1
|
de la Viuda V, Buceta J, Grobas I. Physical communication pathways in bacteria: an extra layer to quorum sensing. Biophys Rev 2025; 17:667-685. [PMID: 40376406 PMCID: PMC12075086 DOI: 10.1007/s12551-025-01290-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2024] [Accepted: 02/13/2025] [Indexed: 05/18/2025] Open
Abstract
Bacterial communication is essential for survival, adaptation, and collective behavior. While chemical signaling, such as quorum sensing, has been extensively studied, physical cues play a significant role in bacterial interactions. This review explores the diverse range of physical stimuli, including mechanical forces, electromagnetic fields, temperature, acoustic vibrations, and light that bacteria may experience with their environment and within a community. By integrating these diverse communication pathways, bacteria can coordinate their activities and adapt to changing environmental conditions. Furthermore, we discuss how these physical stimuli modulate bacterial growth, lifestyle, motility, and biofilm formation. By understanding the underlying mechanisms, we can develop innovative strategies to combat bacterial infections and optimize industrial processes.
Collapse
Affiliation(s)
- Virgilio de la Viuda
- Theoretical and Computational Systems Biology Program, Institute for Integrative Systems Biology (I2sysbio), CSIC-UV, Catedrático Agustín Escardino Benlloch 9, 46980 Paterna, Spain
| | - Javier Buceta
- Theoretical and Computational Systems Biology Program, Institute for Integrative Systems Biology (I2sysbio), CSIC-UV, Catedrático Agustín Escardino Benlloch 9, 46980 Paterna, Spain
| | - Iago Grobas
- Theoretical and Computational Systems Biology Program, Institute for Integrative Systems Biology (I2sysbio), CSIC-UV, Catedrático Agustín Escardino Benlloch 9, 46980 Paterna, Spain
| |
Collapse
|
2
|
Zhang X, Yuan Z, Hu S. Current trends in electromicrobiology of methane oxidation. Trends Microbiol 2025:S0966-842X(25)00069-1. [PMID: 40158907 DOI: 10.1016/j.tim.2025.02.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2024] [Revised: 02/20/2025] [Accepted: 02/21/2025] [Indexed: 04/02/2025]
Abstract
With many methane oxidation processes now recognized as being electrochemically driven, microbial methane oxidation is becoming an emerging focus in electromicrobiology. This review examines the current trends in the electromicrobiology of methane oxidation. We begin by reviewing recent advances in the understanding of the microbial and physiological diversity involved in microbial methane oxidation. We highlight the versatile role of aerobic methane-oxidizing bacteria in electrochemically driven methane oxidation, and the non-syntrophic lifestyle of anaerobic methanotrophic archaea (ANME) enabled by their extracellular electron transfer (EET) pathways. These aspects are followed by a review of recent findings on the potential reversibility of methanogen metabolism, with a focus on the proposed EET pathways that may facilitate their shift to a methane-oxidizing phenotype, a topic that remains under active investigation and debate. Finally, we examine the biogeochemical cycles and the application potential involving electrochemically driven methane oxidation.
Collapse
Affiliation(s)
- Xueqin Zhang
- Australian Centre for Water and Environmental Biotechnology, The University of Queensland, Brisbane, Queensland, Australia
| | - Zhiguo Yuan
- School of Energy and Environment, City University of Hong Kong, Hong Kong.
| | - Shihu Hu
- Australian Centre for Water and Environmental Biotechnology, The University of Queensland, Brisbane, Queensland, Australia.
| |
Collapse
|
3
|
Shen C, Salazar-Morales AI, Jung W, Erwin J, Gu Y, Coelho A, Gupta K, Yalcin SE, Samatey FA, Malvankar NS. A widespread and ancient bacterial machinery assembles cytochrome OmcS nanowires essential for extracellular electron transfer. Cell Chem Biol 2025; 32:239-254.e7. [PMID: 39818215 PMCID: PMC11845295 DOI: 10.1016/j.chembiol.2024.12.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 09/02/2024] [Accepted: 12/20/2024] [Indexed: 01/18/2025]
Abstract
Microbial extracellular electron transfer (EET) drives various globally important environmental phenomena and has biotechnology applications. Diverse prokaryotes have been proposed to perform EET via surface-displayed "nanowires" composed of multi-heme cytochromes. However, the mechanism that enables only a few cytochromes to polymerize into nanowires is unclear. Here, we identify a highly conserved omcS-companion (osc) cluster that drives the formation of cytochrome OmcS nanowires in Geobacter sulfurreducens. Through a combination of genetic, biochemical, and biophysical methods, we establish that prolyl isomerase-containing chaperon OscH, channel-like OscEFG, and β-propeller-like OscD are involved in the folding, secretion, and morphology maintenance of OmcS nanowires, respectively. OscH and OscG can interact with OmcS. Furthermore, overexpression of oscG accelerates EET by overproducing nanowires in an ATP-dependent manner. Heme loading splits OscD; ΔoscD accelerates cell growth, bundles nanowires into cables. Our findings establish the mechanism and prevalence of a specialized and modular assembly system for nanowires across phylogenetically diverse species and environments.
Collapse
Affiliation(s)
- Cong Shen
- Microbial Sciences Institute, Yale University, West Haven, CT 06516, USA; Department of Molecular Biophysics & Biochemistry, Yale University, New Haven, CT 06511, USA; Department of Microbial Pathogenesis, Yale University, New Haven, CT 06536, USA.
| | - Aldo I Salazar-Morales
- Microbial Sciences Institute, Yale University, West Haven, CT 06516, USA; Department of Molecular Biophysics & Biochemistry, Yale University, New Haven, CT 06511, USA
| | - Wonhyeuk Jung
- Department of Cell Biology, Yale University, New Haven, CT 06520, USA; Nanobiology Institute, Yale University, West Haven, CT 06516, USA
| | - Joey Erwin
- Microbial Sciences Institute, Yale University, West Haven, CT 06516, USA; Department of Molecular Biophysics & Biochemistry, Yale University, New Haven, CT 06511, USA
| | - Yangqi Gu
- Microbial Sciences Institute, Yale University, West Haven, CT 06516, USA; Department of Molecular, Cellular & Developmental Biology, Yale University, New Haven, CT 06511, USA
| | - Anthony Coelho
- Microbial Sciences Institute, Yale University, West Haven, CT 06516, USA; Department of Molecular Biophysics & Biochemistry, Yale University, New Haven, CT 06511, USA
| | - Kallol Gupta
- Department of Cell Biology, Yale University, New Haven, CT 06520, USA; Nanobiology Institute, Yale University, West Haven, CT 06516, USA
| | - Sibel Ebru Yalcin
- Microbial Sciences Institute, Yale University, West Haven, CT 06516, USA; Department of Molecular Biophysics & Biochemistry, Yale University, New Haven, CT 06511, USA
| | - Fadel A Samatey
- Microbial Sciences Institute, Yale University, West Haven, CT 06516, USA; Department of Molecular Biophysics & Biochemistry, Yale University, New Haven, CT 06511, USA
| | - Nikhil S Malvankar
- Microbial Sciences Institute, Yale University, West Haven, CT 06516, USA; Department of Molecular Biophysics & Biochemistry, Yale University, New Haven, CT 06511, USA.
| |
Collapse
|
4
|
Adhikari M, Wang L, Adhikari D, Khadka S, Ullah M, Mbituyimana B, Bukatuka CF, Shi Z, Yang G. Electric stimulation: a versatile manipulation technique mediated microbial applications. Bioprocess Biosyst Eng 2025; 48:171-192. [PMID: 39611964 DOI: 10.1007/s00449-024-03107-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Accepted: 11/10/2024] [Indexed: 11/30/2024]
Abstract
Electric stimulation (ES) is a versatile technique that uses an electric field to manipulate microorganisms individually. Over the past several decades, the capabilities of ES have expanded from bioremediation to the precise motion control of cells and microorganisms. However, there is limited information on the underlying mechanisms, latest advancement and broader microbial applications of ES in various fields, such as the production of extracellular polymers with upgraded properties. This review article summarizes recent advancements in ES and discusses it as a unique external manipulation technique for microorganisms with wide applications in bioremediation, industry, biofilm deactivation, disinfection, and controlled biosynthesis. One specific application of ES discussed in this review is the extracellular biosynthesis, regulation, and organization of extracellular polymers, such as bacterial cellulose nanofibrils, curdlan, and microbial nanowires. Overall, this review aims to provide a platform for microbial biotechnologists and synthetic biologists to leverage the manipulation of microorganisms using ES for bio-based applications, including the production of extracellular polymers with enhanced properties. Researchers can engineer, manipulate, and control microorganisms for various applications by harnessing the potential of electric fields.
Collapse
Affiliation(s)
- Manjila Adhikari
- Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Li Wang
- Wuhan Branch of the National Science Library, Chinese Academy of Sciences, Wuhan, 430071, China
| | - Dhurba Adhikari
- Genomic Division, Faculty of Biosciences and Aquaculture, Nord University, NO-8049, Bodø, Norway
| | - Sujan Khadka
- Department of Biotechnology and Food Science, Norwegian University of Science and Technology (NTNU), 7491, Trondheim, Norway
| | - Mati Ullah
- Department of Biotechnology, College of Life Sciences and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Bricard Mbituyimana
- Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Clemence Futila Bukatuka
- Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Zhijun Shi
- Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China.
| | - Guang Yang
- Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China.
| |
Collapse
|
5
|
Bayar B, Soares R, Nalakath H, Alves A, Paquete CM, Louro RO. Electron transfer in multicentre redox proteins: from fundamentals to extracellular electron transfer. Biosci Rep 2025; 45:1-18. [PMID: 39714013 DOI: 10.1042/bsr20240576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Revised: 12/19/2024] [Accepted: 12/23/2024] [Indexed: 12/24/2024] Open
Abstract
Multicentre redox proteins participate in diverse metabolic processes, such as redox shuttling, multielectron catalysis, or long-distance electron conduction. The detail in which these processes can be analysed depends on the capacity of experimental methods to discriminate the multiple microstates that can be populated while the protein changes from the fully reduced to the fully oxidized state. The population of each state depends on the redox potential of the individual centres and on the magnitude of the interactions between the individual redox centres and their neighbours. It also depends on the interactions with binding sites for other ligands, such as protons, giving origin to the redox-Bohr effect. Modelling strategies that match the capacity of experimental methods to discriminate the contributions of individual centres are presented. These models provide thermodynamic and kinetic characterization of multicentre redox proteins. The current state of the art in the characterization of multicentre redox proteins is illustrated using the case of multiheme cytochromes involved in the process of extracellular electron transfer. In this new frontier of biological electron transfer, which can extend over distances that exceed the size of the individual multicentre redox proteins by orders of magnitude, current experimental data are still unable, in most cases, to provide discrimination between incoherent conduction by heme orbitals and coherent band conduction.
Collapse
Affiliation(s)
- Büşra Bayar
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Oeiras, Portugal
| | - Ricardo Soares
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Oeiras, Portugal
- Instituto Nacional de Investigação Agrária e Veterinária, Oeiras, Portugal
| | - Haris Nalakath
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Oeiras, Portugal
| | - Alexandra Alves
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Oeiras, Portugal
| | - Catarina M Paquete
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Oeiras, Portugal
| | - Ricardo O Louro
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Oeiras, Portugal
| |
Collapse
|
6
|
Treuner-Lange A, Zheng W, Viljoen A, Lindow S, Herfurth M, Dufrêne YF, Søgaard-Andersen L, Egelman EH. Tight-packing of large pilin subunits provides distinct structural and mechanical properties for the Myxococcus xanthus type IVa pilus. Proc Natl Acad Sci U S A 2024; 121:e2321989121. [PMID: 38625941 PMCID: PMC11046646 DOI: 10.1073/pnas.2321989121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Accepted: 03/07/2024] [Indexed: 04/18/2024] Open
Abstract
Type IVa pili (T4aP) are ubiquitous cell surface filaments important for surface motility, adhesion to surfaces, DNA uptake, biofilm formation, and virulence. T4aP are built from thousands of copies of the major pilin subunit and tipped by a complex composed of minor pilins and in some systems also the PilY1 adhesin. While major pilins of structurally characterized T4aP have lengths of <165 residues, the major pilin PilA of Myxococcus xanthus is unusually large with 208 residues. All major pilins have a conserved N-terminal domain and a variable C-terminal domain, and the additional residues of PilA are due to a larger C-terminal domain. We solved the structure of the M. xanthus T4aP (T4aPMx) at a resolution of 3.0 Å using cryo-EM. The T4aPMx follows the structural blueprint of other T4aP with the pilus core comprised of the interacting N-terminal α1-helices, while the globular domains decorate the T4aP surface. The atomic model of PilA built into this map shows that the large C-terminal domain has more extensive intersubunit contacts than major pilins in other T4aP. As expected from these greater contacts, the bending and axial stiffness of the T4aPMx is significantly higher than that of other T4aP and supports T4aP-dependent motility on surfaces of different stiffnesses. Notably, T4aPMx variants with interrupted intersubunit interfaces had decreased bending stiffness, pilus length, and strongly reduced motility. These observations support an evolutionary scenario whereby the large major pilin enables the formation of a rigid T4aP that expands the environmental conditions in which the T4aP system functions.
Collapse
Affiliation(s)
- Anke Treuner-Lange
- Department of Ecophysiology, Max Planck Institute for Terrestrial Microbiology, Marburg35043, Germany
| | - Weili Zheng
- Department of Biochemistry and Molecular Genetics, University of Virginia School of Medicine, Charlottesville, VA22903
| | - Albertus Viljoen
- Louvain Institute of Biomolecular Science and Technology, UCLouvain, Louvain-la-NeuveB-1348, Belgium
| | - Steffi Lindow
- Department of Ecophysiology, Max Planck Institute for Terrestrial Microbiology, Marburg35043, Germany
| | - Marco Herfurth
- Department of Ecophysiology, Max Planck Institute for Terrestrial Microbiology, Marburg35043, Germany
| | - Yves F. Dufrêne
- Louvain Institute of Biomolecular Science and Technology, UCLouvain, Louvain-la-NeuveB-1348, Belgium
| | - Lotte Søgaard-Andersen
- Department of Ecophysiology, Max Planck Institute for Terrestrial Microbiology, Marburg35043, Germany
| | - Edward H. Egelman
- Department of Biochemistry and Molecular Genetics, University of Virginia School of Medicine, Charlottesville, VA22903
| |
Collapse
|
7
|
Guilvout I, Samsudin F, Huber RG, Bond PJ, Bardiaux B, Francetic O. Membrane platform protein PulF of the Klebsiella type II secretion system forms a trimeric ion channel essential for endopilus assembly and protein secretion. mBio 2024; 15:e0142323. [PMID: 38063437 PMCID: PMC10790770 DOI: 10.1128/mbio.01423-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Accepted: 10/24/2023] [Indexed: 01/17/2024] Open
Abstract
IMPORTANCE Type IV pili and type II secretion systems are members of the widespread type IV filament (T4F) superfamily of nanomachines that assemble dynamic and versatile surface fibers in archaea and bacteria. The assembly and retraction of T4 filaments with diverse surface properties and functions require the plasma membrane platform proteins of the GspF/PilC superfamily. Generally considered dimeric, platform proteins are thought to function as passive transmitters of the mechanical energy generated by the ATPase motor, to somehow promote insertion of pilin subunits into the nascent pilus fibers. Here, we generate and experimentally validate structural predictions that support the trimeric state of a platform protein PulF from a type II secretion system. The PulF trimers form selective proton or sodium channels which might energize pilus assembly using the membrane potential. The conservation of the channel sequence and structural features implies a common mechanism for all T4F assembly systems. We propose a model of the oligomeric PulF-PulE ATPase complex that provides an essential framework to investigate and understand the pilus assembly mechanism.
Collapse
Affiliation(s)
- Ingrid Guilvout
- Institut Pasteur, Université Paris Cité, CNRS UMR 3528, Biochemistry of Macromolecular Interactions Unit, Paris, France
| | | | | | - Peter J. Bond
- Bioinformatics Institute (A-STAR), Singapore, Singapore
- Department of Biological Sciences, National University of Singapore, Singapore, Singapore
| | - Benjamin Bardiaux
- Institut Pasteur, Université Paris Cité, CNRS UMR 3528, Structural Bioinformatics Unit, Paris, France
- Institut Pasteur, Université Paris Cité, CNRS UMR 3528, Bacterial Transmembrane Systems Unit, Paris, France
| | - Olivera Francetic
- Institut Pasteur, Université Paris Cité, CNRS UMR 3528, Biochemistry of Macromolecular Interactions Unit, Paris, France
| |
Collapse
|
8
|
Liu X, Ye Y, Yang N, Cheng C, Rensing C, Jin C, Nealson KH, Zhou S. Nonelectroactive clostridium obtains extracellular electron transfer-capability after forming chimera with Geobacter. ISME COMMUNICATIONS 2024; 4:ycae058. [PMID: 38770058 PMCID: PMC11104457 DOI: 10.1093/ismeco/ycae058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 03/25/2024] [Accepted: 04/15/2024] [Indexed: 05/22/2024]
Abstract
Extracellular electron transfer (EET) of microorganisms is a major driver of the microbial growth and metabolism, including reactions involved in the cycling of C, N, and Fe in anaerobic environments such as soils and sediments. Understanding the mechanisms of EET, as well as knowing which organisms are EET-capable (or can become so) is fundamental to electromicrobiology and geomicrobiology. In general, Gram-positive bacteria very seldomly perform EET due to their thick non-conductive cell wall. Here, we report that a Gram-positive Clostridium intestinale (C.i) attained EET-capability for ethanol metabolism only after forming chimera with electroactive Geobacter sulfurreducens (G.s). Mechanism analyses demonstrated that the EET was possible after the cell fusion of the two species was achieved. Under these conditions, the ethanol metabolism pathway of C.i was integrated by the EET pathway of G.s, by which achieved the oxidation of ethanol for the subsequent reduction of extracellular electron acceptors in the coculture. Our study displays a new approach to perform EET for Gram-positive bacteria via recruiting the EET pathway of an electroactive bacterium, which suggests a previously unanticipated prevalence of EET in the microbial world. These findings also provide new perspectives to understand the energetic coupling between bacterial species and the ecology of interspecies mutualisms.
Collapse
Affiliation(s)
- Xing Liu
- Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
| | - Yin Ye
- Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
| | - Naiming Yang
- Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
| | - Chen Cheng
- Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
| | - Christopher Rensing
- Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
| | - Chao Jin
- School of Environmental Science and Engineering, Sun Yat-Sen University, Guangzhou, Guangdong 510006, China
| | - Kenneth H Nealson
- Department of Earth Science & Biological Sciences, University of Southern California, Los Angeles, CA 91030, United States
| | - Shungui Zhou
- Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
| |
Collapse
|
9
|
Sonani RR, Sanchez JC, Baumgardt JK, Kundra S, Wright ER, Craig L, Egelman EH. Tad and toxin-coregulated pilus structures reveal unexpected diversity in bacterial type IV pili. Proc Natl Acad Sci U S A 2023; 120:e2316668120. [PMID: 38011558 PMCID: PMC10710030 DOI: 10.1073/pnas.2316668120] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Accepted: 10/25/2023] [Indexed: 11/29/2023] Open
Abstract
Type IV pili (T4P) are ubiquitous in both bacteria and archaea. They are polymers of the major pilin protein, which has an extended and protruding N-terminal helix, α1, and a globular C-terminal domain. Cryo-EM structures have revealed key differences between the bacterial and archaeal T4P in their C-terminal domain structure and in the packing and continuity of α1. This segment forms a continuous α-helix in archaeal T4P but is partially melted in all published bacterial T4P structures due to a conserved helix breaking proline at position 22. The tad (tight adhesion) T4P are found in both bacteria and archaea and are thought to have been acquired by bacteria through horizontal transfer from archaea. Tad pilins are unique among the T4 pilins, being only 40 to 60 residues in length and entirely lacking a C-terminal domain. They also lack the Pro22 found in all high-resolution bacterial T4P structures. We show using cryo-EM that the bacterial tad pilus from Caulobacter crescentus is composed of continuous helical subunits that, like the archaeal pilins, lack the melted portion seen in other bacterial T4P and share the packing arrangement of the archaeal T4P. We further show that a bacterial T4P, the Vibrio cholerae toxin coregulated pilus, which lacks Pro22 but is not in the tad family, has a continuous N-terminal α-helix, yet its α1 s are arranged similar to those in other bacterial T4P. Our results highlight the role of Pro22 in helix melting and support an evolutionary relationship between tad and archaeal T4P.
Collapse
Affiliation(s)
- Ravi R. Sonani
- Department of Biochemistry and Molecular Genetics, University of Virginia, Charlottesville, VA22903
| | - Juan Carlos Sanchez
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI53706
| | - Joseph K. Baumgardt
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI53706
| | - Shivani Kundra
- Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, BCV5A 1S6, Canada
| | - Elizabeth R. Wright
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI53706
| | - Lisa Craig
- Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, BCV5A 1S6, Canada
| | - Edward H. Egelman
- Department of Biochemistry and Molecular Genetics, University of Virginia, Charlottesville, VA22903
| |
Collapse
|
10
|
Li C, Hu S, Ji C, Yi K, Yang W. Insight into the Pseudocapacitive Behavior of Electroactive Biofilms in Response to Dynamic-Controlled Electron Transfer and Metabolism Kinetics for Current Generation in Water Treatment. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:19891-19901. [PMID: 38000046 DOI: 10.1021/acs.est.3c04771] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/26/2023]
Abstract
Electroactive biofilms (EBs) engage in complex electron transfer and storage processes involving intracellular and extracellular mediators with temporary electron storage capabilities. Consequently, electroactive biofilms exhibit pseudocapacitive behaviors during substrate degradation processes. However, comprehensive systematic research in this area has been lacking. This study demonstrated that the pseudocapacitive property was an intrinsic characteristic of EBs. This property represents dynamic-controlled electron transfer and is critical in current generation, unlike noncapacitive responses. Nontransient charge and discharge experiments revealed a correlation between capacitive charge accumulation and current generation in EBs. Additionally, analysis of substrate degradation suggested that the maximum power density (Pmax) changed with the kinetic constants of COD degradation, with pseudocapacitances of EBs directly proportional to Pmax. The interaction networks of key latent variables were evaluated through partial least-squares path modeling analysis. The results indicated that cytochrome c was closely associated with the formation of pseudocapacitance in EBs. In conclusion, pseudocapacitance can be considered a valuable indicator for assessing the complex electron transfer behavior of EBs. Pseudocapacitive biofilms have the potential to efficiently regulate biological reactions and serve as a promising carbon-neutral and renewable strategy for energy generation and storage. An in-depth understanding of the intrinsic property of pseudocapacitive behavior in EBs can undoubtedly advance the development of this concept in the future.
Collapse
Affiliation(s)
- Chao Li
- The Key Laboratory of Water and Sediment Sciences, Ministry of Education, College of Environmental Sciences and Engineering, Peking University, No. 5 Yiheyuan Road, Haidian District, Beijing 100871, PR China
| | - Shaogang Hu
- The Key Laboratory of Water and Sediment Sciences, Ministry of Education, College of Environmental Sciences and Engineering, Peking University, No. 5 Yiheyuan Road, Haidian District, Beijing 100871, PR China
| | - Chengcheng Ji
- The Key Laboratory of Water and Sediment Sciences, Ministry of Education, College of Environmental Sciences and Engineering, Peking University, No. 5 Yiheyuan Road, Haidian District, Beijing 100871, PR China
| | - Kexin Yi
- The Key Laboratory of Water and Sediment Sciences, Ministry of Education, College of Environmental Sciences and Engineering, Peking University, No. 5 Yiheyuan Road, Haidian District, Beijing 100871, PR China
| | - Wulin Yang
- The Key Laboratory of Water and Sediment Sciences, Ministry of Education, College of Environmental Sciences and Engineering, Peking University, No. 5 Yiheyuan Road, Haidian District, Beijing 100871, PR China
| |
Collapse
|
11
|
Anger R, Pieulle L, Shahin M, Valette O, Le Guenno H, Kosta A, Pelicic V, Fronzes R. Structure of a heteropolymeric type 4 pilus from a monoderm bacterium. Nat Commun 2023; 14:7143. [PMID: 37932265 PMCID: PMC10628169 DOI: 10.1038/s41467-023-42872-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Accepted: 10/24/2023] [Indexed: 11/08/2023] Open
Abstract
Type 4 pili (T4P) are important virulence factors, which belong to a superfamily of nanomachines ubiquitous in prokaryotes, called type 4 filaments (T4F). T4F are defined as helical polymers of type 4 pilins. Recent advances in cryo-electron microscopy (cryo-EM) led to structures of several T4F, revealing that the long N-terminal α-helix (α1) - the trademark of pilins - packs in the centre of the filaments to form a hydrophobic core. In diderm bacteria - all available bacterial T4F structures are from diderm species - a portion of α1 is melted (unfolded). Here we report that this architecture is conserved in phylogenetically distant monoderm species by determining the structure of Streptococcus sanguinis T4P. Our 3.7 Å resolution cryo-EM structure of S. sanguinis heteropolymeric T4P and the resulting full atomic model including all minor pilins highlight universal features of bacterial T4F and have widespread implications in understanding T4F biology.
Collapse
Affiliation(s)
- Robin Anger
- Institut Européen de Chimie et Biologie, Université de Bordeaux-CNRS (UMR 5234), Pessac, France
| | - Laetitia Pieulle
- Laboratoire de Chimie Bactérienne, Institut de Microbiologie de la Méditerranée, Aix-Marseille Université-CNRS (UMR 7283), Marseille, France
| | - Meriam Shahin
- MRC Centre for Molecular Bacteriology and Infection, Imperial College London, London, UK
| | - Odile Valette
- Laboratoire de Chimie Bactérienne, Institut de Microbiologie de la Méditerranée, Aix-Marseille Université-CNRS (UMR 7283), Marseille, France
| | - Hugo Le Guenno
- Plateforme de Microscopie, Institut de Microbiologie de la Méditerranée, Aix-Marseille Université-CNRS, Marseille, France
| | - Artemis Kosta
- Plateforme de Microscopie, Institut de Microbiologie de la Méditerranée, Aix-Marseille Université-CNRS, Marseille, France
| | - Vladimir Pelicic
- Laboratoire de Chimie Bactérienne, Institut de Microbiologie de la Méditerranée, Aix-Marseille Université-CNRS (UMR 7283), Marseille, France.
- MRC Centre for Molecular Bacteriology and Infection, Imperial College London, London, UK.
| | - Rémi Fronzes
- Institut Européen de Chimie et Biologie, Université de Bordeaux-CNRS (UMR 5234), Pessac, France.
| |
Collapse
|
12
|
Jiang J, He P, Luo Y, Peng Z, Jiang Y, Hu Y, Qi L, Dong X, Dong Y, Shi L. The varied roles of pilA-N, omcE, omcS, omcT, and omcZ in extracellular electron transfer by Geobacter sulfurreducens. Front Microbiol 2023; 14:1251346. [PMID: 37881251 PMCID: PMC10597711 DOI: 10.3389/fmicb.2023.1251346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Accepted: 09/25/2023] [Indexed: 10/27/2023] Open
Abstract
Geobacter sulfurreducens mediates extracellular electron transfer (EET) reactions with different substrates, such as solid-phase Fe(III)-containing minerals, anodes and the cells of Geobacter metallireducens. To compare their roles in EET, the pilA-N, omcE, omcS, omcT and omcZ genes of G. sulfurreducens were systematically deleted. All mutants showed impaired and varied ability to form biofilms on nonconductive surface. Deletion of omcE also impaired bacterial ability to reduce ferrihydrite, but its impacts on the ability for anode reduction and the co-culture of G. metallireducens-G. sulfurreducens were minimal. The mutant without omcS showed diminished ability to reduce ferrihydrite and to form the co-culture, but was able to regain its ability to reduce anodes. Deletion of omcT, omcZ or pilA-N alone impaired bacterial ability to reduce ferrihydrite and anodes and to form the co-culture. Deletion of all tested genes abolished bacterial ability to reduce ferrihydrite and anodes. Triple-deletion of all omcS, omcT and omcZ abolished the ability of G. sulfurreducens to co-culture with G. metallireducens. However, deletion of only omcZ or pilA-N or both omcS and omcT abolished the ability of G. sulfurreducens without hydrogenase gene hybL to co-culture with G. metallireducens, which show their indispensable roles in direct electron transfer from G. metallireducens to G. sulfurreducens. Thus, the roles of pilA-N, omcE, omcS, omcT and omcZ for G. sulfurreducens in EET vary substantially, which also suggest that possession of PilA-N and multiple cytochromes of different structures enables G. sulfurreducens to mediate EET reactions efficiently with substrates of different properties.
Collapse
Affiliation(s)
- Jie Jiang
- School of Environmental Studies, China University of Geosciences-Wuhan, Wuhan, China
| | - Pengchen He
- School of Environmental Studies, China University of Geosciences-Wuhan, Wuhan, China
| | - Ying Luo
- School of Environmental Studies, China University of Geosciences-Wuhan, Wuhan, China
| | - Zhaofeng Peng
- School of Environmental Studies, China University of Geosciences-Wuhan, Wuhan, China
| | - Yongguang Jiang
- School of Environmental Studies, China University of Geosciences-Wuhan, Wuhan, China
| | - Yidan Hu
- School of Environmental Studies, China University of Geosciences-Wuhan, Wuhan, China
| | - Lei Qi
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Xiuzhu Dong
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Yiran Dong
- School of Environmental Studies, China University of Geosciences-Wuhan, Wuhan, China
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences-Wuhan, Wuhan, China
- State Environmental Protection Key Laboratory of Source Apportionment and Control of Aquatic Pollution, Ministry of Ecology and Environment, China University of Geosciences-Wuhan, Wuhan, China
- Hubei Key Laboratory of Yangtze Catchment Environmental Aquatic Science, China University of Geosciences-Wuhan, Wuhan, China
| | - Liang Shi
- School of Environmental Studies, China University of Geosciences-Wuhan, Wuhan, China
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences-Wuhan, Wuhan, China
- State Environmental Protection Key Laboratory of Source Apportionment and Control of Aquatic Pollution, Ministry of Ecology and Environment, China University of Geosciences-Wuhan, Wuhan, China
- Hubei Key Laboratory of Yangtze Catchment Environmental Aquatic Science, China University of Geosciences-Wuhan, Wuhan, China
| |
Collapse
|
13
|
Fernandes TM, Silva MA, Morgado L, Salgueiro CA. Hemes on a string: insights on the functional mechanisms of PgcA from Geobacter sulfurreducens. J Biol Chem 2023; 299:105167. [PMID: 37595873 PMCID: PMC10570954 DOI: 10.1016/j.jbc.2023.105167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 08/05/2023] [Accepted: 08/10/2023] [Indexed: 08/20/2023] Open
Abstract
Microbial extracellular reduction of insoluble compounds requires soluble electron shuttles that diffuse in the environment, freely diffusing cytochromes, or direct contact with cellular conductive appendages that release or harvest electrons to assure a continuous balance between cellular requirements and environmental conditions. In this work, we produced and characterized the three cytochrome domains of PgcA, an extracellular triheme cytochrome that contributes to Fe(III) and Mn(IV) oxides reduction in Geobacter sulfurreducens. The three monoheme domains are structurally homologous, but their heme groups show variable axial coordination and reduction potential values. Electron transfer experiments monitored by NMR and visible spectroscopy show the variable extent to which the domains promiscuously exchange electrons while reducing different electron acceptors. The results suggest that PgcA is part of a new class of cytochromes - microbial heme-tethered redox strings - that use low-complexity protein stretches to bind metals and promote intra- and intermolecular electron transfer events through its cytochrome domains.
Collapse
Affiliation(s)
- Tomás M Fernandes
- Associate Laboratory i4HB - Institute for Health and Bioeconomy, NOVA School of Science and Technology, Universidade NOVA de Lisboa, Caparica, Portugal; UCIBIO - Applied Molecular Biosciences Unit, Chemistry Department, NOVA School of Science and Technology, Universidade NOVA de Lisboa, Caparica, Portugal
| | - Marta A Silva
- Associate Laboratory i4HB - Institute for Health and Bioeconomy, NOVA School of Science and Technology, Universidade NOVA de Lisboa, Caparica, Portugal; UCIBIO - Applied Molecular Biosciences Unit, Chemistry Department, NOVA School of Science and Technology, Universidade NOVA de Lisboa, Caparica, Portugal
| | - Leonor Morgado
- Associate Laboratory i4HB - Institute for Health and Bioeconomy, NOVA School of Science and Technology, Universidade NOVA de Lisboa, Caparica, Portugal; UCIBIO - Applied Molecular Biosciences Unit, Chemistry Department, NOVA School of Science and Technology, Universidade NOVA de Lisboa, Caparica, Portugal.
| | - Carlos A Salgueiro
- Associate Laboratory i4HB - Institute for Health and Bioeconomy, NOVA School of Science and Technology, Universidade NOVA de Lisboa, Caparica, Portugal; UCIBIO - Applied Molecular Biosciences Unit, Chemistry Department, NOVA School of Science and Technology, Universidade NOVA de Lisboa, Caparica, Portugal.
| |
Collapse
|
14
|
Treuner-Lange A, Zheng W, Viljoen A, Lindow S, Herfurth M, Dufrêne YF, Søgaard-Andersen L, Egelman EH. Large pilin subunits provide distinct structural and mechanical properties for the Myxococcus xanthus type IV pilus. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.07.22.550172. [PMID: 37503255 PMCID: PMC10370171 DOI: 10.1101/2023.07.22.550172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/29/2023]
Abstract
Type IV pili (T4P) are ubiquitous bacterial cell surface filaments important for surface motility, adhesion to biotic and abiotic surfaces, DNA uptake, biofilm formation, and virulence. T4P are built from thousands of copies of the major pilin subunit and tipped by a complex composed of minor pilins and in some systems also the PilY1 adhesin. While the major pilins of structurally characterized T4P have lengths of up to 161 residues, the major pilin PilA of Myxococcus xanthus is unusually large with 208 residues. All major pilins have a highly conserved N-terminal domain and a highly variable C-terminal domain, and the additional residues in the M. xanthus PilA are due to a larger C-terminal domain. We solved the structure of the M. xanthus T4P (T4P Mx ) at a resolution of 3.0 Å using cryo-electron microscopy (cryo-EM). The T4P Mx follows the structural blueprint observed in other T4P with the pilus core comprised of the extensively interacting N-terminal α1-helices while the globular domains decorate the T4P surface. The atomic model of PilA built into this map shows that the large C-terminal domain has much more extensive intersubunit contacts than major pilins in other T4P. As expected from these greater contacts, the bending and axial stiffness of the T4P Mx is significantly higher than that of other T4P and supports T4P-dependent motility on surfaces of different stiffnesses. Notably, T4P Mx variants with interrupted intersubunit interfaces had decreased bending stiffness and strongly reduced motility on all surfaces. These observations support an evolutionary scenario whereby the large major pilin enables the formation of a rigid T4P that expands the environmental conditions in which the T4P system functions.
Collapse
|
15
|
Kreutzberger MAB, Cvirkaite-Krupovic V, Liu Y, Baquero DP, Liu J, Sonani RR, Calladine CR, Wang F, Krupovic M, Egelman EH. The evolution of archaeal flagellar filaments. Proc Natl Acad Sci U S A 2023; 120:e2304256120. [PMID: 37399404 PMCID: PMC10334743 DOI: 10.1073/pnas.2304256120] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Accepted: 06/08/2023] [Indexed: 07/05/2023] Open
Abstract
Flagellar motility has independently arisen three times during evolution: in bacteria, archaea, and eukaryotes. In prokaryotes, the supercoiled flagellar filaments are composed largely of a single protein, bacterial or archaeal flagellin, although these two proteins are not homologous, while in eukaryotes, the flagellum contains hundreds of proteins. Archaeal flagellin and archaeal type IV pilin are homologous, but how archaeal flagellar filaments (AFFs) and archaeal type IV pili (AT4Ps) diverged is not understood, in part, due to the paucity of structures for AFFs and AT4Ps. Despite having similar structures, AFFs supercoil, while AT4Ps do not, and supercoiling is essential for the function of AFFs. We used cryo-electron microscopy to determine the atomic structure of two additional AT4Ps and reanalyzed previous structures. We find that all AFFs have a prominent 10-strand packing, while AT4Ps show a striking structural diversity in their subunit packing. A clear distinction between all AFF and all AT4P structures involves the extension of the N-terminal α-helix with polar residues in the AFFs. Additionally, we characterize a flagellar-like AT4P from Pyrobaculum calidifontis with filament and subunit structure similar to that of AFFs which can be viewed as an evolutionary link, showing how the structural diversity of AT4Ps likely allowed for an AT4P to evolve into a supercoiling AFF.
Collapse
Affiliation(s)
- Mark A. B. Kreutzberger
- Department of Biochemistry and Molecular Genetics, University of Virginia, Charlottesville, VA22903
| | | | - Ying Liu
- Institut Pasteur, Université Paris Cité, CNRS UMR6047, Archaeal Virology Unit, Paris75015, France
| | - Diana P. Baquero
- Institut Pasteur, Université Paris Cité, CNRS UMR6047, Archaeal Virology Unit, Paris75015, France
| | - Junfeng Liu
- Institut Pasteur, Université Paris Cité, CNRS UMR6047, Archaeal Virology Unit, Paris75015, France
| | - Ravi R. Sonani
- Department of Biochemistry and Molecular Genetics, University of Virginia, Charlottesville, VA22903
| | - Chris R. Calladine
- Department of Engineering, University of Cambridge, CambridgeCB2 1PZ, United Kingdom
| | - Fengbin Wang
- Department of Biochemistry and Molecular Genetics, University of Virginia, Charlottesville, VA22903
| | - Mart Krupovic
- Institut Pasteur, Université Paris Cité, CNRS UMR6047, Archaeal Virology Unit, Paris75015, France
| | - Edward H. Egelman
- Department of Biochemistry and Molecular Genetics, University of Virginia, Charlottesville, VA22903
| |
Collapse
|
16
|
Li C, Yi K, Hu S, Yang W. Cathodic biofouling control by microbial separators in air-breathing microbial fuel cells. ENVIRONMENTAL SCIENCE AND ECOTECHNOLOGY 2023; 15:100251. [PMID: 36923605 PMCID: PMC10009452 DOI: 10.1016/j.ese.2023.100251] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 02/06/2023] [Accepted: 02/13/2023] [Indexed: 05/10/2023]
Abstract
Microbial fuel cells (MFCs) incorporating air-breathing cathodes have emerged as a promising eco-friendly wastewater treatment technology capable of operating on an energy-free basis. However, the inevitable biofouling of these devices rapidly decreases cathodic catalytic activity and also reduces the stability of MFCs during long-term operation. The present work developed a novel microbial separator for use in air-breathing MFCs that protects cathodic catalytic activity. In these modified devices, microbes preferentially grow on the microbial separator rather than the cathodic surface such that biofouling is prevented. Trials showed that this concept provided low charge transfer and mass diffusion resistance values during the cathodic oxygen reduction reaction of 4.6 ± 1.3 and 17.3 ± 6.8 Ω, respectively, after prolonged operation. The maximum power density was found to be stable at 1.06 ± 0.07 W m-2 throughout a long-term test and the chemical oxygen demand removal efficiency was increased to 92% compared with a value of 83% for MFCs exhibiting serious biofouling. In addition, a cathode combined with a microbial separator demonstrated less cross-cathode diffusion of oxygen to the anolyte. This effect indirectly induced the growth of electroactive bacteria and produced higher currents in air-breathing MFCs. Most importantly, the present microbial separator concept enhances both the lifespan and economics of air-breathing MFCs by removing the need to replace or regenerate the cathode during long-term operation. These results indicate that the installation of a microbial separator is an effective means of stabilizing power generation and ensuring the cost-effective performance of air-breathing MFCs intended for future industrial applications.
Collapse
|
17
|
Baquero DP, Cvirkaite-Krupovic V, Hu SS, Fields JL, Liu X, Rensing C, Egelman EH, Krupovic M, Wang F. Extracellular cytochrome nanowires appear to be ubiquitous in prokaryotes. Cell 2023; 186:2853-2864.e8. [PMID: 37290436 PMCID: PMC10330847 DOI: 10.1016/j.cell.2023.05.012] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 03/04/2023] [Accepted: 05/10/2023] [Indexed: 06/10/2023]
Abstract
Electrically conductive appendages from the anaerobic bacterium Geobacter sulfurreducens, recently identified as extracellular cytochrome nanowires (ECNs), have received wide attention due to numerous potential applications. However, whether other organisms employ similar ECNs for electron transfer remains unknown. Here, using cryoelectron microscopy, we describe the atomic structures of two ECNs from two major orders of hyperthermophilic archaea present in deep-sea hydrothermal vents and terrestrial hot springs. Homologs of Archaeoglobus veneficus ECN are widespread among mesophilic methane-oxidizing Methanoperedenaceae, alkane-degrading Syntrophoarchaeales archaea, and in the recently described megaplasmids called Borgs. The ECN protein subunits lack similarities in their folds; however, they share a common heme arrangement, suggesting an evolutionarily optimized heme packing for efficient electron transfer. The detection of ECNs in archaea suggests that filaments containing closely stacked hemes may be a common and widespread mechanism for long-range electron transfer in both prokaryotic domains of life.
Collapse
Affiliation(s)
- Diana P Baquero
- Institut Pasteur, Université Paris Cité, CNRS UMR6047, Archaeal Virology Unit, Paris 75015, France
| | | | - Shengen Shawn Hu
- Department of Biochemistry and Molecular Genetics, University of Virginia School of Medicine, Charlottesville, VA 22903, USA
| | - Jessie Lynda Fields
- Department of Biochemistry and Molecular Genetics, University of Alabama at Birmingham, Birmingham, AL 35233, USA
| | - Xing Liu
- Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou 350002, Fujian, China
| | - Christopher Rensing
- Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou 350002, Fujian, China
| | - Edward H Egelman
- Department of Biochemistry and Molecular Genetics, University of Virginia School of Medicine, Charlottesville, VA 22903, USA.
| | - Mart Krupovic
- Institut Pasteur, Université Paris Cité, CNRS UMR6047, Archaeal Virology Unit, Paris 75015, France.
| | - Fengbin Wang
- Department of Biochemistry and Molecular Genetics, University of Virginia School of Medicine, Charlottesville, VA 22903, USA; Department of Biochemistry and Molecular Genetics, University of Alabama at Birmingham, Birmingham, AL 35233, USA; O'Neal Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, AL 35233, USA.
| |
Collapse
|
18
|
Wang F, Craig L, Liu X, Rensing C, Egelman EH. Models are useful until high-resolution structures are available. Trends Microbiol 2023; 31:550-551. [PMID: 37005159 DOI: 10.1016/j.tim.2023.03.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 03/01/2023] [Accepted: 03/13/2023] [Indexed: 04/03/2023]
Affiliation(s)
- Fengbin Wang
- Department of Biochemistry and Molecular Genetics, University of Virginia School of Medicine, Charlottesville, VA 22903, USA
| | - Lisa Craig
- Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, BC, Canada
| | - Xing Liu
- Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Christopher Rensing
- Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Edward H Egelman
- Department of Biochemistry and Molecular Genetics, University of Virginia School of Medicine, Charlottesville, VA 22903, USA.
| |
Collapse
|
19
|
Shaliutina-Loginova A, Francetic O, Doležal P. Bacterial Type II Secretion System and Its Mitochondrial Counterpart. mBio 2023; 14:e0314522. [PMID: 36971557 PMCID: PMC10128026 DOI: 10.1128/mbio.03145-22] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/29/2023] Open
Abstract
Over the billions of years that bacteria have been around, they have evolved several sophisticated protein secretion nanomachines to deliver toxins, hydrolytic enzymes, and effector proteins into their environments. Of these, the type II secretion system (T2SS) is used by Gram-negative bacteria to export a wide range of folded proteins from the periplasm across the outer membrane.
Collapse
|
20
|
Pelicic V. Mechanism of assembly of type 4 filaments: everything you always wanted to know (but were afraid to ask). MICROBIOLOGY (READING, ENGLAND) 2023; 169. [PMID: 36947586 DOI: 10.1099/mic.0.001311] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/23/2023]
Abstract
Type 4 filaments (T4F) are a superfamily of filamentous nanomachines - virtually ubiquitous in prokaryotes and functionally versatile - of which type 4 pili (T4P) are the defining member. T4F are polymers of type 4 pilins, assembled by conserved multi-protein machineries. They have long been an important topic for research because they are key virulence factors in numerous bacterial pathogens. Our poor understanding of the molecular mechanisms of T4F assembly is a serious hindrance to the design of anti-T4F therapeutics. This review attempts to shed light on the fundamental mechanistic principles at play in T4F assembly by focusing on similarities rather than differences between several (mostly bacterial) T4F. This holistic approach, complemented by the revolutionary ability of artificial intelligence to predict protein structures, led to an intriguing mechanistic model of T4F assembly.
Collapse
Affiliation(s)
- Vladimir Pelicic
- Laboratoire de Chimie Bactérienne, UMR 7283 CNRS/Aix-Marseille Université, Institut de Microbiologie de la Méditerranée, Marseille, France
| |
Collapse
|
21
|
Lovley DR. Response to Wang et al.: evidence contradicting the cytochrome-only model. Trends Microbiol 2023; 31:548-549. [PMID: 37005158 DOI: 10.1016/j.tim.2023.03.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 03/07/2023] [Accepted: 03/13/2023] [Indexed: 04/03/2023]
|
22
|
Dazzoni R, Li Y, López-Castilla A, Brier S, Mechaly A, Cordier F, Haouz A, Nilges M, Francetic O, Bardiaux B, Izadi-Pruneyre N. Structure and dynamic association of an assembly platform subcomplex of the bacterial type II secretion system. Structure 2023; 31:152-165.e7. [PMID: 36586404 DOI: 10.1016/j.str.2022.12.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2022] [Revised: 10/20/2022] [Accepted: 11/29/2022] [Indexed: 12/31/2022]
Abstract
Type II secretion systems (T2SSs) allow diderm bacteria to secrete hydrolytic enzymes, adhesins, or toxins important for growth and virulence. To promote secretion of folded proteins, T2SSs assemble periplasmic filaments called pseudopili or endopili at an inner membrane subcomplex, the assembly platform (AP). Here, we combined biophysical approaches, nuclear magnetic resonance (NMR) and X-ray crystallography, to study the Klebsiella AP components PulL and PulM. We determined the structure and associations of their periplasmic domains and describe the structure of the heterodimer formed by their ferredoxin-like domains. We show how structural complementarity and plasticity favor their association during the secretion process. Cysteine scanning and crosslinking data provided additional constraints to build a structural model of the PulL-PulM assembly in the cellular context. Our structural and functional insights, together with the relative cellular abundance of its components, support the role of AP as a dynamic hub that orchestrates pilus polymerization.
Collapse
Affiliation(s)
- Régine Dazzoni
- Institut Pasteur, Université Paris Cité, CNRS UMR3528, Structural Bioinformatics Unit, 75015 Paris, France
| | - Yuanyuan Li
- Institut Pasteur, Université Paris Cité, CNRS UMR3528, Biochemistry of Macromolecular Interactions Unit, 75015 Paris, France
| | - Aracelys López-Castilla
- Institut Pasteur, Université Paris Cité, CNRS UMR3528, Structural Bioinformatics Unit, 75015 Paris, France
| | - Sébastien Brier
- Institut Pasteur, Université Paris Cité, CNRS UMR3528, Biological NMR and HDX-MS Technological Platform, 75015 Paris, France
| | - Ariel Mechaly
- Institut Pasteur, Université Paris Cité, CNRS UMR3528, Crystallography Platform, 75015 Paris, France
| | - Florence Cordier
- Institut Pasteur, Université Paris Cité, CNRS UMR3528, Structural Bioinformatics Unit, 75015 Paris, France; Institut Pasteur, Université Paris Cité, CNRS UMR3528, Biological NMR and HDX-MS Technological Platform, 75015 Paris, France
| | - Ahmed Haouz
- Institut Pasteur, Université Paris Cité, CNRS UMR3528, Crystallography Platform, 75015 Paris, France
| | - Michael Nilges
- Institut Pasteur, Université Paris Cité, CNRS UMR3528, Structural Bioinformatics Unit, 75015 Paris, France
| | - Olivera Francetic
- Institut Pasteur, Université Paris Cité, CNRS UMR3528, Biochemistry of Macromolecular Interactions Unit, 75015 Paris, France
| | - Benjamin Bardiaux
- Institut Pasteur, Université Paris Cité, CNRS UMR3528, Structural Bioinformatics Unit, 75015 Paris, France; Institut Pasteur, Université Paris Cité, CNRS UMR3528, Bacterial Transmembrane Systems Unit, 75015 Paris.
| | - Nadia Izadi-Pruneyre
- Institut Pasteur, Université Paris Cité, CNRS UMR3528, Structural Bioinformatics Unit, 75015 Paris, France; Institut Pasteur, Université Paris Cité, CNRS UMR3528, Bacterial Transmembrane Systems Unit, 75015 Paris.
| |
Collapse
|