriophage L5 with a double-stranded DNA genome of 42,925 bp. The genomic characteristics indicate that L5 is a lytic bacteriophage belonging to the subfamily Autographivirinae. In addition, the phage receptors for L5 were also identified as type IV pili, because the mutation of pilZ, which is involved in pili synthesis, resists phage infection, while the complementation of pilZ restored its phage sensitivity. This research reveals that L5 is a potential phage therapy candidate for the treatment of P. aeruginosa infection.
Collapse
Affiliation(s)
- Lan Yang
- Shanghai Institute of Phage, Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
| | - Tingting Zhang
- Shanghai Institute of Phage, Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
- Key Laboratory of Infectious Immune and Antibody Engineering of Guizhou Province, School of Biology and Engineering, Guizhou Medical University, Guiyang, China
| | - Linlin Li
- Shanghai Institute of Phage, Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
| | - Chao Zheng
- Department of Critical Care Medicine, Jiangbei District People’s Hospital, Chongqing, China
| | - Demeng Tan
- Shanghai Institute of Phage, Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
| | - Nannan Wu
- Shanghai Institute of Phage, Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
- CreatiPhage Biotechnology Co., Ltd, Shanghai, China
| | - Mingyang Wang
- Department of Critical Care Medicine, Jiangbei District People’s Hospital, Chongqing, China
- *Correspondence: Mingyang Wang,
| | - Tongyu Zhu
- Shanghai Institute of Phage, Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
- Shanghai Medical College, Fudan University, Shanghai, China
- Tongyu Zhu,
| |
Collapse
|
16
|
Peng H, Rossetto D, Mansy SS, Jordan MC, Roos KP, Chen IA. Treatment of Wound Infections in a Mouse Model Using Zn 2+-Releasing Phage Bound to Gold Nanorods. ACS NANO 2022; 16:4756-4774. [PMID: 35239330 PMCID: PMC8981316 DOI: 10.1021/acsnano.2c00048] [Citation(s) in RCA: 49] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Accepted: 02/09/2022] [Indexed: 05/20/2023]
Abstract
Infections caused by drug-resistant bacteria, particularly Gram-negative organisms, are increasingly difficult to treat using antibiotics. A potential alternative is "phage therapy", in which phages infect and lyse the bacterial host. However, phage therapy poses serious drawbacks and safety concerns, such as the risk of genetic transduction of antibiotic resistance genes, inconsistent pharmacokinetics, and unknown evolutionary potential. In contrast, metallic nanoparticles possess precise, tunable properties, including efficient conversion of electronic excitation into heat. In this work, we demonstrate that engineered phage-nanomaterial conjugates that target the Gram-negative pathogen Pseudomonas aeruginosa are highly effective as a treatment of infected wounds in mice. Photothermal heating, performed as a single treatment (15 min) or as two treatments on consecutive days, rapidly reduced the bacterial load and released Zn2+ to promote wound healing. The phage-nanomaterial treatment was significantly more effective than systemic standard-of-care antibiotics, with a >10× greater reduction in bacterial load and ∼3× faster healing as measured by wound size reduction when compared to fluoroquinolone treatment. Notably, the phage-nanomaterial was also effective against a P. aeruginosa strain resistant to polymyxins, a last-line antibiotic therapy. Unlike these antibiotics, the phage-nanomaterial showed no detectable toxicity or systemic effects in mice, consistent with the short duration and localized nature of phage-nanomaterial treatment. Our results demonstrate that phage therapy controlled by inorganic nanomaterials can be a safe and effective antimicrobial strategy in vivo.
Collapse
Affiliation(s)
- Huan Peng
- Department
of Chemical and Biomolecular Engineering, University of California, Los Angeles, California 90095, United States
| | - Daniele Rossetto
- Department
of Chemistry, University of Alberta, Edmonton, Alberta T6G 2G2, Canada
- CIBIO, University of Trento, 38123 Povo, Trento, Italy
| | - Sheref S. Mansy
- Department
of Chemistry, University of Alberta, Edmonton, Alberta T6G 2G2, Canada
- CIBIO, University of Trento, 38123 Povo, Trento, Italy
| | - Maria C. Jordan
- Department
of Physiology, David Geffen School of Medicine
at the University of California, Los Angeles, California 90095, United States
| | - Kenneth P. Roos
- Department
of Physiology, David Geffen School of Medicine
at the University of California, Los Angeles, California 90095, United States
| | - Irene A. Chen
- Department
of Chemical and Biomolecular Engineering, University of California, Los Angeles, California 90095, United States
| |
Collapse
|
17
|
Karami Y, López-Castilla A, Ori A, Thomassin JL, Bardiaux B, Malliavin T, Izadi-Pruneyre N, Francetic O, Nilges M. Computational and biochemical analysis of type IV pilus dynamics and stability. Structure 2021; 29:1397-1409.e6. [PMID: 34520738 DOI: 10.1016/j.str.2021.07.008] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 06/14/2021] [Accepted: 07/20/2021] [Indexed: 11/16/2022]
Abstract
Type IV pili (T4P) are distinctive dynamic filaments at the surface of many bacteria that can rapidly extend and retract and withstand strong forces. T4P are important virulence factors in many human pathogens, including Enterohemorrhagic Escherichia coli (EHEC). The structure of the EHEC T4P has been determined by integrating nuclear magnetic resonance (NMR) and cryo-electron microscopy data. To better understand pilus assembly, stability, and function, we performed a total of 108 ms all-atom molecular dynamics simulations of wild-type and mutant T4P. Extensive characterization of the conformational landscape of T4P in different conditions of temperature, pH, and ionic strength is complemented with targeted mutagenesis and biochemical analyses. Our simulations and NMR experiments reveal a conserved set of residues defining a calcium-binding site at the interface between three pilin subunits. Calcium binding enhances T4P stability ex vivo and in vitro, supporting the role of this binding site as a potential pocket for drug design.
Collapse
Affiliation(s)
- Yasaman Karami
- Structural Bioinformatics Unit, Department of Structural Biology and Chemistry, Institut Pasteur, CNRS UMR3528, Paris, France
| | - Aracelys López-Castilla
- Structural Bioinformatics Unit, Department of Structural Biology and Chemistry, Institut Pasteur, CNRS UMR3528, Paris, France; NMR of Biomolecules Unit, Department of Structural Biology and Chemistry, Institut Pasteur, CNRS UMR3528, Paris, France
| | - Andrea Ori
- Biochemistry of Macromolecular Interactions Unit, Department of Structural Biology and Chemistry, Institut Pasteur, CNRS UMR3528, Paris, France
| | - Jenny-Lee Thomassin
- Biochemistry of Macromolecular Interactions Unit, Department of Structural Biology and Chemistry, Institut Pasteur, CNRS UMR3528, Paris, France
| | - Benjamin Bardiaux
- Structural Bioinformatics Unit, Department of Structural Biology and Chemistry, Institut Pasteur, CNRS UMR3528, Paris, France
| | - Therese Malliavin
- Structural Bioinformatics Unit, Department of Structural Biology and Chemistry, Institut Pasteur, CNRS UMR3528, Paris, France
| | - Nadia Izadi-Pruneyre
- Structural Bioinformatics Unit, Department of Structural Biology and Chemistry, Institut Pasteur, CNRS UMR3528, Paris, France; NMR of Biomolecules Unit, Department of Structural Biology and Chemistry, Institut Pasteur, CNRS UMR3528, Paris, France
| | - Olivera Francetic
- Biochemistry of Macromolecular Interactions Unit, Department of Structural Biology and Chemistry, Institut Pasteur, CNRS UMR3528, Paris, France
| | - Michael Nilges
- Structural Bioinformatics Unit, Department of Structural Biology and Chemistry, Institut Pasteur, CNRS UMR3528, Paris, France.
| |
Collapse
|
18
|
Exploiting pilus-mediated bacteria-host interactions for health benefits. Mol Aspects Med 2021; 81:100998. [PMID: 34294411 DOI: 10.1016/j.mam.2021.100998] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Revised: 04/30/2021] [Accepted: 07/16/2021] [Indexed: 02/06/2023]
Abstract
Surface pili (or fimbriae) are an important but conspicuous adaptation of several genera and species of Gram-negative and Gram-positive bacteria. These long and non-flagellar multi-subunit adhesins mediate the initial contact that a bacterium has with a host or environment, and thus have come to be regarded as a key colonization factor for virulence activity in pathogens or niche adaptation in commensals. Pili in pathogenic bacteria are well recognized for their roles in the adhesion to host cells, colonization of tissues, and establishment of infection. As an 'anti-adhesive' ploy, targeting pilus-mediated attachment for disruption has become a potentially effective alternative to using antibiotics. In this review, we give a description of the several structurally distinct bacterial pilus types thus far characterized, and as well offer details about the intricacy of their individual structure, assembly, and function. With a molecular understanding of pilus biogenesis and pilus-mediated host interactions also provided, we go on to describe some of the emerging new approaches and compounds that have been recently developed to prevent the adhesion, colonization, and infection of piliated bacterial pathogens.
Collapse
|
19
|
Mignolet J, Viljoen A, Mathelié-Guinlet M, Viela F, Valotteau C, Dufrêne YF. AFM Unravels the Unique Adhesion Properties of the Caulobacter Type IVc Pilus Nanomachine. NANO LETTERS 2021; 21:3075-3082. [PMID: 33754731 DOI: 10.1021/acs.nanolett.1c00215] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Bacterial pili are proteinaceous motorized nanomachines that play various functional roles including surface adherence, bacterial motion, and virulence. The surface-contact sensor type IVc (or Tad) pilus is widely distributed in both Gram-positive and Gram-negative bacteria. In Caulobacter crescentus, this nanofilament, though crucial for surface colonization, has never been thoroughly investigated at the molecular level. As Caulobacter assembles several surface appendages at specific stages of the cell cycle, we designed a fluorescence-based screen to selectively study single piliated cells and combined it with atomic force microscopy and genetic manipulation to quantify the nanoscale adhesion of the type IVc pilus to hydrophobic substrates. We demonstrate that this nanofilament exhibits high stickiness compared to the canonical type IVa/b pili, resulting mostly from multiple hydrophobic interactions along the fiber length, and that it features nanospring mechanical properties. Our findings may be helpful to better understand the structure-function relationship of bacterial pilus nanomachines.
Collapse
Affiliation(s)
- Johann Mignolet
- Louvain Institute of Biomolecular Science and Technology, UCLouvain, Croix du Sud, 4-5, bte, L7.07.07., B-1348 Louvain-la-Neuve, Belgium
| | - Albertus Viljoen
- Louvain Institute of Biomolecular Science and Technology, UCLouvain, Croix du Sud, 4-5, bte, L7.07.07., B-1348 Louvain-la-Neuve, Belgium
| | - Marion Mathelié-Guinlet
- Louvain Institute of Biomolecular Science and Technology, UCLouvain, Croix du Sud, 4-5, bte, L7.07.07., B-1348 Louvain-la-Neuve, Belgium
| | - Felipe Viela
- Louvain Institute of Biomolecular Science and Technology, UCLouvain, Croix du Sud, 4-5, bte, L7.07.07., B-1348 Louvain-la-Neuve, Belgium
| | - Claire Valotteau
- Louvain Institute of Biomolecular Science and Technology, UCLouvain, Croix du Sud, 4-5, bte, L7.07.07., B-1348 Louvain-la-Neuve, Belgium
| | - Yves F Dufrêne
- Louvain Institute of Biomolecular Science and Technology, UCLouvain, Croix du Sud, 4-5, bte, L7.07.07., B-1348 Louvain-la-Neuve, Belgium
| |
Collapse
|
20
|
Dufrêne YF, Viljoen A, Mignolet J, Mathelié-Guinlet M. AFM in cellular and molecular microbiology. Cell Microbiol 2021; 23:e13324. [PMID: 33710716 DOI: 10.1111/cmi.13324] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 02/22/2021] [Accepted: 02/23/2021] [Indexed: 12/14/2022]
Abstract
The unique capabilities of the atomic force microscope (AFM), including super-resolution imaging, piconewton force-sensitivity, nanomanipulation and ability to work under physiological conditions, have offered exciting avenues for cellular and molecular biology research. AFM imaging has helped unravel the fine architectures of microbial cell envelopes at the nanoscale, and how these are altered by antimicrobial treatment. Nanomechanical measurements have shed new light on the elasticity, tensile strength and turgor pressure of single cells. Single-molecule and single-cell force spectroscopy experiments have revealed the forces and dynamics of receptor-ligand interactions, the nanoscale distribution of receptors on the cell surface and the elasticity and adhesiveness of bacterial pili. Importantly, recent force spectroscopy studies have demonstrated that extremely stable bonds are formed between bacterial adhesins and their cognate ligands, originating from a catch bond behaviour allowing the pathogen to reinforce adhesion under shear or tensile stress. Here, we survey how the versatility of AFM has enabled addressing crucial questions in microbiology, with emphasis on bacterial pathogens. TAKE AWAYS: AFM topographic imaging unravels the ultrastructure of bacterial envelopes. Nanomechanical mapping shows what makes cell envelopes stiff and resistant to drugs. Force spectroscopy characterises the molecular forces in pathogen adhesion. Stretching pili reveals a wealth of mechanical and adhesive responses.
Collapse
Affiliation(s)
- Yves F Dufrêne
- Louvain Institute of Biomolecular Science and Technology, Université Catholique de Louvain, Louvain-la-Neuve, Belgium
| | - Albertus Viljoen
- Louvain Institute of Biomolecular Science and Technology, Université Catholique de Louvain, Louvain-la-Neuve, Belgium
| | - Johann Mignolet
- Louvain Institute of Biomolecular Science and Technology, Université Catholique de Louvain, Louvain-la-Neuve, Belgium
| | - Marion Mathelié-Guinlet
- Louvain Institute of Biomolecular Science and Technology, Université Catholique de Louvain, Louvain-la-Neuve, Belgium
| |
Collapse
|
21
|
Abstract
The bacterial type IV pilus (T4P) is a prominent virulence factor in many significant human pathogens, some of which have become increasingly antibiotic resistant. Antivirulence chemotherapeutics are considered a promising alternative to antibiotics because they target the disease process instead of bacterial viability. However, a roadblock to the discovery of anti-T4P compounds is the lack of a high-throughput screen (HTS) that can be implemented relatively easily and economically. Here, we describe the first HTS for the identification of inhibitors specifically against the T4P assembly ATPase PilB in vitro. Chloracidobacterium thermophilum PilB (CtPilB) had been demonstrated to have robust ATPase activity and the ability to bind its expected ligands in vitro. We utilized CtPilB and MANT-ATP, a fluorescent ATP analog, to develop a binding assay and adapted it for an HTS. As a proof of principle, we performed a pilot screen with a small compound library of kinase inhibitors and identified quercetin as a PilB inhibitor in vitro. Using Myxococcus xanthus as a model bacterium, we found quercetin to reduce its T4P-dependent motility and T4P assembly in vivo. These results validated our HTS as effective in identifying PilB inhibitors. This assay may prove valuable in seeking leads for the development of antivirulence chemotherapeutics against PilB, an essential and universal component of all bacterial T4P systems. IMPORTANCE Many bacterial pathogens use their type IV pili (T4P) to facilitate and maintain infection of a human host. Small chemical compounds that inhibit the production or assembly of T4P hold promise in the treatment and prevention of infections, especially in the era of increasing threats from antibiotic-resistant bacteria. However, few chemicals are known to have inhibitory or anti-T4P activity. Their identification has not been easy due to the lack of a method for the screening of compound collections or libraries on a large scale. Here, we report the development of an assay that can be scaled up to screen compound libraries for inhibitors of a critical T4P assembly protein. We further demonstrate that it is feasible to use whole cells to examine potential inhibitors for their activity against T4P assembly in a bacterium.
Collapse
|
22
|
Wu Y, Deng G, Jiang K, Wang H, Song Z, Han H. Photothermally triggered nitric oxide nanogenerator targeting type IV pili for precise therapy of bacterial infections. Biomaterials 2020; 268:120588. [PMID: 33307370 DOI: 10.1016/j.biomaterials.2020.120588] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Revised: 10/27/2020] [Accepted: 11/27/2020] [Indexed: 12/24/2022]
Abstract
Nitric oxide (NO) is an important biological messenger involved in the treatment of bacterial infections, but its controlled and targeted release in bacterial infections remains a major challenge. Herein, an intelligent NO nanogenerator triggered by near-infrared (NIR) light is constructed for targeted treatment of P. aeruginosa bacterial infection. Since maleimide can recognize and attach to the pilus of T4P of P. aeruginosa, we adopt this strategy to achieve the accurate release of therapeutic drugs at the infection site, i.e., after maleimide targets Gram-negative bacteria, the SNP@MOF@Au-Mal nanogenerator will release NO and generate ROS in situ from the inorganic photosensitizer gold nanoparticles under NIR irradiation to achieve synergistic antibacterial effect. In vivo experiments proved that the bacterial burden on the wound was reduced by 97.7%. Additionally, the nanogenerator was shown to promote the secretion of growth factors, which play a key role in regulating inflammation and inducing angiogenesis. This strategy has the advantage of generating a high concentration of NO in situ to promote the transfer of more NO and its derivatives (N2O3, ONOO-) to bacteria, thereby significantly improving the antibacterial effect. The multifunctional antibacterial platform has been demonstrated as a good carrier for gas therapy because of its simple and efficient gas release performance, indicating its great potential for the treatment of drug-resistant bacterial infections.
Collapse
Affiliation(s)
- Yang Wu
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Guiyun Deng
- State Key Laboratory of Agricultural Microbiology, College of Science, Huazhong Agricultural University, Wuhan, 430070, China
| | - Kai Jiang
- State Key Laboratory of Agricultural Microbiology, College of Science, Huazhong Agricultural University, Wuhan, 430070, China
| | - Huajuan Wang
- State Key Laboratory of Agricultural Microbiology, College of Food Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Zhiyong Song
- State Key Laboratory of Agricultural Microbiology, College of Science, Huazhong Agricultural University, Wuhan, 430070, China.
| | - Heyou Han
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China; State Key Laboratory of Agricultural Microbiology, College of Science, Huazhong Agricultural University, Wuhan, 430070, China; State Key Laboratory of Agricultural Microbiology, College of Food Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China.
| |
Collapse
|
23
|
Heywood A, Lamont IL. Cell envelope proteases and peptidases of Pseudomonas aeruginosa: multiple roles, multiple mechanisms. FEMS Microbiol Rev 2020; 44:857-873. [PMID: 32804218 DOI: 10.1093/femsre/fuaa036] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2020] [Accepted: 08/05/2020] [Indexed: 12/15/2022] Open
Abstract
Pseudomonas aeruginosa is a Gram-negative bacterium that is commonly isolated from damp environments. It is also a major opportunistic pathogen, causing a wide range of problematic infections. The cell envelope of P. aeruginosa, comprising the cytoplasmic membrane, periplasmic space, peptidoglycan layer and outer membrane, is critical to the bacteria's ability to adapt and thrive in a wide range of environments. Over 40 proteases and peptidases are located in the P. aeruginosa cell envelope. These enzymes play many crucial roles. They are required for protein secretion out of the cytoplasm to the periplasm, outer membrane, cell surface or the environment; for protein quality control and removal of misfolded proteins; for controlling gene expression, allowing adaptation to environmental changes; for modification and remodelling of peptidoglycan; and for metabolism of small molecules. The key roles of cell envelope proteases in ensuring normal cell functioning have prompted the development of inhibitors targeting some of these enzymes as potential new anti-Pseudomonas therapies. In this review, we summarise the current state of knowledge across the breadth of P. aeruginosa cell envelope proteases and peptidases, with an emphasis on recent findings, and highlight likely future directions in their study.
Collapse
Affiliation(s)
- Astra Heywood
- Department of Biochemistry, University of Otago, Dunedin 9054, New Zealand
| | - Iain L Lamont
- Department of Biochemistry, University of Otago, Dunedin 9054, New Zealand
| |
Collapse
|
24
|
Jacobsen T, Bardiaux B, Francetic O, Izadi-Pruneyre N, Nilges M. Structure and function of minor pilins of type IV pili. Med Microbiol Immunol 2019; 209:301-308. [PMID: 31784891 PMCID: PMC7248040 DOI: 10.1007/s00430-019-00642-5] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Accepted: 11/14/2019] [Indexed: 02/06/2023]
Abstract
Type IV pili are versatile and highly flexible fibers formed on the surface of many Gram-negative and Gram-positive bacteria. Virulence and infection rate of several pathogenic bacteria, such as Neisseria meningitidis and Pseudomonas aeruginosa, are strongly dependent on the presence of pili as they facilitate the adhesion of the bacteria to the host cell. Disruption of the interactions between the pili and the host cells by targeting proteins involved in this interaction could, therefore, be a treatment strategy. A type IV pilus is primarily composed of multiple copies of protein subunits called major pilins. Additional proteins, called minor pilins, are present in lower abundance, but are essential for the assembly of the pilus or for its specific functions. One class of minor pilins is required to initiate the formation of pili, and may form a complex similar to that identified in the related type II secretion system. Other, species-specific minor pilins in the type IV pilus system have been shown to promote additional functions such as DNA binding, aggregation and adherence. Here, we will review the structure and the function of the minor pilins from type IV pili.
Collapse
Affiliation(s)
- Theis Jacobsen
- Structural Bioinformatics Unit, Department of Structural Biology and Chemistry, C3BI, Institut Pasteur, CNRS UMR3528, CNRS USR3756, Paris, France.,Sorbonne Université, Complexité du Vivant, 75005, Paris, France
| | - Benjamin Bardiaux
- Structural Bioinformatics Unit, Department of Structural Biology and Chemistry, C3BI, Institut Pasteur, CNRS UMR3528, CNRS USR3756, Paris, France
| | - Olivera Francetic
- Biochemistry of Macromolecular Interactions Unit, Department of Structural Biology and Chemistry, Institut Pasteur, CNRS UMR3528, Paris, France
| | - Nadia Izadi-Pruneyre
- Structural Bioinformatics Unit, Department of Structural Biology and Chemistry, C3BI, Institut Pasteur, CNRS UMR3528, CNRS USR3756, Paris, France
| | - Michael Nilges
- Structural Bioinformatics Unit, Department of Structural Biology and Chemistry, C3BI, Institut Pasteur, CNRS UMR3528, CNRS USR3756, Paris, France.
| |
Collapse
|