1
|
Cai R, He C, Kong Q, Lu L, Sang H. Synergistic Antifungal Activity of PIT and ITZ Against Varied Aspergillus Species via Affecting The Ergosterol Content and Intracellular Drug Retention. Curr Microbiol 2025; 82:198. [PMID: 40095083 DOI: 10.1007/s00284-025-04150-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Accepted: 02/19/2025] [Indexed: 03/19/2025]
Abstract
Aspergillus species are a significant cause of aspergillosis, with invasive pulmonary aspergillosis (IPA) being particularly severe and often fatal. The increasing resistance to azole antifungals and limited treatment options highlight the need for new therapeutic strategies. This study explores the synergistic effects of pitavastatin (PIT), a statin, combined with itraconazole (ITZ) against various Aspergillus species. In vitro assessments included plate inoculation, liquid medium incubation, and microscopic observation of spore germination, alongside ergosterol content analysis, intracellular itraconazole retention, and rhodamine 6G (Rh6G) uptake and efflux assays. The PIT and ITZ combination exhibited significant synergistic antifungal activity against Aspergillus flavus, Aspergillus niger, Aspergillus terreus, and Aspergillus fumigatus. The synergistic mechanism was attributed to decreased ergosterol levels, increased intracellular itraconazole retention, reduced spore germination, and abnormal hyphal formation in fungal cells. An in vivo Galleria mellonella infectious model demonstrated reduced mortality in larvae treated with the drug combination compared to those treated with ITZ alone. These findings suggest that the PIT and ITZ combination enhances antifungal effects against Aspergillus species, potentially offering a novel therapeutic strategy for IPA treatment. Further clinical trials are warranted to explore the potential of this drug combination in treating aspergillosis.
Collapse
Affiliation(s)
- Renhui Cai
- The First School of Clinical Medicine, Southern Medical University, Guangzhou, 510515, China
- Department of Dermatology, Fujian Provincial Hospital, Shengli Clinical Medical College of Fujian Medical University, Fuzhou University Affiliated Provincial Hospital, Fuzhou, 350001, Fujian, China
| | - Cong He
- Department of Dermatology, Jinling Hospital, Nanjing, 210002, China
| | - Qingtao Kong
- Department of Dermatology, Jinling Hospital, Nanjing, 210002, China
| | - Ling Lu
- Jiangsu Key Laboratory for Microbes and Functional Genomics, College of Life Sciences, Jiangsu Engineering and Technology Research Center for Microbiology, Nanjing Normal University, Nanjing, 210023, Jiangsu, China.
| | - Hong Sang
- The First School of Clinical Medicine, Southern Medical University, Guangzhou, 510515, China.
- Department of Dermatology, Jinling Hospital, Nanjing, 210002, China.
| |
Collapse
|
2
|
Dai M, Liu X, Goldman GH, Lu L, Zhang S. The EH domain-containing protein, EdeA, is involved in endocytosis, cell wall integrity, and pathogenicity in Aspergillus fumigatus. mSphere 2024; 9:e0005724. [PMID: 38687129 PMCID: PMC11237632 DOI: 10.1128/msphere.00057-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Accepted: 03/29/2024] [Indexed: 05/02/2024] Open
Abstract
Endocytosis has been extensively studied in yeasts, where it plays crucial roles in growth, signaling regulation, and cell-surface receptor internalization. However, the biological functions of endocytosis in pathogenic filamentous fungi remain largely unexplored. In this study, we aimed to functionally characterize the roles of EdeA, an ortholog of the Saccharomyces cerevisiae endocytic protein Ede1, in Aspergillus fumigatus. EdeA was observed to be distributed as patches on the plasma membrane and concentrated in the subapical collar of hyphae, a localization characteristic of endocytic proteins. Loss of edeA caused defective hyphal polarity, reduced conidial production, and fewer sites of endocytosis initiations than that of the parental wild type. Notably, the edeA null mutant exhibited increased sensitivity to cell wall-disrupting agents, indicating a role for EdeA in maintaining cell wall integrity in A. fumigatus. This observation was further supported by the evidence showing that the thickness of the cell wall in the ΔedeA mutant increased, accompanied by abnormal activation of MpkA, a key component in the cell wall integrity pathway. Additionally, the ΔedeA mutant displayed increased pathogenicity in the Galleria mellonella wax moth infection model, possibly due to alterations in cell wall morphology. Site-directed mutagenesis identified the conserved residue E348 within the third EH (Eps15 homology) domain of EdeA as crucial for its subcellular localization and functions. In conclusion, our results highlight the involvement of EdeA in endocytosis, hyphal polarity, cell wall integrity, and pathogenicity in A. fumigatus. IMPORTANCE Aspergillus fumigatus is a significant human pathogenic fungus known to cause invasive aspergillosis, a disease with a high mortality rate. Understanding the basic principles of A. fumigatus pathogenicity is crucial for developing effective strategies against this pathogen. Previous research has underscored the importance of endocytosis in the infection capacity of pathogenic yeasts; however, its biological function in pathogenic mold remains largely unexplored. Our characterization of EdeA in A. fumigatus sheds light on the role of endocytosis in the development, stress response, and pathogenicity of pathogenic molds. These findings suggest that the components of the endocytosis process may serve as potential targets for antifungal therapy.
Collapse
Affiliation(s)
- Mengyao Dai
- Jiangsu Key Laboratory for Microbes and Functional Genomics, Jiangsu Engineering and Technology Research Centre for Microbiology, College of Life Sciences, Nanjing Normal University, Nanjing, China
| | - Xintian Liu
- Jiangsu Key Laboratory for Microbes and Functional Genomics, Jiangsu Engineering and Technology Research Centre for Microbiology, College of Life Sciences, Nanjing Normal University, Nanjing, China
| | - Gustavo H Goldman
- Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, Brazil
| | - Ling Lu
- Jiangsu Key Laboratory for Microbes and Functional Genomics, Jiangsu Engineering and Technology Research Centre for Microbiology, College of Life Sciences, Nanjing Normal University, Nanjing, China
| | - Shizhu Zhang
- Jiangsu Key Laboratory for Microbes and Functional Genomics, Jiangsu Engineering and Technology Research Centre for Microbiology, College of Life Sciences, Nanjing Normal University, Nanjing, China
| |
Collapse
|
3
|
Ríos-López AL, Dávila-Aviña J, González GM, Flores-Maldonado O. Antifungal and Antivirulence Activity of Vanillin and Tannic Acid Against Aspergillus fumigatus and Fusarium solani. Curr Microbiol 2024; 81:156. [PMID: 38656548 DOI: 10.1007/s00284-024-03678-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Accepted: 03/26/2024] [Indexed: 04/26/2024]
Abstract
Aspergillus fumigatus and Fusarium solani infections have become severe health threat; both pathogens are considered a priority due to the increasing emergence of antifungal-resistant strains and high mortality rates. Therefore, the discovery of new therapeutic strategies has become crucial. In this study, we evaluated the antifungal and antivirulence effects of vanillin and tannic acid against Aspergillus fumigatus and Fusarium solani. The minimum inhibitory concentrations of the compounds were determined by the microdilution method in RPMI broth in 96-well microplates according to CLSI. Conidial germination, protease production, biofilm formation, and in vivo therapeutic efficacy assays were performed. The results demonstrated that vanillin and tannic acid had antifungal activity against Aspergillus fumigatus, while tannic acid only exhibited antifungal activity against Fusarium solani. We found that vanillin and tannic acid inhibited conidial germination and secreted protease production and biofilm formation of the fungal pathogens using sub-inhibitory concentrations. Besides, vanillin and tannic acid altered the fungal membrane permeability, and both compounds showed therapeutic effect against aspergillosis and fusariosis in an infection model in Galleria mellonella larvae. Our results highlight the antivirulence effect of vanillin and tannic acid against priority pathogenic fungi as a possible therapeutic alternative for human fungal infections.
Collapse
Affiliation(s)
- Ana L Ríos-López
- Departamento de Microbiología, Facultad de Medicina y Hospital Universitario "Dr. José Eleuterio González", Universidad Autónoma de Nuevo León, Av. Francisco I. Madero, Mitras Centro, 64460, Monterrey, Nuevo León, Mexico
| | - Jorge Dávila-Aviña
- Departamento de Microbiología e Inmunología, Facultad de Ciencias Biológicas, Universidad Autónoma de Nuevo León, San Nicolas, Nuevo León, Mexico
| | - Gloria M González
- Departamento de Microbiología, Facultad de Medicina y Hospital Universitario "Dr. José Eleuterio González", Universidad Autónoma de Nuevo León, Av. Francisco I. Madero, Mitras Centro, 64460, Monterrey, Nuevo León, Mexico
| | - Orlando Flores-Maldonado
- Departamento de Microbiología, Facultad de Medicina y Hospital Universitario "Dr. José Eleuterio González", Universidad Autónoma de Nuevo León, Av. Francisco I. Madero, Mitras Centro, 64460, Monterrey, Nuevo León, Mexico.
| |
Collapse
|
4
|
Shang S, He D, Liu C, Bao X, Han S, Wang L. TRAF3 gene regulates macrophage migration and activation by lung epithelial cells infected with Aspergillus fumigatus. Microbiol Spectr 2024; 12:e0269923. [PMID: 38018974 PMCID: PMC10783100 DOI: 10.1128/spectrum.02699-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Accepted: 10/21/2023] [Indexed: 11/30/2023] Open
Abstract
IMPORTANCE Aspergillus fumigatus can infect immunocompromised individuals and cause chronic and fatal invasive fungal infections. A better understanding of the molecular mechanisms of A. fumigatus-host interactions may provide new references for disease treatment. In this study, we demonstrated that the TRAF3 gene plays an important role in the early infection of A. fumigatus by regulating the resistance of lung epithelial cells to A. fumigatus. Macrophages are the most abundant innate immune cells in the alveoli; however, few studies have reported on the interactions between lung epithelial cells and macrophages in response to A. fumigatus invasion. In our study, it was demonstrated that the TRAF3 gene reduces migration to macrophages and cytokine production by negatively regulating lung epithelial cell adhesion and internalization of A. fumigatus spores. Together, our results provide new insights into lung epithelial cell-macrophage interactions during A. fumigatus infection.
Collapse
Affiliation(s)
- Shumi Shang
- Department of Pathogenobiology, Jilin University Mycology Research Center, Key Laboratory of Zoonosis Research, Ministry of Education, College of Basic Medical Sciences, Jilin University, Changchun, China
| | - Dan He
- Department of Pathogenobiology, Jilin University Mycology Research Center, Key Laboratory of Zoonosis Research, Ministry of Education, College of Basic Medical Sciences, Jilin University, Changchun, China
| | - Cong Liu
- Department of Dermatology, First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Xinyuan Bao
- Department of Pathogenobiology, Jilin University Mycology Research Center, Key Laboratory of Zoonosis Research, Ministry of Education, College of Basic Medical Sciences, Jilin University, Changchun, China
| | - Shuaishuai Han
- Beijing ZhongKai TianCheng Bio-technology Co. Ltd., Beijing, China
| | - Li Wang
- Department of Pathogenobiology, Jilin University Mycology Research Center, Key Laboratory of Zoonosis Research, Ministry of Education, College of Basic Medical Sciences, Jilin University, Changchun, China
| |
Collapse
|
5
|
Tan J, Yang J, Aobulikasimu N, Zhang C, Cao B, Lv H, Jiang M, Han L, Huang X. Senkyunolide B exhibits broad-spectrum antifungal activity against plant and human pathogenic fungi via inhibiting spore germination and destroying the mature biofilm. PEST MANAGEMENT SCIENCE 2023; 79:4952-4963. [PMID: 37531560 DOI: 10.1002/ps.7696] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 07/24/2023] [Accepted: 08/03/2023] [Indexed: 08/04/2023]
Abstract
BACKGROUND Aspergillus infection seriously jeopardizes the health and safety of life of immunocompromised patients. The emergences of antifungal resistance highlight a demand to find new effective antifungal drugs. Angelica sinensis is a medicine-food herb and phthalides are its characteristic components. A few of the phthalides have been reported to display satisfactory antifungal activities against plant pathogenic fungi. However, the structure-activity relationships and antifungal action mechanism of phthalides remain to be further explored and elucidated. RESULTS The antifungal activities of five natural phthalides and four artificial analogs were investigated, and their structure-activity relationships were preliminarily elucidated in the current study. The benzene ring moiety played an essential role in their antifungal activities; the oxygen-containing substituents on the benzene ring obviously impacted their activities, the free hydroxyl was favorable to the activity. Typical phthalide senkyunolide B (SENB) exhibited broad antifungal activities against human and plant pathogenic fungi, especially, Aspergillus fumigatus. SENB affected the spore germination and hyphae growth of Aspergillus fumigatus via down-regulating phosphatidylinositol-PKC-calcineurin axis and the expression of ENG genes. Moreover, SENB disturbed the oxidation-reduction process in Aspergillus fumigatus to destroy the mature biofilms. In vivo experiments indicated SENB significantly prolonged survival and decreased fungal burden in mouse model of invasive pulmonary aspergillosis. CONCLUSIONS Phthalides could be considered as the valuable leads for the development of antifungal drug to cure plant and human disease. © 2023 Society of Chemical Industry.
Collapse
Affiliation(s)
- Junfeng Tan
- Key Laboratory of Bioresource Research and Development of Liaoning Province, College of Life and Health Sciences, Northeastern University, Shenyang, P. R. China
| | - Junwei Yang
- Key Laboratory of Bioresource Research and Development of Liaoning Province, College of Life and Health Sciences, Northeastern University, Shenyang, P. R. China
| | - Nuerbiye Aobulikasimu
- Key Laboratory of Bioresource Research and Development of Liaoning Province, College of Life and Health Sciences, Northeastern University, Shenyang, P. R. China
| | - Chen Zhang
- Key Laboratory of Bioresource Research and Development of Liaoning Province, College of Life and Health Sciences, Northeastern University, Shenyang, P. R. China
| | - Bixuan Cao
- Key Laboratory of Bioresource Research and Development of Liaoning Province, College of Life and Health Sciences, Northeastern University, Shenyang, P. R. China
| | - Hang Lv
- Key Laboratory of Bioresource Research and Development of Liaoning Province, College of Life and Health Sciences, Northeastern University, Shenyang, P. R. China
| | - Mingguo Jiang
- Guangxi Key Laboratory for Polysaccharide Materials and Modifications, School of Marine Sciences and Biotechnology, Guangxi University for Nationalities, Nanning, P. R. China
| | - Li Han
- Key Laboratory of Bioresource Research and Development of Liaoning Province, College of Life and Health Sciences, Northeastern University, Shenyang, P. R. China
| | - Xueshi Huang
- Key Laboratory of Bioresource Research and Development of Liaoning Province, College of Life and Health Sciences, Northeastern University, Shenyang, P. R. China
| |
Collapse
|
6
|
Pereira de Sa N, Jayanetti K, Rendina D, Clement T, Soares Brauer V, Mota Fernandes C, Ojima I, Airola MV, Del Poeta M. Targeting Sterylglucosidase A to Treat Aspergillus fumigatus Infections. mBio 2023; 14:e0033923. [PMID: 36877042 PMCID: PMC10128061 DOI: 10.1128/mbio.00339-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Accepted: 02/10/2023] [Indexed: 03/07/2023] Open
Abstract
Invasive fungal infections are a leading cause of death in immunocompromised patients. Current therapies have several limitations, and innovative antifungal agents are critically needed. Previously, we identified the fungus-specific enzyme sterylglucosidase as essential for pathogenesis and virulence of Cryptococcus neoformans and Aspergillus fumigatus (Af) in murine models of mycoses. Here, we developed Af sterylglucosidase A (SglA) as a therapeutic target. We identified two selective inhibitors of SglA with distinct chemical scaffolds that bind in the active site of SglA. Both inhibitors induce sterylglucoside accumulation and delay filamentation in Af and increase survival in a murine model of pulmonary aspergillosis. Structure-activity relationship (SAR) studies identified a more potent derivative that enhances both in vitro phenotypes and in vivo survival. These findings support sterylglucosidase inhibition as a promising antifungal approach with broad-spectrum potential. IMPORTANCE Invasive fungal infections are a leading cause of death in immunocompromised patients. Aspergillus fumigatus is a fungus ubiquitously found in the environment that, upon inhalation, causes both acute and chronic illnesses in at-risk individuals. A. fumigatus is recognized as one of the critical fungal pathogens for which a substantive treatment breakthrough is urgently needed. Here, we studied a fungus-specific enzyme, sterylglucosidase A (SglA), as a therapeutic target. We identified selective inhibitors of SglA that induce accumulation of sterylglucosides and delay filamentation in A. fumigatus and increase survival in a murine model of pulmonary aspergillosis. We determined the structure of SglA, predicted the binding poses of these inhibitors through docking analysis, and identified a more efficacious derivative with a limited SAR study. These results open several exciting avenues for the research and development of a new class of antifungal agents targeting sterylglucosidases.
Collapse
Affiliation(s)
- Nivea Pereira de Sa
- Department of Microbiology and Immunology, Stony Brook University, Stony Brook, New York, USA
| | - Kalani Jayanetti
- Department of Chemistry, Stony Brook University, Stony Brook, New York, USA
| | - Dominick Rendina
- Department of Chemistry, Stony Brook University, Stony Brook, New York, USA
| | - Timothy Clement
- Department of Chemistry, Stony Brook University, Stony Brook, New York, USA
| | - Veronica Soares Brauer
- Department of Microbiology and Immunology, Stony Brook University, Stony Brook, New York, USA
| | - Caroline Mota Fernandes
- Department of Microbiology and Immunology, Stony Brook University, Stony Brook, New York, USA
| | - Iwao Ojima
- Department of Chemistry, Stony Brook University, Stony Brook, New York, USA
- Institute of Chemical Biology and Drug Discovery, Stony Brook, New York, USA
| | - Michael V. Airola
- Institute of Chemical Biology and Drug Discovery, Stony Brook, New York, USA
- Department of Biochemistry and Cell Biology, Stony Brook University, Stony Brook, New York, USA
| | - Maurizio Del Poeta
- Department of Microbiology and Immunology, Stony Brook University, Stony Brook, New York, USA
- Institute of Chemical Biology and Drug Discovery, Stony Brook, New York, USA
- Division of Infectious Diseases, School of Medicine, Stony Brook University, Stony Brook, New York, USA
- Veterans Administration Medical Center, Northport, New York, USA
| |
Collapse
|
7
|
Gangneux JP, Hoenigl M, Papon N. How to lose resistance to Aspergillus infections. Trends Microbiol 2023; 31:222-224. [PMID: 36754763 DOI: 10.1016/j.tim.2023.01.008] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 01/24/2023] [Accepted: 01/24/2023] [Indexed: 02/08/2023]
Abstract
The distinct risk factors to deadly infections by Aspergillus fumigatus (Af) in intensive care unit (ICU) patients are well known; however, so far, the mechanistic link between these predisposing conditions has been unknown. Sarden et al. recently unraveled a shared B1a lymphocyte-natural antibody-neutrophil defense pathway to Af, opening new perspectives in diagnostics and therapeutics.
Collapse
Affiliation(s)
- Jean-Pierre Gangneux
- Univ Rennes, CHU Rennes, Inserm, EHESP, Irset (Institut de Recherche en Santé, Environnement et Travail)-UMR_S 1085, F-35000 Rennes, France; Laboratoire de Parasitologie et Mycologie Médicale, LA-AspC Centre National de Référence des Mycoses et Antifongiques, European Excellence Center for Medical Mycology (ECMM), Centre hospitalier Universitaire de Rennes, F-35000 Rennes, France.
| | - Martin Hoenigl
- Division of Infectious Diseases, Department of Internal Medicine, Medical University of Graz, Graz, Austria; BioTechMed-Graz, Graz, Austria; Translational Medical Mycology Research Unit, European Confederation of Medical Mycology (ECMM) Excellence Center, Medical University of Graz, Graz, Austria
| | - Nicolas Papon
- Univ Angers, Univ Brest, IRF, SFR ICAT, F-49000 Angers, France
| |
Collapse
|
8
|
Comparison of Multi-locus Genotypes Detected in Aspergillus fumigatus Isolated from COVID Associated Pulmonary Aspergillosis (CAPA) and from Other Clinical and Environmental Sources. J Fungi (Basel) 2023; 9:jof9030298. [PMID: 36983466 PMCID: PMC10056896 DOI: 10.3390/jof9030298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 01/27/2023] [Accepted: 02/21/2023] [Indexed: 03/02/2023] Open
Abstract
Background: Aspergillus fumigatus is a saprophytic fungus, ubiquitous in the environment and responsible for causing infections, some of them severe invasive infections. The high morbidity and mortality, together with the increasing burden of triazole-resistant isolates and the emergence of new risk groups, namely COVID-19 patients, have raised a crescent awareness of the need to better comprehend the dynamics of this fungus. The understanding of the epidemiology of this fungus, especially of CAPA isolates, allows a better understanding of the interactions of the fungus in the environment and the human body. Methods: In the present study, the M3 markers of the STRAf assay were used as a robust typing technique to understand the connection between CAPA isolates and isolates from different sources (environmental and clinical-human and animal). Results: Of 100 viable isolates that were analyzed, 85 genotypes were found, 77 of which were unique. Some isolates from different sources presented the same genotype. Microsatellite genotypes obtained from A. fumigatus isolates from COVID+ patients were all unique, not being found in any other isolates of the present study or even in other isolates deposited in a worldwide database; these same isolates were heterogeneously distributed among the other isolates. Conclusions: Isolates from CAPA patients revealed high heterogeneity of multi-locus genotypes. A genotype more commonly associated with COVID-19 infections does not appear to exist.
Collapse
|
9
|
PU.1-CD23 signaling mediates pulmonary innate immunity against Aspergillus fumigatus infection by driving inflammatory response. BMC Immunol 2023; 24:4. [PMID: 36650424 PMCID: PMC9844028 DOI: 10.1186/s12865-023-00539-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Accepted: 01/03/2023] [Indexed: 01/19/2023] Open
Abstract
BACKGROUND Aspergillosis is a common cause of morbidity and mortality in immunocompromised populations. PU.1 is critical for innate immunity against Aspergillus fumigatus (AF) in macrophages. However, the molecular mechanism underlying PU.1 mediating immunity against AF infection in human alveolar macrophages (AMs) is still unclear. METHODS In this study, we detected the expressions of PU.1, CD23, p-ERK, CCL20 and IL-8 and key inflammatory markers IL-1β, IL-6, TNF-α and IL-12 in human THP-1-derived macrophages (HTMs) or PU.1/CD23-overexpressed immunodeficient mice with AF infection. Moreover, we examined these expressions in PU.1-overexpressed/interfered HTMs. Additionally, we detected the phagocytosis of macrophages against AF infection with altered PU.1 expression. Dual luciferase, ChIP and EMSAs were performed to detect the interaction of PU.1 and CD23. And we invested the histological changes in mouse lung tissues transfected with PU.1/CD23-expressing adenoviruses in AF infection. RESULTS The results showed that the expressions of PU.1, CD23, p-ERK, CCL20, IL-8, IL-1β, IL-6, TNF-α and IL-12 increased significantly with AF infection, and PU.1 regulated the later 8 gene expressions in HTMs. Moreover, CD23 was directly activated by PU.1, and overexpression of CD23 in PU.1-interfered HTMs upregulated IL-1β, IL-6, TNF-α and IL-12 levels which were downregulated by PU.1 interference. PU.1 overexpression strengthened the phagocytosis of the HTMs against AF. And injection of PU.1/CD23-expressing adenoviruses attenuated pathological defects in immunodeficient mouse lung tissues with AF infection. Adenovirus (Ad)-PU.1 increased the CD23, p-ERK, CCL20, IL-8 levels. CONCLUSIONS Our study concluded that PU.1-CD23 signaling mediates innate immunity against AF in lungs through regulating inflammatory response. Therefore, PU.1-CD23 may be a new anti-aspergillosis therapeutic for the treatment of invasive aspergillosis with the deepening of gene therapy and its wide application in the clinic.
Collapse
|
10
|
Vaccination with Live or Heat-Killed Aspergillus fumigatus Δ sglA Conidia Fully Protects Immunocompromised Mice from Invasive Aspergillosis. mBio 2022; 13:e0232822. [PMID: 36066100 PMCID: PMC9600187 DOI: 10.1128/mbio.02328-22] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Aspergillus fumigatus causes invasive aspergillosis (IA) in immunocompromised patients, resulting in high mortality rates. Currently, no vaccine formulations to promote immune protection in at-risk individuals have been developed. In this work, we deleted the sterylglucosidase-encoding gene, sglA, in Aspergillus fumigatus and investigated its role in fungal virulence and host vaccine protection. The ΔsglA mutant accumulated sterylglucosides (SGs), newly studied immunomodulatory glycolipids, and exhibited reduced hyphal growth and altered compositions of cell wall polysaccharides. Interestingly, the ΔsglA mutant was avirulent in two murine models of IA and was fully eliminated from the lungs. Both corticosteroid-induced immunosuppressed and cyclophosphamide-induced leukopenic mice vaccinated with live or heat-killed ΔsglA conidia were fully protected against a lethal wild-type A. fumigatus challenge. These results highlight the potential of SG-accumulating strains as safe and promising vaccine formulations against invasive fungal infections. IMPORTANCE Infections by Aspergillus fumigatus occur by the inhalation of environmental fungal spores called conidia. We found that live mutant conidia accumulating glycolipids named sterylglucosides are not able to cause disease when injected into the lung. Interestingly, these animals are now protected against a secondary challenge with live wild-type conidia. Remarkably, protection against a secondary challenge persists even with vaccination with heat-killed mutant conidia. These results will significantly advance the field of the research and development of a safe fungal vaccine for protection against the environmental fungus A. fumigatus.
Collapse
|
11
|
dos Santos RAC, Mead ME, Steenwyk JL, Rivero-Menéndez O, Alastruey-Izquierdo A, Goldman GH, Rokas A. Examining Signatures of Natural Selection in Antifungal Resistance Genes Across Aspergillus Fungi. FRONTIERS IN FUNGAL BIOLOGY 2021; 2:723051. [PMID: 37744093 PMCID: PMC10512362 DOI: 10.3389/ffunb.2021.723051] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Accepted: 08/16/2021] [Indexed: 09/26/2023]
Abstract
Certain Aspergillus fungi cause aspergillosis, a set of diseases that typically affect immunocompromised individuals. Most cases of aspergillosis are caused by Aspergillus fumigatus, which infects millions of people annually. Some closely related so-called cryptic species, such as Aspergillus lentulus, can also cause aspergillosis, albeit at lower frequencies, and they are also clinically relevant. Few antifungal drugs are currently available for treating aspergillosis and there is increasing worldwide concern about the presence of antifungal drug resistance in Aspergillus species. Furthermore, isolates from both A. fumigatus and other Aspergillus pathogens exhibit substantial heterogeneity in their antifungal drug resistance profiles. To gain insights into the evolution of antifungal drug resistance genes in Aspergillus, we investigated signatures of positive selection in 41 genes known to be involved in drug resistance across 42 susceptible and resistant isolates from 12 Aspergillus section Fumigati species. Using codon-based site models of sequence evolution, we identified ten genes that contain 43 sites with signatures of ancient positive selection across our set of species. None of the sites that have experienced positive selection overlap with sites previously reported to be involved in drug resistance. These results identify sites that likely experienced ancient positive selection in Aspergillus genes involved in resistance to antifungal drugs and suggest that historical selective pressures on these genes likely differ from any current selective pressures imposed by antifungal drugs.
Collapse
Affiliation(s)
- Renato Augusto Corrêa dos Santos
- Departamento de Ciências Farmacêuticas, Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, São Paulo, Brazil
- Department of Biological Sciences, Vanderbilt University, Nashville, TN, United States
| | - Matthew E. Mead
- Department of Biological Sciences, Vanderbilt University, Nashville, TN, United States
| | - Jacob L. Steenwyk
- Department of Biological Sciences, Vanderbilt University, Nashville, TN, United States
| | - Olga Rivero-Menéndez
- Medical Mycology Reference Laboratory, National Center for Microbiology, Instituto de Salud Carlos III, Madrid, Spain
| | - Ana Alastruey-Izquierdo
- Medical Mycology Reference Laboratory, National Center for Microbiology, Instituto de Salud Carlos III, Madrid, Spain
| | - Gustavo Henrique Goldman
- Departamento de Ciências Farmacêuticas, Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, São Paulo, Brazil
| | - Antonis Rokas
- Department of Biological Sciences, Vanderbilt University, Nashville, TN, United States
| |
Collapse
|
12
|
Jiang L, Li X, Gu R, Mu D. Rapid Detection of Aspergillus fumigatus Using Multiple Cross Displacement Amplification Combined With Nanoparticles-Based Lateral Flow. Front Cell Infect Microbiol 2021; 11:622402. [PMID: 33928041 PMCID: PMC8076636 DOI: 10.3389/fcimb.2021.622402] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Accepted: 03/22/2021] [Indexed: 11/13/2022] Open
Abstract
Aspergillus fumigatus is an opportunistic, ubiquitous, saprophytic mold which can cause infection in the lungs, nose, eyes, brain, and bones in humans, especially in immunocompromised patients. However, it is difficult to diagnose A. fumigatus infection quickly. Here, we introduce a new detection method, namely multiple cross displacement amplification (MCDA) combined with nanoparticle-based lateral flow biosensor (LFB) (MCDA-LFB), which was proved to be fast, reliable, and simple for detecting A. fumigatus. We designed a set of 10 primers targeting the gene annexin ANXC4 of A. fumigatus. The best MCDA condition is 66 °C for 35 min. The minimum concentration that can be detected by this method was 10 fg. In the case of 100 sputum samples, 20 (20%) and 15 (15%) samples were positive by MCDA-LFB and PCR method, respectively. MCDA-LFB and traditional culture method showed the same results. Compared with the culture method, the diagnostic accuracy of MCDA-LFB can reach 100%. It showed that the MCDA-LFB method has better detection ability than the PCR method. We found that the whole process could be controlled within 60 min including the preparation of DNA (20 min), MCDA reaction (35 min) and results reporting (2 min). These results show that this assay is suitable for the rapid, sensitive and specific detection of A. fumigatus in clinical samples.
Collapse
Affiliation(s)
- Luxi Jiang
- Department of Respiratory Medicine, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou, China
| | - Xiaomeng Li
- Department of Respiratory Medicine, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou, China.,Graduate School of Clinical Medicine, Bengbu Medical College, Bengbu, China
| | - Rumeng Gu
- Department of Respiratory Medicine, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou, China.,Graduate School of Clinical Medicine, Bengbu Medical College, Bengbu, China
| | - Deguang Mu
- Department of Respiratory Medicine, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou, China
| |
Collapse
|
13
|
Goldman GH, Delneste Y, Papon N. Fungal Polysaccharides Promote Protective Immunity. Trends Microbiol 2021; 29:379-381. [PMID: 33610450 DOI: 10.1016/j.tim.2021.02.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Revised: 02/03/2021] [Accepted: 02/04/2021] [Indexed: 12/27/2022]
Abstract
Fungal pathogens represent a rising threat against immunocompromised patients. By using Aspergillus fumigatus, Briard et al. showed that the cell wall galactosaminogalactan (GAG) triggers macrophage inflammasome activation, promoting protective immunity. This provides new insights into the role of GAG in host-pathogen interactions and also perspectives for developing GAG-based anti-inflammatory therapeutics.
Collapse
Affiliation(s)
- Gustavo H Goldman
- Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, Brazil.
| | - Yves Delneste
- Univ Angers, Université de Nantes, CHU d'Angers, Inserm, CRCINA, SFR ICAT, F-49000 Angers, France
| | - Nicolas Papon
- Federative Structure of Research 'Cellular Interactions and Therapeutic Applications', SFR 4208 ICAT, Univ Angers, Angers, France; Host-Pathogen Interaction Study Group (GEIHP, EA 3142), UNIV Angers, UNIV Brest, Angers, France
| |
Collapse
|
14
|
Swilaiman SS, O’Gorman CM, Du W, Sugui JA, Del Buono J, Brock M, Kwon-Chung KJ, Szakacs G, Dyer PS. Global Sexual Fertility in the Opportunistic Pathogen Aspergillus fumigatus and Identification of New Supermater Strains. J Fungi (Basel) 2020; 6:E258. [PMID: 33143051 PMCID: PMC7712211 DOI: 10.3390/jof6040258] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Revised: 10/26/2020] [Accepted: 10/27/2020] [Indexed: 12/26/2022] Open
Abstract
A sexual cycle in Aspergillus fumigatus was first described in 2009 with isolates from Dublin, Ireland. However, the extent to which worldwide isolates can undergo sexual reproduction has remained unclear. In this study a global collection of 131 isolates was established with a near 1:1 ratio of mating types. All isolates were crossed to MAT1-1 or MAT1-2 Irish strains, and a subset of isolates from different continents were crossed together. Ninety seven percent of isolates were found to produce cleistothecia with at least one mating partner, showing that sexual fertility is not limited to the Irish population but is a characteristic of global A. fumigatus. However, large variation was seen in numbers of cleistothecia produced per cross, suggesting differences in the possibility for genetic exchange between strains in nature. The majority of crosses produced ascospores with >50% germination rates, but with wide variation evident. A high temperature heat shock was required to induce ascospore germination. Finally, a new set of highly fertile MAT1-1 and MAT1-2 supermater strains were identified and pyrimidine auxotrophs generated for community use. Results provide insights into the potential for the A. fumigatus sexual cycle to generate genetic variation and allow gene flow of medically important traits.
Collapse
Affiliation(s)
- Sameira S. Swilaiman
- School of Life Sciences, University of Nottingham, University Park, Nottingham NG7 2RD, UK; (S.S.S.); (C.M.O.); (W.D.); (J.D.B.); (M.B.)
| | - Céline M. O’Gorman
- School of Life Sciences, University of Nottingham, University Park, Nottingham NG7 2RD, UK; (S.S.S.); (C.M.O.); (W.D.); (J.D.B.); (M.B.)
| | - Wenyue Du
- School of Life Sciences, University of Nottingham, University Park, Nottingham NG7 2RD, UK; (S.S.S.); (C.M.O.); (W.D.); (J.D.B.); (M.B.)
| | - Janyce A. Sugui
- Molecular Microbiology Section, Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20825, USA; (J.A.S.); (K.J.K.-C.)
| | - Joanne Del Buono
- School of Life Sciences, University of Nottingham, University Park, Nottingham NG7 2RD, UK; (S.S.S.); (C.M.O.); (W.D.); (J.D.B.); (M.B.)
| | - Matthias Brock
- School of Life Sciences, University of Nottingham, University Park, Nottingham NG7 2RD, UK; (S.S.S.); (C.M.O.); (W.D.); (J.D.B.); (M.B.)
| | - Kyung J. Kwon-Chung
- Molecular Microbiology Section, Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20825, USA; (J.A.S.); (K.J.K.-C.)
| | - George Szakacs
- Department of Applied Biotechnology and Food Science, Budapest University of Technology and Economics, Szent Gellert ter 4, 1111 Budapest, Hungary;
| | - Paul S. Dyer
- School of Life Sciences, University of Nottingham, University Park, Nottingham NG7 2RD, UK; (S.S.S.); (C.M.O.); (W.D.); (J.D.B.); (M.B.)
| |
Collapse
|