1
|
Wang HM, Zhou J, Ma CY, Wu XH, Ullah Y, Zhang ZH, Li Y, Wang XX, Dai CC. Identification of a small secreted protein, PlSSP, that contributes to the symbiotic association of Phomopsis liquidambaris with rice under nitrogen starvation. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2025; 224:109969. [PMID: 40311530 DOI: 10.1016/j.plaphy.2025.109969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2025] [Revised: 03/30/2025] [Accepted: 04/27/2025] [Indexed: 05/03/2025]
Abstract
Endophytic fungi are crucial for enhancing plant growth and stress tolerance. Phomopsis liquidambaris B3, a broad-spectrum endophytic fungus, significantly improves plant nitrogen uptake and growth under nitrogen-limited conditions. In this study, we identified a small secreted protein, PlSSP, which localizes to the cytoplasmic matrix of host cells and modulates plant immune responses. Using proteomic and transcriptomic approaches, we found that PlSSP upregulates key defense-related genes, including members of the PR and WRKY families, as well as genes involved in reactive oxygen species scavenging and nitrogen assimilation. Structural analysis revealed PlSSP's secondary and thermal stability features, which likely contribute to its functional interaction with host cellular components. Functional analyses demonstrated that PlSSP expression correlates with increased fungal colonization and rice biomass accumulation under nitrogen-starved conditions. These results advance our understanding of how P. liquidambaris promotes plant resilience and nutrient uptake, providing insights with potential applications in sustainable agriculture.
Collapse
Affiliation(s)
- Hao-Ming Wang
- Jiangsu Key Laboratory for Pathogens and Ecosystems, Jiangsu Engineering and Technology Research Center for Industrialization of Microbial Resources, College of Life Sciences, Nanjing Normal University, Nanjing, Jiangsu Province, 210023, China
| | - Jun Zhou
- Université Marie et Louis Pasteur, CNRS, Chrono-environnement (UMR 6249), F-25200, Montbéliard, France.
| | - Chen-Yu Ma
- Jiangsu Key Laboratory for Pathogens and Ecosystems, Jiangsu Engineering and Technology Research Center for Industrialization of Microbial Resources, College of Life Sciences, Nanjing Normal University, Nanjing, Jiangsu Province, 210023, China
| | - Xiao-Han Wu
- Jiangsu Key Laboratory for Pathogens and Ecosystems, Jiangsu Engineering and Technology Research Center for Industrialization of Microbial Resources, College of Life Sciences, Nanjing Normal University, Nanjing, Jiangsu Province, 210023, China
| | - Yaseen Ullah
- Jiangsu Key Laboratory for Pathogens and Ecosystems, Jiangsu Engineering and Technology Research Center for Industrialization of Microbial Resources, College of Life Sciences, Nanjing Normal University, Nanjing, Jiangsu Province, 210023, China
| | - Zi-Hao Zhang
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Yan Li
- Jiangsu Key Laboratory for Pathogens and Ecosystems, Jiangsu Engineering and Technology Research Center for Industrialization of Microbial Resources, College of Life Sciences, Nanjing Normal University, Nanjing, Jiangsu Province, 210023, China
| | - Xing-Xiang Wang
- State Key Laboratory of Soil & Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 211135, China; University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - Chuan-Chao Dai
- Jiangsu Key Laboratory for Pathogens and Ecosystems, Jiangsu Engineering and Technology Research Center for Industrialization of Microbial Resources, College of Life Sciences, Nanjing Normal University, Nanjing, Jiangsu Province, 210023, China.
| |
Collapse
|
2
|
Wen Y, Wu R, Xu T, Cao R, Song G, Qi D, Chang W, Li K, Ping Y, Zhang M, Fan X, Song F. AMF and biochar reshape the bacterial network in rhizosphere soil of Ricinus communis under chromium (Cr) stress and improve soil quality. JOURNAL OF HAZARDOUS MATERIALS 2025; 492:138122. [PMID: 40174452 DOI: 10.1016/j.jhazmat.2025.138122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2025] [Revised: 03/07/2025] [Accepted: 03/30/2025] [Indexed: 04/04/2025]
Abstract
Arbuscular mycorrhizal fungi (AMF) and biochar synergistically mitigate Cr toxicity in plants. Ricinus communis roots are proficient in heavy metal accumulation. However, the role of AMF and biochar in reshaping bacterial networks during Cr remediation remains unclear. This study utilized pot experiments to investigate how the "AMF-biochar-Ricinus communis" system influences bacterial networks in rhizosphere soil under Cr stress and enhances soil quality. Results indicated that under 150 mg/kg Cr stress, the AMF-biochar combination significantly increased castor plant fresh weight and soil quality index by 359.70 % and 121.25 %, respectively, compared to treatments without biochar or AMF (P < 0.05). Notably, under Cr stress, the combined treatment significantly increased the relative abundance of Arthrobacter while decreasing that of Streptomyces. Network analysis and community assembly results revealed that AMF and biochar together significantly enhanced soil bacterial network complexity and average niche width. In conclusion, the AMF-biochar combination effectively promoted Ricinus communis growth under Cr stress and regulated rhizosphere soil bacterial community stability and assembly processes, providing valuable insights into plant-microbe interactions under Cr(VI) stress.
Collapse
Affiliation(s)
- Yuqiang Wen
- Engineering Research Center of Agricultural Microbiology Technology, Ministry of Education & Heilongjiang Provincial Key Laboratory of Ecological Restoration and Resource Utilization for Cold Region & Key Laboratory of Microbiology, College of Heilongjiang Province & School of Life Sciences, Heilongjiang University, Harbin 150080, China; Jiaxiang Industrial Technology Research Institute of Heilongjiang University, Jining 272000, China; School of Hydraulic and Electric-Power of Heilongjiang University, Harbin 150080, China
| | - Ruotong Wu
- Engineering Research Center of Agricultural Microbiology Technology, Ministry of Education & Heilongjiang Provincial Key Laboratory of Ecological Restoration and Resource Utilization for Cold Region & Key Laboratory of Microbiology, College of Heilongjiang Province & School of Life Sciences, Heilongjiang University, Harbin 150080, China; Jiaxiang Industrial Technology Research Institute of Heilongjiang University, Jining 272000, China
| | - Tianle Xu
- Engineering Research Center of Agricultural Microbiology Technology, Ministry of Education & Heilongjiang Provincial Key Laboratory of Ecological Restoration and Resource Utilization for Cold Region & Key Laboratory of Microbiology, College of Heilongjiang Province & School of Life Sciences, Heilongjiang University, Harbin 150080, China
| | - Ranran Cao
- Jiaxiang Industrial Technology Research Institute of Heilongjiang University, Jining 272000, China
| | - Ge Song
- Engineering Research Center of Agricultural Microbiology Technology, Ministry of Education & Heilongjiang Provincial Key Laboratory of Ecological Restoration and Resource Utilization for Cold Region & Key Laboratory of Microbiology, College of Heilongjiang Province & School of Life Sciences, Heilongjiang University, Harbin 150080, China
| | - Dandan Qi
- Engineering Research Center of Agricultural Microbiology Technology, Ministry of Education & Heilongjiang Provincial Key Laboratory of Ecological Restoration and Resource Utilization for Cold Region & Key Laboratory of Microbiology, College of Heilongjiang Province & School of Life Sciences, Heilongjiang University, Harbin 150080, China
| | - Wei Chang
- Engineering Research Center of Agricultural Microbiology Technology, Ministry of Education & Heilongjiang Provincial Key Laboratory of Ecological Restoration and Resource Utilization for Cold Region & Key Laboratory of Microbiology, College of Heilongjiang Province & School of Life Sciences, Heilongjiang University, Harbin 150080, China; Jiaxiang Industrial Technology Research Institute of Heilongjiang University, Jining 272000, China
| | - Kun Li
- Engineering Research Center of Agricultural Microbiology Technology, Ministry of Education & Heilongjiang Provincial Key Laboratory of Ecological Restoration and Resource Utilization for Cold Region & Key Laboratory of Microbiology, College of Heilongjiang Province & School of Life Sciences, Heilongjiang University, Harbin 150080, China
| | - Yuan Ping
- Engineering Research Center of Agricultural Microbiology Technology, Ministry of Education & Heilongjiang Provincial Key Laboratory of Ecological Restoration and Resource Utilization for Cold Region & Key Laboratory of Microbiology, College of Heilongjiang Province & School of Life Sciences, Heilongjiang University, Harbin 150080, China
| | - Mengmeng Zhang
- Engineering Research Center of Agricultural Microbiology Technology, Ministry of Education & Heilongjiang Provincial Key Laboratory of Ecological Restoration and Resource Utilization for Cold Region & Key Laboratory of Microbiology, College of Heilongjiang Province & School of Life Sciences, Heilongjiang University, Harbin 150080, China
| | - Xiaoxu Fan
- Engineering Research Center of Agricultural Microbiology Technology, Ministry of Education & Heilongjiang Provincial Key Laboratory of Ecological Restoration and Resource Utilization for Cold Region & Key Laboratory of Microbiology, College of Heilongjiang Province & School of Life Sciences, Heilongjiang University, Harbin 150080, China
| | - Fuqiang Song
- Engineering Research Center of Agricultural Microbiology Technology, Ministry of Education & Heilongjiang Provincial Key Laboratory of Ecological Restoration and Resource Utilization for Cold Region & Key Laboratory of Microbiology, College of Heilongjiang Province & School of Life Sciences, Heilongjiang University, Harbin 150080, China; Jiaxiang Industrial Technology Research Institute of Heilongjiang University, Jining 272000, China.
| |
Collapse
|
3
|
Oubohssaine M, Rabeh K, Hnini M. Symbiosis vs pathogenesis in plants: Reflections and perspectives. Microb Pathog 2025; 200:107333. [PMID: 39870251 DOI: 10.1016/j.micpath.2025.107333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2024] [Revised: 01/21/2025] [Accepted: 01/22/2025] [Indexed: 01/29/2025]
Abstract
Plant-microbe partnerships constitute a complex and intricately woven network of connections that have evolved over countless centuries, involving both cooperation and antagonism. In various contexts, plants and microorganisms engage in mutually beneficial partnerships that enhance crop health and maintain balance in ecosystems. However, these associations also render plants susceptible to a range of pathogens. Understanding the fundamental molecular mechanisms governing these associations is crucial, given the notable susceptibility of plants to external environmental influences. Based on quorum sensing signals, phytohormone, and volatile organic carbon (VOC) production and others molecules, microorganisms influence plant growth, health, and defense responses. This review explores the multifaceted relationships between plants and their associated microorganisms, encompassing mutualism, commensalism, and antagonism. The molecular mechanisms of symbiotic and pathogenic interactions share similarities but lead to different outcomes. While symbiosis benefits both parties, pathogenesis harms the host. Genetic adaptations optimize these interactions, involving coevolution driving process. Environmental factors influence outcomes, emphasizing the need for understanding and manipulation of microbial communities for beneficial results. Research directions include employing multi-omics techniques, functional studies, investigating environmental factors, understanding evolutionary trajectories, and harnessing knowledge to engineer synthetic microbial consortia for sustainable agriculture and disease management.
Collapse
Affiliation(s)
- Malika Oubohssaine
- Microbiology and Molecular Biology Team, Center of Plant and Microbial Biotechnology, Biodiversity and Environment. Faculty of Sciences, Mohammed V University in Rabat, Avenue Ibn Battouta, BP 1014, Rabat, 10000, Morocco.
| | - Karim Rabeh
- Oasis System Research Unit, Regional Center of Agricultural Research of Errachidia, National Institute of Agricultural research, PO. Box 415, Rabat, 10090, Morocco
| | - Mohamed Hnini
- Research Team in Science and Technology, High School of Technology Laayoune, Ibn Zohr University, Morocco
| |
Collapse
|
4
|
Elliott J, Tang PK. Fibroblast growth factor 23 - A review with particular reference to the physiology and pathophysiology of phosphate homeostasis in the cat. Vet J 2025; 309:106271. [PMID: 39608700 DOI: 10.1016/j.tvjl.2024.106271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 09/08/2024] [Accepted: 11/24/2024] [Indexed: 11/30/2024]
Abstract
Fibroblast growth factor-23 (FGF23) is a phosphaturic hormone, discovery of which has transformed our understanding of mineral regulation in healthy mammals, including the cat. It is produced by osteoblasts and osteocytes and its prime role is to regulate phosphate entry into extracellular fluid (from bone and via the gut) and its excretion via the kidney. It interacts with other hormones (calcitriol and parathyroid hormone), inhibiting their activation and secretion respectively and so impacts on calcium as well as phosphate homeostasis. Physiological factors regulating its secretion are not well understood, although phosphate ion sensing is likely to be important. Calcium and magnesium ions are also involved and unravelling the control points and integration of the system regulating bone turnover and mineral balance whilst preventing soft tissue (non-osseous) mineralisation is a future research goal. Calciprotein particle size and number likely play an important role in this system but precisely how remains to be determined. Elevated serum FGF23 is the earliest indicator of mineral bone disorder associated with chronic kidney disease in human patients and in cats, enabling reference-range serum phosphorus to be maintained despite reduction in glomerular filtration rate which limits phosphate excretion. FGF23 also predicts CKD progression and survival in cats. The many factors influencing its secretion at different stages of CKD, including relative iron deficiency, anaemia and chronic systemic inflammation, hypomagnesaemia and α-klotho deficiency are discussed in this review, where the data available in cats with naturally occurring CKD is presented alongside that from rodent models and human CKD patients.
Collapse
Affiliation(s)
- Jonathan Elliott
- Department of Comparative Biomedical Sciences, Royal Veterinary College, University of London, Royal College Street, London NW1 0TU, United Kingdom.
| | - Pak Kan Tang
- Department of Comparative Biomedical Sciences, Royal Veterinary College, University of London, Royal College Street, London NW1 0TU, United Kingdom
| |
Collapse
|
5
|
Saia S, Radicetti E, Pawlowski K, Zimmermann SD, Genre A. Editorial: Mechanisms and practices for the management of plant-soil biota interaction. FRONTIERS IN PLANT SCIENCE 2024; 15:1399420. [PMID: 38654906 PMCID: PMC11035879 DOI: 10.3389/fpls.2024.1399420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Accepted: 03/28/2024] [Indexed: 04/26/2024]
Affiliation(s)
- Sergio Saia
- Department of Veterinary Science, University of Pisa, Pisa, Italy
| | - Emanuele Radicetti
- Department of Chemical, Pharmaceutical and Agricultural Sciences, University of Ferrara, Ferrara, Italy
| | - Katharina Pawlowski
- Department of Ecology, Environment and Plant Science, Stockholm University, Stockholm, Sweden
| | | | - Andrea Genre
- Department of Life Science and Systems Biology, University of Turin, Turin, Italy
| |
Collapse
|
6
|
Wang Q, Liu M, Wang Z, Li J, Liu K, Huang D. The role of arbuscular mycorrhizal symbiosis in plant abiotic stress. Front Microbiol 2024; 14:1323881. [PMID: 38312502 PMCID: PMC10835807 DOI: 10.3389/fmicb.2023.1323881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Accepted: 12/29/2023] [Indexed: 02/06/2024] Open
Abstract
Arbuscular mycorrhizal fungi (AMF) can penetrate plant root cortical cells, establish a symbiosis with most land plant species, and form branched structures (known as arbuscules) for nutrient exchange. Plants have evolved a complete plant-AMF symbiosis system to sustain their growth and development under various types of abiotic stress. Here, we highlight recent studies of AM symbiosis and the regulation of symbiosis process. The roles of mycorrhizal symbiosis and host plant interactions in enhancing drought resistance, increasing mineral nutrient uptake, regulating hormone synthesis, improving salt resistance, and alleviating heavy metal stress were also discussed. Overall, studies of AM symbiosis and a variety of abiotic stresses will aid applications of AMF in sustainable agriculture and can improve plant production and environmental safety.
Collapse
Affiliation(s)
- Qian Wang
- Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), College of Life Sciences/Institute of Agro-Bioengineering, Guizhou University, Guiyang, Guizhou, China
| | - Mengmeng Liu
- College of Agriculture, Guizhou University, Guiyang, Guizhou, China
| | - Zhifan Wang
- College of Agriculture, Guizhou Engineering Research Center for Fruit Crops, Guizhou University, Guiyang, Guizhou, China
| | - Junrong Li
- Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), College of Life Sciences/Institute of Agro-Bioengineering, Guizhou University, Guiyang, Guizhou, China
| | - Ke Liu
- Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), College of Life Sciences/Institute of Agro-Bioengineering, Guizhou University, Guiyang, Guizhou, China
| | - Dong Huang
- Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), College of Life Sciences/Institute of Agro-Bioengineering, Guizhou University, Guiyang, Guizhou, China
- College of Agriculture, Guizhou Engineering Research Center for Fruit Crops, Guizhou University, Guiyang, Guizhou, China
| |
Collapse
|
7
|
Boyno G, Rezaee Danesh Y, Demir S, Teniz N, Mulet JM, Porcel R. The Complex Interplay between Arbuscular Mycorrhizal Fungi and Strigolactone: Mechanisms, Sinergies, Applications and Future Directions. Int J Mol Sci 2023; 24:16774. [PMID: 38069097 PMCID: PMC10706366 DOI: 10.3390/ijms242316774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 11/23/2023] [Accepted: 11/24/2023] [Indexed: 12/18/2023] Open
Abstract
Plants, the cornerstone of life on Earth, are constantly struggling with a number of challenges arising from both biotic and abiotic stressors. To overcome these adverse factors, plants have evolved complex defense mechanisms involving both a number of cell signaling pathways and a complex network of interactions with microorganisms. Among these interactions, the relationship between symbiotic arbuscular mycorrhizal fungi (AMF) and strigolactones (SLs) stands as an important interplay that has a significant impact on increased resistance to environmental stresses and improved nutrient uptake and the subsequent enhanced plant growth. AMF establishes mutualistic partnerships with plants by colonizing root systems, and offers a range of benefits, such as increased nutrient absorption, improved water uptake and increased resistance to both biotic and abiotic stresses. SLs play a fundamental role in shaping root architecture, promoting the growth of lateral roots and regulating plant defense responses. AMF can promote the production and release of SLs by plants, which in turn promote symbiotic interactions due to their role as signaling molecules with the ability to attract beneficial microbes. The complete knowledge of this synergy has the potential to develop applications to optimize agricultural practices, improve nutrient use efficiency and ultimately increase crop yields. This review explores the roles played by AMF and SLs in plant development and stress tolerance, highlighting their individual contributions and the synergistic nature of their interaction.
Collapse
Affiliation(s)
- Gökhan Boyno
- Department of Plant Protection, Faculty of Agriculture, Van Yuzuncu Yil University, Van 65090, Türkiye
| | - Younes Rezaee Danesh
- Department of Plant Protection, Faculty of Agriculture, Van Yuzuncu Yil University, Van 65090, Türkiye
- Department of Plant Protection, Faculty of Agriculture, Urmia University, Urmia 5756151818, Iran
| | - Semra Demir
- Department of Plant Protection, Faculty of Agriculture, Van Yuzuncu Yil University, Van 65090, Türkiye
| | - Necmettin Teniz
- Department of Agricultural Biotechnology, Faculty of Agriculture, Van Yuzuncu Yil University, Van 65090, Türkiye
| | - José M. Mulet
- Instituto de Biología Molecular y Celular de Plantas, Universitat Politècnica de València-Consejo Superior de Investigaciones Científicas, 46022 Valencia, Spain
| | - Rosa Porcel
- Instituto de Biología Molecular y Celular de Plantas, Universitat Politècnica de València-Consejo Superior de Investigaciones Científicas, 46022 Valencia, Spain
| |
Collapse
|
8
|
Scholz SS, Barth E, Clément G, Marmagne A, Ludwig-Müller J, Sakakibara H, Kiba T, Vicente-Carbajosa J, Pollmann S, Krapp A, Oelmüller R. The Root-Colonizing Endophyte Piriformospora indica Supports Nitrogen-Starved Arabidopsis thaliana Seedlings with Nitrogen Metabolites. Int J Mol Sci 2023; 24:15372. [PMID: 37895051 PMCID: PMC10607921 DOI: 10.3390/ijms242015372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2023] [Revised: 10/12/2023] [Accepted: 10/13/2023] [Indexed: 10/29/2023] Open
Abstract
The root-colonizing endophytic fungus Piriformospora indica promotes the root and shoot growth of its host plants. We show that the growth promotion of Arabidopsis thaliana leaves is abolished when the seedlings are grown on media with nitrogen (N) limitation. The fungus neither stimulated the total N content nor did it promote 15NO3- uptake from agar plates to the leaves of the host under N-sufficient or N-limiting conditions. However, when the roots were co-cultivated with 15N-labelled P. indica, more labels were detected in the leaves of N-starved host plants but not in plants supplied with sufficient N. Amino acid and primary metabolite profiles, as well as the expression analyses of N metabolite transporter genes suggest that the fungus alleviates the adaptation of its host from the N limitation condition. P. indica alters the expression of transporter genes, which participate in the relocation of NO3-, NH4+ and N metabolites from the roots to the leaves under N limitation. We propose that P. indica participates in the plant's metabolomic adaptation against N limitation by delivering reduced N metabolites to the host, thus alleviating metabolic N starvation responses and reprogramming the expression of N metabolism-related genes.
Collapse
Affiliation(s)
- Sandra S. Scholz
- Department of Plant Physiology, Matthias-Schleiden-Institute, Friedrich-Schiller-University Jena, 07743 Jena, Germany;
| | - Emanuel Barth
- Bioinformatics Core Facility, Friedrich-Schiller-University Jena, 07743 Jena, Germany;
| | - Gilles Clément
- Université Paris-Saclay, INRAE, AgroParisTech, Institut Jean-Pierre Bourgin (IJPB), 78000 Versailles, France (A.M.); (A.K.)
| | - Anne Marmagne
- Université Paris-Saclay, INRAE, AgroParisTech, Institut Jean-Pierre Bourgin (IJPB), 78000 Versailles, France (A.M.); (A.K.)
| | - Jutta Ludwig-Müller
- Institute of Botany, Technische Universität Dresden, 01217 Dresden, Germany;
| | - Hitoshi Sakakibara
- Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya 464-8601, Japan; (H.S.); (T.K.)
| | - Takatoshi Kiba
- Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya 464-8601, Japan; (H.S.); (T.K.)
| | - Jesús Vicente-Carbajosa
- Centro de Biotechnología y Genómica de Plantas, Instituto Nacional de Investigación y Tecnología Agraria y Alimentación (INIA), Universidad Politécnica de Madrid (UPM), Campus de Montegancedo, 28223 Madrid, Spain; (J.V.-C.); (S.P.)
- Departamento de Biotecnología-Biología Vegetal, Escuela Técnica Superior de Ingeniería Agronómica, Alimentaria y de Biosistemas, Universidad Politécnica de Madrid (UPM), 28040 Madrid, Spain
| | - Stephan Pollmann
- Centro de Biotechnología y Genómica de Plantas, Instituto Nacional de Investigación y Tecnología Agraria y Alimentación (INIA), Universidad Politécnica de Madrid (UPM), Campus de Montegancedo, 28223 Madrid, Spain; (J.V.-C.); (S.P.)
- Departamento de Biotecnología-Biología Vegetal, Escuela Técnica Superior de Ingeniería Agronómica, Alimentaria y de Biosistemas, Universidad Politécnica de Madrid (UPM), 28040 Madrid, Spain
| | - Anne Krapp
- Université Paris-Saclay, INRAE, AgroParisTech, Institut Jean-Pierre Bourgin (IJPB), 78000 Versailles, France (A.M.); (A.K.)
| | - Ralf Oelmüller
- Department of Plant Physiology, Matthias-Schleiden-Institute, Friedrich-Schiller-University Jena, 07743 Jena, Germany;
| |
Collapse
|